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ABSTRACT

Due to the hardware support from NVIDIA’s Blackwell architecture, 4-bit quan-
tization of large language models promises substantial memory and throughput
gains. However, naive 4-bit quantization degrades accuracy and remains chal-
lenging in practice. In this work, we revisit the root causes of this degradation
and posit a new perspective through analysis of matrix multiplication and the un-
bounded weight within models. We show that quantization induces errors that
are amplified within the attention and MLP submodules, leading to unstable er-
ror growth across layers. From this analysis, we propose architectural co-designs
that use hyperspherical transformers to jointly normalize activations and constrain
weights to unit norm, converting dot-products into bounded cosine similarities and
suppressing error expansion. On 0.5–1B models, pretrained hyperspherical mod-
els yield new state-of-the-art performance to 4-bit weight-activation quantization,
outperforming standard transformer architecture and a strong QAT baseline, while
a partial normalization plug-in narrows the degradation gap in existing models.
These results position model architectural co-design as a third optimization axis,
complementary to existing works, for robust low-bit LLM deployment.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated unprecedented capabilities (Guo et al., 2025;
Intelligence, 2024), but their deployment remains challenging due to the substantial memory and
compute they require, making them impractical for many real-world applications, especially on
resource-constrained devices (Qin et al., 2024; Zheng et al., 2025). Model quantization has emerged
as a key strategy for lowering deployment costs, with recent efforts exploring 8-bit (Dettmers et al.,
2022; Lin et al., 2024a) and even 4-bit (Liu et al., 2025; Ashkboos et al., 2024) representations for
weights and activations. Such quantization enables reduced memory usage and faster computation,
often while preserving acceptable service quality (Zhu et al., 2024; Czakó et al., 2025). Recent hard-
ware roadmaps have also accelerated this trend by exposing native FP4 kernels with the NVIDIA
Blackwell architecture, making 4-bit execution a realistic target rather than an academic curiosity.

However, plain FP4 quantization often causes severe generation quality degradation, even with more
granular quantization schemas (Li et al., 2024). To mitigate this, prior works have focused on
addressing activation and weight outliers during inference (Liu et al., 2025; Ashkboos et al., 2024;
Chen et al., 2025; Kumar et al., 2024). Although these methods often restore quantized models to a
usable state, notable empirical gaps in generation quality remain, along with the added complexity
of model-specific adaptations that require special handling with some of the methods.

In this work, we dive into the fundamental reasons behind the accuracy degradation in 4-bit quanti-
zation. We reveal two important properties that were overlooked by previous works. First, quanti-
zation results in errors that are propagated and accumulated across layers. Second, the less-bounded
weight rows in the models amplify the directional errors and cause unstable self-attention and MLP
submodules within each layer. Motivated by this analysis, we explore hyperspherical transform-
ers that normalize both weights and activations to unit norm (Loshchilov et al.). By converting
dot-products into bounded cosine similarities, hyperspherical transformers are able to reduce error
expansion in submodules and stabilize error propagation through depth (Luo et al., 2018). On three
pretrained models ranging from 0.5–1B, hyperspherical architecture yields strong robustness at FP4
quantization, significantly outperforming standard transformer baselines.
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Our main contributions are:

1. We characterize how quantization-induced errors interact with unbounded projections in
attention/MLP submodules, yielding expanding and unstable propagation across layers.

2. Motivated by our analysis about unbounded projections, we introduce robust architectural
co-design as a third axis to the quantization accuracy degradation mitigation techniques,
distinct from existing post-training quantization (PTQ) techniques and quantization-aware
training (QAT) frameworks.

3. We show that hyperspherical pretraining attains strong FP4 quantization robustness and
makes significantly smaller accuracy degradation than (i) standard transformers and (ii) a
strong QAT baseline. We also show that partial hypersphericity can narrow the quantization
degradation equivalent to the previous state-of-the-art QAT framework with equal budget.

2 BACKGROUND AND RELATED WORK

2.1 QUANTIZATION

Definition. Quantization maps real-valued tensors to a low-precision discrete set to reduce memory,
bandwidth, and compute cost. Given an input x, a quantization operator obtains an output x̂ in
reduced precision such that:

x̂ = clip([
x

s
] + z, qmin, qmax),

where s > 0 is the scaling factor, z is the zero point (0 if the quantization method is symmetric),
and [qmin, qmax] bound the range after quantization. Scales can be chosen per-tensor, per-channel,
per-group, or per-block (which is hardware-related). We will provide a more detailed discussion in
Appendix A.2.1 on these scaling differences.

Benefits of quantization. Compared to a full precision model, a quantized model has two main
benefits. First, with the reduced precision per parameter, it can be served on hardware with less
memory, enabling inference of large models on edge devices (Lin et al., 2024a). Second, modern
hardware supports native calculations in reduced precision, which are faster than full precision.
Quantized models can leverage those kernels to provide faster inference (Gong et al., 2025).

What to quantize? Three components in an LLM affect the runtime memory consumption and ef-
ficiency: the weights of the model (W), intermediate activations that are produced during inference
(A), and KV cache during the prefilling stage (KV) (Kwon et al., 2023). To achieve maximum reduc-
tion in runtime memory consumption, all three components shall be quantized (such as W8A8KV8),
whereas only the weights and activations have a significant impact on the compute efficiency (such
as W8A8) (Lin et al., 2024b; Xiao et al., 2023). Given that accurate quantization for W4A4 remains
a significant challenge, our work focuses on enhancing efficiency and accuracy during inference,
specifically targeting WA quantization in 4 bits (Liu et al., 2025; Xiao et al., 2023).

Emergence of FP4. Achieving practical inference efficiency requires co-design between quantiza-
tion precision and hardware execution paths. Recent GPU architectures (e.g., NVIDIA Blackwell)
expose native FP4 instructions and kernels. Accordingly, we adopt the vendor-specified FP4 encod-
ings and consider FP4 quantization for both weights and activations (WA). Unless otherwise noted,
we use micro-scaled block formats with a block size of 32 for MXFP4 and 16 for NVFP4, consistent
with the corresponding hardware definitions.

2.2 EXISTING METHODS FOR ROBUST QUANTIZATION

The existing works in robust low-bit quantization can generally be categorized into two streams:
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT).

Post-Training Quantization (PTQ). PTQ focuses on pushing weight and activation in LLMs to
lower precisions with minimal or no fine-tuning. Classical techniques include per-channel (Jacob
et al., 2018) and blockwise microscaling (Drumond et al., 2018) to control local dynamic range;
improved calibration via clipping (Banner et al., 2018), percentile (Wu et al., 2020), entropy rules
(Davoodi et al., 2019), and bias correction (Nagel et al., 2019); learned or Hessian/curvature-aware
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rounding to directly minimize layer-wise reconstruction error (Nagel et al., 2020; Nahshan et al.,
2021; Frantar et al., 2022); and handling activation outliers by migrating scale from activations
to weights (e.g., activation smoothing) (Xiao et al., 2023; Yi et al., 2024) or by activation-aware
weight selection (Lin et al., 2024a; Dettmers et al., 2022). State-of-the-art methods in this stream
show strong performance, yet gaps persist at W4A4 precision (Ashkboos et al., 2024; Li & Panda,
2024; Lee et al., 2025).

Quantization-Aware Training (QAT). QAT integrates fake-quantization during pretraining or fine-
tuning to simulate a quantized model and optimize model weights under a quantized environment
(Chen et al., 2025). In practice, gradients through the non-differentiable quantizer are handled with
the straight-through estimator (STE), where gradients are approximated and not automatically set
through automatic differentiation during back propagation (Bengio et al., 2013). Beyond determin-
istic rounding, stochastic/learned rounding injects (or learns) zero-mean quantization noise during
training to reduce bias and improve stability at low bit-widths (Zhao et al., 2024; Ozkara et al.,
2025). QAT generally achieves the strongest accuracy at low bit-widths (including W4), at the cost
of additional training (Liu et al., 2025).

This paper studies robust architectural co-design as a third direction that can potentially work with
existing methods in parallel. Our analyses and results motivate a hyperspherical design that naturally
supports reliable and accurate 4-bit quantization.

3 HYPERSPHERICITY LEADS TO QUANTIZATION ROBUSTNESS

In this section, we show that the hyperspherical model has more robustness to 4-bit quantization
compared with regular transformer models. In particular, the unbounded weights in the submodules
of transformer models result in unbounded variances in matrix multiplications, whereas normaliza-
tion can effectively control and reduce the error variance through cosine similarity.

3.1 WHY UNBOUNDED PROJECTIONS AMPLIFY QUANTIZATION NOISE.

3.1.1 INTUITIVE SCENARIO: A SMALL ERROR WITH A LARGE WEIGHT

We first start with a hypothetical example. As illustrated in Figure 1, consider one coordinate in the
matrix multiplication yi = w⊤

i x. If the j-th coordinate of wi is extremely large, say |wij | = M ≫ 1,
and the error εj is small, then the output perturbation on that coordinate is ∆yi = w⊤

i ε =∑
k wikεk ≈ M εj . Even when |ε|2 is tiny, Mεj can be large if M is unbounded. Due to

unbounded weight, a small input error is amplified to a significant output error that ultimately
affects the final generation.

x

wi
∥wi∥2=M≫1

(a) Standard projection (dot product).
Unconstrained wi allow large ∥wi∥2, so small input
errors can be multiplied by large weights.

x̄

ui ∥x̄∥2=1, ∥ui∥2=1

(b) Hypersphere projection (cosine similarity).
∥x̄∥2 =1, ∥ui∥2 =1, and 0≤ gi ≤C convert the dot
product into a bounded cosine projection.

Figure 1: Comparison of projection geometry and gain. An unconstrained dot product can exhibit
unbounded local gains, amplifying quantization noise. Hyperspherical layers normalize the repre-
sentation and bound projection directions and gains, capping amplification.
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3.1.2 THEORETICAL DERIVATION

We formalize the intuition by modeling the quantization process as introducing noise to the weights
and activations. We show that bounding both weights and activations is necessary for controlling
the error induced by quantization.

Activation-side variance bound. Let x̃ = x + ε with E[ε] = 0 and Cov(ε) = Σx ⪯ σ2I . Then
∆y = Wx̃−Wx = Wε.

Proposition 1 (Activation-side variance).

E
[
∥∆y∥22

]
= Tr

(
W⊤W Σx

)
≤ σ2 Tr(W⊤W ) = σ2 ∥W∥2F

≤ σ2 r ∥W∥22 ≤ σ2 min(din, dout) ∥W∥22, (1)

where r = Rank(W ). Equivalently, for each output coordinate i, Var[∆yi] = w⊤
i Σx wi ≤

σ2∥wi∥22.

Proof. By E[εε⊤] = Σx and cyclic trace, E∥∆y∥22 = Tr(W⊤W Σx). Because Σx ⪯ σ2I and
W⊤W ⪰ 0, Tr(W⊤W Σx) ≤ σ2 Tr(W⊤W ) = σ2∥W∥2F . Let {σk(W )}rk=1 be the nonzero
singular values. Then ∥W∥2F =

∑r
k=1 σk(W )2 ≤ rmaxk σk(W )2 = r ∥W∥22, which yields the

final inequality in Equation 1. For the coordinate-wise claim, apply Var(w⊤
i ε) = w⊤

i Σxwi ≤
σ2∥wi∥22.

Relative amplification. If y = Wx ̸= 0, we have the relative amplification from matrix multiplica-
tion on the input as:

Aact(W,x; Σx) =
Tr(W⊤WΣx)

∥Wx∥22
≤ σ2 ∥W∥2F

∥Wx∥22
.

When ∥W∥F is large and ∥Wx∥2 happens to be small (e.g., x aligns with a near-zero direction),
Aact can be large. This formalizes the instability risk without weight constraints (small errors have
large impacts on the output).

Weight-side variance bound. Let W̃ = W + E with E[E] = 0 and Cov(vec(E)) ⪯ τ2I . For
fixed x, ∆y := W̃x−Wx = Ex.

Proposition 2 (Weight-side variance). If ∥x∥2 ≤ R and entries Eij are independent with
Var(Eij) ≤ τ2, then

E
[
∥∆y∥22

]
= E ∥Ex∥22 =

dout∑
i=1

din∑
j=1

x2
j Var(Eij) ≤ τ2∥x∥22 dout ≤ τ2R2 dout.

Proof. For each i,
∑

j xjEij is a sum of independent zero-mean variables. Thus Var[
∑

j xjEij ] =∑
j x

2
j Var(Eij) ≤ τ2

∑
j x

2
j . Summing over i yields the claim.

3.2 DEFINITION OF A HYPERSPHERICAL MODEL

A hyperspherical model constrains both activations and weights to live on (or close to) a unit hyper-
sphere, so that linear projections reduce to cosine similarities with uniformly bounded gain.

Let N : Rd→Rd denote L2 normalization, we have the normalization operator:

N =
z

∥z∥2
.

We also write row normalization of a matrix W ∈ Rdout×din as

row unit(W )i =
wi

∥wi∥2
.
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Figure 2: (a) Overview of error dynamics within a standard transformer’s first ten layers after the
second layer is quantized. (b) Error dynamics within one layer. We refer readers to Appendix A.4.1
for a visual mapping between labels on the horizontal axis and the positions in the block. (c) Error
dynamics at the end of each layer when the second layer is quantized.

Hyperspherical linear layer. A hyperspherical linear layer replaces y = Wx with
x̄ = N (x), U = row unit(W ), y = U x̄ (2)

with each coordinate of y satisfies
yi = ⟨ui, x̄⟩ = cos θi, with ∥ui∥2 = 1, ∥x̄∥2 = 1.

Hyperspherical block. For an attention/MLP block, we apply Equation 2 to all projections (e.g.,
Wq,Wk,Wv,Wo,Wup,Wgate,Wdown). During the experiments, we chose to use an established im-
plementation from Loshchilov et al.. Loshchilov et al. normalizes the activations and weights to a
hypersphere representation through L2 normalization, with some added learnable parameters to aid
in the model’s convergence. In addition, Loshchilov et al. normalizes the embedding and lm head
weight, which we also adopt. The experiment setup is elaborated in Appendix A.3.2.

3.3 INSTABILITY IN TRANSFORMER VS. STABILITY IN HYPERSPHERICAL MODEL

To support the theoretical analysis, we reveal empirically that when a quantization-induced error
is introduced in the input, its magnitude is expanded in the self-attention and MLP submodules in
a standard transformer block. Figure 2 shows the error propagation pattern within each layer of a
0.5B transformer model (we omit the MLP submodule due to space, but it has a similar pattern to
the attention submodule). It uses the normalized percentage of L2 magnitude as a proxy to quantify
the existence of errors in the model. The percentage is calculated as 1

|I|
∑

i∈I
∥ỹi−yi∥2

∥yi |2 , where yi
and ỹi denote the full-precision and erroneous activations at index i with I spanning all evaluated
tokens in Wikitext2 dataset (Merity et al., 2016), and then normalized with respect to the percentage
at the output of second layer. It should be evident that the relative magnitude of the input activation
error of the layer is significantly amplified in the submodules.

This is consistent with our analyses in the previous subsection. RMSNorm limits activation scale
but does not constrain the projection norms or directions of W . Proposition 1 therefore still scales
with ∥W∥2F , allowing large internal amplification.

Since quantization robustness is determined not only by where noise enters but also by the outputs
of the projections it subsequently encounters, architectures that bound projection norms and operate
on the normalized hypersphere representations are more robust to quantization (including FP4).
Hypersphericity can bound the effective element-wise gain from each submodule, converting the
unbounded multiplication into a bounded cosine similarity in a hypersphere. Concretely, we would
observe such robustness through a reduction in the amplification of intermediate activations.

Empirically, the hyperspherical model exhibits significantly reduced amplification inside the atten-
tion submodules, as shown in Figure 3 (with the same visualization style as Figure 2). The internal
error is no longer amplified by orders of magnitude, which in turn accelerates error attenuation
across the layers and yields a smaller final error at depth.
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Figure 3: (a) Overview of error dynamics within a hyperspherical transformer’s first ten layers after
the second layer is quantized. (b) Error dynamics within one layer. We refer readers to Appendix
A.4.1 for a visual mapping between labels on the horizontal axis and the positions in the block. (c)
Error dynamics at the end of each layer when the second layer is quantized.

Table 1: Hyperspherical models’ robustness generalizes across model sizes. T is the standard model
architecture, whereas HS represents the hyperspherical architecture (Loshchilov et al.). The number
in parentheses means relative accuracy degradation compared to full precision.

Model Precision PIQA HS LAMB Arc-E SciQ Average

T-0.5B
BF16 68.50% 37.21% 39.69% 63.43% 85.30% 58.83% (–)

MXFP4 65.45% 34.21% 20.67% 54.71% 77.20% 50.45% (-14.24%)
NVFP4 64.91% 35.44% 25.81% 58.00% 82.90% 53.41% (-9.21%)

HS-0.5B
BF16 69.37% 39.47% 41.28% 65.40% 89.20% 60.94% (–)

MXFP4 67.95% 38.55% 36.70% 63.17% 88.00% 58.87% (-3.40%)
NVFP4 68.23% 39.07% 39.12% 64.31% 88.80% 59.91% (-1.69%)

T-0.7B
BF16 70.29% 39.00% 41.55% 65.66% 85.80% 60.46% (–)

MXFP4 65.40% 36.00% 19.81% 56.69% 80.40% 51.66% (-14.56%)
NVFP4 68.01% 37.44% 32.25% 62.12% 83.80% 56.72% (-6.19%)

HS-0.7B
BF16 70.35% 40.37% 41.26% 67.63% 88.10% 61.54% (–)

MXFP4 68.99% 39.18% 40.25% 66.96% 87.30% 60.54% (-1.62%)
NVFP4 70.29% 39.88% 39.45% 66.20% 87.30% 60.62% (-1.49%)

T-1B
BF16 71.76% 41.39% 44.15% 69.70% 88.80% 63.16% (–)

MXFP4 68.88% 37.42% 26.31% 61.57% 84.50% 55.74% (-11.75%)
NVFP4 69.64% 39.28% 36.77% 65.66% 87.70% 59.81% (-5.30%)

HS-1B
BF16 71.55% 43.27% 45.35% 72.05% 89.70% 64.38% (–)

MXFP4 70.95% 42.14% 40.13% 69.28% 89.90% 62.48% (-2.95%)
NVFP4 70.13% 42.96% 43.12% 71.00% 89.20% 63.28% (-1.71%)

3.4 HYPERSPHERICAL MODELS HAVE MUCH MORE ROBUST 4-BIT QUANTIZATION

We show that hyperspherical models with the above normalizations are much more accurate under
4-bit quantization compared with the standard transformer architecture. Table 1 shows the accuracy
on five downstream tasks of three pairs of models of different sizes, where each pair was trained
to a similar evaluation loss between a standard and a hyperspherical design (Loshchilov et al.).
Hyperspherical models are clearly more robust to quantization than the standard architecture, with
significantly less accuracy degradation. In Appendix A.4.2, we show that hyperspherical models can
even perform better on downstream tasks compared to applying the latest QAT framework, ParetoQ
(Liu et al., 2025), on the standard architecture.

3.5 PARTIAL HYPERSPHERICITY FOR EXISTING LLMS

We have shown in the previous subsection that the hyperspherical model architecture can lead to
state-of-the-art quantization robustness. However, existing LLMs are largely non-weight-bounding
architectures, and it is a non-trivial task to retrain a hyperspherical model from scratch. In this
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Table 2: INT4 (weight-only) quantization for 0.5B model. QAT is adopted from Liu et al. (2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 – 13.04 68.50% 37.21% 39.69% 63.43% 85.30% 58.83%
– – 22.12 66.16% 36.19% 15.08% 55.13% 78.40% 50.19%
QAT 12:06:57 14.49 68.34% 36.42% 36.10% 61.66% 83.10% 57.12%
v1 11:07:37 16.20 67.52% 36.61% 34.58% 58.29% 80.50% 55.50%
v1+QAT 12:05:59 14.48 68.23% 36.41% 37.53% 60.52% 82.30% 57.00%
v2 11:03:06 13.82 68.06% 36.51% 36.46% 61.15% 84.10% 57.26%
v2+QAT 12:01:14 14.82 66.81% 34.90% 28.29% 59.39% 81.70% 54.22%

Table 3: INT4 (weight-only) quantization for 1B model. QAT is adopted from Liu et al. (2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 – 11.53 71.76% 41.39% 44.15% 69.70% 88.80% 63.16%
– – 25.06 68.39% 38.15% 23.29% 58.29% 80.30% 53.68%
QAT 23:41:54 12.49 71.49% 41.14% 37.38% 67.80% 86.90% 60.94%
v1 22:00:13 nan 71.87% 41.03% 43.68% 67.17% 87.20% 62.19%
v1+QAT 23:42:17 nan 70.78% 40.96% 41.96% 67.47% 89.00% 62.03%
v2 21:49:33 12.61 70.29% 40.28% 42.11% 68.27% 88.60% 61.91%
v2+QAT 23:38:36 21.24 64.47% 32.63% 22.88% 56.90% 82.50% 51.88%

section, we present our attempts to make existing models more robust to 4-bit quantization through
partial hypersphericity.

We consider two levels of architectural changes based on two characteristics of the error analyses.
First, weight normalization is essential to control the output variances and stability of submodules.
However, exploratory experiments have revealed that normalization of all weights will cause the
model to fall back to an untrained state, even when the original model’s weights are migrated.
Thus, we take a step back and only convert the final projection (lm head) into a hyperspherical
architecture. This choice is motivated by two reasons. Firstly, the input of lm head retains all
features from previous layers. Leaving the previous layers’ architecture unchanged would make the
model converge much faster during finetuning. Secondly, lm head is the last layer, and variances of
its output directly impact the output of the model. In the results, we will denote this approach as v1.

Second, input magnitude to the submodules effectively controls the output magnitude. Knowing
that the submodules in a standard model are not stable, we can reduce the input strength of those
submodules with stronger normalization. Concretely, in addition to v1, we replace the RMSNorm
with L2Norm by removing the learnable gain and the 1√

d
factor in the denominator. This approach

makes the error propagation factor closer to 1 by taking fewer effect from the submodules. Ideally,
such an approach would result in a more stable error propagation, but we note that more changes
to the architecture will lead to more difficulties in convergence when finetuning the model with a
limited budget. In the results, we will denote this approach as v2.

We apply QAT and our normalization approaches to the pretrained 0.5B and 1B standard transformer
models and summarize their quantization robustness after finetuning in Table 2 and 3. In the table,
a dash indicates a naive quantization without any finetuning, and QAT is from Liu et al. (2025). We
report the perplexity on Wikitext2 and five downstream tasks, as well as the finetuning wall time
(Time). We choose INT4 weight-only quantization (W4) to be consistent with Liu et al. (2025)’s
experiments. We also evaluate FP4 quantization strategies, as well as the Pythia family models
(Biderman et al., 2023). Due to space limits, we provide those additional results in Appendix A.4.3.
Partial hypersphericity (v1) and heavier regularization on input in submodules (v2) can perform on
par (and sometimes slightly better) than QAT while using around 8% less time, which we attribute
to the QAT framework utilizing specifically designed backpropagation. In contrast, architectural
changes are fully compatible with the optimized backpropagation library in PyTorch.

4 UNDERSTANDING ACCURACY DEGRADATION IN 4BIT QUANTIZATION

In this section, we discuss practices for obtaining accurate FP4 quantized models by synthesizing
previous understandings of the causes of accuracy degradation in 4-bit quantization and providing
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new insights through the lens of error propagation. While successfully reproducing some phenom-
ena (Kumar et al., 2024; An et al.; Sun et al., 2024), our analyses reveal new findings, in particular
suggesting that outliers in LLM are not consistently the cause of accuracy degradation, with an
emphasis on error analysis. The experiment settings can be found in Appendix A.3.3.

4.1 LESS IS MORE IN PRETRAINING

First, we extend the previous discussion on the relationship between prolonged pretraining and the
model’s accuracy after quantization. Kumar et al. (2024) has found that whereas the full precision
model’s accuracy keeps improving with more pretraining tokens, INT3-quantized models suffer
from worse accuracy after pretraining for a certain number of tokens. We similarly observe this
for the 4-bit quantization schema. As shown in Figure 4, the relative perplexity after MXFP4 WA
quantization grows with more training tokens from the start, and optimal perplexity after MXFP4
quantization emerges around pretraining with 40B tokens. In addition to reproducing this effect, we
find that maintaining a high learning rate might delay the critical point, but the convergence is hard
to reach with a high constant learning rate. We discuss this in Appendix A.5.1.

(a) (b)

Figure 4: (a) As training goes on, accuracy degradation after MXFP4 quantization as measured by
percentage increase of perplexity on Wikitext2 (Merity et al., 2016) dataset. (b) As training goes on,
perplexity after quantization stops decreasing and starts to increase. Discontinuity of the 1B model
is an outlier with a perplexity value of 1301.

4.2 OUTLIERS MATTER, BUT ONLY TO AN EXTENT

Many previous works propose methods for eliminating the outliers that emerge in the inference stage
of LLMs as a mitigation to the accuracy degradation (Dettmers et al., 2022; Ashkboos et al., 2024).
Although outliers intuitively influence the quantization range and can suppress other activation val-
ues to zero during quantization, their impact on final accuracy under blockwise scaling has been
underemphasized in previous works. Our findings confirm the presence of these outliers and show
that they contribute to some, but not all, of the accuracy degradation in quantization. Due to space
limitations, we provide more detailed discussions in Appendix A.5.2.

4.3 ERROR PROPAGATION DRIVES THE ANALYSIS

In Section 3, we have already shown that unbounded weights in the standard transformer model
lead to unstable and expanding error propagation in submodules. In this section, the error analysis
is generalized to show that quantization error has a non-monotonic layer-wise growth while being
divergent in nature. We present some connections between error and existing understandings of
outliers, and hope our perspective of thinking from error propagation can motivate the community
and be informative in designing future model architectures.

Without loss of generalizability, we consider a transformer model where the l-th layer is defined as:

Layerl(xl) = xl + Attn(RMSNorm(xl)) + MLP(RMSNorm(xl + Attn(RMSNorm(xl)))) (3)

For simplicity of analysis, we abstract the computation in the layer with a function f , where xl+1 =
xl + fl(xl). The effect of quantization on the previous layer can be modelled as producing an
erroneous output (x̃) and introducing an error term el = x̃l − xl. In this section, we consider the
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(a) (b) (c)

Figure 5: (a) Visualization of L2 error propagation measured at the end of each layer, after quantizing
the first layer in the three models. (b) Outliers amplify the initial error and affect the subsequent
propagated errors. (c) When quantizing exactly one layer at a time, the best-to-worst ranking of four
choices is Layers [1, 5, 10, 0], which corresponds perfectly to the L2 magnitude of the error.

first-order approximation of error propagation. Denote the Jacobian of fl at xl by Jl = Dfl(xl),
where D is the Frechet derivative. On Layer l, we have:

˜xl+1 = xl + el + fl(xl + el) ≃ xl + el + fl(xl) + Jlel (4)

Assuming the current layer is not quantized (i.e., no independent error is initiated from this layer),
the error propagated to the next layer will be in the form of: el+1 = el + Jlel = (I + Jl)el. As the
layers deepen, the error propagation follows a recursive pattern, where at the end of layer k, an error
term that originates from layer l will become:

e
(l)
k =

k∏
i=l+1

(I + Ji)el (5)

Non-monotonic Layer-wise Growth Equation 5 focuses on the final error propagation of the error
from the l-th layer, and we can generalize this pattern to all layers that are quantized. For a set of
layers that is quantized Q ⊆ {0, 1, ...N − 1}, we have the final error at the end of N layers to be:

Efinal =
∑
l∈Q

N∏
i=l+1

(I + Ji)el (6)

Note that since ||I + Ji|| is not guaranteed to be greater than 1, the layer-wise error growth is
non-monotonic. A simple bound over the error propagation amplification factor is 1 − ||Ji|| <
||I+Ji|| < 1+||Ji||. We will provide a discussion on when the error will diverge in Appendix A.6.1
for the general Jacobian matrix and in Appendix A.6.2 for a model-specific Jacobian decomposition.
Empirically, Figure 5a illustrates the growth of error that is introduced by quantizing the first layer
of three models of different sizes.

Outliers Amplify Initial Error. The existence of outliers will amplify the error when quantizing a
specific layer, as shown in Figure 5b. This is the reason why outliers negatively affect quantization.
We also note that in practice, since all layers are quantized and outliers (especially OCs) exist in all
layers, the effect of OCs is worsened because every layer’s input error is amplified.

Implications from Error Propagation. Understanding error propagation aids in comprehending
the accuracy degradation that occurs during quantization. It can also serve as a proxy for determining
which layers to skip quantization under mixed-quantization frameworks: less error magnitude means
less accuracy degradation during quantization. As a simple demonstration, when quantizing exactly
one layer at a time, the best-to-worst ranking of four choices is Layers [1, 5, 10, 0]. This ordering
mirrors the relative error propagation that initiates at those same layers, as shown in Figure 5c.

5 CONCLUSION

In this paper, we show that accuracy degradation from quantization stems from the error propagated
across layers and amplified inside attention/MLP submodules. Based on our analysis, we then reveal
that bounding both activations and weights on a hypersphere stabilizes and reduces propagation. Our
analysis and experiments show that hyperspherical transformers are much more robust against FP4
quantization, and a lightweight normalization plug-in on the LM head is able to narrow the gap
on existing models and match a strong QAT method. Our analysis and experiments posit robust
architecture designs to be a practical third dimension for robust 4-bit LLMs.
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A APPENDIX

A.1 STATEMENTS

A.1.1 STATEMENT ON THE USAGE OF LLM

Large language models were utilized in the paper to refine writing and correct grammatical errors, as
well as generating an initial version of Figure 1b. The authors take full responsibility for the content
of this manuscript.

A.1.2 STATEMENT ON ETHICS

This work and the authors adhere to the ICLR Code of Ethics. In this work, no human or animal
subjects were involved. All datasets are properly cited and sourced in compliance with their us-
age guidelines. No harmful information, bias, or discriminatory content exists as a result of our
research, to the best of our knowledge. We do not need to declare additional conflicts of interest and
sponsorship beyond those that will be filtered by the OpenReview system.

A.1.3 STATEMENT ON REPRODUCIBILITY

As of the time of this submission, the authors are uncertain whether the code associated with this
work can be released to the public due to company policies. For reproducibility, we kindly refer
readers to the implementation provided by Loshchilov et al. for the model details. Important hy-
perparameters are disclosed in Appendix A.3. Experiments of quantization are implemented with
standard round-to-nearest symmetric blockwise quantization. All experiments are run with seed 42.

If the reviewers/readers have any difficulties in reproducing the work, they are advised to raise
questions (during the anonymity period) or contact the authors (after the anonymity period).

A.2 EXTRA BACKGROUND AND RELATED WORKS

A.2.1 DISCUSSION ON THE SCALING FACTOR

Figure 6 illustrates how different scaling methods are applied during the quantization. The input
activations are a batch of 2D matrices, and the weights in the model are also typically 2D matrices.
Per-tensor scaling calculates a single scaling factor for the entire 2D matrix, row-wise/column-wise
scaling applies a separate scaling factor for each row or column, and group-wise scaling uses a
separate scaling factor per group. We want to explicitly differentiate group-wise scaling and block-
wise scaling, with the latter one being used in our FP4 quantization methods. Group-wise and
block-wise scaling are functionally the same, where they apply one scaling factor per some pre-
defined number of parameters (S). However, block-wise scaling is a hardware-specific scaler, where
S is decided by the input dimension of the reduced-precision computation kernel. For example, the
MXFP4 kernel takes S = 32, whereas the NVFP4 kernel uses S = 16. On the other hand, group-
wise scaling does not restrict S. Thus, increasing S can lead to less memory consumption of the
model, but the efficiency is the same unless customized kernels are developed.

A.3 EXPERIMENT SETUPS

A.3.1 GENERAL HARDWARE/SOFTWARE SETUP.

All experiments are done on either NVIDIA H200 or A100 GPU clusters. Each cluster is equipped
with 8 GPUs. Evaluation of the models is with a single-card setting, and pretraining/finetuning of
the models uses either one cluster of H200 or multiple clusters of A100. All GPUs use the CUDA
12.8 driver. All models are in HuggingFace format (Wolf et al., 2019), with Pytorch 2.7.0 (Paszke
et al., 2019) and Transformers 4.52.0. Training/model hyperparameters differ for different settings
and will be reported separately below for each section.

All quantizations are zero-centered symmetric quantizations with the simple round-to-nearest
method. For INT4 weight quantization, we use llm-compressor (AI & vLLM Project, 2024) and
apply column-wise scaling. For MXFP4 and NVFP4 quantization, since we do not have access
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per-tensor per-row/column per-group

Value with scaling factor #1

Value with scaling factor #2

Figure 6: Illustration of different scaling methods in quantization.

to Blackwell GPUs, we implement our own fake quantization framework, where the values are
first quantized to the respective precision and immediately dequantized. Per kernel specifications,
MXFP4 uses a block size of 32 and NVFP4 uses a block size of 16 for both weights and activations.

This paper evaluates models on one benchmark for perplexity and five common benchmarks for
downstream tasks. We use Wikitext2 Merity et al. (2016) to evaluate perplexity, and PIQA (Bisk
et al., 2020), HellaSwag (Zellers et al., 2019), LAMBADA-openai Paperno et al. (2016), Arc-easy
Clark et al. (2018), SciQ (Welbl et al., 2017), to evaluate downstream task ability.

A.3.2 HYPERPARAMETER FOR SECTION 3

Section 3 involves both pre-training and finetuning. Standard transformer models are pre-trained
with the same configuration as in Appendix A.3.3. Hyperspherical models are trained with the same
configuration as their respective standard models, with differences in warmup steps and weight de-
cays removed, which are also used by Loshchilov et al.. We take the pre-trained Pythia checkpoints
from Huggingface (Biderman et al., 2023).

Finetuning is done on roughly 10B tokens from the Fineweb dataset (Penedo et al., 2024), processed
in the respective tokenizer. We tested a few learning rates and chose the best one in favor of the QAT
model. The final determined learning rate was 6e-4 for the standard architecture and 5e-5 for Pythia.
All finetuning uses cosine decay to 0 without weight decay and warmup steps, which is consistent
with Liu et al. (2025). All figures shown in this section are from MXFP4 quantization. Tables will
separately specify their quantization method.

A.3.3 HYPERPARAMETER FOR SECTION 4

Section 4 involves the analysis of four standard architecture models of different sizes. Models are
trained with the general setup. The 0.15B model was an exploratory model, which we did not use for
formal studies. The three large ones (0.5B, 0.7B, 1B) are pretrained with roughly 100B tokens from
the Fineweb dataset (Penedo et al., 2024), processed using a public tokenizer. We use a learning
rate of 4e-3 with 2000 steps of warmup and cosine decay to 0. The global batch size is 1000 with
gradient accumulation being 1. Weight decay is 0.1. Maximum context length is 2048. The 0.5B
and 0.7B models are 24 layers, and the 1B model is 36 layers. All figures shown in this section are
from MXFP4 quantization.

A.4 ADDITIONAL EXPERIMENTS FOR SECTION 3

A.4.1 SKETCH FOR SUB-LAYER MEASUREMENT POSITIONS IN A STANDARD
TRANSFORMER’S BLOCK

Figure 7 annotates the positions of measurement of the normalized percentage of L2 magnitude for
Figure 2 and 3.
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Figure 7: Red arrows and notations mark where the L2 percentage errors are measured within each
block.

Table 4: Hyper-spherical models are more robust to quantization compared to standard architec-
tures, even accompanied with QAT. The number in parentheses means relative accuracy degradation
compared to full precision.

Model Precision Arc-E HS LAMB PIQA SciQ Average

T-0.5B
BF16 68.50% 37.21% 39.69% 63.43% 85.30% 58.83% (–)

MXFP4 65.45% 34.21% 20.67% 54.71% 77.20% 50.45% (-14.24%)
NVFP4 64.91% 35.44% 25.81% 58.00% 82.90% 53.41% (-9.21%)

QAT-0.5B MXFP4 67.14% 34.60% 31.07% 57.58% 85.20% 55.12% (-6.31%)
NVFP4 67.63% 36.10% 31.01% 60.98% 82.60% 55.66% (-5.39%)

HS-0.5B
BF16 69.37% 39.47% 41.28% 65.40% 89.20% 60.94% (–)

MXFP4 67.95% 38.55% 36.70% 63.17% 88.00% 58.87% (-3.40%)
NVFP4 68.23% 39.07% 39.12% 64.31% 88.80% 59.91% (-1.69%)

T-1B
BF16 71.76% 41.39% 44.15% 69.70% 88.80% 63.16% (–)

MXFP4 68.88% 37.42% 26.31% 61.57% 84.50% 55.74% (-11.75%)
NVFP4 69.64% 39.28% 36.77% 65.66% 87.70% 59.81% (-5.30%)

QAT-1B MXFP4 68.39% 38.78% 36.48% 65.99% 88.80% 59.69% (-5.49%)
NVFP4 70.89% 40.40% 35.94% 67.93% 87.50% 60.53% (-4.16%)

HS-1B
BF16 71.55% 43.27% 45.35% 72.05% 89.70% 64.38% (–)

MXFP4 70.95% 42.14% 40.13% 69.28% 89.90% 62.48% (-2.95%)
NVFP4 70.13% 42.96% 43.12% 71.00% 89.20% 63.28% (-1.71%)

A.4.2 ADDITIONAL TABLE FOR SECTION 3.4

Here, we provide additional support that hyperspherical models are even more robust than standard
models finetuned with QAT. We apply the latest QAT framework, ParetoQ (Liu et al., 2025), on the
pretrained 0.5B and 1B models, and summarize the comparisons in Table 4. It is evident that the
hyper-spherical models are more robust to quantization compared to QAT models on the standard
architecture.

A.4.3 ADDITIONAL TABLE FOR SECTION 3.5

As aforementioned in Section 3.5, we provide additional results for quantizing partial-normalization
(v1 and v2) and QAT models into FP4 precision for both weight and activations. We also provide
results showing the generalization of the proposed methods on Pythia models. Tables 5 to 8 present
the quantized model’s performance on the downstream tasks under the two different FP4 specifica-
tions for 0.5B and 1B models. Table 9 and 10 show quantizing Pythia to INT4 after QAT vs. our
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Table 5: MXFP4 quantization for 0.5B model. QAT is adopted from Liu et al. (2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 – 13.04 68.50% 37.21% 39.69% 63.43% 85.30% 58.83%
– – 23.23 65.45% 34.21% 20.67% 54.71% 77.20% 50.45%
QAT 12:06:57 16.68 67.14% 34.60% 31.07% 57.58% 85.20% 55.12%
v1 11:07:37 19.42 65.56% 34.48% 22.55% 55.89% 82.80% 52.26%
v1+QAT 12:05:59 16.08 66.00% 34.66% 30.74% 59.34% 84.80% 55.11%
v2 11:03:06 15.58 67.36% 35.39% 32.21% 58.16% 83.80% 55.38%
v2+QAT 12:01:14 16.65 65.51% 33.92% 24.14% 54.38% 81.60% 51.91%

Table 6: MXFP4 quantization for 1B model. QAT is adopted from Liu et al. (2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 – 11.53 71.76% 41.39% 44.15% 69.70% 88.80% 63.16%
– – 17.31 68.88% 37.42% 26.31% 61.57% 84.50% 55.74%
QAT 23:41:54 13.33 68.39% 38.78% 36.48% 65.99% 88.80% 59.69%
v1 22:00:13 14.36 68.44% 38.31% 36.25% 66.33% 88.40% 59.55%
v1+QAT 23:42:17 13.36 68.28% 38.72% 35.67% 65.78% 89.10% 59.51%
v2 21:49:33 13.59 68.93% 39.15% 36.50% 65.74% 88.10% 59.68%
v2+QAT 23:38:36 27.35 61.15% 31.50% 15.85% 51.18% 79.10% 47.76%

approaches. The v1 method has comparable and slightly better robustness compared to Liu et al.
(2025).

(a) (b)

Figure 8: (a) As training goes on, accuracy degradation after quantization measured by percentage
difference of perplexity on Wikitext2 (Merity et al., 2016) dataset increases. (b) As training goes
on, perplexity after quantization stops decreasing and starts to increase.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Table 7: NVFP4 quantization for 0.5B model. QAT is adopted from Liu et al. (2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 – 13.04 68.50% 37.21% 39.69% 63.43% 85.30% 58.83%
– – 16.93 65.18% 35.79% 26.16% 58.16% 82.70% 53.60%
QAT 12:06:57 15.54 67.63% 36.10% 31.01% 60.98% 82.60% 55.66%
v1 11:07:37 15.27 67.08% 35.77% 35.46% 59.85% 83.90% 56.41%
v1+QAT 12:05:59 14.95 67.79% 35.98% 35.65% 60.35% 82.80% 56.51%
v2 11:03:06 14.51 68.12% 36.06% 34.39% 60.94% 82.70% 56.44%
v2+QAT 12:01:14 15.74 65.72% 34.73% 26.84% 57.41% 81.00% 53.14%

Table 8: NVFP4 quantization for 1B model. QAT is adopted from Liu et al. (2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 – 11.53 71.76% 41.39% 44.15% 69.70% 88.80% 63.16%
– – 13.83 70.02% 39.35% 36.56% 65.32% 87.70% 59.79%
QAT 23:41:54 12.72 70.89% 40.40% 35.94% 67.93% 87.50% 60.53%
v1 22:00:13 12.77 71.06% 40.08% 38.48% 67.34% 88.60% 61.11%
v1+QAT 23:42:17 12.69 70.13% 40.59% 38.44% 67.76% 88.10% 61.00%
v2 21:49:33 12.89 69.75% 39.96% 39.41% 66.79% 88.30% 60.84%
v2+QAT 23:38:36 24.33 63.71% 32.03% 20.16% 54.97% 82.50% 50.67%

Table 9: INT4 quantization for Pythia-410M model. QAT is adopted from Liu et al. (2025).

Method PIQA HS LAMB Arc-E SciQ Average
BF16 66.70% 33.73% 51.64% 51.89% 81.50% 57.09%
– 64.47% 32.28% 23.73% 46.04% 72.40% 47.78%
QAT 65.94% 34.39% 29.07% 56.14% 80.80% 53.27%
v1 65.89% 33.79% 34.85% 56.02% 83.60% 54.83%
v1+QAT 65.94% 33.88% 32.41% 56.90% 81.80% 54.19%
v2 56.15% 27.08% 6.85% 41.25% 67.70% 39.81%
v2+QAT 53.37% 25.69% 0.12% 27.53% 26.50% 26.64%

Table 10: INT4 quantization for Pythia-1B model. QAT is adopted from Liu et al. (2025).

Method PIQA HS LAMB Arc-E SciQ Average
BF16 70.73% 37.78% 56.28% 56.99% 83.90% 61.14%
– 67.25% 36.01% 49.06% 52.95% 84.40% 57.93%
QAT 67.74% 37.27% 41.63% 60.19% 84.60% 58.29%
v1 68.50% 37.26% 40.85% 61.87% 86.50% 59.00%
v1+QAT 68.12% 36.65% 42.73% 59.47% 85.60% 58.51%
v2 59.19% 27.60% 6.33% 45.75% 69.20% 41.61%
v2+QAT 57.78% 27.14% 9.76% 40.82% 70.40% 41.18%
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A.5 ADDITIONAL EXPERIMENTS FOR SECTION 4

A.5.1 THE EFFECT OF LEARNING RATE DECAY ON QUANTIZATION

The analysis in the main text is done with cosine learning rate decay with a minimum learning rate
of 0. We conduct ablation studies on keeping the learning rate constant on a 0.5B model, trained
with other parameters being the same. The results are shown in Figure 8a. With a constant learning
rate of 4e-3, the accuracy degradation from 4-bit quantization seems less compared to cosine decay.
However, we still see a trend of percentage perplexity increasing as training goes on, hinting at an
eventual emergence of the critical point with a higher token-parameter ratio.

A.5.2 DISCUSSION ON ACTIVATION OUTLIERS DURING INFERENCE

Definition of Outliers We follow the previous works (An et al.; He et al., 2024; Sun et al., 2024;
Raman et al., 2025) in categorizing the outliers. An et al. discusses both weight and activation
outliers. In this analysis, we focus on activation outliers, which are much larger in magnitude. The
prevailing view in the community is that there are two types of activation outliers in the LLM:
outlier channels (OCs) and massive activations (MAs). An outlier channel is defined as a channel
in the activation where the mean exceeds the overall average of the tensor by more than m standard
deviations with a standard deviation less than β (Raman et al., 2025). On the other hand, a massive
activation is a single value in the activation with an extremely high value, often in the multiple
thousands, compared to others Sun et al. (2024). In simple words, an OC is an entire channel where
each element has a large value, whereas an MA is a large activation value corresponding to a single
token. An illustrative example of OCs and MAs is provided in Figure 9a and 9b.

(a) (b)

input
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Outlier Channels Massive Activations

(c)

Figure 9: (a) Outlier Channels. (b) Massive Activation. (c) Where are the outliers?

Where are the outliers? Interestingly, outlier channels and massive activations consistently appear
in different places within each layer of the LLMs. As shown in Figure 9c, for the standard trans-
former architecture, OCs emerge in the input activations of QKV projections in the attention module
and in the input activations of up/gate projection in the MLP module, and massive activations ap-
pear in the input activations of the down projection. A more detailed examination of those outliers
reveals that OCs are composed of two parts: the carried-over OC through residual connections and
the emerging OC from the current layer’s computation. When these two components agree on the
channel index, the OC’s magnitude will become larger and larger, and when these two components
do not agree on the index, OCs might change in the later layers. Compared to OCs that appear on
all tokens and consistent channels, Sun et al. (2024) first found that MAs usually appear on some
random channels in the first token or semantically weak tokens. Our observations are in line with
that finding.

How much do the outliers impact accuracy? In our investigation of 4-bit WA quantization, we
find that the effect of outliers on accuracy degradation is significantly influenced by the granular-
ity of the quantization method employed. While previous research has often attributed accuracy
degradation primarily to activation outliers, our analysis reveals a more nuanced relationship. When
using row/column-wise scaling for weights and activations, activation outliers indeed account for a
substantial portion of the accuracy degradation. However, our experiments demonstrate that weight
and other non-outlier activations also play a non-trivial role in the overall accuracy degradation and
should not be ignored when aiming at minimizing the impact of 4-bit quantization. This finding chal-
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lenges the conventional wisdom that addressing activation outliers alone is sufficient for maintaining
model accuracy. In particular, group quantization emerges as an effective strategy for mitigating the
impact of outlier channels (OC). When the outliers could not affect the entire activation tensor, their
impact is much less. Figure 10a illustrates the impact of outliers on activations during quantization.
The negative impacts of outliers are only constrained to their neighbors in the block.

To systematically evaluate the effect of outliers on the final accuracy after quantization, we con-
ducted a hierarchical analysis comparing three quantization scenarios: standard weight and activa-
tion quantization (all channels), weight and activation quantization with outlier channels untouched
(w/o OC), and weight-only quantization (no channels). The results in Figure 10b demonstrate that 1.
while OCs do impact quantization performance as indicated by the differences between the orange
and yellow bars, this impact is not uniform across different model sizes, and 2. quantization error
from weights can lead to at least 20% perplexity increase on the Wikitext2 dataset (Merity et al.,
2016). In addition, we empirically observe that MAs pose fewer degradations compared to OCs
on our models. MAs contribute to around 10% among all perplexity increases caused by activation
quantization in our 0.5B model, whereas OC contributes to around 50%. However, this relationship
may vary with model scale, as MAs are reportedly more hazardous in larger models (Raman et al.,
2025).

nor mal channels

neighbor  chan nels of OC

OC chann els

no err ors after quan t

small er rors after qu ant

large erro rs after quant
0

100

block1 block2

quantization

block1 block2

(a) (b)

Figure 10: (a) OCs only affect their neighbor channels in the same block. The top right figure shows
the quantization error measured by the percentage of error over the original magnitude. Values
affected by OC (channels in the red dotted square) have a high error percentage, but others have a
lower percentage. (b) Percentage of perplexity increase after quantization of weight and activation
(all channels), weight and activation without outliers (w/o OC), weight only (no channels).
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A.6 DISCUSSION ON THE JACOBIAN MATRIX

A.6.1 GENERAL DISCUSSION ON THE ERROR DIVERGENCE AND JACOBIAN

We first discuss the divergence of the error when the Jacobian matrix is generic (not specific to any
architecture). Recall that under the first-order approximation, we have

el+1 = el + Jlel = (I + Jl)el (7)

For simplicity, we assume the Jacobian matrix is independent of the error with a random distribution,
and we have:

µ = E(Jl)
Σ = E((Jl − µ)T (Jl − µ))

(8)

We have the squared norm of el+1 to be:

∥el+1∥2 = eTl (I + Jl)
T (I + Jl)el

= eTl (I + Jl + JT
l + JT

l Jl)el
(9)

We then have the conditional expectation with respect to el as:

E(∥el+1∥2|el) = eTl E(I + Jl + JT
l + JT

l Jl)el

= eTl (I + µT + µ+ µTµ+Σ)el
(10)

We denote (I + µT + µ+ µTµ+Σ) as M , and using Rayleigh quotient bound, we have:

eTl Mel ≥ λmin(M)∥el∥2, (11)

which implies that E(∥eN∥2) ≥
∏N−1

k=0 λmin(Mk)E(∥e0∥2)
Implication from Equation 11. Here, we discuss the conditions under which the error will diverge
or converge.

• if J is zero-centered, M = I + Σ ≽ I . Consequently, the mean-square error is non-
decreasing. The error will diverge when the geometric mean of

∏N−1
k=0 λmin(Mk) is greater

than 1.
• in a similar derivation, E(∥eN∥2) ≤

∏N−1
k=0 λmax(Mk)E(∥e0∥2), which means the error

will converge when the geometric mean of
∏N−1

k=0 λmax(Mk) is smaller than 1.
• we note that under the typical setting, with i.i.d., zero-mean random Jacobians with vari-

ance Σ ≽ 0, the first-order error will almost certainly diverge.

A.6.2 MODEL SPECIFIC JACOBIAN AND ITS ERROR GROWTH BOUND

In this section, we will further decompose the Jacobian of the standard architecture and show the
upper and lower bounds for error propagation in that architecture. First, recall from Eq. 3 that the
architecture is made of an attention module and an MLP module. Let x ∈ RT×d be the input matrix
to a transformer block and let

A(x) := Attn(RMSNorm(x)), f(x) := x+A(x) +MLP
(
RMSNorm(x+A(x))

)
.

We study the Jacobian J(x) := Df(x) as a linear map acting on matrix perturbations (error in-
troduced in the input) ϵ ∈ RT×d. All bounds are given in the Frobenius norm ∥ · ∥F on matrices
together with the induced operator norm:

∥T ∥F→F := sup
ϵ ̸=0

∥T [ϵ]∥F
∥ϵ∥F

for any linear map T : RT×d → RT×d.

We define the following notations at a base point x,
z = RMSNorm(x), u = x+A(x), w = RMSNorm(u).

By the chain rule,

J(x) = I + B(x) + M(x)
(
I +B(x)

)
,

{
B(x) := JAttn(z) JRMS(x),

M(x) := JMLP(w) JRMS(u).
(12)
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Row-wise RMSNorm and its Jacobian. RMSNorm is a row-wise transformation. For row t ∈
{1, . . . , T}, let xt ∈ Rd be the t-th row of x and

σt =
√

1
d∥xt∥22, Dg = diag(g) ∈ Rd×d (learned gains).

Then,

RMSNorm(x)t = Dg
xt

σt

JRMS(x) = blkdiag
(
N1, . . . , NT

)
with the per-row Jacobian matrix being:

Nt =
Dg

σt

(
I − xtx

⊤
t

d σ2
t

)
∈ Rd×d. (13)

Consequently,

∥JRMS(x)∥F→F = max
t

∥Nt∥2 ≤ ∥Dg∥2
mint σt

. (14)

We’d like to make a side note on the error propagation after RMSNorm: after normalization, radial
errors disappear in the input, but tangential errors remain.

Blockwise bounds for B and M . For notation simplicity, we define the Frobenius-induced Lips-
chitz moduli:

Lattn(z) := ∥JAttn(z)∥F→F , Lmlp(w) := ∥JMLP(w)∥F→F .

By submultiplicativity and Eq. 14, we have the bounds for ∥B∥ and ∥M∥ as:

∥B(x)∥F→F ≤ Lattn(z) ∥JRMS(x)∥F→F ≤ Lattn(z)
∥Dg∥2
mint σt

, (15)

∥M(x)∥F→F ≤ Lmlp(w) ∥JRMS(u)∥F→F ≤ Lmlp(w)
∥D′

g∥2

mint

√
1
d∥ut∥22

, (16)

where ut is the t-th row of u. 1

Per-layer error amplification bounds. For any perturbation ϵ ∈ RT×d,

J(x)ϵ = ϵ+B(x)ϵ+M(x)ϵ+M(x)B(x)ϵ

Using the triangle inequality and submultiplicativity, we have the upper bound for the error propa-
gation as follows:

∥J(x)ϵ∥F ≤
(
1 + ∥B(x)∥F→F + ∥M(x)∥F→F + ∥M(x)∥F→F ∥B(x)∥F→F

)
∥ϵ∥F (17)

Likewise, we have the lower bound of error propagation as:

∥J(x)ϵ∥F ≥
(
1− ∥B(x)∥F→F − ∥M(x)∥F→F − ∥M(x)∥F→F ∥B(x)∥F→F

)
∥ϵ∥F , (18)

which is informative whenever

∥B(x)∥F→F + ∥M(x)∥F→F + ∥M(x)∥F→F ∥B(x)∥F→F < 1

1RMSNorms are different for attention and MLP modules, so we use a different notation D′
g for MLP

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Additional discussions on JAttn and JMLP. The exact analytical forms of JAttn and JMLP are
overly complex and do not have much meaningful contributions to the error propagation in realistic
LLMs. However, if we were to make some assumptions to loosen the constraints, we may obtain
coarse bounds for them that contribute to the architectural changes.

We make the following three assumptions:

1. RMSNorm can bring normalized activations to O(1).
2. The operator norm of the softmax Jacobian is smaller than some constant csm < 1.
3. Norms of SiLU in MLP are small. We have ∥SiLU∥∞ < cSiLU and ∥SiLU′∥∞ < cSiLU′ .

Under the three assumptions, we have a coarse single-head attention bound as:

∥JAttn(z)∥F→F ≲ ∥Wo∥2
(
∥Wv∥2 + csm

∥Wq∥2 ∥Wk∥2√
dk

)
We can also extend this to the practical multi-head attention case:

∥JAttn(z)∥F→F ≲ ∥Wo∥2
√
Hmax

h

(
∥W (h)

v ∥2 + csm
∥W (h)

q ∥2∥W (h)
k ∥2√

dk

)
,

where H is the number of heads.

Similarly, we have the following coarse bound for JMLP as:

∥JMLP(w)∥F→F ≲ ∥Wd∥2
(
cSiLU∥Wu∥2 + cSiLU′∥Wg∥2

)
Implications from the above analysis. From the mathematical derivations, we make the follow-
ing observations. Some of them can help us understand how to make architectural changes to better
reduce the error propagation in LLMs.

• The residual connection guarantees a baseline error propagation factor of 1. Submodules
add B +M +MB to the next layer.

• Since RMSNorm eliminates radial errors, B + M + MB contains mostly tangential (di-
rectional) errors that can either grow or shrink depending on the alignment between input
and weight.

• Since weight norms are unbounded, the output error can have very high magnitudes if the
alignment is not good.

• Some directions to reduce error propagation (or at least keep the error propagation factor
around one) include: reducing weight magnitude, keeping the RMSNorm’s gain Dg small,
reducing the number of heads in attention, and encouraging Bϵ and M(I +B)ϵ to point at
the opposite direction of ϵ.
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