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Abstract

In math reasoning with large language mod-001
els (LLMs), fine-tuning data augmentation by002
query evolution and diverse reasoning paths is003
empirically verified effective, profoundly nar-004
rowing the gap between open-sourced LLMs005
and cutting-edge proprietary LLMs. In this006
paper, we conduct an investigation for such007
data augmentation in math reasoning and are008
intended to answer: (1) What strategies of data009
augmentation are more effective; (2) What is010
the scaling relationship between the amount of011
augmented data and model performance; and012
(3) Can data augmentation incentivize gener-013
alization to out-of-domain mathematical rea-014
soning tasks? To this end, we create a new015
dataset, AugGSM8K, by complicating and di-016
versifying the queries from GSM8K and sam-017
pling multiple reasoning paths. We obtained018
a series of LLMs called MuggleMath by fine-019
tuning on subsets of AugGSM8K. MuggleMath020
substantially achieves new state-of-the-art on021
GSM8K (from 54% to 68.4% at the scale of 7B,022
and from 63.9% to 74.0% at the scale of 13B).023
A log-linear relationship is presented between024
MuggleMath’s performance and the amount of025
augmented data. We also find that MuggleMath026
is weak in out-of-domain math reasoning gen-027
eralization to MATH, which suggests that aug-028
mentation on a single math subject could not029
help with overall math reasoning performance.030

1 Introduction031

The emergence of large language models (LLMs)032

(Ouyang et al., 2022; Anil et al., 2023; OpenAI,033

2023) has profoundly revolutionized the field of034

natural language processing, exhibiting versatile035

performance in various tasks like code generation036

(Chen et al., 2021; Luo et al., 2023b), instruction037

following (Longpre et al., 2023), long context un-038

derstanding (Tworkowski et al., 2023), and math039

reasoning (Wei et al., 2022; Taylor et al., 2022;040

Lewkowycz et al., 2022a). Math reasoning as041

a representative reasoning task is widely studied 042

to access the reasoning abilities in LLMs (Cobbe 043

et al., 2021; Hendrycks et al., 2021). Proprietary 044

LLMs, such as GPT-3.5, and GPT4 (OpenAI, 2023) 045

have shown exceptional mathematical reasoning 046

abilities, while there remains a substantial gap be- 047

tween open-source LLMs, such as GPT-J (Wang 048

and Komatsuzaki, 2021) and LLaMA (Touvron 049

et al., 2023a,b)) and the cutting-edge proprietary 050

models. 051

To enable better mathematical reasoning abilities 052

in open-sourced LLMs, they generally undergo a 053

fine-tuning stage on supervised reasoning datasets. 054

A series of efforts are committed to enhancing the 055

mathematical reasoning capabilities of open-source 056

LLMs, where a mainstream approach involves first 057

augmenting new mathematical problems and an- 058

swers, followed by supervised fine-tuning on the 059

augmented dataset (Yuan et al., 2023a; Luo et al., 060

2023a; Yu et al., 2023). This type of approach 061

has achieved good results, and in this paper, we 062

would like to explore what are the key factors af- 063

fecting the effectiveness of data augmentation for 064

mathematical reasoning tasks and the scaling rela- 065

tionship between the amount of data augmentation 066

and model performance. Specifically, with the help 067

of proprietary models (GPT-3.5 and GPT-4), we 068

applied five types of mathematical problem aug- 069

mentation methods based on human experience 070

in creating variations of mathematical problems 071

similar to Luo et al. (2023b,a). We further gener- 072

ated multiple reasoning paths for each augmented 073

problem since distinct reasoning paths can also en- 074

hance chain-of-thought reasoning (Huang et al., 075

2022; Zhu et al., 2023a; Yuan et al., 2023a). We 076

obtained a new dataset called AugGSM8K after 077

data augmentation on a widely used mathematical 078

reasoning dataset GSM8K (Cobbe et al., 2021). By 079

supervised fine-tuning on the open-source LLaMA 080

(Touvron et al., 2023a) and LLaMA-2 (Touvron 081

et al., 2023b) LLMs on different subsets of Aug- 082
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GSM8K, we obtained a series of models dubbed083

MuggleMath. We find that with sufficient amounts084

of data, MuggleMath achieves a new state-of-the-085

art on GSM8K. In addition to this, we find a log-086

linear relationship between the performance of087

MuggleMath and the amount of data augmentation088

over a range of data volumes.089

Although MuggleMath achieves strong perfor-090

mance on the GSM8K test set, the rationales for091

performance improvement by data augmentation092

remain unclear. We are therefore interested in the093

specific reason behind the performance improve-094

ment and whether it brings enhancement in LLMs’095

mathematical reasoning capabilities generally.096

To validate the generalization of MuggleMath,097

we conduct multi-task learning and analyze the098

transferability with AugGSM8K and MATH. We099

found that LLMs trained with supervised learn-100

ing after data augmentation on GSM8K only bring101

marginal improvements to performance on MATH102

(Hendrycks et al., 2021). By visualizing the data103

distribution in the embedding space of LLaMA-104

2-7B, we observe that the embedding distribution105

of problems in AugGSM8K is very close to that106

of GSM8K, but significantly different from the107

problem distribution in the MATH dataset. This is108

the fundamental reason why performance improve-109

ments from data augmentation on GSM8K cannot110

be generalized to MATH.111

The main contributions of our work can be sum-112

marized as follows:113

• By augmenting GSM8K with various queries114

and multiple reasoning paths, we curated115

GSM8K to a new dataset named AugGSM8K.116

• We utilize AugGSM8K for fine-tuning the117

LLaMA models to obtain MuggleMath, which118

greatly improves the in-domain performance119

of the open-sourced LLMs on GSM8K and120

achieves new state-of-the-art performances.121

• We find a log-linear relationship between the122

accuracy of the model on the test set and the123

amount of data augmentation within a certain124

range while the coefficient is similar to aug-125

menting new human-written samples.126

• We demonstrate that the performance gains127

from data augmentation on GSM8K are dif-128

ficult to generalize to out-of-domain dataset129

MATH due to distribution differences.130

2 Related Works 131

Mathematical Reasoning for Large Language 132

Models Mathematical reasoning is a crucial abil- 133

ity to examine large language models (Cobbe 134

et al., 2021; Hendrycks et al., 2021; Wei et al., 135

2022; Yuan et al., 2023b). The mathematical 136

reasoning ability of LLMs can be enhanced by 137

math-related pre-training (Hendrycks et al., 2021; 138

Lewkowycz et al., 2022a; Taylor et al., 2022; Light- 139

man et al., 2023) and math-related supervised fine- 140

tuning (Yuan et al., 2023a; Luo et al., 2023a; Yue 141

et al., 2023; Yu et al., 2023). Query augmentation 142

(Luo et al., 2023a; Yu et al., 2023) and response 143

augmentation (Huang et al., 2022; Zelikman et al., 144

2022; Ni et al., 2023; Zhu et al., 2023b; Yuan et al., 145

2023a) are useful techniques to improve math in- 146

domain performances during SFT. Query augmen- 147

tation methods usually generate rephrased, easier, 148

or harder problems and use proprietary LLMs to 149

generate answers. Response augmentation meth- 150

ods generate new reasoning paths for problems in 151

the training set. They could rely on answers in 152

the training set to filter the generated reasoning 153

paths. (Yuan et al., 2023a) invests the scaling re- 154

lationship on supervised LLMs math performance 155

with pre-train loss, supervised data amount, and 156

augmented reasoning path amount. MetaMath (Yu 157

et al., 2023) is a contemporary work that is similar 158

to us in the augmentation method. The distinc- 159

tion lies in MetaMath’s focus on rewriting original 160

questions to create new ones using the questions’ 161

mathematical relationships. In contrast, our ef- 162

forts are centered on generating new problems with 163

equal or greater difficulty levels. Our method is 164

capable of generating higher-quality data as evi- 165

denced by the fact that our fine-tuning performance 166

on AugGSM8K(150K ) surpasses that of Meta- 167

Math’s MetaMathQA-GSM8K(240K). Moreover, 168

our work investigates the quantitative relationship 169

between query and response augment amounts and 170

in-domain and out-of-domain performances. 171

Data Augmentation for LLM Data augmenta- 172

tion is a common technique to improve downstream 173

task performance in NLP (Feng et al., 2021). In 174

the era of large language models, data augmen- 175

tation is usually used for generating instruction 176

following SFT datasets (Wang et al., 2023b; Taori 177

et al., 2023). Queries (Ding et al., 2023; Xu et al., 178

2023) and responses (Mukherjee et al., 2023) of 179

SFT datasets can both be augmented by prompt- 180

ing state-of-the-art proprietary LLMs. Compared 181
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with their work, we are concentrated on augment-182

ing math SFT dataset and we are more interested183

in scaling relationships on in-domain and out-of-184

domain generalizations.185

Out-of-Distribution Generalization The chal-186

lenge of out-of-distribution (OOD) generalization187

has garnered widespread attention across various188

domains(Karras et al., 2018; Wang et al., 2021;189

Zhou et al., 2023) in machine learning. This issue190

arises when the distribution of data encountered by191

a model during testing diverges from that of the192

training phase, leading to a decline in model perfor-193

mance. The OOD problem is multifaceted(Lipton194

et al., 2018; Schölkopf et al., 2012; Tran et al.,195

2022; Cai et al., 2023), with subcategories such196

as covariate shifts and concept shifts, among oth-197

ers. To mitigate the effects of OOD scenarios, a198

diverse array of strategies has been developed, in-199

cluding unsupervised domain generalization(Wang200

et al., 2021; Zhou et al., 2023), stable learning(Shen201

et al., 2020; Kuang et al., 2020), invariant represen-202

tation learning(Creager et al., 2021), causal learn-203

ing(Peters et al., 2015), and invariant risk minimiza-204

tion(Mao et al., 2023) and etc. Recent trends in the205

community have shown a growing preference for206

performance enhancement through data augmenta-207

tion during the Self-supervised Fine-tuning (SFT)208

stage in large-scale models. However, the extent of209

OOD issues associated with this method and their210

severity remain underexplored. This study aims to211

fill this gap by conducting empirical experiments212

and providing a visual analysis to assess the impact213

of data augmentation on OOD generalization in the214

context of large models.215

3 Experiments216

We first introduce our experimental setup (3.1) and217

dataset augmentation method (3.2). Then we con-218

duct analyses spanning several aspects of data aug-219

mentation to answer the three research questions in220

abstract.221

3.1 Experimental Setup222

Problem Definition We define the math reason-223

ing SFT dataset as D = {qi, ai}i, where qi is a224

question and ai is a reasoning path with an an-225

swer. We augment the SFT dataset to a new dataset226

D′ = {q′i, a′i}i. We apply SFT on the pre-trained227

language models and measure the augmented SFT228

dataset based on the accuracy of the in-domain229

test set Din and out-of-domain test set Dout. We 230

calculate the accuracy based on greedy decoding. 231

In-domain Dataset GSM8K (Cobbe et al., 2021) 232

is a dataset with elementary school math word prob- 233

lems with 7,473 training problems and 1,319 test- 234

ing problems. This is viewed as our in-domain 235

dataset D and we will augment and train on it. The 236

test set of GSM8K is viewed as Din. 237

Out-of-domain Dataset MATH (Hendrycks 238

et al., 2021) is a dataset with challenging high- 239

school math problems. Problems are classified into 240

the following topics: Prealgebra, Algebra, Number 241

Theory, Counting and Probability, Geometry, In- 242

termediate Algebra, and Precalculus. Problems 243

in MATH are harder and more diverse than in 244

GSM8K. We use 500 test problems from (Light- 245

man et al., 2023) as our out-of-domain test dataset 246

Dout. The reason we do not use MATH as the in- 247

domain dataset is that it is hard to apply query and 248

response augmentation for MATH-level problems 249

since GPT-4 can only have an accuracy of 42. 250

Training We employ state-of-the-art open- 251

source LLMs for fine-tuning, including LLaMA-1 252

7B (Touvron et al., 2023a), LLaMA-2 7B, LLaMA- 253

2 13B, and LLaMA-2 70B (Touvron et al., 2023b), 254

all of which undergo full fine-tuning. We adopt sys- 255

tem prompt from (Taori et al., 2023) for fine-tuning 256

and listed in A. We use AdamW for optimization. 257

The training proceeds for three epochs with a learn- 258

ing rate of 2e-5, a warmup ratio of 0.03, and a 259

cosine learning rate scheduler. We do not apply 260

early stops to choose checkpoints. In the training 261

phase, to train the models that achieved the best 262

results presented in 4 for MuggleMath, the compu- 263

tational resources utilized are as follows: the 7B, 264

7B-2, and 13B-2 models were trained for 5.5 hours, 265

5.5 hours, and 13.5 hours, respectively. For the 266

70B-2 model, we trained it for 20 hours 267

3.2 Dataset Augmentation 268

Query Augmentation To generate new queries, 269

we use gpt-3.5-turbo-0613 and gpt-4-0613 as 270

the generator. Inspired by Evol-Instruct (Luo et al., 271

2023b,a), we find that the diversity and complexity 272

of queries in augmented datasets play a vital role in 273

improving math reasoning benchmark performance. 274

We employ human knowledge in modifying mathe- 275

matical problems for query augmentation. Below 276

are five query augmentation methods used in our ex- 277

periments: Change specific numbers; Introduce 278
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fractions or percentages; Combine multiple con-279

cepts; Include a conditional statement; Increase280

the complexity of the problem. The examples and281

detailed prompts we used for query augmentation282

are listed in B. The examples of augmented queries283

are shown in 6.284

Response Augmentation Instead of using the285

trained SFT model proposed in (Yuan et al., 2023a),286

we use gpt-3.5-turbo-0613 and gpt-4-0613 to287

augment more reasoning paths . The main reason288

is that we can not filter out wrong reasoning paths289

without final answers. Thus we need to use a model290

that is as accurate as possible which is the state-of-291

the-art LLMs ChatGPT. We use a 1-shot prompt to292

ensure augmented response formats. The response293

prompt we used for query augmentation is listed in294

C. Augmented responses can result in some uncon-295

ventional answers, such as excessively long reason-296

ing paths and reasoning paths that do not contain297

an answer at their end. We devise manual rules to298

filter out these corresponding query-response pairs299

and manual rules are detailed in D. The examples300

of augmented responses are shown in 7.301

Augmented Dataset The original GSM8K train-302

ing set has 7,473 samples. We augment 5 more303

queries for each query in the training set and yield304

7, 473× 5 = 37, 365 augmented queries. We run305

this query augmentation three times with D1,D3306

by GPT-3.5 and D2 by GPT-4, and ∥Di∥ = 37, 365.307

Then we generate one response for each augmented308

query for Di and apply response filtering. We con-309

sider the query-response pairs after filtering as Dj
i .310

We obtain approximately 30,000 query-response311

pairs for each Dj
i . To explore the performance dif-312

ferences of different augmented settings, we gen-313

erate five responses on the augmented queries D1314

with GPT-4’s temperature set to 1.0 (D1
1 ∼ D5

1),315

one response with GPT-4’s temperature set to 0.0316

(D6
1), and one response with GPT-3.5’s tempera-317

ture set to 1.0 (D7
1). We also try a zero-shot re-318

sponse generation named D8
1. We use GPT-4 to319

augment responses as D1
2,D1

3. Since D1
2 is signif-320

icantly larger than other subsets, we downsample321

it to D̂1
2. We refer to the union of all augmented322

data and the original GSM8K training set as Aug-323

GSM8K, upon which we conduct experiments us-324

ing various subsets. Detailed augmented dataset325

notations are listed in 1.326

Subset Query Response Temp. Size (K)

D - - - 7.5
D1

1 ∼ D5
1 GPT-3.5 GPT-4 1 30

D6
1 GPT-3.5 GPT-4 0 30

D7
1 GPT-3.5 GPT-3.5 1 25

D8
1 GPT-3.5 GPT-4 1 30

D1
2 GPT-4 GPT-4 0 35

D̂1
2 GPT-4 GPT-4 0 30

D1
3 GPT-3.5 GPT-4 1 30

Table 1: The description of different subsets of the
augmented in-domain dataset AugGSM8K.

Figure 1: Comparison of test set accuracy on GSM8K
for models of varying scales after fine-tuning on Aug-
GSM8K subsets with different query augmentation
strategies.

3.3 RQ1. What Strategies of Data 327

Augmentation are More Effective 328

Query Augmentation Types We want to exam- 329

ine whether query augmentation works for math 330

reasoning SFT since (Luo et al., 2023a) applies 331

PPO which cannot make an apple-to-apple compar- 332

ison. Each query in the original training dataset is 333

augmented with 5 different types. We cluster these 334

queries based on the query types. We apply SFT 335

on the original training set (D), each query type 336

augmentation, and a combination of them (D+D1
1). 337

Results are shown in 1 and 10. Compared with no 338

augment, each query augment method can improve 339

the in-domain performance. Increase complexity 340

augmentation method improves most among all 341

of them. This suggests that enhancing the com- 342

plexity of queries is one of the key factors influ- 343

encing the sample efficiency of data augmentation. 344

Combining five augment methods yields the best 345

in-domain performance which proves the effective- 346

ness of Evol-instruct under a fair setting. 347

Query and Response Sources Here we examine 348

how the query and response quality influence the 349

augmented model performance. We list results in 2, 350

and draw the following conclusions: (a) Compar- 351
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Model 7B 7B-2 13B-2
D 35.9 41.6 50.0
+D1

1 × 0.8 51.1 56.6 63.2
+D1

1 53.0 57.0 65.5
+D6

1 51.6 58.0 63.8
+D7

1 41.3 46.7 52.8
+D8

1 49.4 53.3 62.2
+D̂1

2 52.3 57.8 63.3

Table 2: Performance of subsets of AugGSM8K with
different query and response sources. +D1

1 is an omis-
sion of D +D1

1 , and the same notation is used in other
tables in this paper.

ing D̂1
2 and D6

1, we find that the queries generated352

by GPT-4 and GPT-3.5 have no significant impact353

on SFT performance. (b) Comparing D1
1 and D6

1,354

we can conclude that when using GPT-4 to gener-355

ate responses, the temperature has no significant356

impact on SFT performance. (c) Comparing D1
1357

and D8
1, we can conclude that, compared to the358

zero-shots generation method, the response aug-359

mentation prompt we propose plays a substantial360

role in enhancing the quality of the generated data361

(+3.6 for LLaMA-7B, +3.7 for LLaMA-2-7B, +3.3362

for LLaMA-2-13B). The main reason we consider363

this is our 1-shot setting stabilizes the response for-364

mat. (d) Comparing D7
1 (25K) and D1

1 × 0.8 (24K),365

we can conclude that, compared to GPT-3.5, the re-366

sponse augmented using GPT-4 yields significantly367

better results for SFT.368

3.4 RQ2. What is the Scaling Relationship369

between the Amount of Augmented Data370

and Model Performance371

Query Augmentation Amount We examine372

how query augmentation amount affects the in-373

domain performance. We examine seven data vol-374

ume configurations including partitioning D1
1 into375

proportions of 0, 0.2, 0.4, 0.6, 0.8, 1.0, as well as376

D1
1 + D̂1

2 and D1
1 + D̂1

2 + D1
3 as the augmented377

datasets. Each augmented query only has one aug-378

mented response. They are mixed with GSM8K379

D to apply SFT. From 2 and 11, we can find that380

within the data volume range of 13-97K, the in-381

domain performance exhibits a log-linear relation-382

ship with the query amount. We employ linear383

regression to approximate this relationship. As384

shown in 3, pre-training models with better initial385

math reasoning capabilities exhibit a smaller slope386

which is consistent with (Yuan et al., 2023a). This387

suggests it is harder to improve reasoning ability388

for a better pre-trained model. We also conduct val-389

idations on our fitted scaling law with an interpolate390

Figure 2: Comparison of test set accuracy on GSM8K
for models of varying scales after fine-tuning on Aug-
GSM8K subsets with different query augmentation
amount.

point at a query amount of 17K (D + D1
1 × 0.3) 391

and an extrapolate point at a query amount of 104K 392

(D+D1
1+D1

2+D1
3), discovering that the regression 393

offers accurate predictions of model performances. 394

We should notice this scaling law cannot be cor- 395

rect within all dataset size ranges since the test set 396

accuracy is bounded. 397

Besides, the fitted regression shows when query 398

augmentation amount doubles, LLaMA-7B mod- 399

els will improve 10.7×log(2) = 7.4, LLaMA2-7B 400

will improve 9.8 × log(2) = 6.8, and LLaMA2- 401

13B will improve 7.6 × log(2) = 5.3. As shown 402

in Yuan et al. (2023a), it is estimated that when 403

human-written sample amount doubles, LLaMA- 404

7B models will improve 6.5 score, LLaMA2-7B 405

will improve 6.6 score, and LLaMA2-13B mod- 406

els will improve 5.5 score. Query augmentation 407

is similarly effective to human-written samples in 408

term of in-domain performance. This demonstrates 409

that query augmentation benefits from the perform- 410

ing proprietary LLMs on GSM8K, thus the sample 411

quality generated by query augmentation is as high 412

as those of human-written samples. 413

Response Augmentation Amount We further in- 414

vestigate under the data augmentation setting, if we 415

keep the number of queries constant and increase 416

the number of responses, how the in-domain perfor- 417

mance changes. We use D1 as augmented queries 418

and vary the response amount from 1 to 5 per aug- 419

mented query. We also try majority voting (Wang 420

et al., 2023a; Huang et al., 2022) to filter the aug- 421

mented response since we cannot know the correct 422

answer. In 3 and 12, we find for LLaMA-7B and 423

LLaMA-2-7B models, once the response data vol- 424

ume reaches 97K (3 responses per query), further 425
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Model 7B 7B-2 13B-2

Estimation y = 10.7 log(x) + 13.2 y = 9.8 log(x) + 21.3 y = 7.6 log(x) + 36.3

x = 17 prediction 43.4 49.2 57.7
x = 17 observation 43.4 50.0 56.0
x = 104 prediction 62.7 67.0 71.4
x = 104 observation 62.1 66.7 70.8

Table 3: The scaling law on amounts of augmented query in GSM8K.

increase the number of responses do not yield per-426

formance improvement. Before this point, model427

performance improves as the response amount in-428

creases. Thus, query augmentation with accurate429

responses seems more effective than only response430

augmentation with the augmented data size scales431

up. As for the LLaMA-2-13B model, within the432

data volume range of 37K to 157K, model perfor-433

mance consistently rises in a roughly linear fashion434

with increasing data volume, with a slower rate than435

the 7B model within the ascending interval. We436

then investigate the performance impact brought437

by majority voting filtering. If all responses have438

different answers, we discard the corresponding439

query-response. Surprisingly, we find that after ap-440

plying majority voting, the model performance at441

the same data scale is generally lower than not ap-442

plying filtering. A possible explanation is that even443

wrong responses generated by GPT-4 are useful for444

worse models (LLaMA) to improve their abilities.445

Another explanation is the reduction in the number446

of queries, as we discard the corresponding query447

when all response answers are different.448

Figure 3: Comparison of test set accuracy on GSM8K
for models of varying scales after fine-tuning on Aug-
GSM8K subsets with different response augmentation
amount.

Combination We investigate how the combina-449

tion of query augmentation and response augmen-450

tation will affect the model’s performance. Re-451

sults are listed in 4. We conduct SFT on D + 452∑3
i=1Di

1 + D̂1
2 +D1

3 and named MuggleMath ef- 453

fectively improving the in-domain accuracy of each 454

model compared to using query or response aug- 455

mentation only. These models outperform previous 456

state-of-the-art open-sourced models with a very 457

large margin for 7B and 13B models. Model com- 458

parisons of MuggleMath and a broader range of 459

state-of-the-art approaches are in 16. Case stud- 460

ies of MuggleMath are listed in 8. It demonstrates 461

that query augmentation and response augmenta- 462

tion can complement each other to a certain extent 463

to improve in-domain performance. 464

3.5 RQ3. Can Data Augmentation Incentivize 465

Generalization to Out-of-domain 466

Mathematical Reasoning Tasks? 467

We have found that query and response augmen- 468

tation significantly improves in-domain math rea- 469

soning performance. But we really interested in 470

whether we can improve performances on out-of- 471

domain distribution. We employ multi-task learn- 472

ing and transfer learning to see how models per- 473

formed on the MATH dataset. We list results in 5. 474

We find that (1) Multi-task learning and transfer 475

learning outperform single-task supervised fine- 476

tuning on LLaMA2-7/13B and do not improve on 477

LLaMA-7B. (2) Although augmenting more query 478

and response can improve GSM8K significantly, 479

it has little to no help in improving MATH perfor- 480

mance which indicates that in-domain augmenta- 481

tion is not helpful for out-of-domain generalization 482

in this setting. Case studies of models performed 483

on MATH are listed in 9. 484

To further investigate why AugGSM8K helps 485

little on the MATH dataset, we use t-SNE in 4 486

to visualize the hidden representation of problems 487

encoded by LLaMA2-7B, that is the 15-th layer 488

of last token representation of the problem . We 489

find GSM8K and MATH are separated in hidden 490

space and only some of the problems in MATH 491

are laid in the span of GSM8K. The augmented 492

GSM8K problems are laid in the same span of 493
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Model 7B 7B-2 13B-2 70B-2

D 35.9 41.6 50.0 63.2
RFT (Yuan et al., 2023a) 49.1 51.2 55.3 64.8
WizardMath (Luo et al., 2023a) - 54.9 63.9 81.6

+D1
1 +D2

1 +D3
1 61.3 64.4 68.4 -

+D1
1 + D̂1

2 +D1
3 61.4 66.3 69.8 -

+
∑3

i=1 D
i
1 + D̂1

2 +D1
3 65.2 67.4 72.6 80.1

+
∑3

i=1 D
i
1 + D̂1

2 +D1
3 (n=512) 65.4 (+16.3) 68.4 (+13.5) 74.0 (+10.1) 82.3 (+0.7)

Table 4: In-domain performance of combination on query and response augmentation. n=512 means that max
decode token count is 512. For other experiments, we use max decode token count 256.

.

GSM8K which makes sense why it improves little494

for MATH.495

To investiate if the proposed augmentation496

method improve performance on this subset of497

MATH, we find that while there is an overlap in the498

embedding space distribution between MATH and499

GSM8K, it is relatively small compared with that500

between GSM8K and AugGSM8K. In the transfer501

learning setting, training first on GSM8K and then502

on MATH with LLaMA-13B-2 does provide some503

benefits for certain subsets, such as Prealgebra, Al-504

gebra, and Geometry. However, if we train first505

on AugGSM8K and then on MATH, this benefit is506

not only marginal but may even lead to a decrease507

in performance on other subsets, like Geometry508

and Prealgebra, which could be related to the data509

proportions. Overall, the performance improve-510

ment on the MATH dataset from augmentation on511

GSM8K is minimal, even on subsets like Prealge-512

bra, where there is some overlap. For 7B size and513

multi-task learning setting, we can draw the sim-514

ilar conclusion. Detailed resulsts are listed in 18515

to 23. This suggests if we want to improve math516

reasoning benchmark performances for LLMs, we517

can choose to apply augmentation on diverse math518

subjects.519

4 Discussion520

4.1 Training set vs. Test set accuracy521

Query and response augmentation generate similar522

problems for the training set which leads to better523

training set accuracy. We have shown augmenta-524

tions improve the accuracy of the in-domain test set.525

We want to investigate the relationship between the526

accuracy of the training set and the test set to find527

if the accuracy of the training set can be a perfor-528

mance indicator. We sample 500 samples from the529

original training set to calculate the accuracy. From530

8, the training and test accuracy generally exhibit531

Figure 4: The embedding visualization of queries in
GSM8K, MATH and AugGSM8K.

a positive correlation across different augmented 532

data which shows the training accuracy could be 533

an indicator of in-domain performance unless de- 534

liberately overfitting. 535

4.2 Make more augmentation on harder 536

problems 537

During the query augmentation process, it is crucial 538

to understand which kind of queries should be aug- 539

mented. Augmenting too many easy problems may 540

not be effective since the model may have mastered 541

this level of problems. Here we examine if the 542

model improves more when we augment more on 543

harder or wrong problems. We define hard prob- 544

lems based on the number of equations, specifically, 545

problems with fewer than three reasoning steps as 546

easy, those with exactly three steps as medium, and 547

those with more than three steps as hard(see more 548

details in F). We define wrong problems if the SFT 549

model solves them incorrectly. We apply SFT on 550

subsets of AugGSM8K with augmented queries on 551

easy, medium, hard, wrong, and random problems. 552

From 5 and 14, it is evident that for LLaMA-2- 553

7B and LLaMA-2-13B, the performance gain from 554
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Training Setting 7B 7B-2 13B-2

In Context Learning on MATH 2.9 2.5 3.9
Supervised Fine-tuning on MATH 4.8 5.8 6.0

Multi-task learning
+MATH 4.6 6.2 7.6
+D1

1+MATH 4.8 4.8 8.4

Transfer learning
D →MATH 4.4 6.0 9.4
+D1

1 →MATH 6.2 5.6 7.8
+
∑3

i=1 D
i
1 + D̂1

2 +D1
3→MATH 5.6 8.4 9.4

+
∑7

i=1 D
i
1-majority voting+D1

2 +D1
3 →MATH 5.6 6.0 9.0

Table 5: Comparison of test set accuracy on MATH. Multi-task learning means that we fine-tune the models on
the mixed dataset of AugGSM8K subset and MATH. Transfer learning means that we first fine-tune the models on
subsets of AugGSM8K and then fine-tune on MATH.

Figure 5: The performance of SFT models with different
difficulty augmentation on GSM8K.

Figure 6: The performance of SFT models with wrong
problem augmentation on GSM8K.

augmenting hard problems is significantly higher555

than that from augmenting other types of problems.556

From 6 and 15, we find that augmenting incorrect557

problems on three models consistently improves558

more than random query augmentation. In addition,559

we have conducted an analysis of our model’s per-560

formance on test set problems of varying difficulty.561

Our analysis of the 7B-2 model’s performance on 562

the test set, shows accuracy rates of 0.55, 0.42, and 563

0.21 for easy, medium, and hard problems, respec- 564

tively, while MuggleMath achieves higher accuracy 565

rates of 0.73, 0.70, and 0.64 for the same problem 566

categories. This significant performance boost on 567

difficult questions can be attributed to the fact that 568

the augmented problems we generated are gener- 569

ally more complex than the original problems. 570

4.3 Result on the Perturbed Test Set 571

We have perturbed two new test sets based on the 572

original GSM8K test set, Change-Test and Aug- 573

Test in in 17. 574

Upon evaluating our model on these two per- 575

turbed test sets, we found that the performance of 576

MuggleMath consistently and significantly exceeds 577

that of the model fine-tuned on GSM8K alone. This 578

observation suggests that our data augmentation 579

techniques not only enhance the model’s ability to 580

solve the original problems but also contribute to 581

its improved performance on varied and perturbed 582

inputs, thereby indicating a robust generalization 583

capability in in-domain dataset. 584

5 Conclusion 585

In this paper, we investigate the scaling property 586

of query and response augmentation with respect 587

to math reasoning in-domain and out-of-domain 588

performance. We find that query and response 589

augmentation can improve in-domain performance 590

very effectively which has a similar improvement to 591

human-written query-response pairs augmentation. 592

Although we can obtain state-of-the-art in-domain 593

performance by such augmentation, we find it can- 594

not generalize to out-of-domain math reasoning 595

performances. 596
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Limitations597

In this study, we focused on the domain of math-598

ematical reasoning—a key area of interest for the599

large language model (LLM) research commu-600

nity. We investigated the effectiveness of data aug-601

mentation techniques on both in-domain (GSM8K602

dataset) and out-of-domain (MATH dataset) per-603

formance. While our work provides insights into604

the performance scalability and generalizability605

of Chain-of-Thought (COT) enhanced models in606

mathematical reasoning, it’s important to acknowl-607

edge certain limitations: (1)Scope of Mathematical608

Datasets: Our research concentrated on specific609

datasets, and the augmentation strategies were tai-610

lored accordingly. The mathematical landscape is611

vast, and our findings may not necessarily extrapo-612

late to other datasets not included in our study. Fu-613

ture work should consider a wider array of mathe-614

matical datasets to validate and extend our findings.615

(2)Depth of Generalizability Research: Although616

our study is among the initial efforts to evaluate617

the generalizability of COT-augmented models in618

math reasoning, the study did not extensively ex-619

plore solutions to enhance out-of-domain perfor-620

mance across a broader spectrum of mathematical621

reasoning.622
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A Instruction prompt for training and 951

inference 952

Here is the instruction prompt used for the training 953

and inference stage. 954

Fine-tuning system prompt

Below is an instruction that describes a
task. Write a response that appropri-
ately completes the request.### Instruction:
**Query.** ### Response:

955

B Query augmentation prompt for 956

GSM8K 957

Here is the query augmentation prompt we used. 958

We require the models to generate five different aug- 959

mented problems with our provided example. We 960

use gpt-3.5-turbo-0613 and gpt-4-0613 APIs 961

with a temperature of 1.0 to obtain augmented prob- 962

lems. 963

Query augmentation prompt

I want you to act as a math teacher. I will
provide a grade school math question and
you will help to to create more challenging
math questions by given ways. Given the
question: “James writes a 3-page letter to 2
different friends twice a week. How many
pages does he write a year?”, you will mod-
ify it by following ideas:
1. Change specific numbers: James writes
a 2-page letter to 2 different friends 3 times
a week. How many pages does he write in
4 years?
2. Introduce fractions or percentages:
James writes a 3-page letter to 2 different
friends twice a week. Each week, he adds
50% more pages to each letter. How many
pages does he write in a month?
3. Combine multiple concepts: James
writes a 3-page letter to 2 different friends
twice a week. He uses both sides of the
paper and each side can hold 250 words. If
James writes 100 words per minute, how
long does it take for him to write all the let-
ters in a week?
4. Include a conditional statement: James
writes a 3-page letter to 2 different friends
twice a week. If it’s a holiday, he writes
an additional 5-page letter to each friend.

964
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Considering there are 10 holidays in a year,
how many pages does he write in a year?
5. Increase the complexity of the prob-
lem: James writes a 3-page letter to 2 dif-
ferent friends twice a week. In addition, he
writes a 5-page letter to 3 other friends once
a week. How many pages does he write in
a month, assuming there are 4 weeks in a
month?
Now you are given the question:
**A new math problem here.**

965

C Response augmentation prompt for966

GSM8K967

We use this prompt to generate responses to ensure968

the response format which can be viewed as 1-969

shot setting. We use gpt-3.5-turbo-0613 and970

gpt-4-0613 with temperature 0.0 or 1.0.971

Response augmentation prompt

I want you to act as an excellent math solver.
You will solve the given math question step
by step. You need to reply with a python
dictionary in the same format as the given
examples. Retain decimals to three decimal
places. The formulas in the process need to
use the format: 48/2 = «48/2=24»24 clips.
The end of response needs to be: #### {an-
swer}.
Examples: {“query”: “Natalia sold clips
to 48 of her friends in April, and then she
sold half as many clips in May. How many
clips did Natalia sell altogether in April
and May?”, “response”: “Natalia sold 48/2
= «48/2=24»24 clips in May.Natalia sold
48+24 = «48+24=72»72 clips altogether in
April and May.#### 72”}.
The given question:
**A new math problem here.**

972

D Response filter973

We filter out generated responses by following974

rules.975

• Delete the responses without an answer.976

• Delete the responses that are excessively977

lengthy(> 1500).978

• Remove superfluous characters beyond the979

reasoning path and the answer.980

Figure 7: The relationship of accuracy on the training
set and the amounts of augmentation data.

Figure 8: The relationship of accuracy on the GSM8K
test set and the original GSM8K training set.

E Case Study 981

F Difficulty level definition on GSM8K 982

We conducted a statistical analysis of the reasoning 983

paths required for 7,473 questions in the GSM8K 984

training set, categorizing them as hard, medium, 985

and easy. Specifically, we defined questions with 986

more than three formulas, exactly three formu- 987

las, and less than three formulas as hard, medium, 988

and easy, respectively. This categorization yielded 989

a balanced distribution with 2,357 easy, 2,360 990

medium, and 2,756 hard problems. This approach 991

ensures a relatively equal number of problems in 992

each category. 993

G Detailed Experimental results 994

We list the detailed experimental results of different 995

settings here. 996
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Method Query
Original Weng earns $12 an hour for babysitting. Yesterday,

she just did 50 minutes of babysitting. How much
did she earn?

Change specific numbers Weng earns $15 an hour for babysitting. Last week,
she babysat for 3 hours and 45 minutes every day.
How much did she earn in total last week?

Introduce fractions or percentages Weng earns $12 an hour for babysitting. However,
for every hour she babysits beyond the first 3 hours,
she earns an additional 20% per hour. If she babysat
for 5 hours yesterday, how much did she earn?

Combine multiple concepts Weng earns $12 an hour for babysitting, but gets paid
only 75% of the total at the time of service. The rest
is paid at the end of the month. If she babysat for 3
hours yesterday, how much was she paid immediately
and how much will she receive later?

Include a conditional statement Weng earns $12 an hour for babysitting. If it’s a
weekend, she gets a bonus of $5. If she babysat for 2
hours last Sunday, how much did she earn?

Increase the complexity of the problem Weng earns $12 an hour for babysitting during week-
days and $15 an hour on weekends. If she babysat
for 2 hours on Tuesday and 3 hours on Saturday, how
much did she earn in total?

Table 6: Examples of different methods for generating new queries.
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Query Weng earns $12 an hour for regular babysitting but
doubles her rate during weekends. Yesterday, she did
50 minutes of babysitting and it was a weekend. How
much did she earn?

Response1 Weng earns $12 per hour and doubles her rate dur-
ing weekends, so she earned $12 * 2 = 24 per hour
yesterday. There are 60 minutes in an hour, so Weng
did 50 minutes / 60 minutes/hour = 0.833 hours of
babysitting. Therefore, Weng earned $24 * 0.833 =
19.992, which we can round to $20.

Response2 Weng earns $12*2 = 24 an hour during weekends.
50 minutes is 50/60 = 0.833 of an hour. So, Weng
earned 24*0.833 = 19.992 dollars yesterday.

Response3 During weekends, Weng earns 12*2 = 24 dollars per
hour for babysitting. There are 60 minutes in an
hour. So, 50 minutes is 50/60 = 0.833 of an hour.
Weng earned 24*0.833 = 20 dollars for 50 minutes
of babysitting during the weekend.

Response4 Her weekend rate is 12*2 = 24 dollars per hour. There
are 60 minutes in an hour, so she worked 50/60 =
0.833 hours. So, Weng earned 24*0.833 = 19.992
dollars.

Response5 Weng’s rate during weekends is 12*2 = 24 dollars
per hour. Since an hour has 60 minutes, Weng earned
24*(50/60) = 20 dollars yesterday.

Response6 Weng earns $12*2 = 24 an hour during weekends.
She worked for 50/60 = 0.833 hour yesterday. So,
Weng earned 0.833*$24 = 19.992 yesterday.

Response7 Weng earns $12 an hour, but during the weekend,
she doubles her rate which means she earns 12*2 =
24 dollars an hour during the weekend. Babysitting
for 50 minutes is equivalent to 50/60 = 0.833 hours.
Therefore, Weng earned 24*0.833 = 19.992 dollars
from babysitting yesterday.

Table 7: Different reasoning paths for the same query.
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Query Response
Janet’s ducks lay 16 eggs per day. She
eats three for breakfast every morning
and bakes muffins for her friends every
day with four. She sells the remainder
at the farmers’ market daily for $2 per
fresh duck egg. How much in dollars
does she make every day at the farmers’
market?

Janet eats 3 eggs for breakfast and bakes
4 eggs into muffins, so she uses 3+4 =
7 eggs every day. Janet’s ducks lay 16
eggs per day, so after she uses 7 eggs,
she has 16-7 = 9 eggs left. She sells
these 9 eggs at the farmers’ market for
$2 per egg, so she makes 9*2 = 18 dol-
lars every day at the farmers’ market.

A robe takes 2 bolts of blue fiber and
half that much white fiber. How many
bolts in total does it take?

The white fiber is half the amount of
the blue fiber so it takes 2/2 = 1 bolt
of white fiber. All total it takes 2+1=3
bolts of fiber.

Josh decides to try flipping a house. He
buys a house for $80,000 and then puts
in $50,000 in repairs. This increased
the value of the house by 150%. How
much profit did he make?

He bought the house for 80,000 and
put 50,000 in repairs so he had
80,000+50,000 = $130,000 invested.
The value of the house increased by
150% so it went up 130,000*1.5 =
$195,000 in value. He had 130,000
invested and it increased in value by
195,000 so he made a profit of 195,000-
130,000 = $65,000.

James decides to run 3 sprints 3 times
a week. He runs 60 meters each sprint.
How many total meters does he run a
week?

He runs 3*60=180 meters per day. So
he runs 180*3=540 meters.

Every day, Wendi feeds each of her
chickens three cups of mixed chicken
feed, containing seeds, mealworms and
vegetables to help keep them healthy.
She gives the chickens their feed in
three separate meals. In the morning,
she gives her flock of chickens 15 cups
of feed. In the afternoon, she gives her
chickens another 25 cups of feed. How
many cups of feed does she need to give
her chickens in the final meal of the day
if the size of Wendi’s flock is 20 chick-
ens?

Every day, Wendi feeds her chickens a
total of 15+25=40 cups of feed. Thus,
she must feed her chickens 40/3=13.333
cups of feed in the final meal of the day.

Table 8: Some examples of MuggleMath-13B answering questions from the GSM8K test set. Wrong reasoning
processes are labeled in red.
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Instruction Response
A regular hexagon can be divided into
six equilateral triangles. If the perimeter
of one of the triangles is 21 inches, what
is the perimeter, in inches, of the regular
hexagon?

Since the triangle is equilateral, each
side length is 7 inches. The hexagon has
six sides of equal length, so its perime-
ter is 6× 7 = 42 inches.

What is the smallest positive perfect
cube that can be written as the sum of
three consecutive integers?

The response provided is incomplete
and does not provide a valid answer to
the question.

The set of points (x, y, z) that satisfy
2x = 3y = −z is a line. The set of
points (x, y, z) that satisfy 6x = −y =
−4z is another line. Find the angle be-
tween these lines, in degrees.

The direction vector of the first
line is < 2, 3,−1 >, and the direc-
tion vector of the second line is
< 6,−1,−4 >. The cosine of the an-
gle between these direction vectors is

<2,3,−1>·<6,−1,−4>
∥<2,3,−1>∥∥<6,−1,−4>∥ = 12

20 = 3
5 .

Therefore, the angle between the lines
is 75◦ .

What is the distance, in units, between
the points (2,−6) and (−4, 3)? Ex-
press your answer in simplest radical
form.

We use the distance formula:√
(2− (−4))2 + (−6− 3)2 =√
16 + 92 =

√
16 + 81 =

√
97 =

3
√
7 .

The expression 2 · 3 · 4 · 5 + 1 is equal
to 121, since multiplication is carried
out before addition. However, we can
obtain values other than 121 for this ex-
pression if we are allowed to change
it by inserting parentheses. For ex-
ample, we can obtain 144 by writing
(2 · (3 · 4)) · (5 + 1) = 144. In total,
how many values can be obtained from
the expression 2 · 3 · 4 · 5 + 1 by insert-
ing parentheses? (Note that rearrang-
ing terms is not allowed, only inserting
parentheses).

We can obtain 121 by not inserting any
parentheses, so we need to insert at least
one pair of parentheses to obtain a dif-
ferent value. We can obtain 144 by in-
serting one pair of parentheses as shown
above. If we insert two pairs of paren-
theses, we get (2·(3·(4·5)))+1 = 121.
Thus, we can obtain 121 by inserting
two pairs of parentheses, so we need to
insert at least three pairs of parenthe-
ses to obtain a different value. We can
obtain 168 by inserting three pairs of
parentheses, since (2·(3·(4·(5+1)))) =
168. Thus, there are 4 values that
can be obtained from the expression
2 · 3 · 4 · 5 + 1 by inserting parenthe-
ses.

Table 9: Some examples of MuggleMath-13B answering questions from the MATH test set. Wrong reasoning
processes are labeled in red.

Query aug. type 7B 7B-2 13B-2
No aug. (D) 35.9 41.6 50.0
Change numbers 41.5 48.5 54.1
Fractions or percentages 41.2 46.2 54.4
Combine multiple concepts 41.1 47.5 56.1
Conditional statement 41.7 45.8 56.4
Increase complexity 42.4 48.6 57.6
All aug. (D +D1

1) 53.0 57.0 65.5

Table 10: Different query augmentation strategies on GSM8K performances.
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Query aug. 7B 7B-2 13B-2
D 35.9 41.6 50.0
+D1

1 × 0.2 38.1 43.6 56.3
+D1

1 × 0.4 45.0 51.3 58.9
+D1

1 × 0.6 48.2 55.8 61.9
+D1

1 × 0.8 51.1 56.6 63.2
+D1

1 53.0 57.0 65.5
+D1

1 + D̂1
2 58.2 61.2 67.2

+D1
1 + D̂1

2 +D1
3 61.4 66.3 69.8

Table 11: The performance of SFT with different amounts of augmented query on GSM8K.

Response aug. 7B 7B-2 13B-2
D 35.9 41.6 50.0
+D1

1 53.0 57.0 65.5
+D1

1 +D2
1 55.9 61.4 67.0

+D1
1 +D2

1 +D3
1 61.3 64.4 68.4

+D1
1 +D2

1 +D3
1 +D4

1 60.1 63.8 69.1
+D1

1 +D2
1 +D3

1 +D4
1 +D5

1 60.7 63.6 71.6
+D1

1 +D2
1 +D3

1 - majority voting 56.4 60.7 65.7
+D1

1 +D2
1 +D3

1 +D4
1 +D5

1 - majority voting 58.9 62.5 68.3

Table 12: The performance of SFT with different amounts of augmented response on GSM8K.

Model Data D +D1
1×0.2 +D1

1×0.4 +D1
1×0.6

7B training set 56.4 41.8 51.4 55
test set 35.9 38.1 45 48.2

7B-2 training set 65.2 48.4 57.4 64.8
test set 41.6 43.6 51.3 55.8

13B-2 training set 75.4 80.4 80.4 82.6
test set 50 56.3 58.9 61.9

(a) Part 1

Model Data +D1
1×0.8 +D1

1 +D1
1 + D̂1

2 +D1
1 + D̂1

2 +D1
3

7B training set 61.6 71.4 79.8 83.6
test set 51.1 53 58.2 61.4

7B-2 training set 66.6 79 85.2 85.6
test set 56.6 57 61.2 66.3

13B-2 training set 82.2 84.4 86.6 89.2
test set 63.2 65.5 67.2 69.8

(b) Part 2

Table 13: The accuracy on the training dataset and test dataset for GSM8K.

Model 7B 7B-2 13B-2
D 35.9 41.6 50.0
D1

1 on hard 43.0 51.3 58.8
D1

1 on medium 43.5 49.0 55.6
D1

1 on easy 42.7 47.6 55.6
D1

1 on random 43.4 50.0 56.0

Table 14: The performance of SFT with query augmentation with different diffculties on GSM8K.

Model 7B 7B-2 13B-2
D1

1 on wrong 46.2 49.5 55.4
D1

1 on random 43.6 49.2 54.2

Table 15: The performance of SFT with query augmentation with wrong problems or random problems on GSM8K.
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closed-source models
Model #params GSM8K

GPT-4(OpenAI, 2023) - 92.0
GPT-3.5-Turbo(Ouyang et al., 2022) - 80.8

Claude-2 - 85.2
PaLM (Chowdhery et al., 2022) 8B 4.1

PaLM 62B 33.0
PaLM 540B 56.5

PaLM-2(Anil et al., 2023) 540B 80.7
Flan-PaLM(Anil et al., 2023) 2 540B 84.7

Minerva(Lewkowycz et al., 2022b) 8B 16.2
Minerva 62B 52.4
Minerva 540B 58.8
open-source models (1-10B)

LLaMA-1(Touvron et al., 2023a) 7B 11.0
LLaMA-2(Touvron et al., 2023b) 7B 14.6

MPT(Team, 2023b) 7B 6.8
Falcon 7B 6.8

Code-LLaMA(Rozière et al., 2023) 7B 25.2
InternLM(Team, 2023a) 7B 31.2

GPT-J(Wang and Komatsuzaki, 2021) 6B 34.9
ChatGLM-2(Zeng et al., 2022) 6B 32.4

Qwen(Alibaba, 2023) 7B 51.6
Baichuan-2(BaichuanInc, 2023) 7B 24.5

MAmooTH-CoT(Yue et al.) 7B 50.5
SFT 7B 41.6

RFT(Yuan et al., 2023a) 7B 50.3
WizardMath(Luo et al., 2023a) 7B 54.9

MetaMath(Yu et al., 2023) 7B 66.5
MuggleMath-7B 7B 68.4

open-source models (11-50B)
LLaMA-1(Touvron et al., 2023a) 13B 17.8

LLaMA-1 33B 35.6
LLaMA-2(Touvron et al., 2023b) 13B 28.7

Platypus(Lee et al., 2023) 13B 25.7
LLaMA-2 34B 42.2

MPT(Team, 2023b) 30B 15.2
Falcon(Penedo et al., 2023) 40B 19.6

Vicuna(W. Chiang and Xing., 2023) 13B 27.6
Baichuan-2(BaichuanInc, 2023) 13B 52.8

MAmooTH-CoT(Yue et al.) 13B 56.3
Code-LLaMA(Rozière et al., 2023) 13B 36.1

SFT 13B 50.0
RFT(Yuan et al., 2023a) 13B 54.8

WizardMath(Luo et al., 2023a) 13B 63.9
MetaMath(Yu et al., 2023) 13B 72.3

MuggleMath-13B 13B 74.0
open-source models (51-70B)

LLaMA-1(Touvron et al., 2023a) 65B 50.9
LLaMA-2(Touvron et al., 2023b) 70B 56.8

RFT(Yuan et al., 2023a) 70B 64.8
Platypus(Lee et al., 2023) 70B 70.6

MAmooTH-CoT(Yue et al.) 70B 71.4
WizardMath(Luo et al., 2023a) 70B 81.6

MetaMath(Yu et al., 2023) 70B 82.3
MuggleMath-70B 70B 82.3

Table 16: Model comparison of MuggleMath and a broad range of state-of-the-art approaches.
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7B 7B-2 13B-2
Change-Test

SFT 26.2 30.1 38.6
MuggleMath 60.1 62.8 67.1

Aug-Test
SFT 14.2 17.2 22.4
MuggleMath 40.1 44.3 49.3

Table 17: We have perturbed two new test sets based on the original GSM8K test set. (A) Change-Test, is created by
altering the numerical values in the GSM8K test set questions and correspondingly modifying the answers. There
are 1211 query-response pairs in the Change-Test. (B) Aug-Test, is generated by augmenting the test set in the same
manner as we did for the training set. There are 1378 query-response pairs in the Aug-Test.

Subject math GSM8k GSM8K+Di
1 GSM8K+

∑3
i=1Di

1 +D1
2 +D1

3

Counting & Probability 10.5 13.2 7.9 5.3
Algebra 7.3 12.1 12.9 16.9
Prealgebra 8.5 13.4 8.5 11.0
Geometry 2.4 9.8 4.9 2.4
Intermediate Algebra 6.2 5.2 3.1 5.2
Number Theory 3.2 6.5 6.5 8.1
Precalculus 3.6 5.4 7.1 7.1

Table 18: Transfer learning accuracy on subsets of MATH for LLaMA-13B-2

Subject math GSM8k GSM8K+Di
1 GSM8K+

∑3
i=1Di

1 +D1
2 +D1

3

Prealgebra 12.2 9.8 11.0 12.2
Number Theory 6.5 9.7 6.5 9.7
Algebra 7.3 5.6 5.6 15.3
Intermediate Algebra 2.1 4.1 4.1 1.0
Precalculus 3.6 1.8 3.6 1.8
Counting & Probability 5.3 7.9 5.3 13.2
Geometry - 2.4 - -

Table 19: Transfer learning accuracy on subsets of MATH for LLaMA-7B-2

Subject math GSM8k GSM8K+Di
1 GSM8K+

∑3
i=1Di

1 +D1
2 +D1

3

Prealgebra 7.3 9.8 7.3 14.6
Number Theory 6.5 3.2 1.6 3.2
Algebra 6.5 4.8 11.3 4.8
Intermediate Algebra 3.1 1.0 5.2 3.1
Precalculus - 3.6 5.4 1.8
Counting & Probability 2.6 2.6 2.6 7.9
Geometry 4.9 4.9 2.4 2.4

Table 20: Transfer learning accuracy on subsets of MATH for LLaMA-7B
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Subject math GSM8k GSM8K+D1
1

Prealgebra 8.5 12.2 14.6
Number Theory 3.2 12.9 3.2
Algebra 7.3 8.1 12.1
Intermediate Algebra 6.2 5.2 7.2
Precalculus 3.6 - -
Counting & Probability 10.5 5.3 10.5
Geometry 2.4 7.3 4.9

Table 21: Multi-task learning accuracy on subsets of MATH for LLaMA-13B-2

Subject math GSM8k GSM8K+D1
1

Prealgebra 12.2 11.0 4.9
Number Theory 6.5 6.5 3.2
Algebra 7.3 5.6 11.3
Intermediate Algebra 2.1 6.2 -
Precalculus 3.6 - -
Counting & Probability 5.3 5.3 2.6
Geometry - 7.3 7.3

Table 22: Multi-task learning accuracy on subsets of MATH for LLaMA-7B-2

Subject math GSM8k GSM8K+D1
1

Prealgebra 7.3 6.1 7.3
Number Theory 6.5 3.2 3.2
Algebra 6.5 6.5 10.5
Intermediate Algebra 3.1 2.1 -
Precalculus - 1.8 -
Counting & Probability 2.6 2.6 5.3
Geometry 4.9 9.8 2.4

Table 23: Multi-task learning accuracy on subsets of MATH for LLaMA-7B
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