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Abstract

Graph Foundation Models (GFMs) have demonstrated remarkable potential across
graph learning tasks but face significant challenges in knowledge updating and rea-
soning faithfulness. To address these issues, we introduce the Retrieval-Augmented
Generation (RAG) paradigm for GFMs, which leverages graph knowledge retrieval.
We propose RAG4GFM , an end-to-end framework that seamlessly integrates
multi-level graph indexing, task-aware retrieval, and graph fusion enhancement.
RAG4GFM implements a hierarchical graph indexing architecture, enabling multi-
granular graph indexing while achieving efficient logarithmic-time retrieval. The
task-aware retriever implements adaptive retrieval strategies for node, edge, and
graph-level tasks to surface structurally and semantically relevant evidence. The
graph fusion enhancement module fuses retrieved graph features with query fea-
tures and augments the topology with sparse adjacency links that preserve structural
and semantic proximity, yielding a fused graph for GFM inference. Extensive ex-
periments conducted across diverse GFM applications demonstrate that RAG4GFM
significantly enhances both the efficiency of knowledge updating and reasoning
faithfulness2.

1 Introduction

Graph representation learning [1, 2, 3] has achieved remarkable progress across diverse graph
tasks, such as node classification and link prediction. Concurrently, the substantial success of
Large Language Models (LLMs) [4, 5] has revolutionized natural language processing (NLP) and
motivated the development of Graph Foundation Models (GFMs) [3, 6, 7]. GFMs adapt large-scale
pre-training techniques to graph data, enabling powerful cross-domain generalization and multi-
task adaptability for diverse graph-based applications. However, two practical challenges remain
prominent: knowledge updating [8, 9, 10]i.e., keeping models current as graphs evolveand faithful
reasoning [11, 12, 13]i.e., generating accurate and factually consistent outputs.

On the one hand, as graph data evolves rapidly, GFMs usually require knowledge updates within
hours or a day [14, 15], massive parameter scales impose substantial computational demands [16, 17].
On the other hand, handling complex graph structures [18] and coupling GFMs with LLMs may
induce hallucinations [19, 20, 21], e.g., generating fictitious features or nodes, leading to unfaithful
or factually inconsistent outputs.

Some recent studies have attempted to address these challenges. Parameter-efficient fine-tuning
(PEFT) methods on GFMs, such as GraphLoRA [22, 23] and G-Adapter [24], aim to reduce the cost
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Figure 1: Comparison between conventional training-driven GFMs (b) and RAG4GFM (c). (a) A
user query comprising a natural-language description and a graph; (b) Conventional GFMs rely on
task-specific post-training to integrate new knowledge, incurring substantial computational cost; (c)
RAG4GFM integrates external graph knowledge at inference time via retrieval and fusion, ensuring
faithful reasoning without additional post-training.

of knowledge updating by adapting pre-trained models via task-specific post-training (as depicted in
Figure 1(b)). However, these methods still require substantial computational resources and remain
vulnerable to catastrophic forgetting. Concurrent efforts to improve reasoning faithfulness focus
on enhancing the quality of training data [25, 26] or refining GFM architectures [27, 28]. Despite
these advancements, reliable reasoning remains challenging because these methods largely operate
within fixed parameters and training data, lacking mechanisms to dynamically ground predictions in
verifiable, task-relevant graph evidence.

Retrieval-augmented generation (RAG) [29, 30] offers an appealing alternative: by retrieving external
evidence at inference time, RAG circumvents frequent parameter updates, adapts to evolving corpora,
and can mitigate hallucinations [31, 32] However, extending this RAG paradigm to graph data and
GFMs raises three challenges: (1) Indexing: how to build graph indices that preserve structure and
serve both RAG and GFMs? (2) Retrieval: how to design retrieval mechanisms that accommodate
task heterogeneity? (3) Augmentation: how to augment the task-specific query with retrieved graph
evidence?

To overcome these challenges, we propose RAG4GFM , a unified RAG framework designed explicitly
for graph data, graph tasks, and GFMs. To our knowledge, it is among the first comprehensive designs
that operationalize RAG for GFMs. As illustrated in Fig. 1(c), RAG4GFM augments a GFM with
external graph knowledge through a multi-stage pipeline. Firstly, the “multi-level graph index”
module processes raw graph data into an efficient, structure-aware index. Secondly, the “task-aware
retriever” module identifies the user intent and retrieves relevant candidate subgraphs from the
constructed index. Finally, the “graph fusion enhancement” module integrates retrieved subgraph
knowledge into the user query, enriching its features and structure. By grounding GFM’s predictions
in retrieved graph evidence-rather than solely in its internal parametersRAG4GFM flexibly adapts to
evolving knowledge and markedly enhances reasoning fidelity.

Specifically, we first establish an efficient and flexible multi-level graph indexing module. This module
is designed to preserve graph semantics and structural topology by integrating four complementary
indices: text features extracted via LM encoders, node embeddings that capture structural information
via Laplacian positional encoding [33], edge-level representations, and graph-level embeddings. By
leveraging the hierarchical structure index, the module achieves comprehensive semantic-structural
encoding with logarithmic-time complexity.

Second, building on this index, we propose a task-aware retriever module that adapts to diverse
downstream task types. This module dynamically selects appropriate indices and retrieval strategies
based on the task typology (node, edge, or graph), retrieving relevant textual and structural features
for node tasks, edge-level representations for edge tasks, and graph-level embeddings for graph tasks.
Additionally, we use a fusion reranker to consolidate and prioritize retrieval results from both graph
features and semantic spaces.

Finally, we introduce a graph fusion enhancement module that integrates retrieved evidence with
the query graph effectively. This module consists of two components: a feature-fusion component
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that integrates the retrieved graph features with query features based on attention weights calculated
from similarity scores, while a topological-structure enhancement component augments the query
graph’s connectivity by combining adjacency information from relevant retrieved graphs through
sparse matrix operations. This structured fusion approach surpasses sequential concatenation in
traditional RAG by better aligning with graph connectivity, preserving topological information, and
accommodating multimodal user queries within the GFM context.

The GFM then performs inference on this fused graph, allowing it to leverage the augmented context
for more accurate predictions and a significant reduction in hallucinations. Extensive experiments
across multiple GFM applications demonstrate RAG4GFM ’s superiority in efficiency and reliability,
with safeguards intended to minimize the risk of pre-training data contamination.

2 Related Work

Graph Foundation Models. GFMs leverage large-scale pre-training for versatile knowledge transfer,
exhibiting reasoning and domain adaptation capabilities [34]. They encompass: (1) Self-supervised
learning approaches, such as masked auto-encoding (e.g., GraphMAE [27]); (2) Graph-language
model alignment methods that facilitate multimodal pre-training, such as GraphGPT [16]; and (3)
Recent architectural innovations aimed at enhancing transferability via Mixture of Experts (MoE),
such as AnyGraph [17], structural understanding through topology-aware tokenization as in Open-
Graph [35], or improving generalization through property-driven training, such as GraphProp [28].
However, GFMs are constrained by inefficient knowledge updating, typically requiring extensive
retraining [16], and difficulties in ensuring reasoning reliability over complex graph structures,
potentially leading to biases [11].

Graph Indexing and Retrieval. Graph indexing and retrieval have progressed from general vector
methods to structure-aware techniques. Initial advancements focused on optimizing vector-space
retrieval efficiency, including adaptive algorithms, such as FLANN [36], and hierarchical graph
structures for efficient search, such as HNSW [37, 38]. These formed the basis for scalable libraries
such as FAISS [39]. While traditional Information Retrieval (IR) methods like BM25 [40] exist,
vector-based strategies are more directly applicable to graph data retrieval. Despite these advance-
ments, developing retrieval systems that effectively integrate multimodal data (e.g., text with graph
structures) and generalize across diverse graph-specific tasks remains a significant challenge.

Graph Retrieval-Augmented Generation. RAG [30] enhances LLMs by integrating external knowl-
edge through a “retrieve-generate” pipeline. Its progression includes: (1) Foundational end-to-end
trainable RAG frameworks for knowledge-intensive NLP [30]; (2) Architectural refinements, includ-
ing multi-hop retrieval for comprehensive knowledge gathering and integrated retriever-generator
optimization [41, 42]; and (3) Recent graph-centric extensions, featuring methods that empha-
size structure-aware retrieval, such as GraphRAG [43], computational optimization, such as Ligh-
tRAG [44], or hybrid knowledge integration, such as HybridRAG [45]. Nevertheless, applying RAG
to graph data still encounters critical challenges. Standard vector retrieval techniques often fail to
adequately represent complex graph topology [46]. Moreover, the creation of specialized graph
indexing and retrieval mechanisms tailored for the unique requirements of graph RAG remains an
active research direction.

3 RAG4GFM

RAG4GFM is a RAG framework tailored for graph data and GFMs, integrating external graph
knowledge into the GFM inference process. The pipeline initiates with multi-level graph indexing
(Figure 2(a)), where RAG4GFM constructs HNSW-based [47] multimodal indices for graph corpora.
Next, the task-aware retrieval mechanism (Figure 2(b)) processes user queries (text and graph
structure) and adaptively retrieves relevant subgraphs. Subsequently, the graph fusion enhancement
module (Figure 2(c)) integrates these retrieved subgraphs with the original query graph through
a two-step process: attention-based feature fusion and adjacency matrix-based topological fusion.
Finally, the fused graph is input to the base GFM for inference.
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Figure 2: The overall architecture of RAG4GFM . RAG4GFM dynamically augments a Base GFM
by: (a) constructing a “Multi-Level Graph Index” (b) retrieving and reranking task-relevant subgraphs
based on the user query via a “Task-Aware Retriever”; and (c) fusing the retrieved subgraphs with
query information through the “Graph Fusion Enhancement module”, before generation.

3.1 Multi-level Graph Indexing

The effective application of the RAG paradigm in GFMs hinges on constructing graph data indexing
systems that preserve graph completeness while ensuring efficient querying. Unlike traditional LLMs,
user queries in GFM application scenarios typically present a hybrid form of text and graph data. The
complex topology and multimodal attributes of graph data pose a significant challenge: designing an
index system that simultaneously maintains graph structural fidelity and supports efficient retrieval.
To address this challenge, we propose a multi-level graph indexing approach that first encodes mixed
graph features, and then constructs hierarchical indices to enable scalable querying and retrieval.

Mixed Feature Encoding Mechanism. To comprehensively represent the multidimensional charac-
teristics of graph data, this work designs four complementary feature encoding mechanisms: node
feature encoding, structural feature encoding, edge feature encoding, and graph-level encoding, which
align with the hierarchical reasoning capabilities discussed in Section 1. This mixed encoding strat-
egy realizes multi-granular representations of graph data, thereby accommodating diverse retrieval
requirements under varied tasks.

Node Feature Encoding: For nodes in the graph, we employ pre-trained language models to seman-
tically encode the textual descriptions of node v as ht(v) = LM(v). This method fully leverages
the advantages of pre-trained language models in semantic understanding, mapping the textual
information of nodes to high-dimensional semantic spaces.

Structural Feature Encoding: The topological position of nodes in a graph contains rich structural
information. We combine Laplacian Positional Encoding (LAPPE) with node degree metrics to
construct structure-aware feature representations as

hs(v) = LAPPE(v)⊕ DegIN(v)⊕ DegOUT(v), (1)

where LAPPE(v) is the positional encoding based on the eigendecomposition of the graph laplacian
matrix, DegIN(v) and DegOUT(v) represent the in-degree and out-degree of node v, respectively, and
⊕ denotes feature concatenation. Laplacian positional encoding effectively captures the position
information of nodes in the global graph structure, while node degree information reflects local
connection patterns. This encoding method is invariant to node permutations and graph isomorphism,
accurately capturing nodes’ relative positions within the topology.

Edge Feature Encoding: To capture the structural properties and topological roles of edges, we
transform the original graph into its corresponding line graph. We then compute the LapPE for the
nodes in this line graph. This approach allows us to generate a feature representation he(u, v) for
each edge e in the original graph that effectively encodes its structural context within the overall
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graph topology. This approach effectively differentiates edges by their connectivity patterns and
structural roles within the graph.

Graph-level Encoding: To obtain a holistic representation, we integrate node features, edge features,
and graph statistical features:

hg(G) = hNODE(G)⊕ hEDGE(G)⊕ hSTATS(G), (2)
where hNODE(G) = MEAN{ht(v) | v ∈ V }, hEDGE(G) = MEAN{he(u, v) | (u, v) ∈ E},

and hSTATS(G) = [|V |, |E|, ρ(G)],

where hNODE(G), hEDGE(G), and hSTATS(G) represent node feature aggregation, edge feature aggre-
gation, and graph statistical features, respectively. ρ(G) denotes the graph density, i.e., the ratio
between actual and maximal possible edge counts. This comprehensive representation method fully
captures the overall characteristics of the graph, providing effective support for graph-level tasks.

Hierarchical Index Construction. With the mixed features obtained, we proceed to organize
them into an efficient multi-level index structure. This research selects the Hierarchical Navigable
Small World (HNSW) as the theoretical foundation for the index structure. The hierarchical search
pattern of HNSW aligns well with the multi-scale structure inherent in graph data. Accordingly, we
construct a four-level hierarchical index structure covering node-, structure-, edge-, and graph-level
representations: HINDEX = {ht(v),hs(v),he(u, v),hg(G)}.

This multi-space index design offers two primary advantages: firstly, it overcomes the limitations
of single representation methods by comprehensively capturing both semantic and structural graph
information while flexibly supporting diverse node, edge, and graph-level retrieval tasks through a
unified interface; secondly, it guarantees efficient O(log2 N) retrieval time, crucial for large-scale
graph data.

3.2 Task-aware Retrieval

GFMs span diverse application scenariossuch as node classification, link prediction, and graph
classificationeach with distinct retrieval requirements. Traditional unified retrieval strategies fail to
capture the heterogeneity of such tasks, often resulting in suboptimal efficiency and precision. To
address this, we propose a task-aware retrieval framework that dynamically adapts retrieval strategies
according to task characteristics, thereby improving both retrieval accuracy and computational
efficiency.

Retrieval Strategy Selector. To accommodate heterogeneous graph tasks, the retrieval module must
interpret user intent and select optimal retrieval strategies accordingly. We employ an LM-based task
classifier that performs joint analysis of the natural language query and its associated graph context to
predict the task type: τ(q) ∈ {NODE, EDGE, GRAPH}, where τ denotes the LLM-implemented task
discrimination function, and q represents the user’s natural language query. The predicted task type
determines which feature spaces and retrieval operators are subsequently activated.

Hybrid Feature Retrieval.

Based on task classification results, the retrieval module adaptively selects task-relevant feature
spaces to minimize irrelevant noise and align with downstream GFM objectives.

For node-level tasks, such as node classification and node regression, we jointly query both node and
structural feature spaces to capture fine-grained local semantics. For edge-level tasks, including link
prediction and edge classification, we leverage node and edge features to represent pairwise relational
semantics. For graph-level tasks, such as graph classification and regression, we utilize holistic graph
embeddings augmented with aggregated node features.

To obtain the final retrieval score for a query q under the graph context C, we apply a reciprocal rank
fusion (RRF) strategy to aggregate results from multiple retrieval channels:

S(q|hq, C) =
∑

q∈F(hq,C)

1

d+ rankkq (C)
, (3)

where F(hq, C) denotes the retrieved feature set, d is a smoothing constant, and rankkx(C) represents
the rank of candidate x among the top-k results. The corresponding feature sets for different tasks
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are defined as:

F(hq, C) =


{ht(v),hs(v)}, if C = v (node-level);
{ht(u),ht(v),he(u, v)}, if C = (u, v) (edge-level);
{ht(v),hg(G)}, if C = G (graph-level).

(4)

Unlike conventional methods that rely solely on node-level feature aggregation, our hybrid retrieval
framework integrates semantic and structural cues across multiple levels, enabling task-adaptive
retrieval that improves both precision and efficiencykey challenges emphasized in the introduction.

Unlike traditional methods that rely solely on node feature aggregation, our approach constructs more
comprehensive graph representations through the integration of multi-level information.

3.3 Graph Fusion Enhancement

In conventional RAG frameworks for NLP tasks, retrieved text fragments are typically fused via
simple concatenation or mean pooling of embeddings. However, when applied to graph data, such
approaches fail to preserve topological relationships and path dependencies, resulting in substantial
loss of structural information. Moreover, node importance in graphs depends heavily on positional
and connectivity patterns, which traditional fusion methods cannot effectively capture. To address
these limitationsparticularly the structure-semantics imbalance highlighted in Section 1, we propose
a dual graph fusion enhancement mechanism, consisting of (1) attention-based feature fusion and (2)
topological structure enhancement.

Attention Feature Fusion. We introduce a similarity-based dynamic weighting mechanism that
adaptively determines the importance of each retrieved graph according to its semantic similarity with
the query graph. This mechanism enables the model to assign higher weights αF

i to more relevant
retrieved graphs, thereby focusing on knowledge most pertinent to the query.

h′N
v = hv +

k∑
i=1

(
αF
i · 1

|Vi|
∑
u∈Vi

hu

)
· I[αF

i > γ], (node-level) (5)

h′E
SRC = hSRC +

k∑
i=1

(
αF
i · 1

|Vi|
∑
u∈Vi

hu

)
· I[αF

i > γ], (edge-level, source) (6)

h′E
DST = hDST +

k∑
i=1

(
αF
i · 1

|Vi|
∑
u∈Vi

hu

)
· I[αF

i > γ], (edge-level, destination) (7)

h′G
v =

1

k

k∑
i=1

(
αF
i · βi

v · hv

)
· I[αF

i > γ], (graph-level) (8)

βi
v = SOFTMAX(hv · (hq

g + hi
g)), (graph-level, attention) (9)

where h′N
v is the enhanced target node feature, hv is the original node feature, h′E

SRC and h′E
DST are

the enhanced source and destination edge features, h′G
v is the enhanced target graph feature, Vi is the

node set of the i-th retrieved graph, and γ is the feature fusion threshold (default value 0.5) used to
filter low-relevance retrieved results. hq

g and hi
g represent the global features of the query graph and

the i-th retrieved graph, respectively, and k is the number of effective retrieved results.

Compared to traditional feature fusion methods, the attention feature fusion mechanism proposed in
this research adaptively emphasizes highly relevant knowledge through dynamic weight allocation,
effectively reducing noise impact while utilizing threshold filtering mechanisms to avoid interference
from low-quality retrieved results.

Topological Structure Enhancement. Complementary to feature fusion, the topological structure
enhancement module focuses on enriching the query graph’s connectivity patterns. It selectively
incorporates structurally relevant edges from retrieved graphs, weighted by their graph-level relevance
scores αT

i , thereby augmenting the query graph with semantically aligned structural information.
Implemented via sparse adjacency operations, this module efficiently handles large-scale graph data
while maintaining topological consistency.
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Given the adjacency matrix A of the query graph and the set of adjacency matrices A1,A2, ...,Ak

of retrieved graphs, the enhanced adjacency matrix is computed as:

A′ = A+

k∑
i=1

αT
i ·Ai · I[αT

i > γ], (10)

where αT
i serves as the relevance weight. To suppress noisy edges, we apply threshold filtering such

that A′
uv = I[A′

uv > δ], where δ is the edge addition threshold (default value 0.5). This sparse
matrix-based implementation achieves efficient large-scale processing while preserving graph sparsity
and interpretability.

Other analyses. Due to space limitations, we present analyses on the complexity in Appendix A.

4 Experiments

4.1 Experimental Setup

Datasets. To evaluate the effectiveness and generality of RAG4GFM , we conduct experiments
on a diverse collection of graph datasets covering six task types. For node classification and link
prediction, we adopt the latest TAG benchmark [48] to prevent potential data leakage from GFM
pre-training. For other tasks, we select datasets that, to the best of our knowledge, were not used in
any GFM pre-training phase, verified through public model documentation and release notes. Table 1
summarizes the dataset statistics, with additional details in Appendix B.1.

Table 1: Statistics of the dataset used in our experiments. “Task” denotes the downstream task type:
NC (Node Classification), NR (Node Regression), LC (Link Classification), LP (Link Prediction),
GC (Graph Classification), and GR (Graph Regression). “Graphs” indicates the number of graph
instances; a value of 1 denotes a single large graph.

Dataset Nodes Edges Graphs Domain Task

Books-Children [48] 76,875 1,554,578 1 E-commerce NC,LP
Books-History [48] 41,551 358,574 1 E-commerce NC, LP
Ele-Computers [48] 87,229 721,081 1 E-commerce NC, LP

Ele-Photo [48] 48,362 500,928 1 E-commerce NC, LP
MiniGCDataset [49] 21,909 177,875 1,000 Synthetic GC

BA2MotifDataset [50] 25,000 51,392 1,000 Synthetic GC
Chameleon [51] 2,277 36,101 1 Wikipedia NR

WN18Dataset [52] 40,943 151,442 1 Knowledge LC
QM7bDataset [53] 108,165 1,766,695 7,211 Biology GR

Baselines. We evaluate RAG4GFM against state-of-the-art approaches from three categories:
(1) Prompt Engineering Methods: Few-shot Learning [54], Chain-of-Thought (COT) [55], IR-
augmented COT [56]. These methods focus on structuring the input prompt to guide the GFM’s
inference without altering model parameters, leveraging strategies like few-shot examples or ex-
plicit reasoning steps. (2) Retrieval-Enhanced Methods: VanillaRAG [30], GraphRAG [43],
G-Retriever [57]. These methods augment GFMs with external knowledge retrieval and ground
predictions in relevant evidence, ranging from text to graph-aware retrieval. (3) Graph Out-of-
Distribution Generalization Methods: Prototype [58],GNNSafe [59]. These approaches focus on
the ability to generalize to unseen domains, structures, or distributions, emphasizing robustness and
transferability.

GFMs. We evaluate RAG4GFM on seven representative GFMs, grouped by their predictive ar-
chitecture into three types: (1) GNNs as predictor: OpenGraph [35] and AnyGraph [17]. (2)
Co-learning GNNs and LLMs: GLEM [60]. (3) LLMs as predictor: GraphGPT [16], HiGPT [61],
LLaGA [62], and GraphAdapter [63]. Further details and descriptions of these models are provided
in Appendix B.2.

4.2 Effectiveness of RAG-Enhanced GFMs

Our first research question investigates whether RAG-based mechanisms enhance the performance
of existing GFMs across various graph tasks. Table 2 shows the results for node classification and
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link prediction, while additional findings for node regression, link classification, graph classification,
and graph regression are reported in Appendix C.1. Note that some GFMs lack results for tasks not
supported by their architectures; for instance, OpenGraph does not support graph-level classification.

Table 2: Results of Node Classification and Link Prediction on Four Datasets

Model
Datasets

Computers History Fitness Photo

Acc ROC-AUC Recall Acc ROC-AUC Recall Acc ROC-AUC Recall Acc ROC-AUC Recall

Node Classification Results
HiGPT 76.82 61.45 58.76 60.45 59.78 54.34 70.12 58.67 57.23 63.88 57.45 53.21
HiGPT+RAG4GFM 79.34 66.89 66.42 63.21 63.45 59.76 72.89 63.78 64.32 67.50 63.24 60.45

GraphGPT 75.45 62.34 58.23 59.88 58.90 53.67 69.34 59.23 56.89 62.15 56.78 52.90
GraphGPT+RAG4GFM 81.23 67.56 67.45 64.92 64.32 60.54 74.88 64.56 65.23 69.45 63.89 61.23

GLEM 79.45 63.56 60.12 54.67 57.23 52.45 73.89 60.45 58.90 61.23 56.23 53.45
GLEM+RAG4GFM 83.12 68.90 68.23 59.89 61.78 57.34 75.45 65.12 66.78 66.90 62.56 59.34

LLaGA 71.23 59.45 55.67 58.90 58.23 53.21 64.56 55.34 54.45 59.78 55.45 51.78
LLaGA+RAG4GFM 76.89 64.23 63.45 61.23 62.34 58.56 71.90 61.23 61.45 65.45 61.23 58.34

GraphAdapter 76.78 62.78 59.34 52.34 56.45 51.23 69.90 59.78 57.45 65.78 58.45 54.67
GraphAdapter+RAG4GFM 81.23 67.45 67.23 57.89 61.23 56.78 73.45 64.34 64.56 69.90 64.23 61.56

OpenGraph 74.67 61.32 57.73 62.71 61.58 55.82 67.59 57.80 56.74 60.93 56.97 52.48
OpenGraph+RAG4GFM 79.38 66.43 65.01 63.92 64.80 61.55 73.11 62.77 63.38 67.55 62.70 59.10

AnyGraph 73.45 60.89 57.23 61.89 60.23 54.90 67.90 57.45 55.89 61.23 56.45 52.67
AnyGraph+RAG4GFM 79.56 66.12 65.34 63.45 64.12 60.23 72.34 62.89 63.12 67.89 62.78 59.45

Link Prediction Results
OpenGraph 53.33 39.84 36.58 40.87 40.70 34.28 46.61 35.62 35.16 39.33 35.79 30.97
OpenGraph+RAG4GFM 58.21 45.18 43.66 42.27 44.14 39.92 52.00 40.71 42.25 45.82 41.77 37.76

HiGPT 55.25 40.68 37.43 38.99 38.56 33.13 49.44 36.61 35.90 42.06 36.26 32.05
HiGPT+RAG4GFM 58.00 45.85 45.28 41.94 43.02 37.76 52.29 41.78 43.18 45.93 42.52 39.17

GraphGPT 54.27 41.03 37.16 37.71 38.04 32.09 48.51 36.72 35.06 40.88 35.59 31.13
GraphGPT+RAG4GFM 60.37 46.05 45.93 42.96 43.62 39.04 53.14 42.68 44.27 47.74 43.06 39.81

AnyGraph 52.17 38.53 36.17 40.01 39.68 33.07 46.46 35.47 34.30 39.52 35.29 31.06
AnyGraph+RAG4GFM 58.26 44.92 43.94 41.74 43.26 38.84 51.34 40.59 41.83 45.97 41.53 38.12

Across all four datasets, the RAG4GFM yields consistent and substantial improvements, demonstrat-
ing its strong generalization capability. For instance, GLEM+RAG4GFM achieves 83.12% accuracy
on node classification in the Computers dataset, representing a relative gain of approximately 5.5%
over GLEM. Similarly, GraphGPT+RAG4GFM attains 60.37% accuracy on link prediction, outper-
forming its vanilla counterpart by 5.1%.

The improvements are consistently observed across all four datasetsComputers, History, Fitness,
and Photohighlighting the broad applicability of our approach. For example, GLEM+RAG4GFM
achieves 83.12% accuracy on node classification in the Computers dataset, a relative gain of 5.5% over
the baseline GLEM. Similarly, GraphGPT+RAG4GFM attains 60.37% accuracy on link prediction,
outperforming its vanilla counterpart by 5.1%. These consistent trends indicate that RAG-based
augmentation benefits both GNN-based and LLM-based GFMs. To elucidate the source of these
improvements, we analyze the core design of RAG4GFM . The Multi-level Indexing, coupled with the
Task-Aware Retriever module, ensures that each GFM retrieves the most relevant external subgraphs
and feature spaces efficiently, reducing noise and retrieval latency. Finally, the Graph Fusion
Enhancement module integrates retrieved information into the query graph through both feature-level
and topology-level fusion. This integration refines node embeddings for classification, strengthens
edge inference for link prediction, and provides more coherent context for graph-level reasoning.
These components operate synergisticallyencoding richer local context, retrieving task-relevant
external knowledge, and integrating it in a structure-consistent manner.

Overall, the results demonstrate that RAG4GFM effectively overcomes the static-parameter limitation
of conventional GFMs by dynamically grounding predictions in external structured knowledge. This
design directly addresses the integration bottleneck highlighted in the introduction, leading to more
accurate, contextually grounded, and robust graph-level reasoning across tasks without requiring
additional post-training.

4.3 Ablation Study on RAG4GFM

To quantitatively evaluate the individual contributions of RAG4GFM ’s key components, we perform
a series of ablation experiments using AnyGraph as the base GFM under identical hyperparameter
settings for fair comparison. We analyze both architectural modules (retrieval, fusion, indexing)
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and feature-level encodings to understand how each design choice affects performance on node
classification (Computers) and link prediction (History) tasks.

Variants on Core Architecture. w/o RAG. Removes the entire retrieval-augmented generation
(RAG) pipeline; the GFM operates without external knowledge retrieval or integration. w/o GF.
Retains retrieval but replaces the specialized graph fusion module with a naive concatenation strategy,
removing the semantic-structural alignment mechanism. w/o GI. Replaces the hierarchical graph
indexing with a basic text-similarity index, assessing the importance of structure-aware retrieval.

Variants on Feature Encoding. To further assess the effectiveness of our structural feature design,
we compare three encoding strategies: LAPPE only. Uses Laplacian positional encodings, capturing
global structural information but limited in local awareness. Node Degree only. Uses node in/out-
degree as simple local centrality features. LAPPE + Degree. Combines both global positional and
local topological cues, aligning with the principle of global-local structural complementarity.
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Figure 3: Ablation study results for RAG4GFM on node classification (Computers) and link prediction
(History) tasks. Higher values are better.

As illustrated in Figure 3, the full RAG4GFM configuration consistently achieves the best results
across both tasks. Among the architectural variants, w/o RAG exhibits the largest drop, confirming
that retrieval is crucial for integrating dynamic external knowledge. Removing the graph fusion
module (w/o GF) also decreases accuracy and AUC, showing that our fusion mechanism is essential
for coherent reasoning beyond naive feature concatenation. The performance reduction of w/o GI
highlights the role of hierarchical, structure-aware indexing in precise, low-noise retrieval.

Regarding feature encoding, models using only LAPPE or only node degree perform noticeably
worse than the joint configuration. The combined LAPPE+Degree variant recovers nearly the same
performance as the full model, validating that global-local structural complementarity enhances graph
representation learning. This observation is consistent across both Computers and History tasks,
underscoring that balanced structural cues benefit retrieval and fusion.

All componentsRAG retrieval, graph fusion, hierarchical indexing, and global-local feature encod-
ingcontribute jointly to RAG4GFM ’s effectiveness. Their synergy enables efficient updates, faithful
reasoning, and more accurate predictions across diverse graph tasks.

4.4 Comparison with Other Knowledge Updating Methods

We evaluate tasks where external knowledge is critical and frequently updated, such as knowledge-
intensive node classification.

Results in Table 3 show that RAG4GFM consistently outperforms all competing approaches, con-
firming its capability to retrieve and integrate relevant external information for accurate prediction.
Retrieval-enhanced (RE) methods generally outperform prompt-engineering (PE) and graph out-of-
distribution (G-OOD) methods. Among RE baselines, graph-aware models such as GraphRAG and
G-Retriever achieve stronger results than lexical retrievers, yet RAG4GFM delivers further gains
by explicitly fusing semantic and structural representations. PE methods provide only marginal
improvements, while text-only augmentation (e.g., IR-augmented CoT) remains insufficient for
complex graph reasoning. G-OOD-oriented approaches (Prototype, GNNSafe) underperform in
our setting, as they emphasize distributional robustness rather than dynamic knowledge updating.
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Table 3: Performance comparison of RAG4GFM with knowledge updating baselines on node
classification(Computers), link prediction (History), and graph classification (MiniGCDataset).

Category Method Computers (Node Class.) History (Link Pred.) MiniGCDataset (Graph Class.)

Accuracy ROC-AUC Accuracy ROC-AUC Accuracy ROC-AUC

Prompt Engineering
Few-shot Learning [54] 69.62 59.88 58.27 56.35 59.24 46.26

COT [55] 69.73 62.46 59.28 56.71 59.56 49.47
IR-augmented COT [56] 69.68 63.62 58.58 59.46 59.41 48.59

Graph Out-of-Distribution Prototype [58] 71.04 60.77 60.15 56.86 60.03 47.48
GNNSafe [59] 70.89 63.56 59.62 61.44 60.57 49.42

Retrieval-Enhanced

VanillaRAG [30] 71.58 64.63 61.42 60.57 63.46 51.58
GraphRAG [43] 74.47 64.61 59.84 61.55 63.18 51.86
G-Retriever [57] 75.06 64.95 60.27 61.97 63.73 52.32

RAG4GFM (Ours) AnyGraph-based 79.56 66.12 63.45 64.12 65.51 51.88

In summary, RAG4GFM demonstrates clear advantages as a knowledge-enhancement framework.
Compared with traditional fine-tuning or static knowledge-graph integration, the RAG paradigm
offers a flexible and efficient mechanism for updating GFMs with external knowledge. It achieves
this without costly retraining while maintaining reasoning fidelity.

Beyond predictive performance, we further examine the efficiency of RAG4GFM compared to
GraphLoRA [22], a representative parameter-efficient fine-tuning (PEFT) approach. Table 4 reports
the time and GPU memory required to reach identical accuracy targets. RAG4GFM achieves
comparable accuracy while reducing runtime by up to 7.0× and GPU memory usage by over 60%.
This efficiency arises from its retrieval-based updating paradigm, which avoids gradient-based
optimization and large parameter storage. Moreover, since RAG4GFM refreshes knowledge through
lightweight retrieval and fusion rather than re-training, it scales favorably to frequent graph updates
and resource-constrained environments.

Table 4: Efficiency and memory comparison between RAG4GFM and GraphLoRA [22] under
identical accuracy targets. Reported metrics include training time and peak GPU memory usage.

GFM Dataset Target Acc Time Peak GPU Memory

GraphLoRA + AnyGraph Computers 78% 7.32 Hours 25.23 GB
RAG4GFM + AnyGraph Computers 78% 63 Minutes 9.86 GB
GraphLoRA + HiGPT History 63% 5.87 Hours 17.18 GB
RAG4GFM + HiGPT History 63% 19 Minutes 5.15 GB

Other analyses. Due to space limitations, we present complexity analysis, experimental setups, and
further experimental results in C.

5 Conclusions

In this paper, we introduce RAG4GFM , a RAG framework tackling two critical GFM challenges:
efficient knowledge updating and faithful reasoning. Leveraging a three-component architecture,
RAG4GFM achieves significant gains in knowledge-update efficiency and reasoning faithfulness over
traditional parameter-updating approaches, as demonstrated by extensive empirical evaluation across
diverse domains. In future work, we will focus on: scalability to billion-node graphs and real-time
systems via disk-based ANN (e.g., DiskANN) and asynchronous fusion; and broader directions,
including leveraging negative/contrastive knowledge to refine decision boundaries and extending the
framework to multimodal graphs that include images. Our goal is to promote responsible AI practices
in the development and deployment of RAG-enhanced GFMs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We have clearly stated the main contributions in the abstract and introduction,
and organized the model structure section of our paper based on our research questions and
contributions.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed our limitations in the conclusion section.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide the detailed process of the complexity analysis in the appendix,
which proves the results we mentioned in the model section.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the complete experimental setup and data in the appendix, ensuring
the reproducibility of the results.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We provide the complete code and data in the supplemental material and
Anonymous GitHub (https://anonymous.4open.science/), ensuring the reproducibility of the
results.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/

public/guides/CodeSubmissionPolicy) for more details.
• While we encourage the release of code and data, we understand that this might not

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We discussed the experimental setup and hyperparameter selection in detail in
the appendix to ensure the reproducibility of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We did not report error bars or confidence intervals in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We provided the amount of compute required for each of the individual
experimental runs as well as estimate the total compute in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the NeurIPS Code of Ethics and confirmed that our research
conforms to it.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discussed the potential social impacts in the conclusion of the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
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• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We did not release any scraped datasets or pretrained language models in this
paper.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cited the original papers that produced the code packages and datasets used
in this paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We did not release any new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: We did not conduct any crowdsourcing or research with human subjects in this
paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: We did not conduct any research with human subjects in this paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We describe the Graph Foundation Models used in the experimental section of
this paper, as well as the LLMs used in these models. In addition, we only use LLMs for
polishing and formatting this paper, without affecting the research methods.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

A Model analysis

A.1 Complexity Analysis

Computational efficiency is crucial for the practical deployment of RAG4GFM in large-scale graph
scenarios. This section analyzes the time complexity and space complexity of its key components.

Multi-level Graph Indexing: The HNSW-based hierarchical graph index is constructed with time
complexity O(N logN), where N is the number of graphs or nodes. The index occupies O(N) space,
with constants determined by parameters such as the maximum connection number M (typically
M ∈ [16, 64]).

Task-aware Retriever: For a single query, the hierarchical retrieval process operates in O(logN)
timesignificantly faster than the O(N) cost of linear searchwhile requiring only O(k) auxiliary space
for k retrieved candidates (typically k � N ).

Graph Fusion Enhancement: In the fusion stage, attention-based feature aggregation has time
complexity O(k|V |d), where |V | is the average number of nodes per retrieved subgraph and d the
feature dimension. The subsequent structural enhancement costs O(k|V |2) for dense graphs or
O(k|E|) when sparse adjacency lists are used. The dominant space cost stems from storing the fused
graph representation, typically O(|V |2) for dense adjacency.

Overall Pipeline: Combining these components, the per-query time complexity is O(logN + k|V |2)
for dense and O(logN + k|E|) for sparse graphs. The total space complexity is O(N + |V |2),
comprising the index storage (O(N)) and the fused graph representation (O(|V |2)).

B Experimental Setups

B.1 Datasets

We evaluate on diverse datasets spanning e-commerce, synthetic, molecular, and knowledge graph
domains. (1) Books-Children, Books-History and Ele-Computers and Ele-Photo [48] are Amazon
co-purchase graphs of books and electronics. (2) MiniGCDataset [49] and BA2MotifDataset [50] are
synthetic datasets used by Barabasi-Albert model. (3) QM7bDataset [53, 64] contains ∼7,000 stable
organic molecules with computed quantum properties. (4) WN18Dataset [52] is a multi-relational
dataset extracted from Wordnet. (5) Chameleon [51, 65] is wikipedia page-page network.

B.2 Graph Foundation Models

We used seven representative GFMs as backbones for our experiments: (1) OpenGraph [35]: aims
to establish an open-domain GFM exhibiting strong zero-shot generalization by distilling LLM
knowledge and employing a unified graph tokenizer adaptable to unseen graph structures. (2)
AnyGraph [17]: addresses the challenge of graph heterogeneity by proposing a Mixture-of-Experts
GNN architecture with automated routing, enabling efficient generalization and adaptation across
diverse graph domains. (3) GraphGPT [16]: focuses on aligning LLMs with graph structures through
instruction tuning, thereby enabling LLMs to comprehend, reason about, and generalize across
various graph-based tasks in a zero-shot manner. (4) HiGPT [61]: extends the LLM alignment
concept specifically to heterogeneous graphs, utilizing instruction tuning techniques and a context-
aware tokenizer to make LLMs proficient in understanding diverse node and relation types. (5)
GraphAdapter [63]: introduces a parameter-efficient approach to integrate graph reasoning into
frozen LLMs by inserting and fine-tuning lightweight GNN adapter modules, bridging structural and
textual information without full retraining. (6) LLaGA [62]: enables frozen LLMs to directly ingest
and process graph information by transforming graph structures into specialized node sequences
via templates and mapping them through a versatile projector into the LLM’s embedding space.
(7) GLEM [60]: proposes a synergistic co-learning framework based on expectation-maximization,
allowing GNNs and LMs to iteratively enhance each other’s representations and predictions on
text-attributed graphs
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B.3 Settings and Parameters

To evaluate the enhancement provided by RAG4GFM to GFMs, we adopted a zero-shot evalua-
tion protocol. Under this protocol, GFMs perform inference on test datasets without task-specific
fine-tuning, leveraging contextual information supplied by RAG4GFM . Specifically, during its
retrieval stage, RAG4GFM identifies and provides the three subgraphs yielding the highest relevance
probabilities to inform the GFM’s subsequent processing for each task instance.

Performance is quantified using standard metrics: Accuracy (Acc), Recall, and ROC-AUC are
employed for classification and link prediction tasks, while Mean Squared Error (MSE) and the
Coefficient of Determination (R2) are applied for regression tasks.

All experiments are conducted on a server equipped with an AMD EPYC 7B12 CPU, an NVIDIA
A6000 GPU, and 512GB of RAM. The software environment comprised Ubuntu 22.04, Python 3.10,
PyTorch 2.2, and DGL 2.3.

C Further Experimental Results

C.1 Effectiveness of RAG-Enhanced GFMs

The experimental results are shown in Table 5. Among them, the missing model data indicates that
this model does not support this task.

Table 5: Results of Graph Classification Tasks on Two Datasets

Model
MiniGCDataset BA2MotifDataset

Acc ROC-AUC Recall Acc ROC-AUC Recall

HiGPT 62.44 47.86 44.03 46.33 44.98 40.06
HiGPT+RAG4GFM 64.71 53.32 51.89 49.28 49.22 44.91

GraphGPT 60.98 48.03 44.45 44.71 44.25 39.37
GraphGPT+RAG4GFM 67.61 52.95 52.70 50.30 49.87 46.47

GLEM 56.58 45.51 40.69 44.57 42.63 37.61
GLEM+RAG4GFM 61.76 50.27 48.83 47.41 48.55 43.49

AnyGraph 58.67 46.25 42.78 47.53 45.88 40.50
AnyGraph+RAG4GFM 65.51 51.88 51.27 48.54 50.23 46.31

Table 6: Supplementary Results for Node Regression, Link Classification, and Graph Regression
Tasks

Model
Chameleon (Node Reg.) WN18Dataset (Link Class.) QM7bDataset (Graph Reg.)

MSE R2 Acc Recall ROC-AUC MSE R2

AnyGraph 6.83 0.55 68.50 63.27 72.94 10.52 0.65
AnyGraph+RAG4GFM 1.47 0.63 73.05 68.75 77.40 3.42 0.73

Table 5 reports graph-classification results on MiniGCDataset and BA2MotifDataset, and Table 6 sum-
marizes supplementary results on node regression (Chameleon), link prediction (WN18), and graph
regression (QM7b). Across all backbones listed in Table 5, integrating RAG4GFM consistently im-
proves Accuracy, ROC-AUC, and Recall. For example, on MiniGCDataset, AnyGraph+RAG4GFM
increases Accuracy from 58.67% to 65.51%, and GraphGPT+RAG4GFM from 60.98% to 67.61%.
Similar gains appear on BA2MotifDataset (e.g., GraphGPT+RAG4GFM raises ROC-AUC from
44.25% to 49.87%). These results indicate that the retrieved subgraphs provide complementary
structural/semantic cues that strengthen graph-level representations.

For the additional tasks in Table 6, RAG4GFM reduces MSE and increases R2 on Chameleon (node
regression) and QM7b (graph regression), and improves all metrics on WN18 (link prediction). These
trends are consistent with our findings on classification and support the conclusion that retrieval-based
augmentation enhances both local (node-level) and global (graph-level) predictive signals.
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Overall, the additional tasks corroborate the broad applicability of RAG4GFM and its ability to
dynamically enrich GFMs with external graph-structured knowledgedirectly addressing the static-
knowledge bottleneck highlighted in the introduction.

C.2 Hyperparameter Robustness Analysis

We evaluate the robustness and deployability of RAG4GFM by examining three key hyperparame-
tersretrieval size (K), feature fusion threshold (γ), and edge addition threshold (δ).

Effect of Retrieval Size K. We study the impact of K in {1, 2, 3, 4, 5} and summarize the results
in Figure 4. Performance improves steadily as K increases from 1 to 3, since additional retrieved
subgraphs enrich contextual reasoning. Beyond this point, accuracy plateaus or slightly declines
because excessive retrieval introduces redundancy and noise. Balancing accuracy and efficiency, we
set K = 3 as the default in all experiments.
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Figure 4: Performance of RAG4GFM with different numbers of retrieved subgraphs (K).

Sensitivity to Feature and Structure Fusion Thresholds.

We further investigatethe sensitivity of RAG4GFM to the feature fusion relevance threshold γ
and the structural pruning threshold δ. Both are varied within {0.3, 0.5, 0.7, 0.9} using Any-
Graph+RAG4GFM as a representative backbone on node classification task.

Table 7: Sensitivity of RAG4GFM to feature
(γ) and structure (δ) fusion thresholds. Node
classification accuracy (%).

γ\δ 0.3 0.5 0.7 0.9

0.3 76.23 77.89 78.12 75.67
0.5 78.45 79.56 79.28 76.91
0.7 78.73 79.14 78.85 76.34
0.9 75.12 76.47 75.98 73.89

AnyGraph achieves its best accuracy when γ and δ are
around 0.5, indicating a balanced trade-off between
incorporating sufficient external evidence and filtering
noise. Very low thresholds (0.3) allow irrelevant re-
trievals, while overly strict ones (0.9) remove useful
structural links, leading to slight degradation. These
results show that RAG4GFM is robust to small param-
eter variations and requires minimal tuning.

AnyGraph achieves its best accuracy when γ and δ are around 0.5, indicating a balanced trade-off
between incorporating sufficient external evidence and filtering noise. Very low thresholds (0.3)
allow irrelevant retrievals, while overly strict ones (0.9) remove useful structural links, leading to
slight degradation. These results show that RAG4GFM is robust to small parameter variations and
requires minimal tuning.

Across all hyperparameters, RAG4GFM demonstrates stable behavior and clear optimal regions.
Moderate settings (e.g., K = 3, γ = δ = 0.5) achieve strong accuracy without costly parameter
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search, validating the framework’s robustness and practicality for dynamic graph environmentsdirectly
addressing the scalability and maintainability challenges highlighted in the introduction.

C.3 Case Study: Link Prediction in Product Co-Purchase Networks

To concretely illustrate the efficacy of RAG4GFM ’s retrieval and fusion mechanisms for link
prediction, we present a case study on the Amazon Computers dataset. In this dataset, nodes represent
products, and an edge between two products indicates they are frequently bought together. Product
features are derived from bag-of-words representations of their reviews. The task is to predict whether
two products, not currently linked, are likely to be co-purchased.

Scenario. Consider two products:

• Product A: “SpectrePro X15 Ultrabook”reviews emphasize portability, sleek design, and
long battery life, suggesting usage by mobile professionals.

• Product B: “PowerStation Multi-Port Hub”reviews highlight multiple ports and suitability
for complex desktop setups, often used for stationary, high-performance workstations.

A base GFM relying solely on these textual features predicts a low probability of co-purchase, since
the two items appear to target distinct user needs.

Contextual Graph Retrieval. RAG4GFM performs retrieval over the existing Amazon Computers
co-purchase graph to find contextual subgraphs for the pair (A, B). For Product A, retrieved subgraphs
include portable accessories (e.g., “wireless mouse”, “laptop sleeve”) and similar thin-and-light ultra-
books. For Product B, they include desktop monitors, ergonomic keyboards, and other workstation
components. Crucially, RAG4GFM also retrieves bridging subgraphs connecting ultrabooks that
are frequently co-purchased with docking stations or multi-port hubs. These subgraphs reveal usage
patterns where high-end ultrabooks often serve dual rolesas portable devices and as central elements
of larger workstation setups. Such retrieved evidence enriches the context beyond the isolated features
of A and B.

Information Fusion for Enhanced Representation. The fusion module integrates the original
node features of the “SpectrePro X15 Ultrabook” and the “PowerStation Hub” with the structural
and semantic cues from the retrieved subgraphs. This allows the GFM to recognize that, despite
distinct marketing positions, both products cater to overlapping user behaviors requiring mobility and
connectivity. The fused representation refines node embeddings and relational cues, bridging the gap
between portable and stationary usage scenarios.

Model Inference. With this context-enriched representation, the GFM within RAG4GFM re-evaluates
the co-purchase likelihood for the product pair and assigns a significantly higher probability of a
link. By leveraging retrieved graph context, the model overcomes superficial feature dissimilarity and
bases its prediction on evidence of similar co-purchase behaviors found in the broader network.

Insight. This case study demonstrates that by dynamically retrieving and fusing relevant subgraphs,
RAG4GFM enables GFMs to uncover non-obvious relationships and make more accurate link
predictions. It highlights the ability to move beyond direct node attributes and leverage network-level
patternsan essential capability for understanding complex co-purchase dynamics in real-world graph
applications.
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