
HSC-Rocket: An interactive dialogue assistant to make agents composing
service better through human feedback

Anonymous ACL submission

Abstract

Facing the current dynamic service environ-001
ment, fast and efficient service composition002
has attracted great attention in recent years.003
Users prefer to express their personal require-004
ments based on natural language, and their real-005
time feedback could better reflect the effect of006
service composition to a great extent. Conse-007
quently, this paper designs an interactive di-008
alogue assistant, HSC-Rocket, to better pro-009
vide service composition by considering hu-010
man feedback. Firstly, we propose a human-011
computer interaction dynamic service composi-012
tion algorithm based on reinforcement learning.013
The design of the reward mechanism consid-014
ers the quality of service (QoS) and real-time015
feedback, which can more accurately meet the016
demands of users. Then, the functional require-017
ments are analyzed through word embedding,018
to realize the dynamic composition of abstract019
and concrete services. Furthermore, we utilize020
the sample enhancement method to alleviate the021
issue of fewer sample data in the initial stage022
of user interaction, which improves the robust-023
ness of our system. Accordingly, we have im-024
plemented the HSC-Rocket prototype, which025
allows users to obtain multi-domain dialogue026
requirements. Extensive experiments on the027
RapidAPI dataset have demonstrated the supe-028
riority and effectiveness of the HSC-Rocket.029

1 Introduction030

In the current service-oriented environment, the031

types and quantity of services are growing mas-032

sively. A single service may no longer meet the033

requirements of a complex business due to its func-034

tional limitations. Consequently, a variety of busi-035

ness requirements make it necessary to combine036

a single service to generate applications with rich037

functions. Based on the advantages of reusability038

and interoperability, service composition plays a039

vital role to combine multiple atomic services to040

deal with complex user requirements (Dustdar and041

Schreiner, 2005). Meanwhile, the Quality of Ser- 042

vice (QoS) may also change dynamically over time 043

due to the fluctuations in the heterogeneous service 044

environment and user access mode. QoS mainly 045

measures the nonfunctional attributes of services, 046

including response time, availability, price, etc. As 047

a result, it is imperative to design a service compo- 048

sition method that can adapt to the dynamic service 049

environment (Sangsanit et al., 2018). 050

Intelligent service composition mainly analyzes 051

QoS and then generates services that satisfy the 052

users’ requirements. As a typical machine learning 053

technology for optimization in a dynamic environ- 054

ment, reinforcement learning can be well used in 055

service composition. Wang et al. (2014) conducted 056

a new model that integrates on-policy reinforce- 057

ment learning and game theory, which keeps high 058

efficiency when dealing with massive candidate 059

services. However, it only considers local QoS con- 060

straints, while users may put forward the require- 061

ments of global QoS constraints, which results in 062

inapplicable limitations. Subsequently, multi-agent 063

method began to be applied to service composition, 064

which decomposes the task into many sub-tasks and 065

makes every agent focus on their sub-tasks (Wang 066

et al., 2016). Nevertheless, this situation in the 067

multi-agent environment is relatively complicated. 068

And agents in such complex systems may impede 069

one another with the increase of interaction. 070

The ultimate goal of service composition is to 071

satisfy users, hence the direct functional require- 072

ments of users play a vital role in the result of 073

service composition. In service composition, end- 074

users will instinctively express their demands and 075

feedback in natural language (Ito et al., 2020) 076

(Campagna et al., 2019). Consequently, it is urgent 077

to take the user’s natural language-based feedback 078

into account in service composition. With the pro- 079

liferation of chat robots, dialogue systems (Li et al., 080

2018) (Xu et al., 2020) and assistants have attracted 081

great attention in recent years (Siblini et al., 2021) 082

1

(Zhu et al., 2020). Some current popular methods083

based on the conversational system can effectively084

combine with the underlying services. However,085

these dialog systems are only concerned with ab-086

stract services but do not focus on the invocation of087

underlying concrete services and pay no attention088

to the QoS, which becomes impractical to some089

extent.090

As far as we know, there are still fewer works091

to combine the dialogue mode with the service092

composition. By summarizing, we conclude the093

current issues and challenges. Challenge 1. In094

view of user’s real-time feedback reflects the effect095

of service composition, therefore it is a challenge to096

consider users’ demands and feedbacks to dynami-097

cally match with the underlying specific services.098

Challenge 2. The existing works only focus on099

the abstract service level but do not be indiffer-100

ent to the underlying concrete service, which lacks101

of practicability. Challenge 3. There are only a102

few samples at the beginning of system interaction,103

which leads to slow convergence and increase the104

time complexity. Challenge 4. Most present con-105

versational systems are only involved in specific106

fields, and lacks generality and scalability.107

To deal with these challenges and issues, we108

develop HSC-Rocket, an intelligent service compo-109

sition prototype based on user real-time interaction.110

Overall, this work makes the following contribu-111

tions:112

1. We propose a novel human-computer interac-113

tive dynamic service composition algorithm based114

on reinforcement learning. The reward mechanism115

is designed by considering the QoS and the real-116

time feedback, which can more accurately satisfy117

users’ demands.118

2. We analyze the functional requirements of119

users based on word embedding to complete the120

dynamic combination of abstract services and con-121

crete services. Consequently, HSC-Rocket makes122

end-users access a wide collection of services from123

a single text-based user interface.124

3. To address the issues of a few data samples125

in the initial stage of user interaction, this paper126

utilizes sample enhancement to alleviate it, which127

improves the robustness of the system to a certain128

extent.129

4. HSC-Rocket derives its generality from Rock-130

ethouse, a service repository that contains inter-131

faces in various fields. And we verify the effective-132

ness of the model through some actual scenarios.133

2 Related work 134

We review the related works of dynamic service 135

composition and the latest progress in the combina- 136

tion of dialogue system and service composition. 137

2.1 Dynamic service composition 138

Due to the complex network environment, QoS 139

will change dynamically (Song et al., 2018)(Zheng 140

et al., 2011). And it is hard to obtain the user’s QoS 141

preference, because they cannot determine their 142

preference before the service is executed. Thus, 143

most of the works are based on the assumption that 144

users’ preferences for QoS are known in advance. 145

Yu et al. (2020) proposed a solution that can effec- 146

tively model the uncertainty of services with fine- 147

grained QoS attributes by training a DQN. Never- 148

theless, replacing the Q-table with two DQNs poses 149

challenges to memory and time. For the constraint- 150

satisfied service composition (CSSC) (Yuan et al., 151

2019) (Wang and Zhang, 2017), Ren et al. (2017) 152

modeled the CSSC problem as a Markov decision 153

process(CSSC-MDP), and designed a Q-learning 154

algorithm. CSSC-MDP considers the uncertainty 155

of QoS and service behavior. Unfortunately, it 156

restricts the users’ QoS requirements. In prac- 157

tice, users are not familiar with the QoS of ser- 158

vice providers, such a scheme is no longer gets the 159

desired result. 160

As a matter of fact, users’ QoS are not easily 161

available, hence recent works no longer restrict 162

QoS. Alizadeh et al. (2020) proposed a vector- 163

valued MDP approach for finding the optimal QoS- 164

aware services composition, which applied for that 165

the user’s QoS preferences are unknown. But it 166

limits the number of interactions with users and per- 167

forms poorly with the number of user interactions 168

becoming frequent. Also for unknown users’ QoS 169

issues, Zhao et al. (2017) applied a learning-to-rank 170

algorithm, RankBoost, to automatically learn user 171

preferences and the prioritization of preferences. 172

Yet, due to the lack of historical data in the initial 173

stage, this method behaves incapably. Meanwhile, 174

it learns user preferences based on historical data 175

and then combines services to meet user’s needs, 176

which often gets rigid results. In contrast, we take 177

the timely feedback of users and current user pref- 178

erences into account, so that the composite services 179

are novel and real-time. 180

With the service environment gradually showing 181

the high scalability and complexity, Moustafa and 182

Ito (2018) adopt double Q-learning with a priority 183

2

playback scheme for the dynamic and large-scale184

environment. Then, Wang et al. (2019) proposed a185

new scheme, which is suitable for partially observ-186

able environments. Nevertheless, the Recurrent187

Neural Network performs poorly in dealing with188

very complex state space. To reduce the computa-189

tional complexity, Wang et al. (2020) and Hiratsuka190

et al. (2011) optimize the composition efficiency191

through skyline services. However, the heuristic192

algorithm in their paper relied heavily on the eval-193

uation function which doesn’t behave well when194

involving massive services. In our work, the pro-195

posed HSC-Rocket can solve this problem effec-196

tively by utilizing deep reinforcement learning.197

2.2 Integration with Conversation system and198

service composition199

With the rapid development of machine learning200

and natural language processing, expressing per-201

sonal demands based on a conversation system202

has shown an upsurge(Chai et al., 2018) (Kirk and203

Laird, 2019). Recently, there have been some lat-204

est works to realize the dynamic composition of205

services through the human-computer interaction206

of dialogue systems. Romero et al. (2019) pro-207

posed the NLSC, mainly for service developers208

and end-users. NLSC firstly determines the ab-209

stract services based on users’ requirements and210

then chooses the concrete services. Nonetheless,211

users’ demands may change dynamically, and the212

final composite service given may no longer satisfy213

end-users. Instead, our HSC-Rocket receives the214

user’s timely feedback and returns each concrete215

service step by step. Li et al. (2020) showed SUG-216

ILITE, an intelligent task automation agent that217

can learn tasks and relevant associated concepts218

(abstract service) from user’s demonstrations. Un-219

like them, we not only stores tasks learned from220

users, but also recommends concrete services. In221

terms of functionality, HSC-Rocket is more in line222

with the complex requirements of users.223

Furthermore, there are some other state-of-the-224

art pieces of literature. Liu et al. (2018) induced225

high-level ‘workflows’ based on each demonstra-226

tion and proposed an exploration strategy then227

learns to recognize successful workflows and sam-228

ples actions. However, this strategy only sum-229

marizes the workflow for the user’s demonstra-230

tion, that is, abstract services, but does not involve231

concrete services. Also, a virtual assistant, Al-232

mond(Campagna et al., 2017), was presented to233

make users specify trigger-action tasks in natural 234

language and connect multiple services via open 235

APIs, which provides satisfactory services to users. 236

Li and Riva (2018) also designed Kite, a practical 237

system for bootstrapping task-oriented bots, which 238

automatically generates bot templates to meet de- 239

velopers’ different task requirements. Different 240

from the existing works, our HSC-Rocket not only 241

meets the functional requirements of users, but also 242

focuses on the nonfunctional QoS that dominates 243

the underlying concrete service composition. 244

3 HSC-Rocket Assistant 245

3.1 Generality 246

The generality of HSC-Rocket lies in the service 247

repository-Rockethouse, which captures and stores 248

web services in all fields and industries. For in- 249

stance, HSC-Rocket can access public services in 250

financial, medical and other fields. The advantage 251

of Rockethouse is that it stores services based on 252

a knowledge graph, where the service semantics 253

are stored as nodes in the graph, and the basic 254

QoS attributes of the service (response time, de- 255

lay, price, etc.) are stored in tags. At the same 256

time, the correlation between two services can be 257

established through edges. Based on Rockethouse, 258

HSC-Rocket assistant shows generality, which is 259

no longer limited to a specific field, but applicable 260

to various industries. 261

3.2 Functions of User Interface 262

The user interface of HSC-Rocket is a human- 263

computer interaction conversational system in 264

which users could enter natural language require- 265

ments. To enhance the user’s immersive interaction 266

more friendly and then give timely feedback, we 267

have designed ’like’ and ’dislike’ buttons in the 268

HSC-Rocket interface to express users’ satisfaction 269

or dissatisfaction with the current service respec- 270

tively. Thus, HSC rocket can optimize and adjust 271

the underlying model according to timely feedback, 272

which improves the robustness of the model on 273

the one hand, and enables users to express their 274

personal feelings directly and clearly on the other 275

hand. 276

4 Preliminaries 277

4.1 Service Definition and Formalization 278

In this section, we will present some definitions 279

and formal descriptions related to the HSC-Rocket 280

model. 281

3

Definition 1. Service. A service could provide282

some functions, which can be formalized as a 3-283

tuple (ID, Function, QoS). Here ID is the unique284

identifier; Function describes the function of the285

service; QoS is the nonfunctional attribute provided286

by the service provider, which can be formalized as287

(q1, q2, ..., qn), where n represents the number of288

QoS attributes. In this paper, we focus on the three289

attributes of QoS (service_level, service latency,290

price).291

Definition 2. Abstract Service. Abstract ser-292

vice describes the rules and logical relationships293

of business processes, and it describes the re-294

quired business functions. For example, a sequen-295

tially executed business process can be denoted as296

{a1, a2, ..ai, . . . am}, where ai is the ith abstract297

service.298

Definition 3. Business Process. The work-299

flow composed of abstract services determined300

by definition 2 is the business process P =301

{a1, a2, ..ai, . . . am}.302

Definition 4. Candidate Concrete Services.303

Each abstract service ai corresponds to a plural-304

ity of candidate concrete services, which have305

the same function and different QoS attribute306

values. The candidate services of each abstract307

service ai can be formalized as a set ai =308

{ci1, ci2, . . . , cik|1 ≤ i ≤ m}. Where k is the num-309

ber of candidate concrete services corresponding310

to the ai.311

Definition 5. Composite Services. Accord-312

ing to the abstract business logic, the candidate313

concrete services with different functions are com-314

posed together, which can meet the complex func-315

tional requirements. According to the definition of316

abstract and candidate concrete service, the com-317

posite service is as follows:318

a1 × ...× ai × ...× am =

{..., c1j , ...} × ... {..., cir, ...}
...× {..., cmp, ...}

(1)319

Where c1j , cir and cmp represent the candidate320

concrete services of the first, i, and m abstract321

services respectively.322

4.2 Reinforcement Learning323

4.2.1 Basic Concepts of RL324

To achieve a certain goal in an unknown environ-325

ment, the agent of RL will constantly explore the326

environment to obtain timely feedback, and then327

adjust its actions. The ultimate goal is to get the328

maximum return from the environment (Sutton and 329

Barto, 2018). The input of RL is a Markov Deci- 330

sion Process (MDP) that is a 4-tuple (S,A, P,R), 331

which is defined as follows: 332

• S is a finite set of all states; 333

• A is a finite set of actions, where A(s) repre- 334

sents a set of actions that can be executed in 335

state s; 336

• P is a probability distribution function. When 337

action a is executed, the current state changes 338

from s to s′, and the transition probability is 339

recorded as P (s′|s, a); 340

• R is the immediate reward function. When 341

the current status is s, the agent selects and 342

executes an action a to obtain a timely reward 343

r = R(s, a) from the environment. 344

The output of reinforcement learning is an action 345

selection strategy π : S → A. When the agent 346

selects action A = π(S) in state S, the expected 347

value of the total reward is the largest. 348

4.2.2 DDPG and SAC 349

Deep Deterministic Policy Gradient (DDPG) (Lil- 350

licrap et al., 2015) is a reinforcement learning al- 351

gorithm to solve continuous control problems, in 352

which its output is an action directly. It has fast 353

convergence speed and is more suitable for the sce- 354

nario where the sample data is scarce in the early 355

stage of service composition. Soft Actor-Critic 356

(SAC) (Haarnoja et al., 2018) is a reinforcement 357

learning algorithm based on off policy, actor critic 358

and maximum entropy, which mainly solves the 359

issues of discrete action space and continuous ac- 360

tion space. It’s a great choice to utilize SAC in the 361

complex service composition environment. 362

5 HSC-Rocket System 363

In Figure 1, the system architecture of the HSC- 364

Rocket includes two modules (1) business abstract 365

service layer; (2) concrete service composition 366

layer. 367

Business Abstract Service Layer. Users ex- 368

press personal requirements based on natural lan- 369

guage, and AbstractAgent will recommend the 370

business process P composed of abstract services 371

abSer. Then users answer feedback: like or dislike. 372

Assuming users are satisfied with some business 373

processes, which means those processes can ini- 374

tially meet the demands of users. Consequently, 375

4

Figure 1: The System architecture of HSC-Rocket. abSer represents abstract services and conSer represents concrete
services

We will make a further interactive mapping with376

the service composition layer for the deterministic377

process Px.378

Concrete Service Composition Layer. As a379

matter of fact, each abstract service in business pro-380

cess P corresponds to a series of concrete service381

collections that can provide the same functions, yet382

their QoS is different. Naturally, ConcreteAgent383

dynamically composes concrete service collections384

based on the user’s requirements and abstract ser-385

vices, which can satisfy the end-users more effec-386

tively.387

The interaction process between the two layers388

is shown in Figure 2. Our service library, Rock-389

ethouse, stores the description semantic informa-390

tion and QoS attributes of the service. Here step391

1 completes matching abstract services based on392

the user’s demands, step 2 determines the business393

process by composition, and step 3 returns the busi-394

ness process to the end-users. The concrete service395

composition list set {service1,..., service5} is de-396

termined through the business processes P1,..., P5.397

398

5.1 Business Abstract Service Model399

As shown in Figure 3, we generate sentence vectors400

according to the user’s demands through word com-401

pilation. AbstractAgent selects the best abstract ser-402

Figure 2: Flow chart of interaction between abstract
process recommendation and service composition.

vice in the current state, returns it to the dialogue 403

system, and then end-users give immediate rewards. 404

Meanwhile, the AbstractAgent determines whether 405

to continue to compose the next abstract service. 406

Environment and Action space. The environ- 407

ment is composed of the semantic description ma- 408

trix of services, the sentence vector, and several 409

currently composed service lists. The action of Ab- 410

stractAgent is to compose and recommend abstract 411

services. 412

Reward function. We divide rewards into im- 413

mediate rewards and global rewards. Immediate 414

reward obtains the connection relationship between 415

two abstract services, and the reward in step i is 416

defined as: 417

ri = G(ai, a
∗) (2) 418

5

Figure 3: Business Abstract Service Model (Business-
AbService) Based on Reinforcement learning.

Where a∗ represents the abstract service required419

by users, ai is the recommended abstract service.420

G(x, y) is a Boolean expression. It reflects the real-421

time interaction between users and HSC-Rocket,422

When Formula (2) is equal to 1, it means the recom-423

mended services are consistent with user’s expecta-424

tions. And conversely, it means inconsistent when425

the value is -1. Correspondingly, the user will give426

‘like’ or ‘dislike’ on the dialogue system interface.427

Unlike immediate rewards, global rewards focus428

on obtaining the integrity of abstract services. It429

is an iterative process from back to front, so we430

define it as the following formula in step i:431

Ri = G(Φ(ri),Φ(ri+1))Ri+1Hi (3)432

Where Φ() is used to measure the sign (+, -) of433

ri. Ri+1 is the global reward of the latter service,434

and Hi represents the probability that the services435

are composed in step i. On the whole, we mainly436

determine the symbol of the global reward accord-437

ing to the immediate reward ri and ri+1 of the two438

abstract services, and then weigh the global reward439

based on probability. And the final critical point is:440

441

Rn = y (4)442

Where y is the score given by the user after the443

abstract service composition is completed.444

Sample enhancement. At the beginning of the445

conversation, there will be a small number of sam-446

ples due to the limited questions and answers. In447

this case, the critical issue is to make the algo-448

rithm converge quickly based on a small number449

of samples. Therefore, we propose a soft sample450

enhancement method to alleviate this limitation.451

During the interaction with users, we can get im-452

mediate rewards between services, so the problem453

can be summarized as to expand the sample data454

of 1:1 service to 1: n sample data. By comparing455

the functions of services, we regard them with the 456

same functions as the positive samples and with 457

different functions as the negative samples. The 458

proposed soft enhancement can obtain the reward 459

value according to the simple semantic function 460

distance of the two services, which defines it as: 461

r̃i = F [d(fi, fa∗)] · r∗ +
pi
ti

(5) 462

Where d(x, y) represents the semantic distance, 463

f is the characteristic function, a∗ means the ser- 464

vice sample, and r∗ represents the immediate re- 465

ward. The pi and ti respectively represent QoS ser- 466

vice_level and latency. Significantly, we can obtain 467

more non-zero samples, which is conducive to im- 468

proving the robustness of this system. Specifically, 469

F (·) in this paper represents a Gaussian function, 470

thus the reward is expressed as: 471

r̃i = exp
{
−[d(fi, fa∗)− b]2/2c2

}
· r∗ +

pi
ti

(6) 472

5.2 Concrete Service Composition Model 473

After end-users determine the process in the ab- 474

stract layer, we will further compose the candidate 475

concrete services in the concrete layer. Since the 476

sample enhancement module is the same as section 477

5.1, we will not repeat it in Figure 4.

Figure 4: Concrete Service Composition Model
(Composition-ConService) Based on Reinforcement
learning.

478
Environment and Action space. The environ- 479

ment includes the abstract service determined in 480

Section 5.1 and the specific service matrix mapped 481

by some abstract services. The service matrix 482

is composed of three QoS: service_level, latency, 483

price. The action is to select the concrete service. 484

Reward function. Unlike the Bussiness- 485

AbService, the Composition-ConService focuses 486

on the composition of concrete services, hence 487

there is only an immediate reward that is defined 488

as follows: 489

ri = ruser +
pi
ti

+
1

1 + price
(7) 490

6

Where ruser represents user feedback; pi, ti491

and price respectively represent QoS service_level,492

latency and price, which describes the non-493

functionality of the service.494

6 Implementation and Evaluation495

6.1 Data Sets496

In order to verify the HSC-Rocket, we store the497

RapidAPI datasets into the service warehouse498

Rockethouse. RapidAPI1 is the largest API li-499

brary in the world, including various types of ser-500

vices, such as data, sports, finance, travel, etc.,501

which is shown in Figure 5. Rockethouse can meet502

the service requirements of different groups, which503

also conforms to the generality of HSC-Rocket.

Figure 5: Distribution of RapidAPI Types.

504
Further, we store the semantic description and505

QoS attributes (latency, service level, price) in the506

Rockethouse based on the knowledge graph. The507

storage structure in Rockethouse is shown in Fig-508

ure 6.

Figure 6: An example of the storage structure of services
and their attribute QoS in Rockethouse.

509

1https://rapidapi.com/hub

6.2 Experimental setup and training 510

In the Abstract Service Layer, we propose the Ab- 511

stractRL Algorithm based on a deterministic strat- 512

egy DDPG. The parameters involved in this model 513

and their specific values are shown in Table 1. And 514

we utilize ConcreteRL Algorithm based on SAC 515

in the concrete service composition layer. The pa- 516

rameters of actor and critic networks are randomly 517

initialized, and the other parameters are shown in 518

Table 2. The pseudo codes of the two algorithms 519

are in the Appendix.

Parameter Symbol/Value
Learning rate of Actor α=0.001
Learning rate of Critic α′=0.002
Discount factor γ=0.8
Soft update coefficient τ=0.01
Number of samples m=64
Q-network update C=100
Maximum iterations T=500
Random noise function N (Gaussian)
Enhanced samples n=100
Reward in enhancement F (Normal function)

Table 1: The detail names and values of parameters in
Abstract Service Layer-AbstractRL Algorithm

520

6.3 Effectiveness of HSC-Rocket 521

In this section, we mainly evaluate the effectiveness 522

of HSC-Rocket. We use 213 user data for training, 523

which comes from the feedback of students, epi- 524

cure, and financiers. To test the performance of the 525

model, we utilize the TopN index, which means 526

that the first N services composed by HSC-Rocket 527

can meet users’ requirements. For instance, Top3 528

means that the three services composed by the sys- 529

tem can meet the needs of users. The data used for 530

testing are mainly divided into two types, including 531

40 pieces respectively. The first category belongs to 532

the sample coverage, and the experimental results 533

Parameter Symbol/Value
Learning rate of Actor a=0.001
Learning rate of Critic β′=0.002
Discount factor γ′=0.8
Exploration rate ϵ′=0.01
Number of enhanced samples n′=32
Maximum iterations T=500

Table 2: The detail names and values of parameters in
Concrete Service Layer-ConcreteRL Algorithm

7

are shown in Figure 7(a); The second type of data534

is not within the sample coverage, and Figure 7(b)535

shows the results.

(a) Within sample coverage (b) Out of sample coverage

Figure 7: Experimental results of two different types of
test data

536

In Figure 7(a), ‘normal’ means that the HSC-537

Rocket without sample enhancement technology,538

conversely, ‘sample enhancement’ means that the539

sample enhancement technology is used in HSC-540

Rocket. It can be clearly shown that the accuracy of541

this system can be significantly improved by using542

sample enhancement when there is little sample543

data at the initial stage of user-system interaction.544

Simultaneously, as the number of composed ser-545

vices N increases, the accuracy will be improved546

accordingly.547

It can be further concluded from Figure 7(b)548

that when our HSC-Rocket processes data that is549

not within the sample range, that is, when interact-550

ing with unfamiliar requirements, it can also well551

consider user requirements and present composed552

results. And as the user system interaction becomes553

more frequent, the understanding performance of554

HSC-Rocket will become stronger and stronger.555

6.4 Scenario Cases556

To better verify the practicability of HSC-Rocket,557

we provide the following real-life scenarios to ex-558

plain the interaction process. As described in Fig-559

ure 8, the user enters "I want to get a film re-560

view". Firstly, our assistant composes abstract ser-561

vice P ={ Get the basic information and IMDB562

number of the movie -> Get movie details -> Get563

movie reviews -> Get emotional analysis of film564

reviews} for users through interactive feedback565

with users. Then, for each abstract service in566

P, our system can compose the corresponding567

concrete services {OTT details/Search}, {IMDB-568

Internet Movie Database/Film}, {movie.douban},569

{Text Sentiment Analysis Method} according to the570

user feedback button. Furthermore, the user inputs 571

the movie name "Wolf Warriors", and HSC-Rocket 572

will respond to the details of this movie. More 573

detailed cases are in the Appendix.

Figure 8: Two screenshots of the our HSC-Rocket assis-
tant user interface

574

7 Conclusion 575

In this paper, we propose a service composition al- 576

gorithm based on human-computer interaction and 577

design a dialogue assistant HSC-Rocket, which can 578

better complete the interactive question and answer 579

process combined with real-time feedback. In ad- 580

dition to meeting users’ demands, our HSC-Rocket 581

could complete the dynamic composition of ab- 582

stract services and concrete services. Furthermore, 583

we verify the effectiveness of the assistant through 584

the case scenario, which has significant application 585

value. In the future, we intend to consider more 586

QoS and simultaneously focus on the execution of 587

concrete services. 588

8

References589

Pegah Alizadeh, Aomar Osmani, Mohamed Essaid590
Khanouche, Abdelghani Chibani, and Yacine Amirat.591
2020. Reinforcement learning for interactive qos-592
aware services composition. IEEE Systems Journal,593
15(1):1098–1108.594

Giovanni Campagna, Rakesh Ramesh, Silei Xu,595
Michael Fischer, and Monica S Lam. 2017. Almond:596
The architecture of an open, crowdsourced, privacy-597
preserving, programmable virtual assistant. In Pro-598
ceedings of the 26th International Conference on599
World Wide Web, pages 341–350.600

Giovanni Campagna, Silei Xu, Mehrad Moradshahi,601
Richard Socher, and Monica S Lam. 2019. Genie:602
A generator of natural language semantic parsers for603
virtual assistant commands. In Proceedings of the604
40th ACM SIGPLAN Conference on Programming605
Language Design and Implementation, pages 394–606
410.607

Joyce Y Chai, Qiaozi Gao, Lanbo She, Shaohua Yang,608
Sari Saba-Sadiya, and Guangyue Xu. 2018. Lan-609
guage to action: Towards interactive task learning610
with physical agents. In IJCAI, pages 2–9.611

Schahram Dustdar and Wolfgang Schreiner. 2005. A612
survey on web services composition. International613
journal of web and grid services, 1(1):1–30.614

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and615
Sergey Levine. 2018. Soft actor-critic: Off-policy616
maximum entropy deep reinforcement learning with617
a stochastic actor. In International conference on618
machine learning, pages 1861–1870. PMLR.619

Nobuaki Hiratsuka, Fuyuki Ishikawa, and Shinichi620
Honiden. 2011. Service selection with combina-621
tional use of functionally-equivalent services. In622
2011 IEEE International Conference on Web Ser-623
vices, pages 97–104. IEEE.624

Nobuhiro Ito, Yuya Suzuki, and Akiko Aizawa. 2020.625
From natural language instructions to complex pro-626
cesses: issues in chaining trigger action rules. arXiv627
preprint arXiv:2001.02462.628

James R Kirk and John E Laird. 2019. Learning hierar-629
chical symbolic representations to support interactive630
task learning and knowledge transfer. In IJCAI, pages631
6095–6102.632

Toby Jia-Jun Li, Igor Labutov, Brad A Myers, Amos633
Azaria, Alexander I Rudnicky, and Tom M Mitchell.634
2018. Teaching agents when they fail: end user635
development in goal-oriented conversational agents.636
In Studies in Conversational UX Design, pages 119–637
137. Springer.638

Toby Jia-Jun Li, Tom Mitchell, and Brad Myers. 2020.639
Interactive task learning from gui-grounded natural640
language instructions and demonstrations. In Pro-641
ceedings of the 58th Annual Meeting of the Associa-642
tion for Computational Linguistics: System Demon-643
strations, pages 215–223.644

Toby Jia-Jun Li and Oriana Riva. 2018. Kite: Building 645
conversational bots from mobile apps. In Proceed- 646
ings of the 16th Annual International Conference on 647
Mobile Systems, Applications, and Services, pages 648
96–109. 649

Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, 650
Nicolas Heess, Tom Erez, Yuval Tassa, David Sil- 651
ver, and Daan Wierstra. 2015. Continuous control 652
with deep reinforcement learning. arXiv preprint 653
arXiv:1509.02971. 654

Evan Zheran Liu, Kelvin Guu, Panupong Pasupat, Tian- 655
lin Shi, and Percy Liang. 2018. Reinforcement learn- 656
ing on web interfaces using workflow-guided explo- 657
ration. arXiv preprint arXiv:1802.08802. 658

Ahmed Moustafa and Takayuki Ito. 2018. A deep rein- 659
forcement learning approach for large-scale service 660
composition. In International Conference on Prin- 661
ciples and Practice of Multi-Agent Systems, pages 662
296–311. Springer. 663

Lifang Ren, Wenjian Wang, and Hang Xu. 2017. A re- 664
inforcement learning method for constraint-satisfied 665
services composition. IEEE Transactions on Services 666
Computing. 667

Oscar J Romero, Ankit Dangi, and Sushma A Akoju. 668
2019. Nlsc: Unrestricted natural language-based 669
service composition through sentence embeddings. 670
In 2019 IEEE International Conference on Services 671
Computing (SCC), pages 126–135. IEEE. 672

Krisada Sangsanit, Werasak Kurutach, and Suronapee 673
Phoomvuthisarn. 2018. Rest web service composi- 674
tion: A survey of automation and techniques. In 2018 675
International Conference on Information Networking 676
(ICOIN), pages 116–121. IEEE. 677

Wissam Siblini, Baris Sayil, and Yacine Kessaci. 2021. 678
Towards a more robust evaluation for conversational 679
question answering. In Proceedings of the 59th An- 680
nual Meeting of the Association for Computational 681
Linguistics and the 11th International Joint Confer- 682
ence on Natural Language Processing (Volume 2: 683
Short Papers), pages 1028–1034. 684

Yiguang Song, Li Hu, and Ming Yu. 2018. A novel qos- 685
aware prediction approach for dynamic web services. 686
Plos one, 13(8):e0202669. 687

Richard S Sutton and Andrew G Barto. 2018. Reinforce- 688
ment learning: An introduction. MIT press. 689

Gang Wang and Zhen-Zhong Zhang. 2017. Qband: 690
Indicating the implementation distribution of qos- 691
based web service composition solutions. Journal of 692
Computers, 28(1):149–166. 693

Hongbing Wang, Xin Chen, Qin Wu, Qi Yu, Zibin 694
Zheng, and Athman Bouguettaya. 2014. Integrating 695
on-policy reinforcement learning with multi-agent 696
techniques for adaptive service composition. In Inter- 697
national Conference on Service-Oriented Computing, 698
pages 154–168. Springer. 699

9

Hongbing Wang, Mingzhu Gu, Qi Yu, Yong Tao, Jia-700
jie Li, Huanhuan Fei, Jia Yan, Wei Zhao, and Tian-701
jing Hong. 2019. Adaptive and large-scale service702
composition based on deep reinforcement learning.703
Knowledge-Based Systems, 180:75–90.704

Hongbing Wang, Xingguo Hu, Qi Yu, Mingzhu Gu, Wei705
Zhao, Jia Yan, and Tianjing Hong. 2020. Integrating706
reinforcement learning and skyline computing for707
adaptive service composition. Information Sciences,708
519:141–160.709

Hongbing Wang, Xiaojun Wang, Xingguo Hu, Xingzhi710
Zhang, and Mingzhu Gu. 2016. A multi-agent re-711
inforcement learning approach to dynamic service712
composition. Information Sciences, 363:96–119.713

Silei Xu, Giovanni Campagna, Jian Li, and Monica S714
Lam. 2020. Schema2qa: High-quality and low-cost715
q&a agents for the structured web. In Proceedings of716
the 29th ACM International Conference on Informa-717
tion & Knowledge Management, pages 1685–1694.718

Xuezhi Yu, Chunyang Ye, Bingzhuo Li, Hui Zhou,719
and Mengxing Huang. 2020. A deep q-learning net-720
work for dynamic constraint-satisfied service com-721
position. International Journal of Web Services Re-722
search (IJWSR), 17(4):55–75.723

Yuan Yuan, Weishi Zhang, Xiuguo Zhang, and Huawei724
Zhai. 2019. Dynamic service selection based on725
adaptive global qos constraints decomposition. Sym-726
metry, 11(3):403.727

Yu Zhao, Shaohua Wang, Ying Zou, Joanna Ng, and728
Tinny Ng. 2017. Automatically learning user pref-729
erences for personalized service composition. In730
2017 IEEE International Conference on Web Ser-731
vices (ICWS), pages 776–783. IEEE.732

Huiyuan Zheng, Jian Yang, Weiliang Zhao, and Athman733
Bouguettaya. 2011. Qos analysis for web service734
compositions based on probabilistic qos. In Interna-735
tional Conference on Service-Oriented Computing,736
pages 47–61. Springer.737

Qi Zhu, Zheng Zhang, Yan Fang, Xiang Li, Ryuichi738
Takanobu, Jinchao Li, Baolin Peng, Jianfeng Gao,739
Xiaoyan Zhu, and Minlie Huang. 2020. Convlab-740
2: An open-source toolkit for building, evaluating,741
and diagnosing dialogue systems. arXiv preprint742
arXiv:2002.04793.743

A Appendix744

A.1 Scenario case745

The financial and food scenario cases of HSC-746

Rocket user interface are shown in Figure 9 and 10747

respectively.748

A.2 Pseudo code749

Algorithms 1 and 2 are AbstractRL and Con-750

creteRL algorithm respectively.751

Figure 9: User cases in financial scenarios

Figure 10: User cases in food scenes

10

Algorithm 1 AbstractRL algorithm

Input:
user demand;

Output:
Serve_list =[];

1: user_feature = use word2vec to get feature vec-
tor;

2: is_end=false;
3: while is_end is false do
4: S = Transform To State (s, serve_list,

user_feature);
5: in Actor network get action: A =

πθ(ϕ(s)) +N ;
6: Do the action to get Reward(R), next

state(s’) and isend;
7: R=GetReward Through UserInterac-

tion(serve_action);
8: Use soft Sample enhancement to get more

experiences;
9: Action_list,R_list,S_list=Soft SampleEn-

hancement(A,R,S);
10: For i=0 to Action.length;
11: put (ϕ(S),Action_list[i],R_list[i],ϕ(S’),isend

) in experience replay D;
12: S=S’;
13: M samples are sampled from the experience

playback set D to get target value Qyj ;

14:
{
ϕ(Sj , Aj , Rj , ϕ(S

′
j)), isendj

}
,

j=1,2,...,m;

15: yi =


Rj , is_endj = true

Rj + γQ′(ϕ(S′
j), πθ′(ϕ(S

′
j)), w

′),

is_endj = false

16: Using mean square loss function
1
m

∑m
j=1(yi − Q(ϕ(Sj), Aj , w))

2 to
update the critic net work parameter ω;

17: Using J(θ) = − 1
m

∑m
j=1Q(Sj , Aj , θ) to

update all parameters of actor’s network θ;
18: If T%C =1 update critic target network and

actor target network parameters:
w′ ← τw + (1− τ)w′

θ′ ← τθ + (1− τ)θ′

19: end while

Algorithm 2 ConcreteRL algorithm

Input:
one_abstract_services, s;

Output:
concrete_service_list;

1: user_feature = use word2vec to get feature vec-
tor;

2: S = Transform To State(s, serve_list,
user_feature, concrete_service_list);

3: Continue = true;
4: while Continue do
5: Get action in Actor network and the next S’

: serve_action, S′ = φ(S, serve_action);
6: Compute reward R in actor network

Through user interaction;
7: R=GetRewardThroughUserInteraction

(serve_action);
8: if R in Positive then
9: Serve_list.add();

10: isend=true;
11: Continue =false;
12: else
13: isend=false;
14: Continue=true;
15: end if
16: In critic network use S and S’ to get V(S),

V(S’);
17: Compute TD loss: δ = R+ γV (S0)V (S);
18: Use the Mean square error loss function

to update the critic network parameter ω :∑
(R+ γV (S0)V (S))2;

19: To update the parameter θ;
20: θ = θ + α∇θlogπθ(S,A)δ;
21: Use soft Sample enhancement to get more

experiences;
22: Action_list,R_list=SoftSampleEnhancement

(serve_action,R);
23: For i=0 to Action.length;
24: put (φ(S), Action_list[i], R_list[i], φ(S′), isend)

into experience replay D;
25: Use D to update the base decision-makers ϵ

every time period m;
26: end while
27: Return serve_action

11

