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Abstract

We propose a deep generative time series approach using latent temporal processes
for modeling and holistically analyzing complex disease trajectories and demon-
strate its effectiveness in modeling systemic sclerosis. We aim to find meaningful
temporal latent representations of an underlying generative process that explain
the observed disease trajectories in an interpretable and comprehensive way. To
enhance the interpretability of these latent temporal processes, we develop a semi-
supervised approach for disentangling the latent space using established medical
concepts. We show that the learned temporal latent processes can be utilized for
further data analysis, including finding similar patients and clustering the disease
into new sub-types. Moreover, our method enables personalized online monitoring
and prediction of multivariate time series including uncertainty quantification.

1 Introduction

Understanding clinical trajectories of complex diseases is crucial for improving diagnosis, treatment,
and patient outcomes. However, modeling such multivariate time series data poses significant
challenges due to the high dimensionality of clinical measurements, low signal-to-noise ratio, sparsity,
and the complex interplay of various, potentially unobserved, factors. We present a deep generative
temporal model that captures both the joint distribution of all the observed longitudinal clinical
variables and of the latent temporal variables (Figure 1a), suited for the holistic analysis of temporal
disease trajectories. We propose a semi-supervised approach for disentangling the latent space using
known medical concepts to enhance the interpretability and allowing for the discovery of novel
medically-driven patterns in the data. We demonstrate the effectiveness of our method in modeling
the progression of systemic sclerosis (SSc), a severe and yet only partially understood autoimmune
disease. SSc triggers the immune system to attack the body’s connective tissue, causing severe
damage to multiple organs. We seek to understand the evolution of SSc by modeling the patterns of
organ involvement and progression and aim to learn temporal hidden representations that distinctly
capture the disentangled medical concepts related to each organ.

There are various extensions to Kingma and Welling’s seminal work on Variational Autoencoders
(VAEs) [16], explicitly modeling time in the latent space such as RNN-VAE [8], GP-VAE [5, 9], or
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longitudinal VAE [24]. While these approaches have showcased remarkable efficacy in modeling
time series, the interpretability of the resulting latent processes remains limited for complex data.
Thus, there is ongoing research in designing temporal generative models with disentangled latent
factors, such as disentangled sequential VAE [14] and disentangled GP-VAE [2]. However, learning
interpretable and disentangled latent representations is highly difficult for complex data without any
inductive bias [17], leading researchers to focus on weakly supervised latent representation learning
[18, 35, 22]. In a similar spirit, we tackle the temporal semi-supervised guidance of the latent space
by providing sparse labels representing established medical domain knowledge concepts.

2 Methodology

We analyze patient histories that consist of two main types of data: raw temporal clinical mea-
surements x = x1:T ∈ RD×T , such as blood pressure, and sparse medical concept labels
y = y1:T ∈ RP×T , describing higher-level medical definitions related to the disease, for in-
stance, the medical definition of severity staging of the heart involvement ( Figure 1). The medical
concept definitions are typically derived from multiple clinical measurements using logical operations.
For example, a patient may be classified as having "severe heart involvement" if certain conditions
are satisfied, for instance, x(i) > ε AND x(j) = 1. Both the raw measurements and labels are
irregularly sampled, and we denote by τ 1:T ∈ RT the vector of sampling time-points. Moreover,
static information denoted as s ∈ RS is present, alongside additional temporal covariates such as
medications p1:T ∈ RP×T for each patient.

We condition our generative model on the context variable c = {τ ,p, s} to be able to generate
latent processes under certain conditions, for instance when a specific medication is administered.
Furthermore, in the next sections, we introduce our approach to learning multivariate latent processes
denoted as z = z1:T ∈ RL×T , responsible for generating both the raw clinical measurement
processes x1:T and the medical labels y1:T . In particular, we use the different temporal medical
concepts to disentangle the L dimensions of the latent processes by allocating distinct dimensions
to represent different medical concepts. We assume a dataset {xi1:Ti

,yi1:Ti
, ci1:Ti

}Ni=1 of N patients,
and omit the dependency to i and the time index when the context is clear.

temporal latent processes 𝒛𝟏:𝑻clinical measurements 𝒙𝟏:𝑻 medical concepts 𝒚𝟏:𝑻

static features 𝒔

(a) Temporal generative model for systemic sclerosis.
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(b) Semi-supervised temporal latent variable model.

Figure 1: Modeling approach

2.1 Generative Model

We propose the probabilistic conditional generative latent variable model pψ(y,x, z|c) =
pγ(y|z, c)pπ(x|z, c)pϕ(z|c), with learnable prior network pϕ(z|c), likelihood network pπ(x|z, c),
and guidance network pγ(y|z, c), where ψ = {γ, π, ϕ} are learnable parameters (Figure 1b). We

learn the prior network for z, i.e. pϕ(z|c) =
∏T
t=1

∏L
l=1 N

(
zlt|µlϕ(ct), σlϕ(ct)

)
conditioned on c,

so that time-varying or demographic effects can be learned in the prior (Appendix D.2.1). The means
µlϕ(ct) and variances σlϕ(ct) are deep neural networks and we assume a factorized Gaussian prior
distribution per time and latent dimensions.

The probabilistic likelihood network maps z and c to x, i.e. pπ(x|z, c) =∏T
t=1

∏
d∈G N (xdt |µdπ, σdπ)

∏
d∈K C(xdt |pdπ), where we assume time- and feature-wise condi-

tional independence. We assume either Gaussian N or categorical C likelihoods for the observed
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variables x, where G and K are the corresponding indices. The mean µdπ = µdπ(zt, ct), variance
σdπ = σdπ(zt, ct), and category probability vector pdπ = pdπ(zt, ct) are deep parametrized functions.
We propose a semi-supervised approach to disentangle z with respect to defined medical concepts y.
In particular, we assume pγ(y|z, c) =

∏T
t=1

∏G
g=1

∏
j∈ν(g) C(y

j
t |hjγ(z

ε(g)
t , ct)) where hjγ(z

ε(g)
t , ct)

is a deep parametrized probability vector, and ν(g) and ε(g) correspond to the indices of the gth
guided medical concept, and the indices in the latent space defined for guided concept g, respectively.

2.2 Probabilistic inference

We approximate pψ(z|x,y, c), with an amortized variational distribution qθ(z|x, c) (Appendix B.1).
We assume qθ(z|x0:k, c) =

∏T
t=1

∏L
l=1 N (zlt|µlθ(x0:k, c), σ

l
θ(x0:k, c)) with variational parameters

θ and 0 ≤ k ≤ T . Note that only the measurements x0:k until observation k are part of the variational
distribution, and not the medical concepts y, since the latter are sparse and medically defined, in
contrast to the raw clinical measurements. If 0 ≤ k < T , we forecast the future latent variables
zk+1:T from x0:k. We apply amortized variational inference [3] by maximizing a lower bound
log pψ(x,y|c) ≥ L(ψ, θ;x,y, c) of the intractable marginal log likelihood. For a fixed k, this leads
to the objective function

Lk(ψ, θ;x,y, c) = Eqθ(z|x0:k,c) [log pπ(x|z, c)]
+ α Eqθ(z|x0:k,c) [log pγ(y|z, c)]
− β KL [qθ(z|x0:k, c) || pϕ(z|c)] ,

where we introduce weights α and β inspired by the disentangled β−VAE [11]. The first term
Eqθ(z|x,c) [log pπ(x|z, c)] is unsupervised, whereas αEqθ(z|x,c) [log pγ(y|z, c)] is supervised and
βKL [qθ(z|x, c)||pϕ(z|c)] is a regularization term, ensuring that the posterior is close to the prior
with respect to the Kullback-Leibler (KL) divergence. Since all dimensions in z are connected to all
the measurements x, the potential correlations between clinically measured variables can be exploited
in an unsupervised fashion while disentangling z using the guidance networks for y. The expectation
Eqθ(z|x,c) is approximated with Monte-Carlo (MC) sampling (Appendix B.1).

Given a dataset with N iid patients, the optimal parameters are given by ψ∗, θ∗ =

argmaxψ,θ
∑N
i=1

∑Ti

k=0 Lk(ψ, θ;xi,yi, ci), which is computed with stochastic optimization
using mini-batches of patients and different values of k (Appendix B.1.2). The pre-
dictive distributions q∗(y|x0:k, c) =

∫
pγ∗(y|z, c)qθ∗(z|x0:k, c)dz and q∗(x|x0:k, c) =∫

pπ∗(x|z, c)qθ∗(z|x0:k, c)dz are approximated with a two-stage MC sampling (Appendix B.1.3).
The former can be used to automatically label and forecast y based on the partially observed x,
whereas the latter corresponds to the reconstruction and forecasting of partially observed trajectories.

2.3 Patient Similarity and Clustering

The learned qθ∗(z1:T |x1:T , c1:T ) can map any observed patient trajectory Ti = {xi1:Ti
, ci1:Ti

} to
its latent trajectory Hi = Eqθ(zi

1:Ti
|xi

1:Ti
,ci

1:Ti
)

[
zi1:Ti

]
. Through our semi-supervised approach, Hi

captures the important elements from xi1:Ti
and yi1:Ti

, without explicitly depending on yi1:Ti
. Since

defining a similarity metric between two trajectories in the original space is challenging, due to
the missingness and high dimensionality, we instead define it in the latent space. To measure the
similarity between latent trajectories, we employ the dynamic-time-warping (dtw) metric to account
for the different trajectory lengths and misalignments [20].

2.4 Modeling Systemic Sclerosis

We aim to model the overall SSc disease trajectories as well as the distinct organ involvement
trajectories for patients from the European Scleroderma Trials and Research (EUSTAR) database
(Appendix E.1). We focus on the involvement of the lung, heart, and joints (arthritis) in SSc. Each
organ has two related medical concepts: involvement and stage. Based upon the medical definitions
provided in Appendix E.2, for each of the three organs O := {lung, heart, joints}, we create labels
signaling the organ involvement (yes/no) and severity stage (1 − 4), respectively. We write o(m),
m ∈M := {involvement, stage}, o ∈ O to refer to the corresponding medical concept for organ
o. For each organ, we guide a distinct subset of latent processes (non-overlapping subsets and each
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dimension in z is guided), leading to pγ(y|z, c) =
∏T
t=1

∏
o∈O

∏
m∈M pγ(y

ν(o(m))
t |zε(o(m))

t , ct).
The implementation details are in Appendix C.2.

3 Experiments and Results

3.1 Model Evaluation

We assessed the model’s performance at predicting the x trajectories in probabilistic and deterministic
settings, and with either learning the likelihood network variance σ∗ or setting σ = 1 (Figure 2a). All

(a) Performance for x prediction.
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(b) Probabilities of organ involv. for pidx.

Figure 2: Prediction performance and online monitoring.

of the models outperform non-ML-driven individualized or cohort-based baselines. For a variable
xj , the individualized baseline predicts the patient’s last available measurement for xj as its future
value. The cohort baseline samples a value from the empirical Gaussian/Categorical distribution of
xj . In Appendix D.1, we provide further details on the inference process and evaluation results. In
particular we compare our model to an unguided baseline, assess the performance for y prediction,
and compute the coverage and calibration of the predictions. The probabilistic model with learned
σ∗ strikes the best balance between predictive capabilities, coverage, and generative ability. In the
following, we explore further capabilities of this model.

Online Prediction with Uncertainty To illustrate how the model allows a holistic understanding
of a patient’s disease course, we follow an index patient pidx with a complex disease trajectory and
various impacted organs. Our model forecasts the high-dimensional distribution of x1:T and y1:T
given the past measurements x0:k. For example, the heatmaps in Figure 2b show the predicted
probabilities of organ involvement at a given time (values after the dashed line are forecasted). We
provide additional plots for x and y prediction in Appendix D.1.1.

3.2 Cohort Analysis

3.2.1 Latent Space and Medical Concepts

(a) Guided versus unguided latent spaces. (b) Probabilities of lung and heart involvement.

Figure 3: t−SNE visualizations of latent spaces.
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We can analyze z to find cohort-level disease patterns, i.e. global trends in the cohort. Figure 3a
compares the distribution of medical concept ground truth labels (heart stage) in guided versus
unguided models (i.e. without training guidance networks). The guided model clearly increases the
disentanglement with respect to medical concepts, thus enhancing the interpretability of z.

Figure 3b shows z overlaid with different predicted probabilities of organ involvement. The red line
highlights the trajectory of pidx in z with respect to different medical concepts. The second panel
(solid line) shows the complete reconstructed trajectory of pidx in z, and in the first panel we sample
forecasted z trajectories (dotted lines), providing estimates of future disease phases.

3.2.2 Clustering and Similarity of Patient Trajectories

We clustered and retrieved similar latent trajectories using k-means and k-nn with the dtw similarity
measure [30]. Figure 4 shows the three mean cluster trajectories in z. The first and second cluster

Figure 4: Mean cluster trajectories (start at the cross x) overlaid with predicted organ stages.

trajectories start close to each other with the second progressing to regions with higher heart stages.
The third cluster contains the most severely progressing patients. In Appendix D.2.3, we compute the
medical concept probabilities for the mean cluster trajectories and compare the y and z trajectories
of pidx and its 3 nearest neighbors.

4 Conclusion

We present a novel deep semi-supervised generative latent variable approach to model complex
disease trajectories. With the guidance networks, we propose a method to augment unsupervised deep
generative models with established medical concepts and achieve more interpretable and disentangled
latent processes. Our non-discriminative approach effectively addresses desiderata for healthcare
models such as forecasting, uncertainty quantification, dimensionality reduction, and interpretability.
Furthermore, we empirically show that our model is suited for a real-world use case, and enables
a holistic understanding of the patients’ disease course. The disentangled latent space facilitates
comprehensive trajectory visualizations, clustering, and forecasting. Both our presented experiments
and modeling approaches hold the potential to be extended and adapted in many ways. In future work,
we intend to extend our framework to handle continuous time (Appendix B.2), include medications
for generating future hypothetical conditional trajectories (Appendix B.3), and also include guidance
networks to model additional disease dynamics like long-term outcomes.
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A Data and Code Availability

The dataset used is owned by a third party, the EUSTAR group, and may be obtained by request
after the approval and permission from EUSTAR. The code builds upon the pythae library [6] and is
publicly available at https://github.com/uzh-dqbm-cmi/eustar_dgm4h with examples from
artificially generated data.

B Details and Extensions for Generative Model

In this section, we provide more details and several possible extensions to the main temporal
generative model presented in Section 2.1.

B.1 Inference

In this section, we explain the inference process of the proposed generative model pψ(y,x, z|c) =
pγ(y|z, c)pπ(x|z, c)pϕ(z|c) in more detail. We are particularly interested in the posterior of the
latent variables z given y, x, and c, that is,

pψ(z|y,x, c) =
pψ(y,x, z|c)
pψ(y,x|c)

=
pψ(y,x, z|c)∫
pψ(y,x, z|c)dz

,

which is in general intractable due to the marginalization of the latent process in the marginal
likelihood pψ(y,x|c) =

∫
pψ(y,x, z|c)dz. Therefore, we resort to approximate inference, in

particular, amortized variational inference (VI) [3], where a variational distribution qθ(z|x, c) close
to the true posterior distribution pψ(z|x,y, c) ≈ qθ(z|x, c) is introduced. The similarity between
these distributions is usually measured in terms of KL divergence [21], therefore, we aim to find
parameters satisfying

θ∗, ψ∗ = argmin
θ,ψ

KL [qθ(z|x, c) || pψ(z|x,y, c)] .

This optimization problem is equivalent [21] to maximizing a lower bound L(ψ, θ;x,y, c) ≤
pψ(y,x|c) to the intractable marginal likelihood, that is,

θ∗, ψ∗ = argmax
θ,ψ

L(ψ, θ;x,y, c).

In particular, this lower bound equals

L =

∫
qθ(z|x, c) log

pψ(y,x, z|c)
qθ(z|x, c)

dz =

∫
qθ(z|x, c) log

pγ(y|z, c)pπ(x|z, c)pϕ(z|c)
qθ(z|x, c)

dz,

which can be rearranged to

L = Eqθ(z|x,c) [log pπ(x|z, c)] + Eqθ(z|x,c) [log pγ(y|z, c)]− KL [qθ(z|x, c) || pϕ(z|c)] .

For the Gaussian prior and approximate posterior , the KL-term can be computed analytically and
efficiently [31]. On the other hand, the expectations Eqθ can be approximated with a few Monte-Carlo
samples z1, . . . ,zs, . . . ,zS ∼ qθ(z|x, c) leading to

Eqθ(z|x,c) [log pπ(x|z, c)pγ(y|z, c)] ≈
1

S

S∑
s=1

log pπ(x|zs, c)pγ(y|zs, c).
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B.1.1 Partially Observed Data

The measurements x ∈ RD×T and the concepts y ∈ RP×T contain many missing values. We
define the indices ox ∈ RD×T and oy ∈ RP×T for which the observations are actually measured.
Therefore, we compute the lower bound only on the observed variables, i.e. log pψ(xox ,yoy |c) ≥
L(ψ, θ;xox ,yoy , c), as is similarly done by Fortuin et al. [9], Ramchandran et al. [24]. This then
leads for instance to

Eqθ(z|x,c) [log pπ(x
ox |z, c)pγ(yoy |z, c)] ,

where the related log-likelihood log pπ(x
ox |z, c) = log

∏
t,d∈ox

pπ(x
d
t |zt, ct) =∑

t,d∈ox
log pπ(x

d
t |zt, ct) is only summed over the actually observed measurements. The

same can be derived for the medical concepts yoy .

B.1.2 Lower Bound for N Samples

Given a dataset with N iid patients D = {Di}Ni=1 = {xi1:Ti
,yi1:Ti

, ci1:Ti
}Ni=1, the lower bound to the

marginal log-likelihood is

log pψ(D) = log

N∏
i=1

pψ(Di) ≥
N∑
i=1

L(ψ, θ;xi,yi, ci),

which is maximized through stochastic optimization with mini-batches. Moreover, suppose we have
T + 1 iid copies of the whole dataset {Dk}Tk=0, then

log pψ({Dk}Tk=0) = log

N∏
i=1

T∏
k=0

pψ(Dk
i ) ≥

N∑
i=1

T∑
k=0

Lk(ψ, θ;xi,k,yi,k, ci,k),

where Lk(ψ, θ;xi,k,yi,k, ci,k) is the lower bound obtained by plugging in the corresponding approx-
imate posterior qθ(z|x0:k, c).

B.1.3 Predictive Distributions

The predictive distributions for the measurement x1:T and concept trajectories y1:T can be obtained
via a two-stage Monte-Carlo approach. For instance, we can sample from the distribution of the
measurements

q∗(x1:T |x0:k, c) =

∫
pπ∗(x1:T |z1:T , c)qθ∗(z1:T |x0:k, c)dz

by first sampling from the latent trajectories
z1
1:T , . . . ,z

s
1:T , . . . z

S
1:T ∼ qθ∗(z1:T |x0:k, c)

given the current observed measurements x1:k. In a second step, for each of the samples, we compute
x1
1:T , . . . ,x

u
1:T , . . .x

U
1:T ∼ pπ∗(x1:T |zs1:T , c)

to represent the overall uncertainty of the measurement distribution.

B.2 Different Prior

The factorized prior can be extended to continuous time with Gaussian processes (GPs, [34, 27, 28]),
as introduced by [5, 9] in the unsupervised setting. In particular, we can replace

pϕ(z|c) = pϕ(z1:T |c1:T ) =
T∏
t=1

L∏
l=1

pϕ(z
l
t|ct) =

T∏
t=1

L∏
l=1

N
(
zlt|µlϕ(ct), σlϕ(ct)

)
,

with

pϕ(z1:T |c1:T ) =
L∏
l=1

GP
(
zl|ml

ϕ(c), k
l
ϕ(c, c

′)
)

with a mean functionml
ϕ(c) and kernel klϕ(c, c

′), to take into account all the probabilistic correlations
occurring in continuous time. This leads to a stochastic dynamic process, which theoretically matches
the assumed disease process more adequately than a deterministic one. A further advantage is the
incorporation of prior knowledge via the choice of the particular kernels for each latent process so that
different characteristics such as long and small lengthscales, trends, or periodicity can be explicitly
enforced in the latent space.
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B.3 Conditional Generative Trajectory Generation

Our generative approach is also promising for conditional generative trajectory sampling, in a
similar spirit as [29]. In particular, if we use medications as additional covariates p = p1:T =
{p0:k,pk+1:T } in our approximate posterior distribution qθ(z|x0:k, c) = qθ(z|x, τ , s,p0:k,pk+1:T )
with c = {τ , s,p}, the model can be used to sample future hypothetical trajectories xk+1:T with

q∗(xk+1:T |x0:k, τ , s,p0:k,pk+1:T )

=

∫
pπ∗(xk+1:T |z, τ , s,p0:k,pk+1:T )qθ∗(z|x0:k, τ , s,p0:k,pk+1:T )dz

based on future query medications pk+1:T .

C Modeling approach

C.1 Analyzing Disease Trajectories with ML

Recently, extensive research has focused on modeling and analyzing clinical time series with machine
learning – we refer to Allam et al. [1] for a recent overview. However, most approaches focus on
deterministic time series forecasting, and only a few focus on interpretable representation learning
with deep models [32] or on online uncertainty quantification with generative models [27, 7, 25].

Furthermore, prior research on data-driven analysis of systemic sclerosis is limited. In their recent
review, Bonomi et al. [4] discuss the existing studies applying machine learning for precision medicine
in systemic sclerosis. However, all of the listed studies are limited by the small cohort size (maximum
of 250 patients), making the use of deep learning models challenging. Deep models were only used
for analyzing imaging data (mainly nailfold capillaroscopy, Garaiman et al. [10]). Furthermore,
most existing works solely focus on the involvement of a single organ in SSc, namely interstitial
lung disease (ILD), and on forecasting methods. To the best of our knowledge, our work is the first
attempt at such a comprehensive and large-scale (N=5673 patients) ML analysis of systemic sclerosis
involving multiple organs and a wide range of observed clinical variables together with a systematic
integration of medical knowledge.

C.2 Model Architecture

As shown in Figure 1b, our model combines several deep probabilistic networks. We implemented
a temporal network with fully connected and LSTM layers [12] for qθ(z|x0:k, c) and multilayer
perceptrons for the prior pϕ(z|c), guidance pγ(y|z, c) and likelihood pπ(x|z, c) networks. By
adapting our framework, we recover well-established temporal latent variable models. For instance,
if we discard the guidance networks, the model becomes similar to a deterministic RNN-AE, or
probabilistic RNN-VAE if we learn the latent space distribution. Furthermore, the likelihood variance
can either be learned, or kept constant as is common practice [26]. We evaluated the predictive
performance of the guided model in the probabilistic and deterministic settings, with or without
learning the likelihood variance. Many further architectural choices could be explored, such as a
temporal likelihood network or a GP prior, but they are beyond this paper’s scope.

We describe the architecture and inputs/outputs of the different neural networks in our final model for
SSc. For a patient with measurement time points τ 1:T of the complete trajectory, the model input at
time t ∈ τ are the static variables s, the clinical measurements x0:t, and the trajectory time points τ .
Thus for SSc modeling, we have that c = {τ , s}. The model M outputs the distribution parameters
of the clinical measurements and the organ labels for all trajectory time points τ . Without loss of
generality, we assume that x1:M are continuous variables and xM+1:D categorical, so that the model
can be described as

M : (c,x0:t) −→
(
µ̂x

1:M

1:T (t), σ̂x
1:M

1:T (t), π̂x
M+1:D

1:T (t), π̂y1:T (t)
)
.

We explicitly include the dependencies to t to emphasize that the parameters of the whole trajectory
are estimated given the information up to time t.

• Prior network: The prior is a multilayer perceptron (MLP). It takes as input c and outputs
the estimated mean and variance of the prior latent distribution µ̂prior1:T and σ̂prior1:T .
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• Encoder network (posterior): The encoder contains LSTM layers followed by fully con-
nected feed-forward layers. It takes as input x0:t and c and outputs the estimated mean and
standard deviation of the posterior distribution of the latent variables µ̂post1:T (t) and σ̂post1:T (t),
from which we sample the latent variables z1:T (t) (complete temporal latent process) given
the information up to t.

• Decoder network (likelihood): The decoder is an MLP and takes as input the sampled
latent variables z1:T (t) and c and outputs the estimated means and standard deviations
µ̂x

1:M

1:T (t) and σ̂x
1:M

1:T (t) of the distribution of the continuous clinical measurements and class
probabilities π̂x

M+1:D

1:T (t) of the categorical measurements.
• Guidance networks: For each organ, we define one MLP guidance network per related

medical concept (involvement and stage). A guidance network for organ o ∈ O :=
{lung, heart, joints} and related medical concept m ∈ {inv, stage}, takes as input the

sampled latent variables zϵ(o(m))
1:T (t) and outputs the predicted class probabilities π̂y

ν(o(m))

1:T (t)
of the labels, where ν(o(m)) are the indices in y related to the medical concept o(m), and
ϵ(o(m)) the indices in the latent space.

C.3 Training Objective

We follow the notation introduced in Section 2 and Appendix B. To train the model to perform
forecasting, for each patient, we augment the data by assuming T + 1 iid copies of the data x and y
(see also B.1.2) and recursively try to predict the last T − t, t = 0, ..., T clinical measurements and
medical concepts. The total loss for a patient p is

Lp =
T∑
t=0

L(t), (1)

with

L(t) = NLL
(
µ̂x

1:M

(t), σ̂x
1:M

(t),x1:M
)
+ CE

(
π̂x

M+1:D

(t),xM+1:D
)

+ α ∗ CE (π̂y(t),y) + β ∗KL
(
µ̂prior, σ̂prior, µ̂post(t), σ̂post(t)

)
,

where NLL, CE and KL are the negative log-likelihood, cross-entropy and KL divergence, respec-
tively. Further, α and β are hyperparameters weighting the guidance and KL terms.

C.3.1 Model Optimization

We only computed the loss with respect to the available measurements. We randomly split the set of
patients P into a train set Ptrain and test set Ptest and performed 5−fold CV with random search on
Ptrain for hyperparameter tuning. Following the principle of empirical risk minimization, we trained
our model to minimize the objective loss over Ptrain, using the Adam [15] optimizer with mini-batch
processing and early stopping.

C.3.2 Architecture and Hyperparameters

We tuned the dropout rate and the number and size of hidden layers using 5-fold CV, and used a
simple architecture for our final model. The posterior network contains a single lstm layer with
hidden state of size 100, followed by two fully connected layers of size 100. The likelihood network
contains two separate fully connected layers of size 100, learning the mean and variances of the
distributions separately. The guidance networks contain a single fully connected layer of size 40
and the prior network a single fully connected layer of size 50. We used batch normalization, ReLU
activations, and a dropout rate of 0.1. We set α = 0.2 and β = 0.01.

11



D Results

D.1 Model Evaluation

We discuss the evaluation results for unguided models, medical concept prediction, and uncertainty
quantification. In Figure 5, we compare the performance of the clinical measurement x prediction
of the different guided models versus their unguided counterparts (with the same number of latent
processes). Note that these unguided models are optimal baselines for x prediction since they are not
trained to predict y, too. As Figure 5 shows, the unguided models usually outperform the guided
models, but the difference is not significant for the probabilistic models. Unsurprisingly, the best
performing model is a deterministic unguided model, i.e. not trained to learn the z and y distributions.
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Figure 5: Performance for x prediction, guided versus unguided models.

Figure 6 shows the macro F1 scores for the medical concepts y prediction of the different models.
The models with fixed likelihood variance generally slightly outperform the models with learned
variance. All of the models outperform the individualized and cohort baselines.

To evaluate the uncertainty quantification of the models, we computed the coverage of the continuous
predictions and calibration of the predicted probabilities for categorical measurements. The coverage
is the probability that the confidence interval (CI) predicted by the model contains the true data
point. Since the likelihood distribution is Gaussian, the 95% CI is µpred ± 1.96σpred. To achieve
perfect coverage of the 95% CI, the predictions should fall within the predicted CI 95% of the
time. We computed the coverage over all forecasted data points. For continuous x forecasting, both
probabilistic models achieve coverage of 92± 1% and of 98± 0% for the deterministic models, thus
all slightly diverging from the optimal 95%. For categorical measurements, the calibration curve
is computed to assess the reliability of the predicted class probabilities. They are computed in the
following way. We grouped all of the forecasted probabilities (for one-hot encoded vectors) into
n = 20 bins dividing the 0-1 interval. Then, for each bin, we compared the observed frequency
of ground truth positives (aka “fraction of positive") with the average predicted probability within
the bin. Ideally, these two quantities should be as close as possible, i.e. close to the line of “perfect
calibration" in Figure 7a and Figure 7b. The calibration curves in Figure 7a and Figure 7b show
that all of the models are well calibrated both in their categorical x and medical concept y forecasts
(averaged over all forecasted data points in the respective validation sets).

D.1.1 Online Prediction with Uncertainty

We provide additional online prediction results for the index patient pidx. Figures 8a and 8b show the
evolution in the predicted mean and 95% CI of the Forced Vital Capacity (FVC)1 and DLCO(SB)2 for
pidx. The values after the dashed line are forecasted. As more prior information becomes available to
the model, the forecast becomes more accurate and the CI shrinks.

Figure 8c shows predicted probabilities of organ stages at a given time point. The intensity of the
heatmap reflects the predicted probability.

1FVC is the amount of air that can be exhaled from the lungs.
2DLCO(SB) stands for single breath (SB) diffusing capacity of carbon monoxide (DLCO).
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Figure 6: Performance for y prediction.

(a) Categorical clinical measurements x (b) Medical concepts y

Figure 7: Calibration curves

D.2 Cohort Analysis

We present here additional experiments to gain insights into cohort patterns.

D.2.1 Prior z Distributions

By learning p(x,y|s, τ ), we estimate the average prior disease trajectories in the cohort. This allows
the comparison of trajectories, conditioned only on the simple subset of variables s and τ and thus
without facing any confounding in the trajectories, for instance, due to past clinical measurements
x. For example, in Figure Figure 9a we overlaid the predicted prior trajectories of Forced Vital
Capacity (FVC)3 for a subset of patients in Ptest with a static variable corresponding to the SSc
subtype. Overall, the FVC values are predicted to remain quite stable over time, but with different
average values depending on the SSc subtype. In Figure Figure 9b, the prior predicted N-terminal pro

3FVC is the amount of air that can be exhaled from the lungs. Low levels indicate lung malfunction.
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Figure 8: Online prediction of clinical variables and medical concepts.

(a) Prior FVC trajectories overlaid with dif-
ferent SSC subsets.

(b) Prior predicted trajectories conditioned on
static variables.

Figure 9: Combined figure with two subfigures.

b-type natriuretic peptide (NTproBNP)4 trajectories overlaid with age, show that the model predicts
an overall increase in NTproBNP over time, and steeper for older patients.

D.2.2 Latent Space and Medical Concepts

Figure 10: Predicted organ stages in the latent space. The red line highlights the trajectory of pidx.

t−SNEs: The t-SNE [33] graphs were obtained by computing the two-dimensional t-SNE
projection of the latent variables z1:T | (x1:T , c) (i.e. only using reconstructed z) of a subset of

4They are substances produced by the heart. High levels indicate potential heart failure.
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Ptrain and then transforming and plotting the projected latent variables (reconstructed or forecasted)
from patients in Ptest [23].

In Figure 3b, we showed the trajectory of pidx overlaid with the predicted organ involvement
probabilities. In Figure 10, we additionally show the trajectory overlaid with the organ stages,
showing for instance in the first panel that the model predicts an increase in the lung stage and in the
last panel that pidx undergoes many different heart stages throughout the disease course.

D.2.3 Clustering of Patient Trajectories and Trajectory Similarity

We discuss additional results obtained through clustering and similarity analysis of latent trajectories
(subsubsection 3.2.2). In Figure 12, we show the different predicted probabilities of the medical
concepts y for the mean trajectories within the three found clusters. This reveals which medical
concepts are most differentiated by the clustering algorithm. For instance, cluster one exhibits
low probabilities of organ involvement, while cluster two shows increasing probabilities of heart
involvement and low probabilities of lung involvement. In contrast, cluster three shows increasing
probabilities for both heart and lung involvement.

Figure 11: Trajectory of pidx and its 3 nearest neighbors in the latent space.

Additionally, we apply a k-nn algorithm with the dtw distance in the latent space to find patients with
similar trajectories to pidx. Figure 11 shows the trajectory of pidx and its three nearest neighbors in
the latent space. We can see that the nearest neighbors also have an evolving disease, going through
various organ involvements and stages. Similarly, in Figure 13, the medical concept trajectories of
pidx and its nearest neighbors reveal consistent patterns.
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Figure 12: Medical concept trajectories for cluster means.
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Figure 13: Medical concept trajectories for pidx and its 3 nearest neighbors.
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E Clinical Insights for Systemic Sclerosis

In this paper, we present a general approach for modeling and analyzing complex disease trajectories,
for which we used the progression of systemic sclerosis as an example. The focus of this paper is
on the machine learning methodology, while clinically relevant insights and data analysis regarding
systemic sclerosis will be discussed in a clinical follow-up paper where our model will be applied to
investigate the involvement of multiple organs.

Since there is ongoing research and discussion towards finding optimal definitions of the medical
concepts (involvement, stage, progression) for all impacted organs in SSc, we used preliminary
definitions for three organs as a proof of concept.

E.1 Dataset

The European Scleroderma Trials and Research group (EUSTAR) maintains a registry dataset of
about 20’000 patients extensively documenting organ involvement in SSc. It contains around 30
demographic variables, and 500 temporal clinical measurement variables documenting the patients’
overall and organ-specific disease evolution. For a detailed description of the database, we refer the
reader to Meier et al. [19], Hoffmann-Vold et al. [13].

For our analysis, we included 5673 patients with enough temporality (i.e. at least 5 medical visits). We
used 10 static variables related to the patients’ demographics and 34 clinical measurement variables,
mainly related to the monitoring of the lung, heart, and joints in SSc. In future work, we plan to
include more patients and more clinical measurements for analyzing all involved organs.

E.2 Medical Concepts Definitions

Defining the organ involvement and stages in SSc is a challenging task as varying and sometimes
contradicting definitions are used in different studies. However, there is ongoing research to find
the most accurate definitions. Since this work is meant as a proof of concept, we used the following
preliminary definitions of involvement and stage for the lung, heart, and joints (arthritis). The
medical concepts are defined for the variables of the EUSTAR database. There are 4 stages of
increasing severity for each organ. If multiple definitions are satisfied, the most severe stage is
selected. Furthermore, there is missingness in the labels due to incomplete clinical measurements.
Our modeling approach thus also could be used to label the medical concepts when missing.

We use the following abbreviations:

• Interstitial Lung Disease: ILD
• High-resolution computed tomography: HRCT
• Forced Vital Capacity: FVC
• Left Ventricular Ejection Fraction: LVEF
• Brain Natriuretic Peptide: BNP
• N-terminal pro b-type natriuretic peptide: NTproBNP
• Disease Activity Score 28: DAS28

E.2.1 Lung

Involvement At least one of the following must be present:

• ILD on HRCT
• FVC < 70%

Severity staging

1. FVC > 80% or Dyspnea stage of 2
2. ILD extent < 20% or 70% < FVC ≤ 80% or Dyspnea stage of 3
3. ILD extent > 20% or 50% ≤ FVC ≤ 70% or Dyspnea stage of 4
4. FVC< 50% or Lung transplant or Dyspnea stage of 4
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E.2.2 Heart

Involvement At least one of the following must be present:

• LVEF < 45%

• Worsening of cardiopulmonary manifestations within the last month
• Abnormal diastolic function
• Ventricular arrhythmias
• Pericardial effusion on echocardiography
• Conduction blocks
• BNP > 35 pg/mL
• NTproBNP> 125 pg/mL

Severity staging

1. Dyspnea stage of 1
2. Dyspnea stage of 2
3. Dyspnea stage of 3
4. Dyspnea stage of 4

E.2.3 Arthritis

Involvement At least one of the following must be present:

• Joint synovitis
• Tendon friction rubs

Severity staging

1. DAS28 < 2.7

2. 2.7 ≤ DAS28 ≤ 3.2

3. 3.2 < DAS28 ≤ 5.1

4. DAS28 > 5.1
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