Under review as a conference paper at ICLR 2026

INTRODUCING ACCURATE 4-BIT QUANTIZATION
WITH HYPERSPHERICAL ARCHITECTURE

Anonymous authors
Paper under double-blind review

ABSTRACT

Due to the hardware support from NVIDIA’s Blackwell architecture, 4-bit quan-
tization of large language models promises substantial memory and throughput
gains. However, naive 4-bit quantization degrades accuracy and remains chal-
lenging in practice. In this work, we revisit the root causes of this degradation
and posit a new perspective through analysis of matrix multiplication and the un-
bounded weight within models. We show that quantization induces errors that
are amplified within the attention and MLP submodules, leading to unstable er-
ror growth across layers. From this analysis, we propose architectural co-designs
that use hyperspherical transformers to jointly normalize activations and constrain
weights to unit norm, converting dot-products into bounded cosine similarities and
suppressing error expansion. On 0.5-1B models, pretrained hyperspherical mod-
els yield new state-of-the-art performance to 4-bit weight-activation quantization,
outperforming standard transformer architecture and a strong QAT baseline, while
a partial normalization plug-in narrows the degradation gap in existing models.
These results position model architectural co-design as a third optimization axis,
complementary to existing works, for robust low-bit LLM deployment.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated unprecedented capabilities (Guo et al., 2025
Intelligencel 2024)), but their deployment remains challenging due to the substantial memory and
compute they require, making them impractical for many real-world applications, especially on
resource-constrained devices (Qin et al., 2024; |Zheng et al., 2025). Model quantization has emerged
as a key strategy for lowering deployment costs, with recent efforts exploring 8-bit (Dettmers et al.,
2022; [Lin et al.| 2024a)) and even 4-bit (Liu et al.l 2025 |Ashkboos et al.l [2024) representations for
weights and activations. Such quantization enables reduced memory usage and faster computation,
often while preserving acceptable service quality (Zhu et al.}|2024;|Czaké et al., 2025)). Recent hard-
ware roadmaps have also accelerated this trend by exposing native FP4 kernels with the NVIDIA
Blackwell architecture, making 4-bit execution a realistic target rather than an academic curiosity.

However, plain FP4 quantization often causes severe generation quality degradation, even with more
granular quantization schemas (Li et al., 2024). To mitigate this, prior works have focused on
addressing activation and weight outliers during inference (Liu et al., [2025} |Ashkboos et al., [2024;
Chen et al.| [2025; |[Kumar et al.,2024). Although these methods often restore quantized models to a
usable state, notable empirical gaps in generation quality remain, along with the added complexity
of model-specific adaptations that require special handling with some of the methods.

In this work, we dive into the fundamental reasons behind the accuracy degradation in 4-bit quanti-
zation. We reveal two important properties that were overlooked by previous works. First, quanti-
zation results in errors that are propagated and accumulated across layers. Second, the less-bounded
weight rows in the models amplify the directional errors and cause unstable self-attention and MLP
submodules within each layer. Motivated by this analysis, we explore hyperspherical transform-
ers that normalize both weights and activations to unit norm (Loshchilov et al.). By converting
dot-products into bounded cosine similarities, hyperspherical transformers are able to reduce error
expansion in submodules and stabilize error propagation through depth (Luo et al.,|2018)). On three
pretrained models ranging from 0.5-1B, hyperspherical architecture yields strong robustness at FP4
quantization, significantly outperforming standard transformer baselines.

Under review as a conference paper at ICLR 2026

Our main contributions are:

1. We characterize how quantization-induced errors interact with unbounded projections in
attention/MLP submodules, yielding expanding and unstable propagation across layers.

2. Motivated by our analysis about unbounded projections, we introduce robust architectural
co-design as a third axis to the quantization accuracy degradation mitigation techniques,
distinct from existing post-training quantization (PTQ) techniques and quantization-aware
training (QAT) frameworks.

3. We show that hyperspherical pretraining attains strong FP4 quantization robustness and
makes significantly smaller accuracy degradation than (i) standard transformers and (ii) a
strong QAT baseline. We also show that partial hypersphericity can narrow the quantization
degradation equivalent to the previous state-of-the-art QAT framework with equal budget.

2 BACKGROUND AND RELATED WORK

2.1 QUANTIZATION

Definition. Quantization maps real-valued tensors to a low-precision discrete set to reduce memory,
bandwidth, and compute cost. Given an input x, a quantization operator obtains an output Z in
reduced precision such that:

z

. T
Chp([g} + Z, Qmin, Qmaz)7

where s > 0 is the scaling factor, 2 is the zero point (0 if the quantization method is symmetric),
and [¢min, @maz] bound the range after quantization. Scales can be chosen per-tensor, per-channel,
per-group, or per-block (which is hardware-related). We will provide a more detailed discussion in
Appendix [A.2.T|on these scaling differences.

Benefits of quantization. Compared to a full precision model, a quantized model has two main
benefits. First, with the reduced precision per parameter, it can be served on hardware with less
memory, enabling inference of large models on edge devices (Lin et al.| [2024a). Second, modern
hardware supports native calculations in reduced precision, which are faster than full precision.
Quantized models can leverage those kernels to provide faster inference (Gong et al.l 2025).

What to quantize? Three components in an LLM affect the runtime memory consumption and ef-
ficiency: the weights of the model (W), intermediate activations that are produced during inference
(A), and KV cache during the prefilling stage (KV) (Kwon et al.,|2023)). To achieve maximum reduc-
tion in runtime memory consumption, all three components shall be quantized (such as W8A8KVS),
whereas only the weights and activations have a significant impact on the compute efficiency (such
as W8AS) (Lin et al.} 2024b; [Xiao et al.,2023)). Given that accurate quantization for W4A4 remains
a significant challenge, our work focuses on enhancing efficiency and accuracy during inference,
specifically targeting WA quantization in 4 bits (Liu et al.| 2025; Xiao et al., [2023)).

Emergence of FP4. Achieving practical inference efficiency requires co-design between quantiza-
tion precision and hardware execution paths. Recent GPU architectures (e.g., NVIDIA Blackwell)
expose native FP4 instructions and kernels. Accordingly, we adopt the vendor-specified FP4 encod-
ings and consider FP4 quantization for both weights and activations (WA). Unless otherwise noted,
we use micro-scaled block formats with a block size of 32 for MXFP4 and 16 for NVFP4, consistent
with the corresponding hardware definitions.

2.2 EXISTING METHODS FOR ROBUST QUANTIZATION

The existing works in robust low-bit quantization can generally be categorized into two streams:
Post-Training Quantization (PTQ) and Quantization-Aware Training (QAT).

Post-Training Quantization (PTQ). PTQ focuses on pushing weight and activation in LLMs to
lower precisions with minimal or no fine-tuning. Classical techniques include per-channel (Jacob
et al.l 2018) and blockwise microscaling (Drumond et al) 2018)) to control local dynamic range;
improved calibration via clipping (Banner et al.| 2018)), percentile (Wu et al., 2020), entropy rules
(Davoodi et al.,|2019), and bias correction (Nagel et al., 2019); learned or Hessian/curvature-aware

Under review as a conference paper at ICLR 2026

rounding to directly minimize layer-wise reconstruction error (Nagel et al., [2020; Nahshan et al.|
2021} |[Frantar et al., 2022); and handling activation outliers by migrating scale from activations
to weights (e.g., activation smoothing) (Xiao et al.l 2023} |Y1 et al.l 2024) or by activation-aware
weight selection (Lin et al} [2024a; |[Dettmers et al.| [2022). State-of-the-art methods in this stream
show strong performance, yet gaps persist at W4A4 precision (Ashkboos et al., |2024; |[Li & Panda,
2024; Lee et al.| [2025).

Quantization-Aware Training (QAT). QAT integrates fake-quantization during pretraining or fine-
tuning to simulate a quantized model and optimize model weights under a quantized environment
(Chen et al.l 2025)). In practice, gradients through the non-differentiable quantizer are handled with
the straight-through estimator (STE), where gradients are approximated and not automatically set
through automatic differentiation during back propagation (Bengio et al.,|2013). Beyond determin-
istic rounding, stochastic/learned rounding injects (or learns) zero-mean quantization noise during
training to reduce bias and improve stability at low bit-widths (Zhao et al., [2024; |(Ozkara et al.,
2025). QAT generally achieves the strongest accuracy at low bit-widths (including W4), at the cost
of additional training (Liu et al., 2025)).

This paper studies robust architectural co-design as a third direction that can potentially work with
existing methods in parallel. Our analyses and results motivate a hyperspherical design that naturally
supports reliable and accurate 4-bit quantization.

3 HYPERSPHERICITY LEADS TO QUANTIZATION ROBUSTNESS

In this section, we show that the hyperspherical model has more robustness to 4-bit quantization
compared with regular transformer models. In particular, the unbounded weights in the submodules
of transformer models result in unbounded variances in matrix multiplications, whereas normaliza-
tion can effectively control and reduce the error variance through cosine similarity.

3.1 WHY UNBOUNDED PROJECTIONS AMPLIFY QUANTIZATION NOISE.
3.1.1 INTUITIVE SCENARIO: A SMALL ERROR WITH A LARGE WEIGHT

We first start with a hypothetical example. As illustrated in Figure[T] consider one coordinate in the
matrix multiplication y; = w, z. If the j-th coordinate of w; is extremely large, say lwij| =M > 1,
and the error ¢; is small, then the output perturbation on that coordinate is Ay; = wle =
>k Wik ~ Mej. Even when [e|s is tiny, Me; can be large if M is unbounded. Due to
unbounded weight, a small input error is amplified to a significant output error that ultimately

affects the final generation.

w;
[lwi|l2=M>1

e

[Zll2=1, [Juilla=1

. Er

(a) Standard projection (dot product). (b) Hypersphere projection (cosine similarity).
Unconstrained w; allow large ||w;||2, so small input ||Z||2 =1, |Jui|l2 =1, and 0 < g; < C' convert the dot
errors can be multiplied by large weights. product into a bounded cosine projection.

Figure 1: Comparison of projection geometry and gain. An unconstrained dot product can exhibit
unbounded local gains, amplifying quantization noise. Hyperspherical layers normalize the repre-
sentation and bound projection directions and gains, capping amplification.

Under review as a conference paper at ICLR 2026

3.1.2 THEORETICAL DERIVATION

We formalize the intuition by modeling the quantization process as introducing noise to the weights
and activations. We show that bounding both weights and activations is necessary for controlling
the error induced by quantization.

Activation-side variance bound. Let# = x + ¢ with E[¢] = 0 and Cov(¢) = X, < 02]. Then
Ay=Wzi—Wz=We.

Proposition 1 (Activation-side variance).

E[J|Ayl3] = Te(W'W S,) < o Te(W'W) =o? |[W|%
< o?r|[Wl3 < o® min(din, dows) W13, (1)

where v = Rank(W). Equivalently, for each output coordinate i, Var[Ay;] = w; S, w; <
o?||wi3.

Proof. By E[ee "] = ¥, and cyclic trace, E||Ay||2 = Tr(WTW X,). Because ¥, =< o2I and
WTW =0, i(W'WX,) < o?Tr(W'W) = o?|W|%. Let {ox(W)};_, be the nonzero
singular values. Then |[W||%. = >, _; ox(W)? < rmaxy 0, (W)? = r||W||3, which yields the
ﬁr21al inquuality in Equation For the coordinate-wise claim, apply Var(w, ¢) = w; S,w; <
o ||will3- O

Relative amplification. If y = Wx # 0, we have the relative amplification from matrix multiplica-
tion on the input as:

T(WIWS,) _ o W
Wwzlz = Wl

Aact(VVa xZ; Ex) =

When ||W||F is large and ||V || happens to be small (e.g., « aligns with a near-zero direction),
Aact can be large. This formalizes the instability risk without weight constraints (small errors have
large impacts on the output).

Weight-side variance bound. Let W = W + E with E[E] = 0 and Cov(vec(E)) < 72I. For
fixed z, Ay = Wx — Wz = Ex.

Proposition 2 (Weight-side variance). If ||z|l2 < R and entries E;; are independent with
Var(E;;) < 72, then

dour din
E[|lAyl3] =EllBz|3 =)) aF Var(Ey) < r*l|z]3 dow < 7°R dou-

i=1 j=1

Proof. Foreachi,), x;E;; is a sum of independent zero-mean variables. Thus Var[}~; x; Ej]

> x3 Var(Ej;) < 1°)] ; 3. Summing over ¢ yields the claim. O

3.2 DEFINITION OF A HYPERSPHERICAL MODEL

A hyperspherical model constrains both activations and weights to live on (or close to) a unit hyper-
sphere, so that linear projections reduce to cosine similarities with uniformly bounded gain.

Let N : R — R denote L2 normalization, we have the normalization operator:

oz
[[2ll2

We also write row normalization of a matrix W € RutXdin 5

row_unit(W); = i

[Jwill2

Under review as a conference paper at ICLR 2026

(b)

second layeris

quantized with

MXFP4 for both
weightand
activation

layer_in attn_in attn_o_in attn_output A+R layer_out

\(_a)__ S

3500%

5 10 15 20 25
Error Dynamics at the end of each layer

While omitted in Y
illustration, MLP
submodule also
shows the high
S amplification.

3000%

2500%

o
|
b
o
)

2000% 7

1500%

1000%

500%

0%

Figure 2: (a) Overview of error dynamics within a standard transformer’s first ten layers after the
second layer is quantized. (b) Error dynamics within one layer. We refer readers to Appendix

for a visual mapping between labels on the horizontal axis and the positions in the block. (c) Error
dynamics at the end of each layer when the second layer is quantized.

Hyperspherical linear layer. A hyperspherical linear layer replaces y = Wz with
z = N(z), U = row_unit(W), y=Uz)
with each coordinate of y satisfies

yi = (u;, &) = coséb;, with ||u;|l2 = 1, ||Z]]2 = 1.

Hyperspherical block. For an attention/MLP block, we apply Equation 2]to all projections (e.g.,
We, Wi, Wy, Wo, Wip, Weate, Waown). During the experiments, we chose to use an established im-
plementation from [Loshchilov et all [Loshchilov et al.| normalizes the activations and weights to a
hypersphere representation through L2 normalization, with some added learnable parameters to aid
in the model’s convergence. In addition, |[Loshchilov et al.| normalizes the embedding and Im_head
weight, which we also adopt. The experiment setup is elaborated in Appendix [A.3.2]

3.3 INSTABILITY IN TRANSFORMER VS. STABILITY IN HYPERSPHERICAL MODEL

To support the theoretical analysis, we reveal empirically that when a quantization-induced error
is introduced in the input, its magnitude is expanded in the self-attention and MLP submodules in
a standard transformer block. Figure [2] shows the error propagation pattern within each layer of a
0.5B transformer model (we omit the MLP submodule due to space, but it has a similar pattern to
the attention submodule). It uses the normalized percentage of L2 magnitude as a proxy to quantify

the existence of errors in the model. The percentage is calculated as ﬁ Yier %, where y;
and y; denote the full-precision and erroneous activations at index ¢ with Z spanning all evaluated
tokens in Wikitext2 dataset (Merity et al.,[2016), and then normalized with respect to the percentage
at the output of second layer. It should be evident that the relative magnitude of the input activation

error of the layer is significantly amplified in the submodules.

This is consistent with our analyses in the previous subsection. RMSNorm limits activation scale
but does not constrain the projection norms or directions of W. Proposition [I] therefore still scales
with || W||%,, allowing large internal amplification.

Since quantization robustness is determined not only by where noise enters but also by the outputs
of the projections it subsequently encounters, architectures that bound projection norms and operate
on the normalized hypersphere representations are more robust to quantization (including FP4).
Hypersphericity can bound the effective element-wise gain from each submodule, converting the
unbounded multiplication into a bounded cosine similarity in a hypersphere. Concretely, we would
observe such robustness through a reduction in the amplification of intermediate activations.

Empirically, the hyperspherical model exhibits significantly reduced amplification inside the atten-
tion submodules, as shown in Figure [3] (with the same visualization style as Figure[2). The internal
error is no longer amplified by orders of magnitude, which in turn accelerates error attenuation
across the layers and yields a smaller final error at depth.

Under review as a conference paper at ICLR 2026

(b) \ (c)120%
100%
_/\ 80%
== 5
{ secondlayeris | 60%
| quantized with | 40%
| MXFP4 forboth | 20%
' weightand ' layer_in attn_in attn_o_in attn_output A+R layer_out
I 1 / 0%
I activation 1
N P 0 5 10 15 20 25
______ 1 Error Dynamics at the end of each layer
(a) 1 o======= N
1

| While omittedin
| illustration, but
I MLPsubmodule
I also shows the
'\ lowamplification.

Ik RRbd'

200% |

1
150% !
1

100%

1
1
50% I

0%

Figure 3: (a) Overview of error dynamics within a hyperspherical transformer’s first ten layers after
the second layer is quantized. (b) Error dynamics within one layer. We refer readers to Appendix
[A.4.1]for a visual mapping between labels on the horizontal axis and the positions in the block. (c)
Error dynamics at the end of each layer when the second layer is quantized.

Table 1: Hyperspherical models’ robustness generalizes across model sizes. T is the standard model
architecture, whereas HS represents the hyperspherical architecture (Loshchilov et al.). The number
in parentheses means relative accuracy degradation compared to full precision.

Model | Precision | PIQA HS LAMB Arc-E SciQ Average
BF16 68.50% 37.21% 39.69% 63.43% 85.30% 58.83% (-)
T-0.5B MXFP4 | 65.45% 34.21% 20.67% 54.71% 77.20% | 50.45% (-14.24%)
NVFP4 | 64.91% 3544% 25.81% 58.00% 82.90% | 53.41% (-9.21%)
BF16 69.37% 39.47% 41.28% 65.40% 89.20% 60.94% (-)
HS-0.5B | MXFP4 | 67.95% 38.55% 36.70% 63.17% 88.00% | 58.87% (-3.40%)
NVFP4 | 68.23% 39.07% 39.12% 64.31% 88.80% | 59.91% (-1.69%)
BF16 70.29% 39.00% 41.55% 65.66% 85.80% 60.46% (-)
T-0.7B MXFP4 | 65.40% 36.00% 19.81% 56.69% 80.40% | 51.66% (-14.56%)
NVFP4 | 68.01% 37.44% 3225% 62.12% 83.80% | 56.72% (-6.19%)
BF16 70.35% 40.37% 41.26% 67.63% 88.10% 61.54% (-)
HS-0.7B | MXFP4 | 68.99% 39.18% 40.25% 66.96% 87.30% | 60.54% (-1.62%)
NVFP4 | 70.29% 39.88% 39.45% 66.20% 87.30% | 60.62% (-1.49%)
BF16 71.76% 41.39% 44.15% 69.70% 88.80% 63.16% (-)
T-1B MXFP4 | 68.88% 37.42% 2631% 61.57% 84.50% | 55.74% (-11.75%)
NVFP4 | 69.64% 39.28% 36.77% 65.66% 87.70% | 59.81% (-5.30%)
BF16 71.55% 4327% 45.35% 72.05% 89.70% 64.38% (-)
HS-1B | MXFP4 | 70.95% 42.14% 40.13% 69.28% 89.90% | 62.48% (-2.95%)
NVFP4 | 70.13% 42.96% 43.12% 71.00% 89.20% | 63.28% (-1.71%)

3.4 HYPERSPHERICAL MODELS HAVE MUCH MORE ROBUST 4-BIT QUANTIZATION

We show that hyperspherical models with the above normalizations are much more accurate under
4-bit quantization compared with the standard transformer architecture. Table [I]shows the accuracy
on five downstream tasks of three pairs of models of different sizes, where each pair was trained
to a similar evaluation loss between a standard and a hyperspherical design (Loshchilov et al.).
Hyperspherical models are clearly more robust to quantization than the standard architecture, with
significantly less accuracy degradation. In Appendix[A.4.2] we show that hyperspherical models can
even perform better on downstream tasks compared to applying the latest QAT framework, ParetoQ
(L1iu et al.l [2025)), on the standard architecture.

3.5 PARTIAL HYPERSPHERICITY FOR EXISTING LLMS

We have shown in the previous subsection that the hyperspherical model architecture can lead to
state-of-the-art quantization robustness. However, existing LLMs are largely non-weight-bounding
architectures, and it is a non-trivial task to retrain a hyperspherical model from scratch. In this

Under review as a conference paper at ICLR 2026

Table 2: INT4 (weight-only) quantization for 0.5B model. QAT is adopted from |Liu et al.[(2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 — 13.04 68.50% 37.21% 39.69% 63.43% 8530% 58.83%
- - 22,12 66.16% 36.19% 15.08% 55.13% 78.40% 50.19%
QAT 12:06:57 1449 68.34% 36.42% 36.10% 61.66% 83.10% 57.12%

vl 11:07:37 16.20 67.52% 36.61% 34.58% 58.29% 80.50% 55.50%
vI+QAT 12:05:59 1448 68.23% 36.41% 37.53% 60.52% 82.30% 57.00%
v2 11:03:06 13.82 68.06% 36.51% 36.46% 61.15% 84.10% 57.26%

v2+QAT 12:01:14 1482 66.81% 34.90% 2829% 59.39% 81.710% 54.22%
Table 3: INT4 (weight-only) quantization for 1B model. QAT is adopted from |Liu et al.[(2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 - 11.53 71.76% 41.39% 44.15% 69.70% 88.80% 63.16%
- - 25.06 68.39% 38.15% 23.29% 58.29% 80.30% 53.68%
QAT 23:41:54 1249 71.49% 4114% 3738% 67.80% 86.90% 60.94%

vl 22:00:13 nan 71.87% 41.03% 43.68% 67.17% 87.20% 62.19%
vI+QAT 23:42:17 mnan 70.78% 40.96% 41.96% 67.47% 89.00% 62.03%
v2 21:49:33 12.61 7029% 40.28% 42.11% 68.27% 88.60% 61.91%

V2+QAT 23:38:36 21.24 64.47% 32.63% 22.88% 56.90% 82.50% 51.88%

section, we present our attempts to make existing models more robust to 4-bit quantization through
partial hypersphericity.

We consider two levels of architectural changes based on two characteristics of the error analyses.
First, weight normalization is essential to control the output variances and stability of submodules.
However, exploratory experiments have revealed that normalization of all weights will cause the
model to fall back to an untrained state, even when the original model’s weights are migrated.
Thus, we take a step back and only convert the final projection (Im_head) into a hyperspherical
architecture. This choice is motivated by two reasons. Firstly, the input of /m_head retains all
features from previous layers. Leaving the previous layers’ architecture unchanged would make the
model converge much faster during finetuning. Secondly, /m_head is the last layer, and variances of
its output directly impact the output of the model. In the results, we will denote this approach as v1.

Second, input magnitude to the submodules effectively controls the output magnitude. Knowing
that the submodules in a standard model are not stable, we can reduce the input strength of those
submodules with stronger normalization. Concretely, in addition to v1, we replace the RMSNorm
with L2Norm by removing the learnable gain and the ﬁ factor in the denominator. This approach

makes the error propagation factor closer to 1 by taking fewer effect from the submodules. Ideally,
such an approach would result in a more stable error propagation, but we note that more changes
to the architecture will lead to more difficulties in convergence when finetuning the model with a
limited budget. In the results, we will denote this approach as v2.

We apply QAT and our normalization approaches to the pretrained 0.5B and 1B standard transformer
models and summarize their quantization robustness after finetuning in Table [2]and[3] In the table,
a dash indicates a naive quantization without any finetuning, and QAT is from Liu et al.[(2025)). We
report the perplexity on Wikitext2 and five downstream tasks, as well as the finetuning wall time
(Time). We choose INT4 weight-only quantization (W4) to be consistent with |Liu et al.| (2025)’s
experiments. We also evaluate FP4 quantization strategies, as well as the Pythia family models
(Biderman et al.,[2023)). Due to space limits, we provide those additional results in Appendix
Partial hypersphericity (v1) and heavier regularization on input in submodules (v2) can perform on
par (and sometimes slightly better) than QAT while using around 8% less time, which we attribute
to the QAT framework utilizing specifically designed backpropagation. In contrast, architectural
changes are fully compatible with the optimized backpropagation library in PyTorch.

4 UNDERSTANDING ACCURACY DEGRADATION IN 4BIT QUANTIZATION

In this section, we discuss practices for obtaining accurate FP4 quantized models by synthesizing
previous understandings of the causes of accuracy degradation in 4-bit quantization and providing

Under review as a conference paper at ICLR 2026

new insights through the lens of error propagation. While successfully reproducing some phenom-
ena (Kumar et al., [2024}; |An et al.; Sun et al., 2024), our analyses reveal new findings, in particular
suggesting that outliers in LLM are not consistently the cause of accuracy degradation, with an
emphasis on error analysis. The experiment settings can be found in Appendix [A.3.3]

4.1 LESS IS MORE IN PRETRAINING

First, we extend the previous discussion on the relationship between prolonged pretraining and the
model’s accuracy after quantization. [Kumar et al.|(2024) has found that whereas the full precision
model’s accuracy keeps improving with more pretraining tokens, INT3-quantized models suffer
from worse accuracy after pretraining for a certain number of tokens. We similarly observe this
for the 4-bit quantization schema. As shown in Figure [the relative perplexity after MXFP4 WA
quantization grows with more training tokens from the start, and optimal perplexity after MXFP4
quantization emerges around pretraining with 40B tokens. In addition to reproducing this effect, we
find that maintaining a high learning rate might delay the critical point, but the convergence is hard
to reach with a high constant learning rate. We discuss this in Appendix

Relative Perplexity Increase after MXFP4 Quantization After Training k Steps Perplexity after MXFP4 Quantization After Training k Steps

Model Size

Model Size

7 =
[
oS
/:5‘\./ z \, -----
I -~
./:74-/'>7 o Vs A
/;_\/% —

30000 w0 . —————_mmw _mow 30000

Figure 4: (a) As training goes on, accuracy degradation after MXFP4 quantization as measured by
percentage increase of perplexity on Wikitext2 (Merity et al.| | 2016) dataset. (b) As training goes on,
perplexity after quantization stops decreasing and starts to increase. Discontinuity of the 1B model
is an outlier with a perplexity value of 1301.

4.2 OUTLIERS MATTER, BUT ONLY TO AN EXTENT

Many previous works propose methods for eliminating the outliers that emerge in the inference stage
of LLMs as a mitigation to the accuracy degradation (Dettmers et al., |2022; |Ashkboos et al., [2024).
Although outliers intuitively influence the quantization range and can suppress other activation val-
ues to zero during quantization, their impact on final accuracy under blockwise scaling has been
underemphasized in previous works. Our findings confirm the presence of these outliers and show
that they contribute to some, but not all, of the accuracy degradation in quantization. Due to space
limitations, we provide more detailed discussions in Appendix

4.3 ERROR PROPAGATION DRIVES THE ANALYSIS

In Section [3] we have already shown that unbounded weights in the standard transformer model
lead to unstable and expanding error propagation in submodules. In this section, the error analysis
is generalized to show that quantization error has a non-monotonic layer-wise growth while being
divergent in nature. We present some connections between error and existing understandings of
outliers, and hope our perspective of thinking from error propagation can motivate the community
and be informative in designing future model architectures.

Without loss of generalizability, we consider a transformer model where the 1-th layer is defined as:
Layer,;(z;) = z; + Attn(RMSNorm(x;)) + MLP(RMSNorm(z; + Attn(RMSNorm(z;)))) (3)

For simplicity of analysis, we abstract the computation in the layer with a function f, where z;,1 =
x; + fi(x;). The effect of quantization on the previous layer can be modelled as producing an
erroneous output () and introducing an error term e; = 2; — x;. In this section, we consider the

Under review as a conference paper at ICLR 2026

Non-monotonic Error Growth Outliers Amplify Error Error Growth when Quantizing Different Layers
700 250 500

/ 200 400
5 400 5 150 5 300 \—/_’/
i 300 g ; 100 5 200 —/
100 50 100 &/
2

0
012345678091011121314151617181920212223 01234567 890URBUISETBHNARS

—0.58 —0.78 —18 ——All channels —Without OC —layer0 —layer] —layers —layer10

(a) (b) (©

Figure 5: (a) Visualization of L2 error propagation measured at the end of each layer, after quantizing
the first layer in the three models. (b) Outliers amplify the initial error and affect the subsequent
propagated errors. (c) When quantizing exactly one layer at a time, the best-to-worst ranking of four
choices is Layers [1, 5, 10, 0], which corresponds perfectly to the L2 magnitude of the error.

first-order approximation of error propagation. Denote the Jacobian of f; at x; by J; = D fi(x;),
where D is the Frechet derivative. On Layer [, we have:

=z e+ filzi+e)~x +e + filz) + Jie 4

Assuming the current layer is not quantized (i.e., no independent error is initiated from this layer),
the error propagated to the next layer will be in the form of: e;41 = ¢; + Jie; = (I + J;)e;. As the
layers deepen, the error propagation follows a recursive pattern, where at the end of layer k, an error
term that originates from layer [will become:
k
l
e = I d+ e 5)

i=l+1

Non-monotonic Layer-wise Growth Equation [5|focuses on the final error propagation of the error
from the 1-th layer, and we can generalize this pattern to all layers that are quantized. For a set of
layers that is quantized @ C {0, 1,...N — 1}, we have the final error at the end of N layers to be:

N
Bl N T T+ e 6)
1€Q i=1+1
Note that since ||I + J;|| is not guaranteed to be greater than 1, the layer-wise error growth is
non-monotonic. A simple bound over the error propagation amplification factor is 1 — ||.J;]| <
[T+ J:]| < 14]|J;||- We will provide a discussion on when the error will diverge in Appendix
for the general Jacobian matrix and in Appendix[A.6.2]for a model-specific Jacobian decomposition.
Empirically, Figure [5a)illustrates the growth of error that is introduced by quantizing the first layer
of three models of different sizes.

Outliers Amplify Initial Error. The existence of outliers will amplify the error when quantizing a
specific layer, as shown in Figure[Sb] This is the reason why outliers negatively affect quantization.
We also note that in practice, since all layers are quantized and outliers (especially OCs) exist in all
layers, the effect of OCs is worsened because every layer’s input error is amplified.

Implications from Error Propagation. Understanding error propagation aids in comprehending
the accuracy degradation that occurs during quantization. It can also serve as a proxy for determining
which layers to skip quantization under mixed-quantization frameworks: less error magnitude means
less accuracy degradation during quantization. As a simple demonstration, when quantizing exactly
one layer at a time, the best-to-worst ranking of four choices is Layers [1, 5, 10, 0]. This ordering
mirrors the relative error propagation that initiates at those same layers, as shown in Figure

5 CONCLUSION

In this paper, we show that accuracy degradation from quantization stems from the error propagated
across layers and amplified inside attention/MLP submodules. Based on our analysis, we then reveal
that bounding both activations and weights on a hypersphere stabilizes and reduces propagation. Our
analysis and experiments show that hyperspherical transformers are much more robust against FP4
quantization, and a lightweight normalization plug-in on the LM head is able to narrow the gap
on existing models and match a strong QAT method. Our analysis and experiments posit robust
architecture designs to be a practical third dimension for robust 4-bit LLMs.

Under review as a conference paper at ICLR 2026

REFERENCES

Red Hat AI and VLLM Project. LLM Compressor, 8 2024. URL https://github.com/
vlilm-project/llm-compressor.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Systematic outliers in large language
models. In The Thirteenth International Conference on Learning Representations.

Saleh Ashkboos, Amirkeivan Mohtashami, Maximilian L Croci, Bo Li, Pashmina Cameron, Martin
Jaggi, Dan Alistarh, Torsten Hoefler, and James Hensman. Quarot: Outlier-free 4-bit inference in
rotated llms. Advances in Neural Information Processing Systems, 37:100213-100240, 2024.

Ron Banner, Yury Nahshan, Elad Hoffer, and Daniel Soudry. Aciq: Analytical clipping for integer
quantization of neural networks. 2018.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien, Eric
Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward Raff, et al.
Pythia: A suite for analyzing large language models across training and scaling. In International
Conference on Machine Learning, pp. 2397-2430. PMLR, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piga: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432-7439, 2020.

Mengzhao Chen, Chaoyi Zhang, Jing Liu, Yutao Zeng, Zeyue Xue, Zhiheng Liu, Yunshui Li, Jin
Ma, Jie Huang, Xun Zhou, et al. Scaling law for quantization-aware training. arXiv preprint
arXiv:2505.14302, 2025.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Patrik Czaké, Gabor Kertész, and Sdndor Széndsi. Addressing activation outliers in llms: A system-
atic review of post-training quantization techniques. IEEE Access, 2025.

Pooya Davoodi, Chul Gwon, Guangda Lai, and Trevor Morris. Tensorrt inference with tensorflow.
In GPU Technology Conference, 2019.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in neural information processing systems, 35:
30318-30332, 2022.

Mario Drumond, Tao Lin, Martin Jaggi, and Babak Falsafi. Training dnns with hybrid block floating
point. Advances in Neural Information Processing Systems, 31, 2018.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323,2022.

Ruihao Gong, Yifu Ding, Zining Wang, Chengtao Lv, Xingyu Zheng, Jinyang Du, Yang Yong,
Shigiao Gu, Haotong Qin, Jinyang Guo, et al. A survey of low-bit large language models: Basics,
systems, and algorithms. Neural Networks, pp. 107856, 2025.

Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in llms
via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

Bobby He, Lorenzo Noci, Daniele Paliotta, Imanol Schlag, and Thomas Hofmann. Understanding

and minimising outlier features in transformer training. Advances in Neural Information Process-
ing Systems, 37:83786—83846, 2024.

Amazon Artificial General Intelligence. The amazon nova family of models: Technical report and
model card. 2024.

10

https://github.com/vllm-project/llm-compressor
https://github.com/vllm-project/llm-compressor

Under review as a conference paper at ICLR 2026

Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu, Matthew Tang, Andrew Howard,
Hartwig Adam, and Dmitry Kalenichenko. Quantization and training of neural networks for
efficient integer-arithmetic-only inference. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 2704-2713, 2018.

Tanishq Kumar, Zachary Ankner, Benjamin F Spector, Blake Bordelon, Niklas Muennighoff, Man-
sheej Paul, Cengiz Pehlevan, Christopher Ré, and Aditi Raghunathan. Scaling laws for precision.
arXiv preprint arXiv:2411.04330, 2024.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the 29th symposium on operating systems princi-
ples, pp. 611-626, 2023.

Dongyoung Lee, Seungkyu Choi, and Ik Joon Chang. Qrazor: Reliable and effortless 4-bit llm
quantization by significant data razoring. arXiv preprint arXiv:2501.13331, 2025.

Shiyao Li, Xuefei Ning, Luning Wang, Tengxuan Liu, Xiangsheng Shi, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Evaluating quantized large language models. In Proceedings of
the 41st International Conference on Machine Learning, pp. 28480-28524, 2024.

Yuhang Li and Priyadarshini Panda. Tesseraq: Ultra low-bit llm post-training quantization with
block reconstruction. arXiv preprint arXiv:2410.19103, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization
for on-device llm compression and acceleration. Proceedings of machine learning and systems,
6:87-100, 2024a.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4a8kv4 quantization and system co-design for efficient llm serving. arXiv
preprint arXiv:2405.04532, 2024b.

Zechun Liu, Changsheng Zhao, Hanxian Huang, Sijia Chen, Jing Zhang, Jiawei Zhao, Scott Roy,
Lisa Jin, Yunyang Xiong, Yangyang Shi, et al. Paretoq: Scaling laws in extremely low-bit 1lm
quantization. arXiv preprint arXiv:2502.02631, 2025.

Ilya Loshchilov, Cheng-Ping Hsieh, Simeng Sun, and Boris Ginsburg. ngpt: Normalized transformer
with representation learning on the hypersphere. In The Thirteenth International Conference on
Learning Representations.

Chunjie Luo, Jianfeng Zhan, Xiaohe Xue, Lei Wang, Rui Ren, and Qiang Yang. Cosine normaliza-
tion: Using cosine similarity instead of dot product in neural networks. In International confer-
ence on artificial neural networks, pp. 382-391. Springer, 2018.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Markus Nagel, Mart van Baalen, Tijmen Blankevoort, and Max Welling. Data-free quantization
through weight equalization and bias correction. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 1325-1334, 2019.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International conference on machine
learning, pp. 7197-7206. PMLR, 2020.

Yury Nahshan, Brian Chmiel, Chaim Baskin, Evgenii Zheltonozhskii, Ron Banner, Alex M Bron-
stein, and Avi Mendelson. Loss aware post-training quantization. Machine Learning, 110(11):
3245-3262, 2021.

Kaan Ozkara, Tao Yu, and Youngsuk Park. Stochastic rounding for llm training: Theory and prac-
tice. arXiv preprint arXiv:2502.20566, 2025.

11

Under review as a conference paper at ICLR 2026

Denis Paperno, German Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Ferndndez. The lambada dataset:
Word prediction requiring a broad discourse context. arXiv preprint arXiv:1606.06031, 2016.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing systems, 32, 2019.

Guilherme Penedo, Hynek Kydli¢ek, Loubna Ben allal, Anton Lozhkov, Margaret Mitchell, Colin
Raffel, Leandro Von Werra, and Thomas Wolf. The fineweb datasets: Decanting the web for
the finest text data at scale. In The Thirty-eight Conference on Neural Information Processing
Systems Datasets and Benchmarks Track, 2024. URL https://openreview.net/forum?
1d=n6SCkn2QaG.

Ruiyang Qin, Dancheng Liu, Chenhui Xu, Zheyu Yan, Zhaoxuan Tan, Zhenge Jia, Amir Nasserel-
dine, Jiajie Li, Meng Jiang, Ahmed Abbasi, et al. Empirical guidelines for deploying 1lms onto
resource-constrained edge devices. ACM Transactions on Design Automation of Electronic Sys-
tems, 2024.

Rahul Raman, Khushi Sharma, and Sai Qian Zhang. Rethinking the outlier distribution in large
language models: An in-depth study. arXiv preprint arXiv:2505.21670, 2025.

Mingjie Sun, Xinlei Chen, J Zico Kolter, and Zhuang Liu. Massive activations in large language
models. arXiv preprint arXiv:2402.17762, 2024.

Johannes Welbl, Nelson F Liu, and Matt Gardner. Crowdsourcing multiple choice science questions.
arXiv preprint arXiv:1707.06209, 2017.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Hao Wu, Patrick Judd, Xiaojie Zhang, Mikhail Isaev, and Paulius Micikevicius. Integer quan-
tization for deep learning inference: Principles and empirical evaluation. arXiv preprint
arXiv:2004.09602, 2020.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
conference on machine learning, pp. 38087-38099. PMLR, 2023.

Ke Yi, Zengke Liu, Jianwei Zhang, Chengyuan Li, Tong Zhang, Junyang Lin, and Jingren Zhou.
Rotated runtime smooth: Training-free activation smoother for accurate int4 inference. arXiv
preprint arXiv:2409.20361, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Kaiyan Zhao, Tsuguchika Tabaru, Kenichi Kobayashi, Takumi Honda, Masafumi Yamazaki, and
Yoshimasa Tsuruoka. Direct quantized training of language models with stochastic rounding.
arXiv preprint arXiv:2412.04787, 2024.

Yue Zheng, Yuhao Chen, Bin Qian, Xiufang Shi, Yuanchao Shu, and Jiming Chen. A review on
edge large language models: Design, execution, and applications. ACM Computing Surveys, 57
(8):1-35, 2025.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression
for large language models. Transactions of the Association for Computational Linguistics, 12:
1556-1577, 2024.

12

https://openreview.net/forum?id=n6SCkn2QaG
https://openreview.net/forum?id=n6SCkn2QaG

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 STATEMENTS

A.1.1 STATEMENT ON THE USAGE OF LLM

Large language models were utilized in the paper to refine writing and correct grammatical errors, as
well as generating an initial version of Figure[Tb] The authors take full responsibility for the content
of this manuscript.

A.1.2 STATEMENT ON ETHICS

This work and the authors adhere to the ICLR Code of Ethics. In this work, no human or animal
subjects were involved. All datasets are properly cited and sourced in compliance with their us-
age guidelines. No harmful information, bias, or discriminatory content exists as a result of our
research, to the best of our knowledge. We do not need to declare additional conflicts of interest and
sponsorship beyond those that will be filtered by the OpenReview system.

A.1.3 STATEMENT ON REPRODUCIBILITY

As of the time of this submission, the authors are uncertain whether the code associated with this
work can be released to the public due to company policies. For reproducibility, we kindly refer
readers to the implementation provided by [Loshchilov et al.| for the model details. Important hy-
perparameters are disclosed in Appendix Experiments of quantization are implemented with
standard round-to-nearest symmetric blockwise quantization. All experiments are run with seed 42.

If the reviewers/readers have any difficulties in reproducing the work, they are advised to raise
questions (during the anonymity period) or contact the authors (after the anonymity period).

A.2 EXTRA BACKGROUND AND RELATED WORKS
A.2.1 DISCUSSION ON THE SCALING FACTOR

Figure [6] illustrates how different scaling methods are applied during the quantization. The input
activations are a batch of 2D matrices, and the weights in the model are also typically 2D matrices.
Per-tensor scaling calculates a single scaling factor for the entire 2D matrix, row-wise/column-wise
scaling applies a separate scaling factor for each row or column, and group-wise scaling uses a
separate scaling factor per group. We want to explicitly differentiate group-wise scaling and block-
wise scaling, with the latter one being used in our FP4 quantization methods. Group-wise and
block-wise scaling are functionally the same, where they apply one scaling factor per some pre-
defined number of parameters (.S). However, block-wise scaling is a hardware-specific scaler, where
S is decided by the input dimension of the reduced-precision computation kernel. For example, the
MXFP4 kernel takes S = 32, whereas the NVFP4 kernel uses S = 16. On the other hand, group-
wise scaling does not restrict S. Thus, increasing .S can lead to less memory consumption of the
model, but the efficiency is the same unless customized kernels are developed.

A.3 EXPERIMENT SETUPS
A.3.1 GENERAL HARDWARE/SOFTWARE SETUP.

All experiments are done on either NVIDIA H200 or A100 GPU clusters. Each cluster is equipped
with 8 GPUs. Evaluation of the models is with a single-card setting, and pretraining/finetuning of
the models uses either one cluster of H200 or multiple clusters of A100. All GPUs use the CUDA
12.8 driver. All models are in HuggingFace format (Wolf et al.l 2019), with Pytorch 2.7.0 (Paszke
et al.|, [2019) and Transformers 4.52.0. Training/model hyperparameters differ for different settings
and will be reported separately below for each section.

All quantizations are zero-centered symmetric quantizations with the simple round-to-nearest
method. For INT4 weight quantization, we use llm-compressor (Al & vLLM Project, |2024) and
apply column-wise scaling. For MXFP4 and NVFP4 quantization, since we do not have access

13

Under review as a conference paper at ICLR 2026

[] Value with scaling factor #1
I:l Value with scaling factor #2

per-tensor per-row/column per-group

Figure 6: Illustration of different scaling methods in quantization.

to Blackwell GPUs, we implement our own fake quantization framework, where the values are
first quantized to the respective precision and immediately dequantized. Per kernel specifications,
MXFP4 uses a block size of 32 and NVFP4 uses a block size of 16 for both weights and activations.

This paper evaluates models on one benchmark for perplexity and five common benchmarks for
downstream tasks. We use Wikitext2 [Merity et al.| (2016) to evaluate perplexity, and PIQA (Bisk
et al., [2020), HellaSwag (Zellers et al.l|2019), LAMBADA-openai [Paperno et al.| (2016), Arc-easy
Clark et al.| (2018)), SciQ (Welbl et al.,|2017), to evaluate downstream task ability.

A.3.2 HYPERPARAMETER FOR SECTION[3]

Section [3] involves both pre-training and finetuning. Standard transformer models are pre-trained
with the same configuration as in Appendix[A.3.3] Hyperspherical models are trained with the same
configuration as their respective standard models, with differences in warmup steps and weight de-
cays removed, which are also used by |Loshchilov et al.. We take the pre-trained Pythia checkpoints
from Huggingface (Biderman et al., 2023)).

Finetuning is done on roughly 10B tokens from the Fineweb dataset (Penedo et al.,[2024), processed
in the respective tokenizer. We tested a few learning rates and chose the best one in favor of the QAT
model. The final determined learning rate was 6e-4 for the standard architecture and Se-5 for Pythia.
All finetuning uses cosine decay to 0 without weight decay and warmup steps, which is consistent
with [Liu et al.| (2025). All figures shown in this section are from MXFP4 quantization. Tables will
separately specify their quantization method.

A.3.3 HYPERPARAMETER FOR SECTION [4]

Section [] involves the analysis of four standard architecture models of different sizes. Models are
trained with the general setup. The 0.15B model was an exploratory model, which we did not use for
formal studies. The three large ones (0.5B, 0.7B, 1B) are pretrained with roughly 100B tokens from
the Fineweb dataset (Penedo et al., |2024)), processed using a public tokenizer. We use a learning
rate of 4e-3 with 2000 steps of warmup and cosine decay to 0. The global batch size is 1000 with
gradient accumulation being 1. Weight decay is 0.1. Maximum context length is 2048. The 0.5B
and 0.7B models are 24 layers, and the 1B model is 36 layers. All figures shown in this section are
from MXFP4 quantization.

A.4 ADDITIONAL EXPERIMENTS FOR SECTION [3]

A.4.1 SKETCH FOR SUB-LAYER MEASUREMENT POSITIONS IN A STANDARD
TRANSFORMER’S BLOCK

Figure [/|annotates the positions of measurement of the normalized percentage of L2 magnitude for
Figure 2| and 3]

14

Under review as a conference paper at ICLR 2026

naduy

layer_in A+R
> > —

concat
,
’
K,
layer_out

attn_o_in attn_output

attn_in

Figure 7: Red arrows and notations mark where the L2 percentage errors are measured within each
block.

Table 4: Hyper-spherical models are more robust to quantization compared to standard architec-
tures, even accompanied with QAT. The number in parentheses means relative accuracy degradation
compared to full precision.

Model Precision | Arc-E~ HS LAMB PIQA SciQ Average
BF16 | 68.50% 37.21% 39.69% 63.43% 85.30% 58.83% (-)
T-0.5B MXFP4 | 65.45% 34.21% 20.67% 54.71% 77.20% | 50.45% (-14.24%)
NVFP4 | 6491% 3544% 25.81% 58.00% 82.90% | 53.41% (-9.21%)
MXFP4 | 67.14% 34.60% 31.07% 57.58% 85.20% | 55.12% (-6.31%)
NVFP4 | 67.63% 36.10% 31.01% 60.98% 82.60% | 55.66% (-5.39%)
BF16 | 69.37% 3947% 41.28% 65.40% 89.20% 60.94% (-)
HS-0.5B | MXFP4 | 67.95% 38.55% 36.70% 63.17% 88.00% | 58.87% (-3.40%)
NVFP4 | 68.23% 39.07% 39.12% 64.31% 88.80% | 59.91% (-1.69%)
BF16 | 71.76% 41.39% 44.15% 69.70% 88.80% 63.16% (-)
T-1B MXFP4 | 68.88% 37.42% 2631% 61.57% 84.50% | 55.74% (-11.75%)
NVFP4 | 69.64% 39.28% 36.77% 65.66% 87.70% | 59.81% (-5.30%)
MXFP4 | 68.39% 38.78% 36.48% 65.99% 88.80% | 59.69% (-5.49%)
NVFP4 | 70.89% 40.40% 35.94% 67.93% 87.50% | 60.53% (-4.16%)
BF16 | 71.55% 43.27% 4535% 72.05% 89.70% 64.38% (-)
HS-1B MXFP4 | 70.95% 42.14% 40.13% 69.28% 89.90% | 62.48% (-2.95%)
NVFP4 | 70.13% 42.96% 43.12% 71.00% 89.20% | 63.28% (-1.71%)

QAT-0.5B

QAT-1B

A.4.2 ADDITIONAL TABLE FOR SECTION[3.4]

Here, we provide additional support that hyperspherical models are even more robust than standard
models finetuned with QAT. We apply the latest QAT framework, ParetoQ (Liu et al., 2025)), on the
pretrained 0.5B and 1B models, and summarize the comparisons in Table 4] It is evident that the
hyper-spherical models are more robust to quantization compared to QAT models on the standard
architecture.

A.4.3 ADDITIONAL TABLE FOR SECTION[3.3]

As aforementioned in Section[3.5] we provide additional results for quantizing partial-normalization
(vl and v2) and QAT models into FP4 precision for both weight and activations. We also provide
results showing the generalization of the proposed methods on Pythia models. Tables [3]to [§] present
the quantized model’s performance on the downstream tasks under the two different FP4 specifica-
tions for 0.5B and 1B models. Table [9]and [I0]show quantizing Pythia to INT4 after QAT vs. our

15

Under review as a conference paper at ICLR 2026

Table 5: MXFP4 quantization for 0.5B model. QAT is adopted from Liu et al.|(2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 — 13.04 68.50% 37.21% 39.69% 63.43% 8530% 58.83%
- - 2323 6545% 3421% 20.67% 54.71% T71.20% 50.45%
QAT 12:06:57 16.68 67.14% 34.60% 31.07% 57.58% 85.20% 55.12%

vl 11:07:37 19.42 65.56% 34.48% 22.55% 55.89% 82.80% 52.26%
vI+QAT 12:05:59 16.08 66.00% 34.66% 30.74% 59.34% 84.80% 55.11%
v2 11:03:06 15.58 67.36% 35.39% 32.21% 58.16% 83.80% 55.38%

v2+QAT 12:01:14 16.65 6551% 33.92% 24.14% 54.38% 81.60% 51.91%

Table 6: MXFP4 quantization for 1B model. QAT is adopted from Liu et al.| (2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 - 11.53 71.76% 41.39% 44.15% 69.710% 88.80% 63.16%
- 1731 68.88% 37.42% 2631% 61.57% 84.50% 55.74%
QAT 23:41:54 1333 68.39% 38.78% 36.48% 65.99% 88.80% 59.69%

vl 22:00:13 1436 68.44% 3831% 3625% 66.33% 88.40% 59.55%
vI+QAT 23:42:17 1336 68.28% 38.72% 35.67% 65.78% 89.10% 59.51%
v2 21:49:33 13.59 68.93% 39.15% 36.50% 65.74% 88.10% 59.68%

V24+QAT 23:38:36 2735 61.15% 31.50% 15.85% 51.18% 79.10% 47.76%

approaches. The vl method has comparable and slightly better robustness compared to |Liu et al.
(2025).

Relative Perplexity Increase after MXFP4 Quantization After Training k Steps Perplexity after MXFP4 Quantization After Training k Steps

Perplexity

uuuuuuuuuuuuuuuuuuuuuuuu

Figure 8: (a) As training goes on, accuracy degradation after quantization measured by percentage
difference of perplexity on Wikitext2 (Merity et al., 2016) dataset increases. (b) As training goes
on, perplexity after quantization stops decreasing and starts to increase.

16

Under review as a conference paper at ICLR 2026

Table 7: NVFP4 quantization for 0.5B model. QAT is adopted from [Liu et al.[(2025).

Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 - 13.04 68.50% 3721% 39.69% 63.43% 85.30% 58.83%
- - 1693 65.18% 3579% 26.16% 58.16% 82.70% 53.60%
QAT 12:06:57 15.54 67.63% 36.10% 31.01% 60.98% 82.60% 55.66%
vl 11:07:37 1527 67.08% 3577% 35.46% 59.85% 83.90% 56.41%
vI+QAT 12:05:59 1495 67.79% 3598% 35.65% 60.35% 82.80% 56.51%
v2 11:03:06 14.51 68.12% 36.06% 34.39% 60.94% 82.70% 56.44%
V24+QAT 12:01:14 1574 65.72% 34.73% 26.84% 57.41% 81.00% 53.14%
Table 8: NVFP4 quantization for 1B model. QAT is adopted from Liu et al.|(2025).
Method Time PPL PIQA HS LAMB Arc-E SciQ Average
BF16 - 11.53 71.76% 41.39% 44.15% 69.70% 88.80% 63.16%
- - 13.83 70.02% 39.35% 36.56% 65.32% 87.70% 59.79%
QAT 23:41:54 1272 70.89% 40.40% 3594% 67.93% 87.50% 60.53%
vl 22:00:13 1277 71.06% 40.08% 38.48% 67.34% 88.60% 61.11%
vI+QAT 23:42:17 12.69 70.13% 40.59% 38.44% 67.76% 88.10% 61.00%
v2 21:49:33 12.89 69.75% 39.96% 39.41% 66.79% 88.30% 60.84%
v2+QAT 23:38:36 2433 63.71% 32.03% 20.16% 54.97% 82.50% 50.67%

Table 9: INT4 quantization for Pythia-410M model. QAT is adopted from |Liu et al.|(2025).

Method PIQA HS LAMB Arc-E SciQ Average
BF16 66.70% 33.73% 51.64% 51.89% 81.50% 57.09%
- 64.47% 32.28% 23.73% 46.04% 72.40% 47.78%
QAT 65.94% 34.39% 29.07% 56.14% 80.80% 53.27%
vl 65.89% 33.79% 34.85% 56.02% 83.60% 54.83 %
v1+QAT 65.94% 33.88% 32.41% 56.90% 81.80% 54.19%
v2 56.15% 27.08% 6.85% 41.25% 67.70% 39.81%
v2+QAT 53.37% 25.69% 0.12% 27.53% 26.50% 26.64%

Table 10: INT4 quantization for Pythia-1B model.

QAT is adopted from |Liu et al.|(2025).

Method PIQA HS LAMB Arc-E SciQ Average
BF16 70.73% 37.78% 56.28% 56.99% 83.90% 61.14%
- 67.25% 36.01% 49.06% 52.95% 84.40% 57.93%
QAT 67.74% 37.27% 41.63% 60.19% 84.60% 58.29%
vl 68.50% 37.26% 40.85% 61.87% 86.50% 59.00%
vI+QAT 68.12% 36.65% 42.73% 59.47% 85.60% 58.51%
v2 59.19% 27.60% 6.33% 45.75% 69.20% 41.61%
v2+QAT 57.78% 27.14% 9.76% 40.82% 70.40% 41.18%

17

Under review as a conference paper at ICLR 2026

A.5 ADDITIONAL EXPERIMENTS FOR SECTION [4]

A.5.1 THE EFFECT OF LEARNING RATE DECAY ON QUANTIZATION

The analysis in the main text is done with cosine learning rate decay with a minimum learning rate
of 0. We conduct ablation studies on keeping the learning rate constant on a 0.5B model, trained
with other parameters being the same. The results are shown in Figure[Sa] With a constant learning
rate of 4e-3, the accuracy degradation from 4-bit quantization seems less compared to cosine decay.
However, we still see a trend of percentage perplexity increasing as training goes on, hinting at an
eventual emergence of the critical point with a higher token-parameter ratio.

A.5.2 DISCUSSION ON ACTIVATION OUTLIERS DURING INFERENCE

Definition of Outliers We follow the previous works (An et al.; He et al.| 2024} |Sun et al., 2024;
Raman et al., 2025) in categorizing the outliers. [An et al.| discusses both weight and activation
outliers. In this analysis, we focus on activation outliers, which are much larger in magnitude. The
prevailing view in the community is that there are two types of activation outliers in the LLM:
outlier channels (OCs) and massive activations (MAs). An outlier channel is defined as a channel
in the activation where the mean exceeds the overall average of the tensor by more than m standard
deviations with a standard deviation less than /5 (Raman et al.,[2025). On the other hand, a massive
activation is a single value in the activation with an extremely high value, often in the multiple
thousands, compared to others [Sun et al.|(2024). In simple words, an OC is an entire channel where
each element has a large value, whereas an MA is a large activation value corresponding to a single
token. An illustrative example of OCs and MAs is provided in Figure Daland [0b]

concat
’
’
b

®—>

I Outlier Channels | [Massive Activations

nduy

(@) (b) ©

Figure 9: (a) Outlier Channels. (b) Massive Activation. (c) Where are the outliers?

Where are the outliers? Interestingly, outlier channels and massive activations consistently appear
in different places within each layer of the LLMs. As shown in Figure for the standard trans-
former architecture, OCs emerge in the input activations of QKV projections in the attention module
and in the input activations of up/gate projection in the MLP module, and massive activations ap-
pear in the input activations of the down projection. A more detailed examination of those outliers
reveals that OCs are composed of two parts: the carried-over OC through residual connections and
the emerging OC from the current layer’s computation. When these two components agree on the
channel index, the OC’s magnitude will become larger and larger, and when these two components
do not agree on the index, OCs might change in the later layers. Compared to OCs that appear on
all tokens and consistent channels, |Sun et al.| (2024) first found that MAs usually appear on some
random channels in the first token or semantically weak tokens. Our observations are in line with
that finding.

How much do the outliers impact accuracy? In our investigation of 4-bit WA quantization, we
find that the effect of outliers on accuracy degradation is significantly influenced by the granular-
ity of the quantization method employed. While previous research has often attributed accuracy
degradation primarily to activation outliers, our analysis reveals a more nuanced relationship. When
using row/column-wise scaling for weights and activations, activation outliers indeed account for a
substantial portion of the accuracy degradation. However, our experiments demonstrate that weight
and other non-outlier activations also play a non-trivial role in the overall accuracy degradation and
should not be ignored when aiming at minimizing the impact of 4-bit quantization. This finding chal-

18

Under review as a conference paper at ICLR 2026

lenges the conventional wisdom that addressing activation outliers alone is sufficient for maintaining
model accuracy. In particular, group quantization emerges as an effective strategy for mitigating the
impact of outlier channels (OC). When the outliers could not affect the entire activation tensor, their
impact is much less. Figure [T0a]illustrates the impact of outliers on activations during quantization.
The negative impacts of outliers are only constrained to their neighbors in the block.

To systematically evaluate the effect of outliers on the final accuracy after quantization, we con-
ducted a hierarchical analysis comparing three quantization scenarios: standard weight and activa-
tion quantization (all channels), weight and activation quantization with outlier channels untouched
(w/o OC), and weight-only quantization (no channels). The results in Figure[TOb]demonstrate that 1.
while OCs do impact quantization performance as indicated by the differences between the orange
and yellow bars, this impact is not uniform across different model sizes, and 2. quantization error
from weights can lead to at least 20% perplexity increase on the Wikitext2 dataset
[2016). In addition, we empirically observe that MAs pose fewer degradations compared to OCs
on our models. MAs contribute to around 10% among all perplexity increases caused by activation
quantization in our 0.5B model, whereas OC contributes to around 50%. However, this relationship
may vary with model scale, as MAs are reportedly more hazardous in larger models
2025).

normalchannels 3
neighbor channels ofOCi
OC channels i

no errors after quant

smallerrors after quant i
1
large errors after quant |
1

Eallchannels =w/00C Enochannels

100.00%
90.00%
80.00%

=
=
=

70.00%

60.00%
50.00%

block1 block2 block1 block2
P M S Y M

Percentage Perplexity Increase

=

=

=

40.00% =

=

[) [) [) 30.00% =

=
20.00% = =
- = =
= =
quantization 10.00% = =
0.00% = = = = =
Llama-0.5B Llama-0.7B Llama-1B

(@ (b)

Figure 10: (a) OCs only affect their neighbor channels in the same block. The top right figure shows
the quantization error measured by the percentage of error over the original magnitude. Values
affected by OC (channels in the red dotted square) have a high error percentage, but others have a
lower percentage. (b) Percentage of perplexity increase after quantization of weight and activation
(all channels), weight and activation without outliers (w/o OC), weight only (no channels).

19

Under review as a conference paper at ICLR 2026

A.6 DISCUSSION ON THE JACOBIAN MATRIX

A.6.1 GENERAL DISCUSSION ON THE ERROR DIVERGENCE AND JACOBIAN

We first discuss the divergence of the error when the Jacobian matrix is generic (not specific to any
architecture). Recall that under the first-order approximation, we have

el+1 =€+ Jieg = (I + Jl)el (7

For simplicity, we assume the Jacobian matrix is independent of the error with a random distribution,
and we have:

p=E(J)
S =E((J—)" (i —) ®)
We have the squared norm of ;11 to be:
levsal? = ef T+ 1)1 + e o
=el (I+J+JF + T D)e
We then have the conditional expectation with respect to e; as:
E(llet1ller) = e/ E(L + Ji + J + I Jh)e (10)

=ef (I+pl +pu+p"u+S)e

We denote (I + T + p+ p%p+ X) as M, and using Rayleigh quotient bound, we have:
ef Mey > Apin(M)|ex])?, (11)
which implies that E(|[ex]|?) > Hi\:()l Amin (M) E(|[eo]|?)

Implication from Equation [I1} Here, we discuss the conditions under which the error will diverge
or converge.

 if J is zero-centered, M = I + X = I. Consequently, the mean-square error is non-

decreasing. The error will diverge when the geometric mean of Hg;ol Amin (M) is greater
than 1.

* in a similar derivation, E(|lex]|?) < HkN:_Ol Amaz (My)E(]|eo|?), which means the error
will converge when the geometric mean of Hfj;o Amaz (My) is smaller than 1.

* we note that under the typical setting, with i.i.d., zero-mean random Jacobians with vari-
ance X = 0, the first-order error will almost certainly diverge.

A.6.2 MODEL SPECIFIC JACOBIAN AND ITS ERROR GROWTH BOUND

In this section, we will further decompose the Jacobian of the standard architecture and show the
upper and lower bounds for error propagation in that architecture. First, recall from Eq. [3| that the
architecture is made of an attention module and an MLP module. Let = € R7*? be the input matrix
to a transformer block and let

A(z) := Attn(RMSNorm(x)), f(z) ==z + A(z) + MLP(RMSNorm(z + A(x))).
We study the Jacobian J(x) := D f(x) as a linear map acting on matrix perturbations (error in-

troduced in the input) e € RT*<. All bounds are given in the Frobenius norm || - || » on matrices
together with the induced operator norm:

ITFsr = sup ”TE]HF for any linear map 7 : R7>*4 — RT*4,
e#0 €llF

We define the following notations at a base point x,
z = RMSNorm(z), w=2z+ A(z), w =RMSNorm(u).
By the chain rule,
ttn(2) JrRMS (),

B(z) := Ja (12)
= JMLP (w) JRMS (U).

J(x) =1 + B(z) + M(x) (IJrB(m))7 {M(m)

20

Under review as a conference paper at ICLR 2026

Row-wise RMSNorm and its Jacobian. RMSNorm is a row-wise transformation. For row ¢ €
{1,...,T}, let z; € R? be the t-th row of = and

or = y/5llzell3 D, = diag(g) € R™? (learned gains).
Then,

RMSNorm(z); = Dgﬁ
Ot

JRMS (JU) = blkdiag(Nl, AP ,NT>

with the per-row Jacobian matrix being:

D T
N, = 29 (I— o) € Réx4, (13)
ot doj
Consequently,
D
lrsis(@)lror = max [Nyl < 120l2 (14)
t ming o

We’d like to make a side note on the error propagation after RMSNorm: after normalization, radial
errors disappear in the input, but tangential errors remain.

Blockwise bounds for B and M. For notation simplicity, we define the Frobenius-induced Lips-
chitz moduli:

Latin(2) == || Jasen (2) || F= Py Linip(w) == [[Jyre ()| F=F-
By submultiplicativity and Eq. |14] we have the bounds for || B|| and || M || as:

[[1Dg]l2

IB(z)||lpoF < Latn(2) |Jrms(@)||por < Lattn(z)ma (15)

[1Dgll2

—7
ming /g [lu13

M) rsr < Lop(w) [Jrms (@) |[For < Ligp(w) (16)

where u; is the ¢-th row of u. []_-]

Per-layer error amplification bounds. For any perturbation ¢ € RT*4,
J(x)e =€+ B(x)e + M(x)e+ M(z)B(x)e

Using the triangle inequality and submultiplicativity, we have the upper bound for the error propa-
gation as follows:

17@elr < (1+1B@]sor + IM@)]p-r + M@)o B@rr) s | 0D

Likewise, we have the lower bound of error propagation as:

[T ()€l = (1 —B@)lrsr = M ()| ror - IIM(w)IIFaFIIB(w)HFaF) lellz, | (18)

which is informative whenever

I1B@)|F—r + 1M (2)|p—r + IM(2) | p—r | B@) | por < 1

'"RMSNorms are different for attention and MLP modules, so we use a different notation D/g for MLP

21

Under review as a conference paper at ICLR 2026

Additional discussions on Jay, and Jyrp. The exact analytical forms of Jay, and Jyp are
overly complex and do not have much meaningful contributions to the error propagation in realistic
LLMs. However, if we were to make some assumptions to loosen the constraints, we may obtain
coarse bounds for them that contribute to the architectural changes.

We make the following three assumptions:
1. RMSNorm can bring normalized activations to O(1).

2. The operator norm of the softmax Jacobian is smaller than some constant ¢, < 1.
3. Norms of SiLU in MLP are small. We have ||SiLU||» < ¢sipu and ||SiLU||c < csipur.

Under the three assumptions, we have a coarse single-head attention bound as:

IIWqHzlkallz)

< §
an (e S 1Wola ([Woll2 + con = 70

We can also extend this to the practical multi-head attention case:

h h
WP || W >2)

I acen(2) e S IWolloH s ([WPs 4+ o= 20

where H is the number of heads.

Similarly, we have the following coarse bound for Jyr,p as:

[vep(w)llFor S ||Wd||2(CSiLU||Wu||2+CSiLU'||Wg||2)

Implications from the above analysis. From the mathematical derivations, we make the follow-
ing observations. Some of them can help us understand how to make architectural changes to better
reduce the error propagation in LLM:s.

* The residual connection guarantees a baseline error propagation factor of 1. Submodules
add B + M + M B to the next layer.

» Since RMSNorm eliminates radial errors, B + M + M B contains mostly tangential (di-
rectional) errors that can either grow or shrink depending on the alignment between input
and weight.

 Since weight norms are unbounded, the output error can have very high magnitudes if the
alignment is not good.

* Some directions to reduce error propagation (or at least keep the error propagation factor
around one) include: reducing weight magnitude, keeping the RMSNorm’s gain D, small,
reducing the number of heads in attention, and encouraging Be and M (I 4+ B)e to point at
the opposite direction of e.

22

	Introduction
	Background and Related Work
	Quantization
	Existing Methods for Robust Quantization

	Hypersphericity Leads to Quantization Robustness
	Why Unbounded Projections Amplify Quantization Noise.
	Intuitive scenario: a small error with a large weight
	Theoretical Derivation

	Definition of a Hyperspherical Model
	Instability in Transformer vs. Stability in Hyperspherical Model
	Hyperspherical models have much more robust 4-bit quantization
	Partial Hypersphericity for Existing LLMs

	Understanding Accuracy Degradation in 4Bit Quantization
	Less is More in Pretraining
	Outliers Matter, But Only to an Extent
	Error Propagation Drives the Analysis

	Conclusion
	Appendix
	Statements
	Statement on the Usage of LLM
	Statement on Ethics
	Statement on Reproducibility

	Extra Background and Related Works
	Discussion on the scaling factor

	Experiment Setups
	General Hardware/Software Setup.
	Hyperparameter for Section 3
	Hyperparameter for Section 4

	Additional Experiments for Section 3
	Sketch for sub-layer measurement positions in a standard transformer's block
	Additional Table for Section 3.4
	Additional Table for Section 3.5

	Additional Experiments for Section 4
	The effect of learning rate decay on quantization
	Discussion on activation outliers during Inference

	Discussion on the Jacobian matrix
	General Discussion on the error divergence and Jacobian
	Model specific Jacobian and its error growth bound

