

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 INTRODUCING ACCURATE 4-BIT QUANTIZATION WITH HYPERSPHERICAL ARCHITECTURE

Anonymous authors

Paper under double-blind review

ABSTRACT

Due to the hardware support from NVIDIA’s Blackwell architecture, 4-bit quantization of large language models promises substantial memory and throughput gains. However, naive 4-bit quantization degrades accuracy and remains challenging in practice. In this work, we revisit the root causes of this degradation and posit a new perspective through analysis of matrix multiplication and the unbounded weight within models. We show that quantization induces errors that are amplified within the attention and MLP submodules, leading to unstable error growth across layers. From this analysis, we propose architectural co-designs that use hyperspherical transformers to jointly normalize activations and constrain weights to unit norm, converting dot-products into bounded cosine similarities and suppressing error expansion. On 0.5–1B models, pretrained hyperspherical models yield new state-of-the-art performance to 4-bit weight-activation quantization, outperforming standard transformer architecture and a strong QAT baseline, while a partial normalization plug-in narrows the degradation gap in existing models. These results position model architectural co-design as a third optimization axis, complementary to existing works, for robust low-bit LLM deployment.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated unprecedented capabilities (Guo et al., 2025; Intelligence, 2024), but their deployment remains challenging due to the substantial memory and compute they require, making them impractical for many real-world applications, especially on resource-constrained devices (Qin et al., 2024; Zheng et al., 2025). Model quantization has emerged as a key strategy for lowering deployment costs, with recent efforts exploring 8-bit (Dettmers et al., 2022; Lin et al., 2024a) and even 4-bit (Liu et al., 2025; Ashkboos et al., 2024) representations for weights and activations. Such quantization enables reduced memory usage and faster computation, often while preserving acceptable service quality (Zhu et al., 2024; Czakó et al., 2025). Recent hardware roadmaps have also accelerated this trend by exposing native FP4 kernels with the NVIDIA Blackwell architecture, making 4-bit execution a realistic target rather than an academic curiosity.

However, plain FP4 quantization often causes severe generation quality degradation, even with more granular quantization schemas (Li et al., 2024). To mitigate this, prior works have focused on addressing activation and weight outliers during inference (Liu et al., 2025; Ashkboos et al., 2024; Chen et al., 2025; Kumar et al., 2024). Although these methods often restore quantized models to a usable state, notable empirical gaps in generation quality remain, along with the added complexity of model-specific adaptations that require special handling with some of the methods.

In this work, we dive into the fundamental reasons behind the accuracy degradation in 4-bit quantization. We reveal two important properties that were overlooked by previous works. First, quantization results in errors that are propagated and accumulated across layers. Second, the less-bounded weight rows in the models amplify the directional errors and cause unstable self-attention and MLP submodules within each layer. Motivated by this analysis, we explore hyperspherical transformers that normalize both weights and activations to unit norm (Loshchilov et al.). By converting dot-products into bounded cosine similarities, hyperspherical transformers are able to reduce error expansion in submodules and stabilize error propagation through depth (Luo et al., 2018). On three pretrained models ranging from 0.5–1B, hyperspherical architecture yields strong robustness at FP4 quantization, significantly outperforming standard transformer baselines.

054 **Our main contributions are:**
 055

056 1. We characterize how quantization-induced errors interact with unbounded projections in
 057 attention/MLP submodules, yielding expanding and unstable propagation across layers.
 058 2. Motivated by our analysis about unbounded projections, we introduce robust architectural
 059 co-design as a third axis to the quantization accuracy degradation mitigation techniques,
 060 distinct from existing post-training quantization (PTQ) techniques and quantization-aware
 061 training (QAT) frameworks.
 062 3. We show that hyperspherical pretraining attains strong FP4 quantization robustness and
 063 makes significantly smaller accuracy degradation than (i) standard transformers and (ii) a
 064 strong QAT baseline. We also show that partial hypersphericity can narrow the quantization
 065 degradation equivalent to the previous state-of-the-art QAT framework with equal budget.
 066

067 **2 BACKGROUND AND RELATED WORK**
 068

069 **2.1 QUANTIZATION**
 070

071 **Definition.** Quantization maps real-valued tensors to a low-precision discrete set to reduce memory,
 072 bandwidth, and compute cost. Given an input x , a quantization operator obtains an output \hat{x} in
 073 reduced precision such that:

$$074 \quad 075 \quad \hat{x} = \text{clip}\left(\left[\frac{x}{s}\right] + z, q_{\min}, q_{\max}\right),$$

076 where $s > 0$ is the scaling factor, z is the zero point (0 if the quantization method is symmetric),
 077 and $[q_{\min}, q_{\max}]$ bound the range after quantization. Scales can be chosen per-tensor, per-channel,
 078 per-group, or per-block (which is hardware-related). We will provide a more detailed discussion in
 079 Appendix A.2.1 on these scaling differences.

080 **Benefits of quantization.** Compared to a full precision model, a quantized model has two main
 081 benefits. First, with the reduced precision per parameter, it can be served on hardware with less
 082 memory, enabling inference of large models on edge devices (Lin et al., 2024a). Second, modern
 083 hardware supports native calculations in reduced precision, which are faster than full precision.
 084 Quantized models can leverage those kernels to provide faster inference (Gong et al., 2025).

085 **What to quantize?** Three components in an LLM affect the runtime memory consumption and ef-
 086 ficiency: the weights of the model (W), intermediate activations that are produced during inference
 087 (A), and KV cache during the prefilling stage (KV) (Kwon et al., 2023). To achieve maximum reduc-
 088 tion in runtime memory consumption, all three components shall be quantized (such as W8A8KV8),
 089 whereas only the weights and activations have a significant impact on the compute efficiency (such
 090 as W8A8) (Lin et al., 2024b; Xiao et al., 2023). Given that accurate quantization for W4A4 remains
 091 a significant challenge, our work focuses on enhancing efficiency and accuracy during inference,
 092 specifically targeting WA quantization in 4 bits (Liu et al., 2025; Xiao et al., 2023).

093 **Emergence of FP4.** Achieving practical inference efficiency requires co-design between quantiza-
 094 tion precision and hardware execution paths. Recent GPU architectures (e.g., NVIDIA Blackwell)
 095 expose native FP4 instructions and kernels. Accordingly, we adopt the vendor-specified FP4 encod-
 096 ings and consider FP4 quantization for both weights and activations (WA). Unless otherwise noted,
 097 we use micro-scaled block formats with a block size of 32 for MXFP4 and 16 for NVFP4, consistent
 098 with the corresponding hardware definitions.

099 **2.2 EXISTING METHODS FOR ROBUST QUANTIZATION**
 100

101 The existing works in robust low-bit quantization can generally be categorized into two streams:
 102 Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT).
 103

104 **Post-Training Quantization (PTQ).** PTQ focuses on pushing weight and activation in LLMs to
 105 lower precisions with minimal or no fine-tuning. Classical techniques include per-channel (Jacob
 106 et al., 2018) and blockwise microscaling (Drumond et al., 2018) to control local dynamic range;
 107 improved calibration via clipping (Banner et al., 2018), percentile (Wu et al., 2020), entropy rules
 (Davoodi et al., 2019), and bias correction (Nagel et al., 2019); learned or Hessian/curvature-aware

108 rounding to directly minimize layer-wise reconstruction error (Nagel et al., 2020; Nahshan et al.,
 109 2021; Frantar et al., 2022); and handling activation outliers by migrating scale from activations
 110 to weights (e.g., activation smoothing) (Xiao et al., 2023; Yi et al., 2024) or by activation-aware
 111 weight selection (Lin et al., 2024a; Dettmers et al., 2022). State-of-the-art methods in this stream
 112 show strong performance, yet gaps persist at W4A4 precision (Ashkboos et al., 2024; Li & Panda,
 113 2024; Lee et al., 2025).

114 **Quantization-Aware Training (QAT).** QAT integrates fake-quantization during pretraining or fine-
 115 tuning to simulate a quantized model and optimize model weights under a quantized environment
 116 (Chen et al., 2025). In practice, gradients through the non-differentiable quantizer are handled with
 117 the straight-through estimator (STE), where gradients are approximated and not automatically set
 118 through automatic differentiation during back propagation (Bengio et al., 2013). Beyond determin-
 119 istic rounding, stochastic/learned rounding injects (or learns) zero-mean quantization noise during
 120 training to reduce bias and improve stability at low bit-widths (Zhao et al., 2024; Ozkara et al.,
 121 2025). QAT generally achieves the strongest accuracy at low bit-widths (including W4), at the cost
 122 of additional training (Liu et al., 2025).

123 This paper studies robust architectural co-design as a third direction that can potentially work with
 124 existing methods in parallel. Our analyses and results motivate a hyperspherical design that naturally
 125 supports reliable and accurate 4-bit quantization.

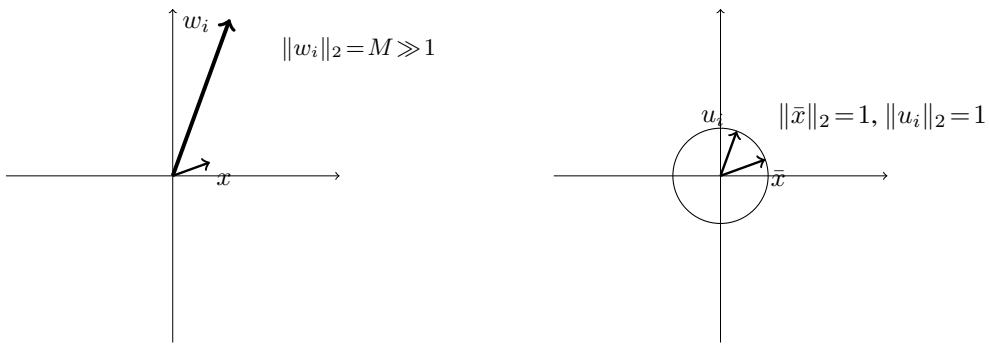
127 3 HYPERSPHERICITY LEADS TO QUANTIZATION ROBUSTNESS

129 In this section, we show that the hyperspherical model has more robustness to 4-bit quantization
 130 compared with regular transformer models. In particular, the unbounded weights in the submodules
 131 of transformer models result in unbounded variances in matrix multiplications, whereas normaliza-
 132 tion can effectively control and reduce the error variance through cosine similarity.

134 3.1 WHY UNBOUNDED PROJECTIONS AMPLIFY QUANTIZATION NOISE.

136 3.1.1 INTUITIVE SCENARIO: A SMALL ERROR WITH A LARGE WEIGHT

138 We first start with a hypothetical example. As illustrated in Figure 1, consider one coordinate in the
 139 matrix multiplication $y_i = w_i^\top x$. If the j -th coordinate of w_i is extremely large, say $|w_{ij}| = M \gg 1$,
 140 and the error ε_j is small, then the output perturbation on that coordinate is $\Delta y_i = w_i^\top \varepsilon =$
 141 $\sum_k w_{ik} \varepsilon_k \approx M \varepsilon_j$. Even when $|\varepsilon|_2$ is tiny, $M \varepsilon_j$ can be large if M is unbounded. **Due to**
 142 **unbounded weight, a small input error is amplified to a significant output error that ultimately**
 143 **affects the final generation.**



155 (a) **Standard projection** (dot product).

156 Unconstrained w_i allow large $\|w_i\|_2$, so small input
 157 errors can be multiplied by large weights.

155 (b) **Hypersphere projection** (cosine similarity).

156 $\|\bar{x}\|_2 = 1$, $\|u_i\|_2 = 1$, and $0 \leq g_i \leq C$ convert the dot
 157 product into a *bounded* cosine projection.

159 Figure 1: Comparison of projection geometry and gain. An unconstrained dot product can exhibit
 160 unbounded local gains, amplifying quantization noise. Hyperspherical layers normalize the repre-
 161 sentation and bound projection directions and gains, capping amplification.

162 3.1.2 THEORETICAL DERIVATION
163164 We formalize the intuition by modeling the quantization process as introducing noise to the weights
165 and activations. We show that bounding both weights and activations is necessary for controlling
166 the error induced by quantization.167 **Activation-side variance bound.** Let $\tilde{x} = x + \varepsilon$ with $\mathbb{E}[\varepsilon] = 0$ and $\text{Cov}(\varepsilon) = \Sigma_x \preceq \sigma^2 I$. Then
168 $\Delta y = W\tilde{x} - Wx = W\varepsilon$.170 **Proposition 1** (Activation-side variance).

171
$$\begin{aligned} \mathbb{E}[\|\Delta y\|_2^2] &= \text{Tr}(W^\top W \Sigma_x) \leq \sigma^2 \text{Tr}(W^\top W) = \sigma^2 \|W\|_F^2 \\ 172 &\leq \sigma^2 r \|W\|_2^2 \leq \sigma^2 \min(d_{\text{in}}, d_{\text{out}}) \|W\|_2^2, \end{aligned} \quad (1)$$

173 where $r = \text{Rank}(W)$. Equivalently, for each output coordinate i , $\text{Var}[\Delta y_i] = w_i^\top \Sigma_x w_i \leq$
174 $\sigma^2 \|w_i\|_2^2$.175 *Proof.* By $\mathbb{E}[\varepsilon \varepsilon^\top] = \Sigma_x$ and cyclic trace, $\mathbb{E}\|\Delta y\|_2^2 = \text{Tr}(W^\top W \Sigma_x)$. Because $\Sigma_x \preceq \sigma^2 I$ and
176 $W^\top W \succeq 0$, $\text{Tr}(W^\top W \Sigma_x) \leq \sigma^2 \text{Tr}(W^\top W) = \sigma^2 \|W\|_F^2$. Let $\{\sigma_k(W)\}_{k=1}^r$ be the nonzero
177 singular values. Then $\|W\|_F^2 = \sum_{k=1}^r \sigma_k(W)^2 \leq r \max_k \sigma_k(W)^2 = r \|W\|_2^2$, which yields the
178 final inequality in Equation 1. For the coordinate-wise claim, apply $\text{Var}(w_i^\top \varepsilon) = w_i^\top \Sigma_x w_i \leq$
179 $\sigma^2 \|w_i\|_2^2$. \square 180 **Relative amplification.** If $y = Wx \neq 0$, we have the relative amplification from matrix multiplication
181 on the input as:

182
$$\mathcal{A}_{\text{act}}(W, x; \Sigma_x) = \frac{\text{Tr}(W^\top W \Sigma_x)}{\|Wx\|_2^2} \leq \frac{\sigma^2 \|W\|_F^2}{\|Wx\|_2^2}.$$

183 When $\|W\|_F$ is large and $\|Wx\|_2$ happens to be small (e.g., x aligns with a near-zero direction),
184 \mathcal{A}_{act} can be large. This formalizes the instability risk without weight constraints (small errors have
185 large impacts on the output).186 **Weight-side variance bound.** Let $\tilde{W} = W + E$ with $\mathbb{E}[E] = 0$ and $\text{Cov}(\text{vec}(E)) \preceq \tau^2 I$. For
187 fixed x , $\Delta y := \tilde{W}x - Wx = Ex$.188 **Proposition 2** (Weight-side variance). If $\|x\|_2 \leq R$ and entries E_{ij} are independent with
189 $\text{Var}(E_{ij}) \leq \tau^2$, then

190
$$\mathbb{E}[\|\Delta y\|_2^2] = \mathbb{E}\|Ex\|_2^2 = \sum_{i=1}^{d_{\text{out}}} \sum_{j=1}^{d_{\text{in}}} x_j^2 \text{Var}(E_{ij}) \leq \tau^2 \|x\|_2^2 d_{\text{out}} \leq \tau^2 R^2 d_{\text{out}}.$$

191 *Proof.* For each i , $\sum_j x_j E_{ij}$ is a sum of independent zero-mean variables. Thus $\text{Var}[\sum_j x_j E_{ij}] =$
192 $\sum_j x_j^2 \text{Var}(E_{ij}) \leq \tau^2 \sum_j x_j^2$. Summing over i yields the claim. \square 205 3.2 DEFINITION OF A HYPERSPHERICAL MODEL
206207 A hyperspherical model constrains both activations and weights to live on (or close to) a unit hyper-
208 sphere, so that linear projections reduce to cosine similarities with uniformly bounded gain.209 Let $\mathcal{N} : \mathbb{R}^d \rightarrow \mathbb{R}^d$ denote L2 normalization, we have the normalization operator:

210
$$\mathcal{N} = \frac{z}{\|z\|_2}.$$

211 We also write row normalization of a matrix $W \in \mathbb{R}^{d_{\text{out}} \times d_{\text{in}}}$ as

212
$$\text{row_unit}(W)_i = \frac{w_i}{\|w_i\|_2}.$$

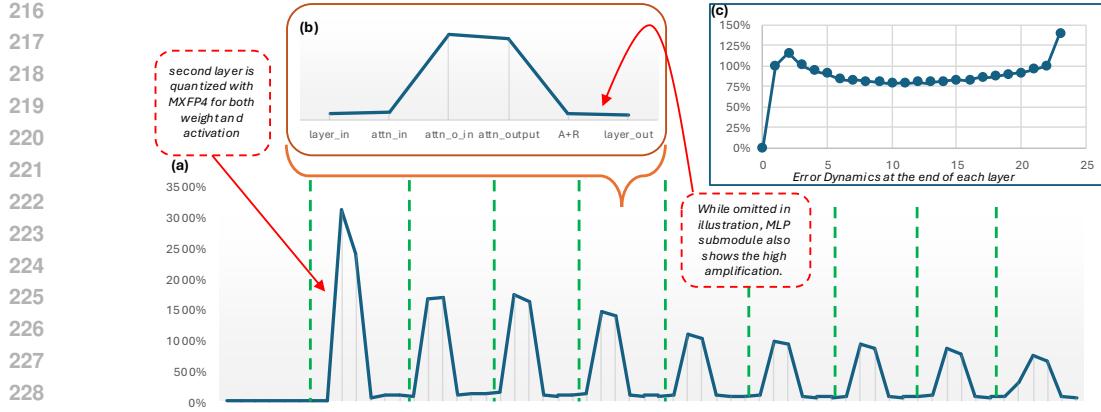


Figure 2: (a) Overview of error dynamics within a standard transformer’s first ten layers after the second layer is quantized. (b) Error dynamics within one layer. We refer readers to Appendix A.4.1 for a visual mapping between labels on the horizontal axis and the positions in the block. (c) Error dynamics at the end of each layer when the second layer is quantized.

Hyperspherical linear layer. A hyperspherical linear layer replaces $y = Wx$ with

$$\bar{x} = \mathcal{N}(x), \quad U = \text{row_unit}(W), \quad y = U\bar{x} \quad (2)$$

with each coordinate of y satisfies

$$y_i = \langle u_i, \bar{x} \rangle = \cos \theta_i, \quad \text{with } \|u_i\|_2 = 1, \|\bar{x}\|_2 = 1.$$

Hyperspherical block. For an attention/MLP block, we apply Equation 2 to all projections (e.g., $W_q, W_k, W_v, W_o, W_{\text{up}}, W_{\text{gate}}, W_{\text{down}}$). During the experiments, we chose to use an established implementation from Loshchilov et al. Loshchilov et al. normalizes the activations and weights to a hypersphere representation through L2 normalization, with some added learnable parameters to aid in the model’s convergence. In addition, Loshchilov et al. normalizes the embedding and lm_head weight, which we also adopt. The experiment setup is elaborated in Appendix A.3.2.

3.3 INSTABILITY IN TRANSFORMER VS. STABILITY IN HYPERSPHERICAL MODEL

To support the theoretical analysis, we reveal empirically that when a quantization-induced error is introduced in the input, its magnitude is expanded in the self-attention and MLP submodules in a standard transformer block. Figure 2 shows the error propagation pattern within each layer of a 0.5B transformer model (we omit the MLP submodule due to space, but it has a similar pattern to the attention submodule). It uses the normalized percentage of L2 magnitude as a proxy to quantify the existence of errors in the model. The percentage is calculated as $\frac{1}{|\mathcal{I}|} \sum_{i \in \mathcal{I}} \frac{\|\tilde{y}_i - y_i\|_2}{\|y_i\|_2}$, where y_i and \tilde{y}_i denote the full-precision and erroneous activations at index i with \mathcal{I} spanning all evaluated tokens in Wikitext2 dataset (Merity et al., 2016), and then normalized with respect to the percentage at the output of second layer. It should be evident that the relative magnitude of the input activation error of the layer is significantly amplified in the submodules.

This is consistent with our analyses in the previous subsection. RMSNorm limits *activation scale* but does not constrain the projection norms or directions of W . Proposition 1 therefore still scales with $\|W\|_F^2$, allowing large internal amplification.

Since quantization robustness is determined not only by where noise enters but also by the outputs of the projections it subsequently encounters, architectures that bound projection norms and operate on the normalized hypersphere representations are more robust to quantization (including FP4). Hypersphericity can bound the effective element-wise gain from each submodule, converting the unbounded multiplication into a bounded cosine similarity in a hypersphere. Concretely, we would observe such robustness through a reduction in the amplification of intermediate activations.

Empirically, the hyperspherical model exhibits significantly reduced amplification inside the attention submodules, as shown in Figure 3 (with the same visualization style as Figure 2). The internal error is no longer amplified by orders of magnitude, which in turn accelerates error attenuation across the layers and yields a smaller final error at depth.

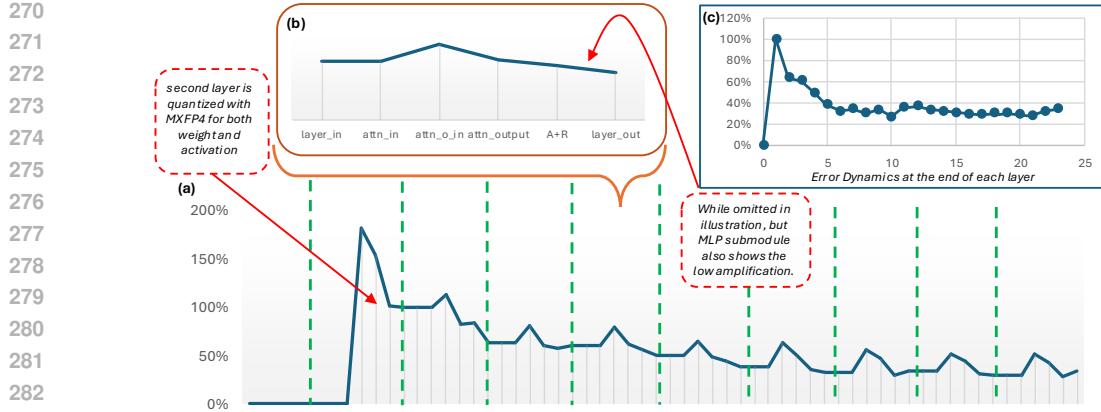


Figure 3: (a) Overview of error dynamics within a hyperspherical transformer’s first ten layers after the second layer is quantized. (b) Error dynamics within one layer. We refer readers to Appendix A.4.1 for a visual mapping between labels on the horizontal axis and the positions in the block. (c) Error dynamics at the end of each layer when the second layer is quantized.

Table 1: Hyperspherical models’ robustness generalizes across model sizes. T is the standard model architecture, whereas HS represents the hyperspherical architecture (Loshchilov et al.). The number in parentheses means relative accuracy degradation compared to full precision.

Model	Precision	PIQA	HS	LAMB	Arc-E	SciQ	Average
T-0.5B	BF16	68.50%	37.21%	39.69%	63.43%	85.30%	58.83% (-)
	MXFP4	65.45%	34.21%	20.67%	54.71%	77.20%	50.45% (-14.24%)
	NVFP4	64.91%	35.44%	25.81%	58.00%	82.90%	53.41% (-9.21%)
HS-0.5B	BF16	69.37%	39.47%	41.28%	65.40%	89.20%	60.94% (-)
	MXFP4	67.95%	38.55%	36.70%	63.17%	88.00%	58.87% (-3.40%)
	NVFP4	68.23%	39.07%	39.12%	64.31%	88.80%	59.91% (-1.69%)
T-0.7B	BF16	70.29%	39.00%	41.55%	65.66%	85.80%	60.46% (-)
	MXFP4	65.40%	36.00%	19.81%	56.69%	80.40%	51.66% (-14.56%)
	NVFP4	68.01%	37.44%	32.25%	62.12%	83.80%	56.72% (-6.19%)
HS-0.7B	BF16	70.35%	40.37%	41.26%	67.63%	88.10%	61.54% (-)
	MXFP4	68.99%	39.18%	40.25%	66.96%	87.30%	60.54% (-1.62%)
	NVFP4	70.29%	39.88%	39.45%	66.20%	87.30%	60.62% (-1.49%)
T-1B	BF16	71.76%	41.39%	44.15%	69.70%	88.80%	63.16% (-)
	MXFP4	68.88%	37.42%	26.31%	61.57%	84.50%	55.74% (-11.75%)
	NVFP4	69.64%	39.28%	36.77%	65.66%	87.70%	59.81% (-5.30%)
HS-1B	BF16	71.55%	43.27%	45.35%	72.05%	89.70%	64.38% (-)
	MXFP4	70.95%	42.14%	40.13%	69.28%	89.90%	62.48% (-2.95%)
	NVFP4	70.13%	42.96%	43.12%	71.00%	89.20%	63.28% (-1.71%)

3.4 HYPERSPHERICAL MODELS HAVE MUCH MORE ROBUST 4-BIT QUANTIZATION

We show that hyperspherical models with the above normalizations are much more accurate under 4-bit quantization compared with the standard transformer architecture. Table 1 shows the accuracy on five downstream tasks of three pairs of models of different sizes, where each pair was trained to a similar evaluation loss between a standard and a hyperspherical design (Loshchilov et al.). Hyperspherical models are clearly more robust to quantization than the standard architecture, with significantly less accuracy degradation. In Appendix A.4.2, we show that hyperspherical models can even perform better on downstream tasks compared to applying the latest QAT framework, ParetoQ (Liu et al., 2025), on the standard architecture.

3.5 PARTIAL HYPERSPHERICITY FOR EXISTING LLMs

We have shown in the previous subsection that the hyperspherical model architecture can lead to state-of-the-art quantization robustness. However, existing LLMs are largely non-weight-bounding architectures, and it is a non-trivial task to retrain a hyperspherical model from scratch. In this

324 Table 2: INT4 (weight-only) quantization for 0.5B model. QAT is adopted from Liu et al. (2025).
325

Method	Time	PPL	PIQA	HS	LAMB	Arc-E	SciQ	Average
BF16	–	13.04	68.50%	37.21%	39.69%	63.43%	85.30%	58.83%
–	–	22.12	66.16%	36.19%	15.08%	55.13%	78.40%	50.19%
QAT	12:06:57	14.49	68.34%	36.42%	36.10%	61.66%	83.10%	57.12%
v1	11:07:37	16.20	67.52%	36.61%	34.58%	58.29%	80.50%	55.50%
v1+QAT	12:05:59	14.48	68.23%	36.41%	37.53%	60.52%	82.30%	57.00%
v2	11:03:06	13.82	68.06%	36.51%	36.46%	61.15%	84.10%	57.26%
v2+QAT	12:01:14	14.82	66.81%	34.90%	28.29%	59.39%	81.70%	54.22%

334 Table 3: INT4 (weight-only) quantization for 1B model. QAT is adopted from Liu et al. (2025).
335

Method	Time	PPL	PIQA	HS	LAMB	Arc-E	SciQ	Average
BF16	–	11.53	71.76%	41.39%	44.15%	69.70%	88.80%	63.16%
–	–	25.06	68.39%	38.15%	23.29%	58.29%	80.30%	53.68%
QAT	23:41:54	12.49	71.49%	41.14%	37.38%	67.80%	86.90%	60.94%
v1	22:00:13	nan	71.87%	41.03%	43.68%	67.17%	87.20%	62.19%
v1+QAT	23:42:17	nan	70.78%	40.96%	41.96%	67.47%	89.00%	62.03%
v2	21:49:33	12.61	70.29%	40.28%	42.11%	68.27%	88.60%	61.91%
v2+QAT	23:38:36	21.24	64.47%	32.63%	22.88%	56.90%	82.50%	51.88%

344 section, we present our attempts to make existing models more robust to 4-bit quantization through
345 partial hypersphericity.346 We consider two levels of architectural changes based on two characteristics of the error analyses.
347 First, weight normalization is essential to control the output variances and stability of submodules.
348 However, exploratory experiments have revealed that normalization of all weights will cause the
349 model to fall back to an untrained state, even when the original model’s weights are migrated.
350 Thus, we take a step back and only convert the final projection (*lm_head*) into a hyperspherical
351 architecture. This choice is motivated by two reasons. Firstly, the input of *lm_head* retains all
352 features from previous layers. Leaving the previous layers’ architecture unchanged would make the
353 model converge much faster during finetuning. Secondly, *lm_head* is the last layer, and variances of
354 its output directly impact the output of the model. In the results, we will denote this approach as **v1**.
355356 Second, input magnitude to the submodules effectively controls the output magnitude. Knowing
357 that the submodules in a standard model are not stable, we can reduce the input strength of those
358 submodules with stronger normalization. Concretely, **in addition to v1**, we replace the RMSNorm
359 with L2Norm by removing the learnable gain and the $\frac{1}{\sqrt{d}}$ factor in the denominator. This approach
360 makes the error propagation factor closer to 1 by taking fewer effect from the submodules. Ideally,
361 such an approach would result in a more stable error propagation, but we note that more changes
362 to the architecture will lead to more difficulties in convergence when finetuning the model with a
363 limited budget. In the results, we will denote this approach as **v2**.364 We apply QAT and our normalization approaches to the pretrained 0.5B and 1B standard transformer
365 models and summarize their quantization robustness after finetuning in Table 2 and 3. In the table,
366 a dash indicates a naive quantization without any finetuning, and QAT is from Liu et al. (2025). We
367 report the perplexity on Wikitext2 and five downstream tasks, as well as the finetuning wall time
368 (Time). We choose INT4 weight-only quantization (W4) to be consistent with Liu et al. (2025)’s
369 experiments. We also evaluate FP4 quantization strategies, as well as the Pythia family models
370 (Biderman et al., 2023). Due to space limits, we provide those additional results in Appendix A.4.3.
371 Partial hypersphericity (v1) and heavier regularization on input in submodules (v2) can perform on
372 par (and sometimes slightly better) than QAT while using around 8% less time, which we attribute
373 to the QAT framework utilizing specifically designed backpropagation. In contrast, architectural
374 changes are fully compatible with the optimized backpropagation library in PyTorch.375

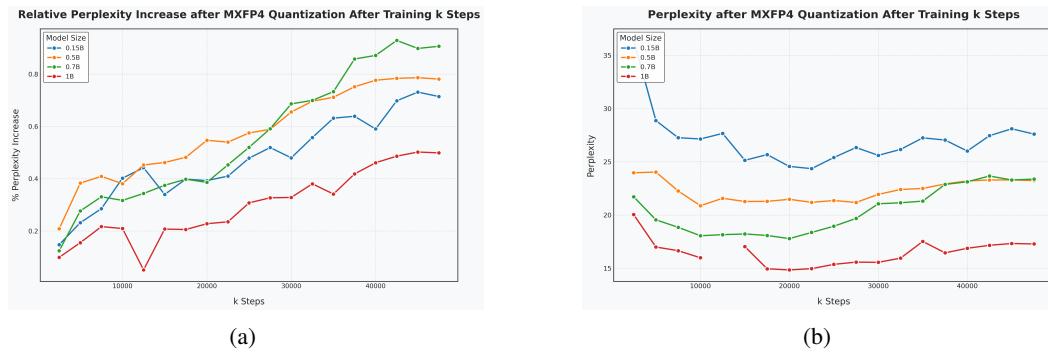
4 UNDERSTANDING ACCURACY DEGRADATION IN 4BIT QUANTIZATION

376377 In this section, we discuss practices for obtaining accurate FP4 quantized models by synthesizing
378 previous understandings of the causes of accuracy degradation in 4-bit quantization and providing

378 new insights through the lens of error propagation. While successfully reproducing some phenomena
 379 (Kumar et al., 2024; An et al.; Sun et al., 2024), our analyses reveal new findings, in particular
 380 suggesting that outliers in LLM are not consistently the cause of accuracy degradation, with an
 381 emphasis on error analysis. The experiment settings can be found in Appendix A.3.3.
 382

383 4.1 LESS IS MORE IN PRETRAINING

385 First, we extend the previous discussion on the relationship between prolonged pretraining and the
 386 model’s accuracy after quantization. Kumar et al. (2024) has found that whereas the full precision
 387 model’s accuracy keeps improving with more pretraining tokens, INT3-quantized models suffer
 388 from worse accuracy after pretraining for a certain number of tokens. We similarly observe this
 389 for the 4-bit quantization schema. As shown in Figure 4, the relative perplexity after MXFP4 WA
 390 quantization grows with more training tokens from the start, and optimal perplexity after MXFP4
 391 quantization emerges around pretraining with 40B tokens. In addition to reproducing this effect, we
 392 find that maintaining a high learning rate might delay the critical point, but the convergence is hard
 393 to reach with a high constant learning rate. We discuss this in Appendix A.5.1.
 394



404 Figure 4: (a) As training goes on, accuracy degradation after MXFP4 quantization as measured by
 405 percentage increase of perplexity on Wikitext2 (Merity et al., 2016) dataset. (b) As training goes on,
 406 perplexity after quantization stops decreasing and starts to increase. Discontinuity of the 1B model
 407 is an outlier with a perplexity value of 1301.
 408

409 4.2 OUTLIERS MATTER, BUT ONLY TO AN EXTENT

410 Many previous works propose methods for eliminating the outliers that emerge in the inference stage
 411 of LLMs as a mitigation to the accuracy degradation (Dettmers et al., 2022; Ashkboos et al., 2024).
 412 Although outliers intuitively influence the quantization range and can suppress other activation
 413 values to zero during quantization, their impact on final accuracy under blockwise scaling has been
 414 underemphasized in previous works. Our findings confirm the presence of these outliers and show
 415 that they contribute to some, but not all, of the accuracy degradation in quantization. Due to space
 416 limitations, we provide more detailed discussions in Appendix A.5.2.
 417

418 4.3 ERROR PROPAGATION DRIVES THE ANALYSIS

419 In Section 3, we have already shown that unbounded weights in the standard transformer model
 420 lead to unstable and expanding error propagation in submodules. In this section, the error analysis
 421 is generalized to show that quantization error has a non-monotonic layer-wise growth while being
 422 divergent in nature. We present some connections between error and existing understandings of
 423 outliers, and hope our perspective of thinking from error propagation can motivate the community
 424 and be informative in designing future model architectures.
 425

426 Without loss of generalizability, we consider a transformer model where the l -th layer is defined as:
 427

$$\text{Layer}_l(x_l) = x_l + \text{Attn}(\text{RMSNorm}(x_l)) + \text{MLP}(\text{RMSNorm}(x_l + \text{Attn}(\text{RMSNorm}(x_l)))) \quad (3)$$

428 For simplicity of analysis, we abstract the computation in the layer with a function f , where $x_{l+1} =$
 429 $x_l + f_l(x_l)$. The effect of quantization on the previous layer can be modelled as producing an
 430 erroneous output (\hat{x}) and introducing an error term $e_l = \hat{x}_l - x_l$. In this section, we consider the
 431

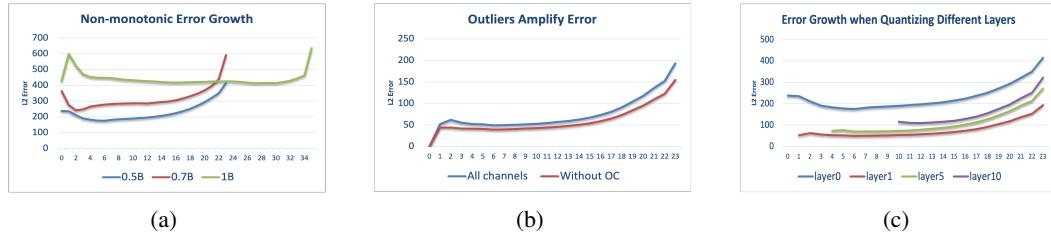


Figure 5: (a) Visualization of L2 error propagation measured at the end of each layer, after quantizing the first layer in the three models. (b) Outliers amplify the initial error and affect the subsequent propagated errors. (c) When quantizing exactly one layer at a time, the best-to-worst ranking of four choices is Layers [1, 5, 10, 0], which corresponds perfectly to the L2 magnitude of the error.

first-order approximation of error propagation. Denote the Jacobian of f_l at x_l by $J_l = Df_l(x_l)$, where D is the Frechet derivative. On Layer l , we have:

$$x_{l+1} \approx x_l + e_l + f_l(x_l + e_l) \approx x_l + e_l + f_l(x_l) + J_l e_l \quad (4)$$

Assuming the current layer is not quantized (i.e., no independent error is initiated from this layer), the error propagated to the next layer will be in the form of: $e_{l+1} = e_l + J_l e_l = (I + J_l)e_l$. As the layers deepen, the error propagation follows a recursive pattern, where at the end of layer k , an error term that originates from layer l will become:

$$e_k^{(l)} = \prod_{i=l+1}^k (I + J_i)e_l \quad (5)$$

Non-monotonic Layer-wise Growth Equation 5 focuses on the final error propagation of the error from the l -th layer, and we can generalize this pattern to all layers that are quantized. For a set of layers that is quantized $Q \subseteq \{0, 1, \dots, N-1\}$, we have the final error at the end of N layers to be:

$$E^{final} = \sum_{l \in Q} \prod_{i=l+1}^N (I + J_i)e_l \quad (6)$$

Note that since $\|I + J_i\|$ is not guaranteed to be greater than 1, the layer-wise error growth is non-monotonic. A simple bound over the error propagation amplification factor is $1 - \|J_i\| < \|I + J_i\| < 1 + \|J_i\|$. We will provide a discussion on when the error will diverge in Appendix A.6.1 for the general Jacobian matrix and in Appendix A.6.2 for a model-specific Jacobian decomposition. Empirically, Figure 5a illustrates the growth of error that is introduced by quantizing the first layer of three models of different sizes.

Outliers Amplify Initial Error. The existence of outliers will amplify the error when quantizing a specific layer, as shown in Figure 5b. This is the reason why outliers negatively affect quantization. We also note that in practice, since all layers are quantized and outliers (especially OCs) exist in all layers, the effect of OCs is worsened because every layer's input error is amplified.

Implications from Error Propagation. Understanding error propagation aids in comprehending the accuracy degradation that occurs during quantization. It can also serve as a proxy for determining which layers to skip quantization under mixed-quantization frameworks: less error magnitude means less accuracy degradation during quantization. As a simple demonstration, when quantizing exactly one layer at a time, the best-to-worst ranking of four choices is Layers [1, 5, 10, 0]. This ordering mirrors the relative error propagation that initiates at those same layers, as shown in Figure 5c.

5 CONCLUSION

In this paper, we show that accuracy degradation from quantization stems from the error propagated across layers and amplified inside attention/MLP submodules. Based on our analysis, we then reveal that bounding both activations and weights on a hypersphere stabilizes and reduces propagation. Our analysis and experiments show that hyperspherical transformers are much more robust against FP4 quantization, and a lightweight normalization plug-in on the LM head is able to narrow the gap on existing models and match a strong QAT method. Our analysis and experiments posit robust architecture designs to be a practical third dimension for robust 4-bit LLMs.

486 REFERENCES
487

488 Red Hat AI and vLLM Project. LLM Compressor, 8 2024. URL <https://github.com/vllm-project/llm-compressor>.

489

490 Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Systematic outliers in large language
491 models. In *The Thirteenth International Conference on Learning Representations*.

492

493 Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
494 Jaggi, Dan Alistarh, Torsten Hoefer, and James Hensman. Quarot: Outlier-free 4-bit inference in
495 rotated llms. *Advances in Neural Information Processing Systems*, 37:100213–100240, 2024.

496

497 Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Aciq: Analytical clipping for integer
498 quantization of neural networks. 2018.

499

500 Joshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
501 through stochastic neurons for conditional computation. *arXiv preprint arXiv:1308.3432*, 2013.

502

503 Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O'Brien, Eric
504 Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
505 Pythia: A suite for analyzing large language models across training and scaling. In *International
Conference on Machine Learning*, pp. 2397–2430. PMLR, 2023.

506

507 Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
508 monsense in natural language. In *Proceedings of the AAAI conference on artificial intelligence*,
509 volume 34, pp. 7432–7439, 2020.

510

511 Mengzhao Chen, Chaoyi Zhang, Jing Liu, Yutao Zeng, Zeyue Xue, Zhiheng Liu, Yunshui Li, Jin
512 Ma, Jie Huang, Xun Zhou, et al. Scaling law for quantization-aware training. *arXiv preprint
arXiv:2505.14302*, 2025.

513

514 Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
515 Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
516 *arXiv preprint arXiv:1803.05457*, 2018.

517

518 Patrik Czakó, Gábor Kertész, and Sándor Szénási. Addressing activation outliers in llms: A system-
519 atic review of post-training quantization techniques. *IEEE Access*, 2025.

520

521 Pooya Davoodi, Chul Gwon, Guangda Lai, and Trevor Morris. Tensorrt inference with tensorflow.
522 In *GPU Technology Conference*, 2019.

523

524 Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
525 multiplication for transformers at scale. *Advances in neural information processing systems*, 35:
526 30318–30332, 2022.

527

528 Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. Training dnns with hybrid block floating
529 point. *Advances in Neural Information Processing Systems*, 31, 2018.

530

531 Elias Frantar, Saleh Ashkboos, Torsten Hoefer, and Dan Alistarh. Gptq: Accurate post-training
532 quantization for generative pre-trained transformers. *arXiv preprint arXiv:2210.17323*, 2022.

533

534 Ruihao Gong, Yifu Ding, Zining Wang, Chengtao Lv, Xingyu Zheng, Jinyang Du, Yang Yong,
535 Shiqiao Gu, Haotong Qin, Jinyang Guo, et al. A survey of low-bit large language models: Basics,
536 systems, and algorithms. *Neural Networks*, pp. 107856, 2025.

537

538 Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
539 Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. *arXiv preprint arXiv:2501.12948*, 2025.

540

541 Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Understanding
542 and minimising outlier features in transformer training. *Advances in Neural Information Process-
543 ing Systems*, 37:83786–83846, 2024.

544

545 Amazon Artificial General Intelligence. The amazon nova family of models: Technical report and
546 model card. 2024.

540 Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
 541 Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
 542 efficient integer-arithmetic-only inference. In *Proceedings of the IEEE conference on computer*
 543 *vision and pattern recognition*, pp. 2704–2713, 2018.

544

545 Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
 546 sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
 547 *arXiv preprint arXiv:2411.04330*, 2024.

548

549 Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
 550 Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
 551 serving with pagedattention. In *Proceedings of the 29th symposium on operating systems prin-
 552 ciples*, pp. 611–626, 2023.

553

554 Dongyoung Lee, Seungkyu Choi, and Ik Joon Chang. Qrazor: Reliable and effortless 4-bit llm
 555 quantization by significant data razoring. *arXiv preprint arXiv:2501.13331*, 2025.

556

557 Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
 558 Huazhong Yang, and Yu Wang. Evaluating quantized large language models. In *Proceedings of
 559 the 41st International Conference on Machine Learning*, pp. 28480–28524, 2024.

560

561 Yuhang Li and Priyadarshini Panda. Tesseraq: Ultra low-bit llm post-training quantization with
 562 block reconstruction. *arXiv preprint arXiv:2410.19103*, 2024.

563

564 Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
 565 Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
 566 for on-device llm compression and acceleration. *Proceedings of machine learning and systems*,
 567 6:87–100, 2024a.

568

569 Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
 570 Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. *arXiv
 571 preprint arXiv:2405.04532*, 2024b.

572

573 Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
 574 Lisa Jin, Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit llm
 575 quantization. *arXiv preprint arXiv:2502.02631*, 2025.

576

577 Ilya Loshchilov, Cheng-Ping Hsieh, Simeng Sun, and Boris Ginsburg. ngpt: Normalized transformer
 578 with representation learning on the hypersphere. In *The Thirteenth International Conference on
 579 Learning Representations*.

580

581 Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui Ren, and Qiang Yang. Cosine normaliza-
 582 tion: Using cosine similarity instead of dot product in neural networks. In *International confer-
 583 ence on artificial neural networks*, pp. 382–391. Springer, 2018.

584

585 Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
 586 models. *arXiv preprint arXiv:1609.07843*, 2016.

587

588 Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
 589 through weight equalization and bias correction. In *Proceedings of the IEEE/CVF interna-
 590 tional conference on computer vision*, pp. 1325–1334, 2019.

591

592 Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
 593 down? adaptive rounding for post-training quantization. In *International conference on machine
 594 learning*, pp. 7197–7206. PMLR, 2020.

595

596 Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bron-
 597 stein, and Avi Mendelson. Loss aware post-training quantization. *Machine Learning*, 110(11):
 598 3245–3262, 2021.

599

600 Kaan Ozkara, Tao Yu, and Youngsuk Park. Stochastic rounding for llm training: Theory and prac-
 601 tice. *arXiv preprint arXiv:2502.20566*, 2025.

594 Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
 595 Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
 596 Word prediction requiring a broad discourse context. *arXiv preprint arXiv:1606.06031*, 2016.
 597

598 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 599 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
 600 performance deep learning library. *Advances in neural information processing systems*, 32, 2019.
 601

602 Guilherme Penedo, Hynek Kydlíček, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
 603 Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
 604 the finest text data at scale. In *The Thirty-eight Conference on Neural Information Processing
 605 Systems Datasets and Benchmarks Track*, 2024. URL [https://openreview.net/forum?
 606 id=n6SCKn2QaG](https://openreview.net/forum?id=n6SCKn2QaG).

607 Ruiyang Qin, Dancheng Liu, Chenhui Xu, Zheyu Yan, Zhaoxuan Tan, Zhenge Jia, Amir Nasserel-
 608 dine, Jiajie Li, Meng Jiang, Ahmed Abbasi, et al. Empirical guidelines for deploying llms onto
 609 resource-constrained edge devices. *ACM Transactions on Design Automation of Electronic Sys-
 610 tems*, 2024.

611 Rahul Raman, Khushi Sharma, and Sai Qian Zhang. Rethinking the outlier distribution in large
 612 language models: An in-depth study. *arXiv preprint arXiv:2505.21670*, 2025.

613

614 Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
 615 models. *arXiv preprint arXiv:2402.17762*, 2024.

616

617 Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
 618 *arXiv preprint arXiv:1707.06209*, 2017.

619

620 Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
 621 Pierrick Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
 622 State-of-the-art natural language processing. *arXiv preprint arXiv:1910.03771*, 2019.

623

624 Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quan-
 625 tization for deep learning inference: Principles and empirical evaluation. *arXiv preprint
 626 arXiv:2004.09602*, 2020.

627

628 Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
 629 Accurate and efficient post-training quantization for large language models. In *International
 630 conference on machine learning*, pp. 38087–38099. PMLR, 2023.

631

632 Ke Yi, Zengke Liu, Jianwei Zhang, Chengyuan Li, Tong Zhang, Junyang Lin, and Jingren Zhou.
 633 Rotated runtime smooth: Training-free activation smoother for accurate int4 inference. *arXiv
 634 preprint arXiv:2409.20361*, 2024.

635

636 Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
 637 chine really finish your sentence? *arXiv preprint arXiv:1905.07830*, 2019.

638

639 Kaiyan Zhao, Tsuguchika Tabaru, Kenichi Kobayashi, Takumi Honda, Masafumi Yamazaki, and
 640 Yoshimasa Tsuruoka. Direct quantized training of language models with stochastic rounding.
arXiv preprint arXiv:2412.04787, 2024.

641

642 Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, and Jiming Chen. A review on
 643 edge large language models: Design, execution, and applications. *ACM Computing Surveys*, 57
 644 (8):1–35, 2025.

645

646 Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
 647 for large language models. *Transactions of the Association for Computational Linguistics*, 12:
 1556–1577, 2024.

648
649

A APPENDIX

650
651

A.1 STATEMENTS

652
653

A.1.1 STATEMENT ON THE USAGE OF LLM

654
655
656

Large language models were utilized in the paper to refine writing and correct grammatical errors, as well as generating an initial version of Figure 1b. The authors take full responsibility for the content of this manuscript.

657
658

A.1.2 STATEMENT ON ETHICS

659
660
661
662
663
664

This work and the authors adhere to the ICLR Code of Ethics. In this work, no human or animal subjects were involved. All datasets are properly cited and sourced in compliance with their usage guidelines. No harmful information, bias, or discriminatory content exists as a result of our research, to the best of our knowledge. We do not need to declare additional conflicts of interest and sponsorship beyond those that will be filtered by the OpenReview system.

665

A.1.3 STATEMENT ON REPRODUCIBILITY

666
667
668
669
670
671

As of the time of this submission, the authors are uncertain whether the code associated with this work can be released to the public due to company policies. For reproducibility, we kindly refer readers to the implementation provided by Loshchilov et al. for the model details. Important hyperparameters are disclosed in Appendix A.3. Experiments of quantization are implemented with standard round-to-nearest symmetric blockwise quantization. All experiments are run with seed 42.

672
673

If the reviewers/readers have any difficulties in reproducing the work, they are advised to raise questions (during the anonymity period) or contact the authors (after the anonymity period).

674
675
676

A.2 EXTRA BACKGROUND AND RELATED WORKS

677

A.2.1 DISCUSSION ON THE SCALING FACTOR

678
679
680
681
682
683
684
685
686
687
688
689

Figure 6 illustrates how different scaling methods are applied during the quantization. The input activations are a batch of 2D matrices, and the weights in the model are also typically 2D matrices. Per-tensor scaling calculates a single scaling factor for the entire 2D matrix, row-wise/column-wise scaling applies a separate scaling factor for each row or column, and group-wise scaling uses a separate scaling factor per group. We want to explicitly differentiate group-wise scaling and block-wise scaling, with the latter one being used in our FP4 quantization methods. Group-wise and block-wise scaling are functionally the same, where they apply one scaling factor per some pre-defined number of parameters (S). However, block-wise scaling is a hardware-specific scaler, where S is decided by the input dimension of the reduced-precision computation kernel. For example, the MXFP4 kernel takes $S = 32$, whereas the NVFP4 kernel uses $S = 16$. On the other hand, group-wise scaling does not restrict S . Thus, increasing S can lead to less memory consumption of the model, but the efficiency is the same unless customized kernels are developed.

690
691

A.3 EXPERIMENT SETUPS

692
693

A.3.1 GENERAL HARDWARE/SOFTWARE SETUP.

694
695
696
697
698
699

All experiments are done on either NVIDIA H200 or A100 GPU clusters. Each cluster is equipped with 8 GPUs. Evaluation of the models is with a single-card setting, and pretraining/finetuning of the models uses either one cluster of H200 or multiple clusters of A100. All GPUs use the CUDA 12.8 driver. All models are in HuggingFace format (Wolf et al., 2019), with Pytorch 2.7.0 (Paszke et al., 2019) and Transformers 4.52.0. Training/model hyperparameters differ for different settings and will be reported separately below for each section.

700
701

All quantizations are zero-centered symmetric quantizations with the simple round-to-nearest method. For INT4 weight quantization, we use llm-compressor (AI & vLLM Project, 2024) and apply column-wise scaling. For MXFP4 and NVFP4 quantization, since we do not have access

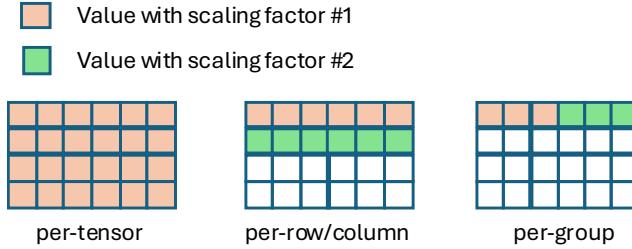


Figure 6: Illustration of different scaling methods in quantization.

to Blackwell GPUs, we implement our own fake quantization framework, where the values are first quantized to the respective precision and immediately dequantized. Per kernel specifications, MXFP4 uses a block size of 32 and NVFP4 uses a block size of 16 for both weights and activations.

This paper evaluates models on one benchmark for perplexity and five common benchmarks for downstream tasks. We use WikiText2 Merity et al. (2016) to evaluate perplexity, and PIQA (Bisk et al., 2020), HellaSwag (Zellers et al., 2019), LAMBADA-openai Paperno et al. (2016), Arc-easy Clark et al. (2018), SciQ (Welbl et al., 2017), to evaluate downstream task ability.

A.3.2 HYPERPARAMETER FOR SECTION 3

Section 3 involves both pre-training and finetuning. Standard transformer models are pre-trained with the same configuration as in Appendix A.3.3. Hyperspherical models are trained with the same configuration as their respective standard models, with differences in warmup steps and weight decays removed, which are also used by Loshchilov et al.. We take the pre-trained Pythia checkpoints from Huggingface (Biderman et al., 2023).

Finetuning is done on roughly 10B tokens from the Fineweb dataset (Penedo et al., 2024), processed in the respective tokenizer. We tested a few learning rates and chose the best one in favor of the QAT model. The final determined learning rate was 6e-4 for the standard architecture and 5e-5 for Pythia. All finetuning uses cosine decay to 0 without weight decay and warmup steps, which is consistent with Liu et al. (2025). All figures shown in this section are from MXFP4 quantization. Tables will separately specify their quantization method.

A.3.3 HYPERPARAMETER FOR SECTION 4

Section 4 involves the analysis of four standard architecture models of different sizes. Models are trained with the general setup. The 0.15B model was an exploratory model, which we did not use for formal studies. The three large ones (0.5B, 0.7B, 1B) are pretrained with roughly 100B tokens from the Fineweb dataset (Penedo et al., 2024), processed using a public tokenizer. We use a learning rate of 4e-3 with 2000 steps of warmup and cosine decay to 0. The global batch size is 1000 with gradient accumulation being 1. Weight decay is 0.1. Maximum context length is 2048. The 0.5B and 0.7B models are 24 layers, and the 1B model is 36 layers. All figures shown in this section are from MXFP4 quantization.

A.4 ADDITIONAL EXPERIMENTS FOR SECTION 3

A.4.1 SKETCH FOR SUB-LAYER MEASUREMENT POSITIONS IN A STANDARD TRANSFORMER'S BLOCK

Figure 7 annotates the positions of measurement of the normalized percentage of L2 magnitude for Figure 2 and 3.

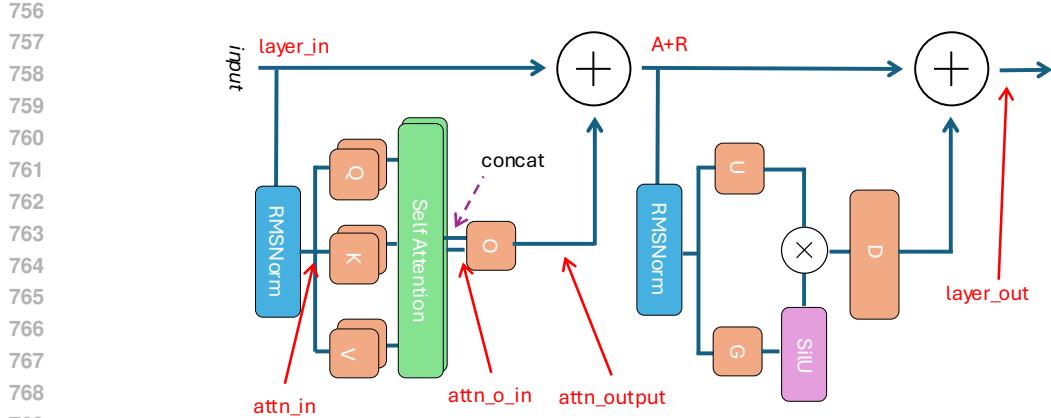


Figure 7: Red arrows and notations mark where the L2 percentage errors are measured within each block.

Table 4: Hyper-spherical models are more robust to quantization compared to standard architectures, even accompanied with QAT. The number in parentheses means relative accuracy degradation compared to full precision.

Model	Precision	Arc-E	HS	LAMB	PIQA	SciQ	Average
T-0.5B	BF16	68.50%	37.21%	39.69%	63.43%	85.30%	58.83% (-)
	MXFP4	65.45%	34.21%	20.67%	54.71%	77.20%	50.45% (-14.24%)
	NVFP4	64.91%	35.44%	25.81%	58.00%	82.90%	53.41% (-9.21%)
QAT-0.5B	MXFP4	67.14%	34.60%	31.07%	57.58%	85.20%	55.12% (-6.31%)
	NVFP4	67.63%	36.10%	31.01%	60.98%	82.60%	55.66% (-5.39%)
HS-0.5B	BF16	69.37%	39.47%	41.28%	65.40%	89.20%	60.94% (-)
	MXFP4	67.95%	38.55%	36.70%	63.17%	88.00%	58.87% (-3.40%)
	NVFP4	68.23%	39.07%	39.12%	64.31%	88.80%	59.91% (-1.69%)
T-1B	BF16	71.76%	41.39%	44.15%	69.70%	88.80%	63.16% (-)
	MXFP4	68.88%	37.42%	26.31%	61.57%	84.50%	55.74% (-11.75%)
	NVFP4	69.64%	39.28%	36.77%	65.66%	87.70%	59.81% (-5.30%)
QAT-1B	MXFP4	68.39%	38.78%	36.48%	65.99%	88.80%	59.69% (-5.49%)
	NVFP4	70.89%	40.40%	35.94%	67.93%	87.50%	60.53% (-4.16%)
HS-1B	BF16	71.55%	43.27%	45.35%	72.05%	89.70%	64.38% (-)
	MXFP4	70.95%	42.14%	40.13%	69.28%	89.90%	62.48% (-2.95%)
	NVFP4	70.13%	42.96%	43.12%	71.00%	89.20%	63.28% (-1.71%)

A.4.2 ADDITIONAL TABLE FOR SECTION 3.4

Here, we provide additional support that hyperspherical models are even more robust than standard models finetuned with QAT. We apply the latest QAT framework, ParetoQ (Liu et al., 2025), on the pretrained 0.5B and 1B models, and summarize the comparisons in Table 4. It is evident that the hyper-spherical models are more robust to quantization compared to QAT models on the standard architecture.

A.4.3 ADDITIONAL TABLE FOR SECTION 3.5

As aforementioned in Section 3.5, we provide additional results for quantizing partial-normalization (v1 and v2) and QAT models into FP4 precision for both weight and activations. We also provide results showing the generalization of the proposed methods on Pythia models. Tables 5 to 8 present the quantized model’s performance on the downstream tasks under the two different FP4 specifications for 0.5B and 1B models. Table 9 and 10 show quantizing Pythia to INT4 after QAT vs. our

810
811

Table 5: MXFP4 quantization for 0.5B model. QAT is adopted from Liu et al. (2025).

812
813
814
815
816
817
818
819

Method	Time	PPL	PIQA	HS	LAMB	Arc-E	SciQ	Average
BF16	–	13.04	68.50%	37.21%	39.69%	63.43%	85.30%	58.83%
–	–	23.23	65.45%	34.21%	20.67%	54.71%	77.20%	50.45%
QAT	12:06:57	16.68	67.14%	34.60%	31.07%	57.58%	85.20%	55.12%
v1	11:07:37	19.42	65.56%	34.48%	22.55%	55.89%	82.80%	52.26%
v1+QAT	12:05:59	16.08	66.00%	34.66%	30.74%	59.34%	84.80%	55.11%
v2	11:03:06	15.58	67.36%	35.39%	32.21%	58.16%	83.80%	55.38%
v2+QAT	12:01:14	16.65	65.51%	33.92%	24.14%	54.38%	81.60%	51.91%

820
821

Table 6: MXFP4 quantization for 1B model. QAT is adopted from Liu et al. (2025).

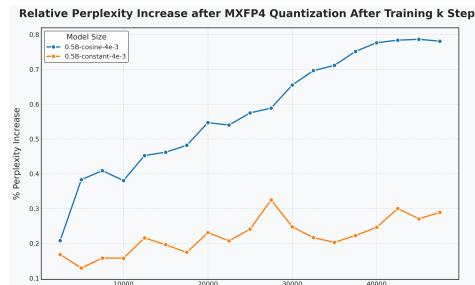
822
823
824
825
826
827
828
829

Method	Time	PPL	PIQA	HS	LAMB	Arc-E	SciQ	Average
BF16	–	11.53	71.76%	41.39%	44.15%	69.70%	88.80%	63.16%
–	–	17.31	68.88%	37.42%	26.31%	61.57%	84.50%	55.74%
QAT	23:41:54	13.33	68.39%	38.78%	36.48%	65.99%	88.80%	59.69%
v1	22:00:13	14.36	68.44%	38.31%	36.25%	66.33%	88.40%	59.55%
v1+QAT	23:42:17	13.36	68.28%	38.72%	35.67%	65.78%	89.10%	59.51%
v2	21:49:33	13.59	68.93%	39.15%	36.50%	65.74%	88.10%	59.68%
v2+QAT	23:38:36	27.35	61.15%	31.50%	15.85%	51.18%	79.10%	47.76%

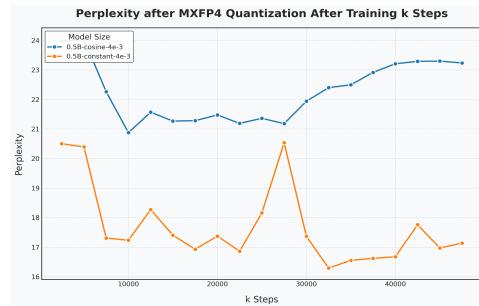
830
831
832
833

approaches. The v1 method has comparable and slightly better robustness compared to Liu et al. (2025).

834



(a)



(b)

844
845

Figure 8: (a) As training goes on, accuracy degradation after quantization measured by percentage difference of perplexity on Wikitext2 (Merity et al., 2016) dataset increases. (b) As training goes on, perplexity after quantization stops decreasing and starts to increase.

846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864

865

866 Table 7: NVFP4 quantization for 0.5B model. QAT is adopted from Liu et al. (2025).

867

Method	Time	PPL	PIQA	HS	LAMB	Arc-E	SciQ	Average
BF16	–	13.04	68.50%	37.21%	39.69%	63.43%	85.30%	58.83%
–	–	16.93	65.18%	35.79%	26.16%	58.16%	82.70%	53.60%
QAT	12:06:57	15.54	67.63%	36.10%	31.01%	60.98%	82.60%	55.66%
v1	11:07:37	15.27	67.08%	35.77%	35.46%	59.85%	83.90%	56.41%
v1+QAT	12:05:59	14.95	67.79%	35.98%	35.65%	60.35%	82.80%	56.51%
v2	11:03:06	14.51	68.12%	36.06%	34.39%	60.94%	82.70%	56.44%
v2+QAT	12:01:14	15.74	65.72%	34.73%	26.84%	57.41%	81.00%	53.14%

875

876

877

878

879

880

Table 8: NVFP4 quantization for 1B model. QAT is adopted from Liu et al. (2025).

881

Method	Time	PPL	PIQA	HS	LAMB	Arc-E	SciQ	Average
BF16	–	11.53	71.76%	41.39%	44.15%	69.70%	88.80%	63.16%
–	–	13.83	70.02%	39.35%	36.56%	65.32%	87.70%	59.79%
QAT	23:41:54	12.72	70.89%	40.40%	35.94%	67.93%	87.50%	60.53%
v1	22:00:13	12.77	71.06%	40.08%	38.48%	67.34%	88.60%	61.11%
v1+QAT	23:42:17	12.69	70.13%	40.59%	38.44%	67.76%	88.10%	61.00%
v2	21:49:33	12.89	69.75%	39.96%	39.41%	66.79%	88.30%	60.84%
v2+QAT	23:38:36	24.33	63.71%	32.03%	20.16%	54.97%	82.50%	50.67%

889

890

891

892

893

894

Table 9: INT4 quantization for Pythia-410M model. QAT is adopted from Liu et al. (2025).

895

Method	PIQA	HS	LAMB	Arc-E	SciQ	Average
BF16	66.70%	33.73%	51.64%	51.89%	81.50%	57.09%
–	64.47%	32.28%	23.73%	46.04%	72.40%	47.78%
QAT	65.94%	34.39%	29.07%	56.14%	80.80%	53.27%
v1	65.89%	33.79%	34.85%	56.02%	83.60%	54.83%
v1+QAT	65.94%	33.88%	32.41%	56.90%	81.80%	54.19%
v2	56.15%	27.08%	6.85%	41.25%	67.70%	39.81%
v2+QAT	53.37%	25.69%	0.12%	27.53%	26.50%	26.64%

903

904

905

906

907

908

Table 10: INT4 quantization for Pythia-1B model. QAT is adopted from Liu et al. (2025).

909

Method	PIQA	HS	LAMB	Arc-E	SciQ	Average
BF16	70.73%	37.78%	56.28%	56.99%	83.90%	61.14%
–	67.25%	36.01%	49.06%	52.95%	84.40%	57.93%
QAT	67.74%	37.27%	41.63%	60.19%	84.60%	58.29%
v1	68.50%	37.26%	40.85%	61.87%	86.50%	59.00%
v1+QAT	68.12%	36.65%	42.73%	59.47%	85.60%	58.51%
v2	59.19%	27.60%	6.33%	45.75%	69.20%	41.61%
v2+QAT	57.78%	27.14%	9.76%	40.82%	70.40%	41.18%

916

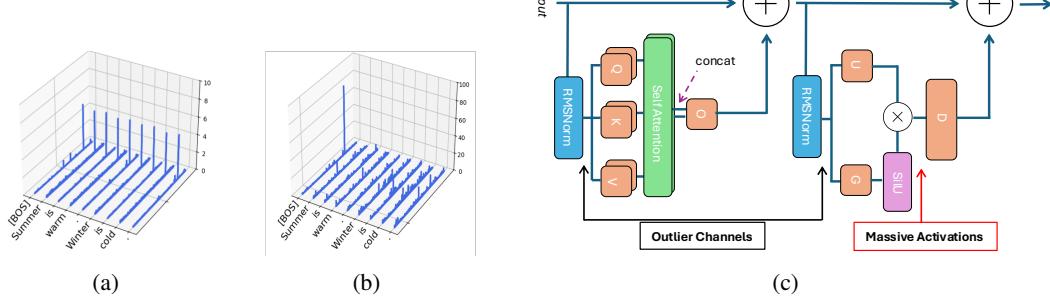
917

918 A.5 ADDITIONAL EXPERIMENTS FOR SECTION 4
919920 A.5.1 THE EFFECT OF LEARNING RATE DECAY ON QUANTIZATION
921

922 The analysis in the main text is done with cosine learning rate decay with a minimum learning rate
923 of 0. We conduct ablation studies on keeping the learning rate constant on a 0.5B model, trained
924 with other parameters being the same. The results are shown in Figure 8a. With a constant learning
925 rate of 4e-3, the accuracy degradation from 4-bit quantization seems less compared to cosine decay.
926 However, we still see a trend of percentage perplexity increasing as training goes on, hinting at an
927 eventual emergence of the critical point with a higher token-parameter ratio.

928 A.5.2 DISCUSSION ON ACTIVATION OUTLIERS DURING INFERENCE
929

930 **Definition of Outliers** We follow the previous works (An et al.; He et al., 2024; Sun et al., 2024;
931 Raman et al., 2025) in categorizing the outliers. An et al. discusses both weight and activation
932 outliers. In this analysis, we focus on activation outliers, which are much larger in magnitude. The
933 prevailing view in the community is that there are two types of activation outliers in the LLM:
934 outlier channels (OCs) and massive activations (MAs). An outlier channel is defined as a channel
935 in the activation where the mean exceeds the overall average of the tensor by more than m standard
936 deviations with a standard deviation less than β (Raman et al., 2025). On the other hand, a massive
937 activation is a single value in the activation with an extremely high value, often in the multiple
938 thousands, compared to others Sun et al. (2024). In simple words, an OC is an entire channel where
939 each element has a large value, whereas an MA is a large activation value corresponding to a single
940 token. An illustrative example of OCs and MAs is provided in Figure 9a and 9b.

952 Figure 9: (a) Outlier Channels. (b) Massive Activation. (c) Where are the outliers?
953

954 **Where are the outliers?** Interestingly, outlier channels and massive activations consistently appear
955 in different places within each layer of the LLMs. As shown in Figure 9c, for the standard trans-
956 former architecture, OCs emerge in the input activations of QKV projections in the attention module
957 and in the input activations of up/gate projection in the MLP module, and massive activations ap-
958 pear in the input activations of the down projection. A more detailed examination of those outliers
959 reveals that OCs are composed of two parts: the carried-over OC through residual connections and
960 the emerging OC from the current layer’s computation. When these two components agree on the
961 channel index, the OC’s magnitude will become larger and larger, and when these two components
962 do not agree on the index, OCs might change in the later layers. Compared to OCs that appear on
963 all tokens and consistent channels, Sun et al. (2024) first found that MAs usually appear on some
964 random channels in the first token or semantically weak tokens. Our observations are in line with
965 that finding.

966 **How much do the outliers impact accuracy?** In our investigation of 4-bit WA quantization, we
967 find that the effect of outliers on accuracy degradation is significantly influenced by the granular-
968 ity of the quantization method employed. While previous research has often attributed accuracy
969 degradation primarily to activation outliers, our analysis reveals a more nuanced relationship. When
970 using row/column-wise scaling for weights and activations, activation outliers indeed account for a
971 substantial portion of the accuracy degradation. However, our experiments demonstrate that weight
972 and other non-outlier activations also play a non-trivial role in the overall accuracy degradation and
973 should not be ignored when aiming at minimizing the impact of 4-bit quantization. This finding chal-

lenges the conventional wisdom that addressing activation outliers alone is sufficient for maintaining model accuracy. In particular, group quantization emerges as an effective strategy for mitigating the impact of outlier channels (OC). When the outliers could not affect the entire activation tensor, their impact is much less. Figure 10a illustrates the impact of outliers on activations during quantization. The negative impacts of outliers are only constrained to their neighbors in the block.

To systematically evaluate the effect of outliers on the final accuracy after quantization, we conducted a hierarchical analysis comparing three quantization scenarios: standard weight and activation quantization (all channels), weight and activation quantization with outlier channels untouched (w/o OC), and weight-only quantization (no channels). The results in Figure 10b demonstrate that 1. while OCs do impact quantization performance as indicated by the differences between the orange and yellow bars, this impact is not uniform across different model sizes, and 2. quantization error from weights can lead to at least 20% perplexity increase on the Wikitext2 dataset (Merity et al., 2016). In addition, we empirically observe that MAs pose fewer degradations compared to OCs on our models. MAs contribute to around 10% among all perplexity increases caused by activation quantization in our 0.5B model, whereas OC contributes to around 50%. However, this relationship may vary with model scale, as MAs are reportedly more hazardous in larger models (Raman et al., 2025).

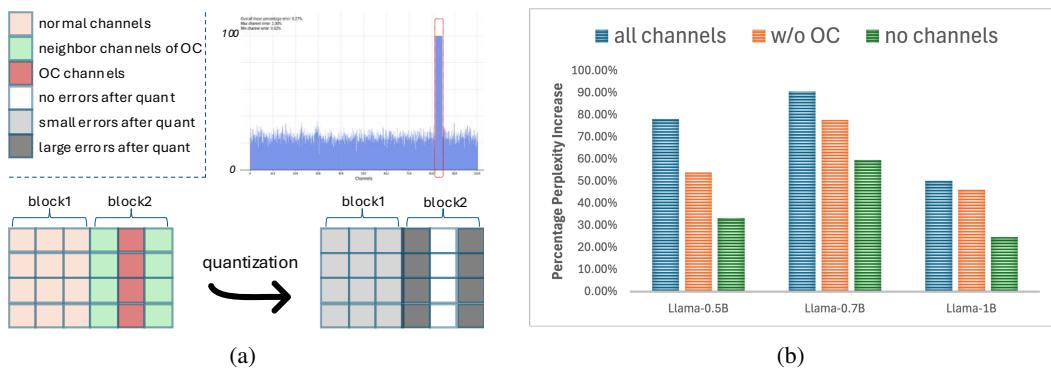


Figure 10: (a) OCs only affect their neighbor channels in the same block. The top right figure shows the quantization error measured by the percentage of error over the original magnitude. Values affected by OC (channels in the red dotted square) have a high error percentage, but others have a lower percentage. (b) Percentage of perplexity increase after quantization of weight and activation (all channels), weight and activation without outliers (w/o OC), weight only (no channels).

1026 A.6 DISCUSSION ON THE JACOBIAN MATRIX
10271028 A.6.1 GENERAL DISCUSSION ON THE ERROR DIVERGENCE AND JACOBIAN
10291030 We first discuss the divergence of the error when the Jacobian matrix is generic (not specific to any
1031 architecture). Recall that under the first-order approximation, we have

1032
$$e_{l+1} = e_l + J_l e_l = (I + J_l)e_l \quad (7)$$

1033 For simplicity, we assume the Jacobian matrix is independent of the error with a random distribution,
1034 and we have:

1035
$$\begin{aligned} \mu &= \mathbb{E}(J_l) \\ 1036 \Sigma &= \mathbb{E}((J_l - \mu)^T (J_l - \mu)) \end{aligned} \quad (8)$$

1038 We have the squared norm of e_{l+1} to be:

1039
$$\begin{aligned} 1040 \|e_{l+1}\|^2 &= e_l^T (I + J_l)^T (I + J_l) e_l \\ 1041 &= e_l^T (I + J_l + J_l^T + J_l^T J_l) e_l \end{aligned} \quad (9)$$

1042 We then have the conditional expectation with respect to e_l as:

1043
$$\begin{aligned} 1044 \mathbb{E}(\|e_{l+1}\|^2 | e_l) &= e_l^T \mathbb{E}(I + J_l + J_l^T + J_l^T J_l) e_l \\ 1045 &= e_l^T (I + \mu^T + \mu + \mu^T \mu + \Sigma) e_l \end{aligned} \quad (10)$$

1047 We denote $(I + \mu^T + \mu + \mu^T \mu + \Sigma)$ as M , and using Rayleigh quotient bound, we have:

1048
$$e_l^T M e_l \geq \lambda_{\min}(M) \|e_l\|^2, \quad (11)$$

1049 which implies that $\mathbb{E}(\|e_N\|^2) \geq \prod_{k=0}^{N-1} \lambda_{\min}(M_k) \mathbb{E}(\|e_0\|^2)$ 1050 **Implication from Equation 11.** Here, we discuss the conditions under which the error will diverge
1051 or converge.1052

- 1054 if J is zero-centered, $M = I + \Sigma \succcurlyeq I$. Consequently, the mean-square error is non-
1055 decreasing. The error will diverge when the geometric mean of $\prod_{k=0}^{N-1} \lambda_{\min}(M_k)$ is greater
1056 than 1.
- 1057 in a similar derivation, $\mathbb{E}(\|e_N\|^2) \leq \prod_{k=0}^{N-1} \lambda_{\max}(M_k) \mathbb{E}(\|e_0\|^2)$, which means the error
1058 will converge when the geometric mean of $\prod_{k=0}^{N-1} \lambda_{\max}(M_k)$ is smaller than 1.
- 1059 we note that under the typical setting, with i.i.d., zero-mean random Jacobians with vari-
1060 ance $\Sigma \succcurlyeq 0$, the first-order error will almost certainly diverge.

1062 A.6.2 MODEL SPECIFIC JACOBIAN AND ITS ERROR GROWTH BOUND
10631064 In this section, we will further decompose the Jacobian of the standard architecture and show the
1065 upper and lower bounds for error propagation in that architecture. First, recall from Eq. 3 that the
1066 architecture is made of an attention module and an MLP module. Let $x \in \mathbb{R}^{T \times d}$ be the input matrix
1067 to a transformer block and let

1068
$$A(x) := \text{Attn}(\text{RMSNorm}(x)), \quad f(x) := x + A(x) + \text{MLP}(\text{RMSNorm}(x + A(x))).$$

1069 We study the Jacobian $J(x) := Df(x)$ as a linear map acting on matrix perturbations (error in-
1070 troduced in the input) $\epsilon \in \mathbb{R}^{T \times d}$. All bounds are given in the Frobenius norm $\|\cdot\|_F$ on matrices
1071 together with the induced operator norm:

1072
$$\|\mathcal{T}\|_{F \rightarrow F} := \sup_{\epsilon \neq 0} \frac{\|\mathcal{T}[\epsilon]\|_F}{\|\epsilon\|_F} \quad \text{for any linear map } \mathcal{T} : \mathbb{R}^{T \times d} \rightarrow \mathbb{R}^{T \times d}.$$

1073

1074 We define the following notations at a base point x ,

1075
$$z = \text{RMSNorm}(x), \quad u = x + A(x), \quad w = \text{RMSNorm}(u).$$

1076 By the chain rule,

1077
$$J(x) = I + B(x) + M(x)(I + B(x)), \quad \begin{cases} B(x) := J_{\text{Attn}}(z) J_{\text{RMS}}(x), \\ M(x) := J_{\text{MLP}}(w) J_{\text{RMS}}(u). \end{cases} \quad (12)$$

1078

1080
1081 **Row-wise RMSNorm and its Jacobian.** RMSNorm is a *row-wise* transformation. For row $t \in$
1082 $\{1, \dots, T\}$, let $x_t \in \mathbb{R}^d$ be the t -th row of x and

1083 $\sigma_t = \sqrt{\frac{1}{d} \|x_t\|_2^2}, \quad D_g = \text{diag}(g) \in \mathbb{R}^{d \times d}$ (learned gains).

1084
1085 Then,

1086 $\text{RMSNorm}(x)_t = D_g \frac{x_t}{\sigma_t}$

1087
1088 $J_{\text{RMS}}(x) = \text{blkdiag}(N_1, \dots, N_T)$

1089
1090 with the per-row Jacobian matrix being:

1091
1092 $N_t = \frac{D_g}{\sigma_t} \left(I - \frac{x_t x_t^\top}{d \sigma_t^2} \right) \in \mathbb{R}^{d \times d}.$ (13)

1093
1094 Consequently,

1095
1096 $\|J_{\text{RMS}}(x)\|_{F \rightarrow F} = \max_t \|N_t\|_2 \leq \frac{\|D_g\|_2}{\min_t \sigma_t}.$ (14)

1097
1098 We'd like to make a side note on the error propagation after RMSNorm: after normalization, radial
1099 errors disappear in the input, but tangential errors remain.

1100
1101 **Blockwise bounds for B and M .** For notation simplicity, we define the Frobenius-induced Lips-
1102 chitz moduli:

1103
1104 $L_{\text{attn}}(z) := \|J_{\text{Attn}}(z)\|_{F \rightarrow F}, \quad L_{\text{mlp}}(w) := \|J_{\text{MLP}}(w)\|_{F \rightarrow F}.$

1105
1106 By submultiplicativity and Eq. 14, we have the bounds for $\|B\|$ and $\|M\|$ as:

1107
1108 $\|B(x)\|_{F \rightarrow F} \leq L_{\text{attn}}(z) \|J_{\text{RMS}}(x)\|_{F \rightarrow F} \leq L_{\text{attn}}(z) \frac{\|D_g\|_2}{\min_t \sigma_t},$ (15)

1109
1110 $\|M(x)\|_{F \rightarrow F} \leq L_{\text{mlp}}(w) \|J_{\text{RMS}}(u)\|_{F \rightarrow F} \leq L_{\text{mlp}}(w) \frac{\|D'_g\|_2}{\min_t \sqrt{\frac{1}{d} \|u_t\|_2^2}},$ (16)

1111
1112 where u_t is the t -th row of u .¹

1113
1114 **Per-layer error amplification bounds.** For any perturbation $\epsilon \in \mathbb{R}^{T \times d}$,

1115
1116
$$J(x)\epsilon = \epsilon + B(x)\epsilon + M(x)\epsilon + M(x)B(x)\epsilon$$

1117
1118 Using the triangle inequality and submultiplicativity, we have the upper bound for the error propa-
1119 gation as follows:

1120
1121
$$\|J(x)\epsilon\|_F \leq \left(1 + \|B(x)\|_{F \rightarrow F} + \|M(x)\|_{F \rightarrow F} + \|M(x)\|_{F \rightarrow F} \|B(x)\|_{F \rightarrow F} \right) \|\epsilon\|_F$$
 (17)

1122
1123 Likewise, we have the lower bound of error propagation as:

1124
1125
$$\|J(x)\epsilon\|_F \geq \left(1 - \|B(x)\|_{F \rightarrow F} - \|M(x)\|_{F \rightarrow F} - \|M(x)\|_{F \rightarrow F} \|B(x)\|_{F \rightarrow F} \right) \|\epsilon\|_F,$$
 (18)

1126
1127 which is informative whenever

1128
1129
$$\|B(x)\|_{F \rightarrow F} + \|M(x)\|_{F \rightarrow F} + \|M(x)\|_{F \rightarrow F} \|B(x)\|_{F \rightarrow F} < 1$$

1130
1131
1132
1133 ¹RMSNorms are different for attention and MLP modules, so we use a different notation D'_g for MLP

1134 **Additional discussions on J_{Attn} and J_{MLP} .** The exact analytical forms of J_{Attn} and J_{MLP} are
 1135 overly complex and do not have much meaningful contributions to the error propagation in realistic
 1136 LLMs. However, if we were to make some assumptions to loosen the constraints, we may obtain
 1137 coarse bounds for them that contribute to the architectural changes.

1138 We make the following three assumptions:

1140 1. RMSNorm can bring normalized activations to $O(1)$.
 1141 2. The operator norm of the softmax Jacobian is smaller than some constant $c_{\text{sm}} < 1$.
 1142 3. Norms of SiLU in MLP are small. We have $\|\text{SiLU}\|_\infty < c_{\text{SiLU}}$ and $\|\text{SiLU}'\|_\infty < c_{\text{SiLU}'}$.

1144 Under the three assumptions, we have a coarse single-head attention bound as:

$$1146 \quad \|J_{\text{Attn}}(z)\|_{F \rightarrow F} \lesssim \|W_o\|_2 \left(\|W_v\|_2 + c_{\text{sm}} \frac{\|W_q\|_2 \|W_k\|_2}{\sqrt{d_k}} \right)$$

1148 We can also extend this to the practical multi-head attention case:

$$1150 \quad \|J_{\text{Attn}}(z)\|_{F \rightarrow F} \lesssim \|W_o\|_2 \sqrt{H} \max_h \left(\|W_v^{(h)}\|_2 + c_{\text{sm}} \frac{\|W_q^{(h)}\|_2 \|W_k^{(h)}\|_2}{\sqrt{d_k}} \right),$$

1153 where H is the number of heads.

1154 Similarly, we have the following coarse bound for J_{MLP} as:

$$1156 \quad \|J_{\text{MLP}}(w)\|_{F \rightarrow F} \lesssim \|W_d\|_2 \left(c_{\text{SiLU}} \|W_u\|_2 + c_{\text{SiLU}'} \|W_g\|_2 \right)$$

1158 **Implications from the above analysis.** From the mathematical derivations, we make the following
 1159 observations. Some of them can help us understand how to make architectural changes to better
 1160 reduce the error propagation in LLMs.

- 1162 • The residual connection guarantees a baseline error propagation factor of 1. Submodules
 1163 add $B + M + MB$ to the next layer.
- 1164 • Since RMSNorm eliminates radial errors, $B + M + MB$ contains mostly tangential (di-
 1165 rectional) errors that can either grow or shrink depending on the alignment between input
 1166 and weight.
- 1167 • Since weight norms are unbounded, the output error can have very high magnitudes if the
 1168 alignment is not good.
- 1169 • Some directions to reduce error propagation (or at least keep the error propagation factor
 1170 around one) include: reducing weight magnitude, keeping the RMSNorm's gain D_g small,
 1171 reducing the number of heads in attention, and encouraging $B\epsilon$ and $M(I + B)\epsilon$ to point at
 1172 the opposite direction of ϵ .

1174
 1175
 1176
 1177
 1178
 1179
 1180
 1181
 1182
 1183
 1184
 1185
 1186
 1187