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Abstract

Facing the current dynamic service environ-
ment, fast and efficient service composition
has attracted great attention in recent years.
Users prefer to express their personal require-
ments based on natural language, and their real-
time feedback could better reflect the effect of
service composition to a great extent. Conse-
quently, this paper designs an interactive di-
alogue assistant, HSC-Rocket, to better pro-
vide service composition by considering hu-
man feedback. Firstly, we propose a human-
computer interaction dynamic service composi-
tion algorithm based on reinforcement learning.
The design of the reward mechanism consid-
ers the quality of service (QoS) and real-time
feedback, which can more accurately meet the
demands of users. Then, the functional require-
ments are analyzed through word embedding,
to realize the dynamic composition of abstract
and concrete services. Furthermore, we utilize
the sample enhancement method to alleviate the
issue of fewer sample data in the initial stage
of user interaction, which improves the robust-
ness of our system. Accordingly, we have im-
plemented the HSC-Rocket prototype, which
allows users to obtain multi-domain dialogue
requirements. Extensive experiments on the
RapidAPI dataset have demonstrated the supe-
riority and effectiveness of the HSC-Rocket.

1 Introduction

In the current service-oriented environment, the
types and quantity of services are growing mas-
sively. A single service may no longer meet the
requirements of a complex business due to its func-
tional limitations. Consequently, a variety of busi-
ness requirements make it necessary to combine
a single service to generate applications with rich
functions. Based on the advantages of reusability
and interoperability, service composition plays a
vital role to combine multiple atomic services to
deal with complex user requirements (Dustdar and

Schreiner, 2005). Meanwhile, the Quality of Ser-
vice (QoS) may also change dynamically over time
due to the fluctuations in the heterogeneous service
environment and user access mode. QoS mainly
measures the nonfunctional attributes of services,
including response time, availability, price, etc. As
a result, it is imperative to design a service compo-
sition method that can adapt to the dynamic service
environment (Sangsanit et al., 2018).

Intelligent service composition mainly analyzes
QoS and then generates services that satisfy the
users’ requirements. As a typical machine learning
technology for optimization in a dynamic environ-
ment, reinforcement learning can be well used in
service composition. Wang et al. (2014) conducted
a new model that integrates on-policy reinforce-
ment learning and game theory, which keeps high
efficiency when dealing with massive candidate
services. However, it only considers local QoS con-
straints, while users may put forward the require-
ments of global QoS constraints, which results in
inapplicable limitations. Subsequently, multi-agent
method began to be applied to service composition,
which decomposes the task into many sub-tasks and
makes every agent focus on their sub-tasks (Wang
et al., 2016). Nevertheless, this situation in the
multi-agent environment is relatively complicated.
And agents in such complex systems may impede
one another with the increase of interaction.

The ultimate goal of service composition is to
satisfy users, hence the direct functional require-
ments of users play a vital role in the result of
service composition. In service composition, end-
users will instinctively express their demands and
feedback in natural language (Ito et al., 2020)
(Campagna et al., 2019). Consequently, it is urgent
to take the user’s natural language-based feedback
into account in service composition. With the pro-
liferation of chat robots, dialogue systems (Li et al.,
2018) (Xu et al., 2020) and assistants have attracted
great attention in recent years (Siblini et al., 2021)



(Zhu et al., 2020). Some current popular methods
based on the conversational system can effectively
combine with the underlying services. However,
these dialog systems are only concerned with ab-
stract services but do not focus on the invocation of
underlying concrete services and pay no attention
to the QoS, which becomes impractical to some
extent.

As far as we know, there are still fewer works
to combine the dialogue mode with the service
composition. By summarizing, we conclude the
current issues and challenges. Challenge 1. In
view of user’s real-time feedback reflects the effect
of service composition, therefore it is a challenge to
consider users’ demands and feedbacks to dynami-
cally match with the underlying specific services.
Challenge 2. The existing works only focus on
the abstract service level but do not be indiffer-
ent to the underlying concrete service, which lacks
of practicability. Challenge 3. There are only a
few samples at the beginning of system interaction,
which leads to slow convergence and increase the
time complexity. Challenge 4. Most present con-
versational systems are only involved in specific
fields, and lacks generality and scalability.

To deal with these challenges and issues, we
develop HSC-Rocket, an intelligent service compo-
sition prototype based on user real-time interaction.
Overall, this work makes the following contribu-
tions:

1. We propose a novel human-computer interac-
tive dynamic service composition algorithm based
on reinforcement learning. The reward mechanism
is designed by considering the QoS and the real-
time feedback, which can more accurately satisfy
users’ demands.

2. We analyze the functional requirements of
users based on word embedding to complete the
dynamic combination of abstract services and con-
crete services. Consequently, HSC-Rocket makes
end-users access a wide collection of services from
a single text-based user interface.

3. To address the issues of a few data samples
in the initial stage of user interaction, this paper
utilizes sample enhancement to alleviate it, which
improves the robustness of the system to a certain
extent.

4. HSC-Rocket derives its generality from Rock-
ethouse, a service repository that contains inter-
faces in various fields. And we verify the effective-
ness of the model through some actual scenarios.

2 Related work

We review the related works of dynamic service
composition and the latest progress in the combina-
tion of dialogue system and service composition.

2.1 Dynamic service composition

Due to the complex network environment, QoS
will change dynamically (Song et al., 2018)(Zheng
etal., 2011). And it is hard to obtain the user’s QoS
preference, because they cannot determine their
preference before the service is executed. Thus,
most of the works are based on the assumption that
users’ preferences for QoS are known in advance.
Yu et al. (2020) proposed a solution that can effec-
tively model the uncertainty of services with fine-
grained QoS attributes by training a DQN. Never-
theless, replacing the Q-table with two DQN's poses
challenges to memory and time. For the constraint-
satisfied service composition (CSSC) (Yuan et al.,
2019) (Wang and Zhang, 2017), Ren et al. (2017)
modeled the CSSC problem as a Markov decision
process(CSSC-MDP), and designed a Q-learning
algorithm. CSSC-MDP considers the uncertainty
of QoS and service behavior. Unfortunately, it
restricts the users’ QoS requirements. In prac-
tice, users are not familiar with the QoS of ser-
vice providers, such a scheme is no longer gets the
desired result.

As a matter of fact, users’ QoS are not easily
available, hence recent works no longer restrict
QoS. Alizadeh et al. (2020) proposed a vector-
valued MDP approach for finding the optimal QoS-
aware services composition, which applied for that
the user’s QoS preferences are unknown. But it
limits the number of interactions with users and per-
forms poorly with the number of user interactions
becoming frequent. Also for unknown users’ QoS
issues, Zhao et al. (2017) applied a learning-to-rank
algorithm, RankBoost, to automatically learn user
preferences and the prioritization of preferences.
Yet, due to the lack of historical data in the initial
stage, this method behaves incapably. Meanwhile,
it learns user preferences based on historical data
and then combines services to meet user’s needs,
which often gets rigid results. In contrast, we take
the timely feedback of users and current user pref-
erences into account, so that the composite services
are novel and real-time.

With the service environment gradually showing
the high scalability and complexity, Moustafa and
Ito (2018) adopt double Q-learning with a priority



playback scheme for the dynamic and large-scale
environment. Then, Wang et al. (2019) proposed a
new scheme, which is suitable for partially observ-
able environments. Nevertheless, the Recurrent
Neural Network performs poorly in dealing with
very complex state space. To reduce the computa-
tional complexity, Wang et al. (2020) and Hiratsuka
et al. (2011) optimize the composition efficiency
through skyline services. However, the heuristic
algorithm in their paper relied heavily on the eval-
uation function which doesn’t behave well when
involving massive services. In our work, the pro-
posed HSC-Rocket can solve this problem effec-
tively by utilizing deep reinforcement learning.

2.2 Integration with Conversation system and
service composition

With the rapid development of machine learning
and natural language processing, expressing per-
sonal demands based on a conversation system
has shown an upsurge(Chai et al., 2018) (Kirk and
Laird, 2019). Recently, there have been some lat-
est works to realize the dynamic composition of
services through the human-computer interaction
of dialogue systems. Romero et al. (2019) pro-
posed the NLSC, mainly for service developers
and end-users. NLSC firstly determines the ab-
stract services based on users’ requirements and
then chooses the concrete services. Nonetheless,
users’ demands may change dynamically, and the
final composite service given may no longer satisfy
end-users. Instead, our HSC-Rocket receives the
user’s timely feedback and returns each concrete
service step by step. Li et al. (2020) showed SUG-
ILITE, an intelligent task automation agent that
can learn tasks and relevant associated concepts
(abstract service) from user’s demonstrations. Un-
like them, we not only stores tasks learned from
users, but also recommends concrete services. In
terms of functionality, HSC-Rocket is more in line
with the complex requirements of users.

Furthermore, there are some other state-of-the-
art pieces of literature. Liu et al. (2018) induced
high-level ‘workflows’ based on each demonstra-
tion and proposed an exploration strategy then
learns to recognize successful workflows and sam-
ples actions. However, this strategy only sum-
marizes the workflow for the user’s demonstra-
tion, that is, abstract services, but does not involve
concrete services. Also, a virtual assistant, Al-
mond(Campagna et al., 2017), was presented to

make users specify trigger-action tasks in natural
language and connect multiple services via open
APIs, which provides satisfactory services to users.
Li and Riva (2018) also designed Kite, a practical
system for bootstrapping task-oriented bots, which
automatically generates bot templates to meet de-
velopers’ different task requirements. Different
from the existing works, our HSC-Rocket not only
meets the functional requirements of users, but also
focuses on the nonfunctional QoS that dominates
the underlying concrete service composition.

3 HSC-Rocket Assistant

3.1 Generality

The generality of HSC-Rocket lies in the service
repository-Rockethouse, which captures and stores
web services in all fields and industries. For in-
stance, HSC-Rocket can access public services in
financial, medical and other fields. The advantage
of Rockethouse is that it stores services based on
a knowledge graph, where the service semantics
are stored as nodes in the graph, and the basic
QoS attributes of the service (response time, de-
lay, price, etc.) are stored in tags. At the same
time, the correlation between two services can be
established through edges. Based on Rockethouse,
HSC-Rocket assistant shows generality, which is
no longer limited to a specific field, but applicable
to various industries.

3.2 Functions of User Interface

The user interface of HSC-Rocket is a human-
computer interaction conversational system in
which users could enter natural language require-
ments. To enhance the user’s immersive interaction
more friendly and then give timely feedback, we
have designed ’like’ and ’dislike’ buttons in the
HSC-Rocket interface to express users’ satisfaction
or dissatisfaction with the current service respec-
tively. Thus, HSC rocket can optimize and adjust
the underlying model according to timely feedback,
which improves the robustness of the model on
the one hand, and enables users to express their
personal feelings directly and clearly on the other
hand.

4 Preliminaries

4.1 Service Definition and Formalization

In this section, we will present some definitions
and formal descriptions related to the HSC-Rocket
model.



Definition 1. Service. A service could provide
some functions, which can be formalized as a 3-
tuple (ID, Function, QoS). Here ID is the unique
identifier; Function describes the function of the
service; QoS is the nonfunctional attribute provided
by the service provider, which can be formalized as
(91,92, ---, qn), Where n represents the number of
QoS attributes. In this paper, we focus on the three
attributes of QoS (service_level, service latency,
price).

Definition 2. Abstract Service. Abstract ser-
vice describes the rules and logical relationships
of business processes, and it describes the re-
quired business functions. For example, a sequen-
tially executed business process can be denoted as
{a1,aq9,..a;,...an}, where a; is the iy, abstract
service.

Definition 3. Business Process. The work-
flow composed of abstract services determined
by definition 2 is the business process P =
{al, ag, ..z, ... am}.

Definition 4. Candidate Concrete Services.
Each abstract service a; corresponds to a plural-
ity of candidate concrete services, which have
the same function and different QoS attribute
values. The candidate services of each abstract
service a; can be formalized as a set a; =
{ci1, cia, ..., cik]1 <i < m}. Where k is the num-
ber of candidate concrete services corresponding
to the a;.

Definition 5. Composite Services. Accord-
ing to the abstract business logic, the candidate
concrete services with different functions are com-
posed together, which can meet the complex func-
tional requirements. According to the definition of
abstract and candidate concrete service, the com-
posite service is as follows:

al X ... Xa; X ... XAy =
{...,Clj,...} X ...{...,Cir,...} (1)
X emp, -}

Where ¢y, ¢;r and ¢, represent the candidate
concrete services of the first, 7, and m abstract
services respectively.

4.2 Reinforcement Learning
4.2.1 Basic Concepts of RL

To achieve a certain goal in an unknown environ-
ment, the agent of RL will constantly explore the
environment to obtain timely feedback, and then
adjust its actions. The ultimate goal is to get the

maximum return from the environment (Sutton and
Barto, 2018). The input of RL is a Markov Deci-
sion Process (MDP) that is a 4-tuple (S, A, P, R),
which is defined as follows:

* S is a finite set of all states;

* Ais a finite set of actions, where A(s) repre-
sents a set of actions that can be executed in
state s;

* P is a probability distribution function. When
action a is executed, the current state changes
from s to s, and the transition probability is
recorded as P(s'|s,a);

* R is the immediate reward function. When
the current status is s, the agent selects and
executes an action a to obtain a timely reward
r = R(s,a) from the environment.

The output of reinforcement learning is an action
selection strategy w : S — A. When the agent
selects action A = 7(.5) in state S, the expected
value of the total reward is the largest.

4.2.2 DDPG and SAC

Deep Deterministic Policy Gradient (DDPG) (Lil-
licrap et al., 2015) is a reinforcement learning al-
gorithm to solve continuous control problems, in
which its output is an action directly. It has fast
convergence speed and is more suitable for the sce-
nario where the sample data is scarce in the early
stage of service composition. Soft Actor-Critic
(SAC) (Haarnoja et al., 2018) is a reinforcement
learning algorithm based on off policy, actor critic
and maximum entropy, which mainly solves the
issues of discrete action space and continuous ac-
tion space. It’s a great choice to utilize SAC in the
complex service composition environment.

5 HSC-Rocket System

In Figure 1, the system architecture of the HSC-
Rocket includes two modules (1) business abstract
service layer; (2) concrete service composition
layer.

Business Abstract Service Layer. Users ex-
press personal requirements based on natural lan-
guage, and Abstract Agent will recommend the
business process P composed of abstract services
abSer. Then users answer feedback: like or dislike.
Assuming users are satisfied with some business
processes, which means those processes can ini-
tially meet the demands of users. Consequently,
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their QoS is different. Naturally, Concrete Agent
dynamically composes concrete service collections
based on the user’s requirements and abstract ser-
vices, which can satisfy the end-users more effec-
tively.

The interaction process between the two layers
is shown in Figure 2. Our service library, Rock-
ethouse, stores the description semantic informa-
tion and QoS attributes of the service. Here step
1 completes matching abstract services based on
the user’s demands, step 2 determines the business
process by composition, and step 3 returns the busi-
ness process to the end-users. The concrete service
composition list set {servicel,..., service5} is de-
termined through the business processes P1,..., P5.

5.1 Business Abstract Service Model

As shown in Figure 3, we generate sentence vectors
according to the user’s demands through word com-
pilation. AbstractAgent selects the best abstract ser-

| Abstract process recommendation stage |

Figure 2: Flow chart of interaction between abstract
process recommendation and service composition.

vice in the current state, returns it to the dialogue
system, and then end-users give immediate rewards.
Meanwhile, the AbstractAgent determines whether
to continue to compose the next abstract service.

Environment and Action space. The environ-
ment is composed of the semantic description ma-
trix of services, the sentence vector, and several
currently composed service lists. The action of Ab-
stractAgent is to compose and recommend abstract
services.

Reward function. We divide rewards into im-
mediate rewards and global rewards. Immediate
reward obtains the connection relationship between
two abstract services, and the reward in step ¢ is
defined as:

ri = G(a;,a”) (2)
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Figure 3: Business Abstract Service Model (Business-
AbService) Based on Reinforcement learning.

Where a* represents the abstract service required
by users, a; is the recommended abstract service.
G(x,y) is a Boolean expression. It reflects the real-
time interaction between users and HSC-Rocket,
When Formula (2) is equal to 1, it means the recom-
mended services are consistent with user’s expecta-
tions. And conversely, it means inconsistent when
the value is -1. Correspondingly, the user will give
‘like’ or ‘dislike’ on the dialogue system interface.

Unlike immediate rewards, global rewards focus
on obtaining the integrity of abstract services. It
is an iterative process from back to front, so we
define it as the following formula in step #:

R; = G(®(r;), ®(rig1))Riv1H; 3)

Where ®() is used to measure the sign (+, -) of
ri. R;11 is the global reward of the latter service,
and H; represents the probability that the services
are composed in step 7. On the whole, we mainly
determine the symbol of the global reward accord-
ing to the immediate reward r; and ;41 of the two
abstract services, and then weigh the global reward
based on probability. And the final critical point is:

Where y is the score given by the user after the
abstract service composition is completed.

Sample enhancement. At the beginning of the
conversation, there will be a small number of sam-
ples due to the limited questions and answers. In
this case, the critical issue is to make the algo-
rithm converge quickly based on a small number
of samples. Therefore, we propose a soft sample
enhancement method to alleviate this limitation.

During the interaction with users, we can get im-
mediate rewards between services, so the problem
can be summarized as to expand the sample data
of 1:1 service to 1: n sample data. By comparing

the functions of services, we regard them with the
same functions as the positive samples and with
different functions as the negative samples. The
proposed soft enhancement can obtain the reward
value according to the simple semantic function
distance of the two services, which defines it as:

o = Fld(fir fo)) -+ 2 )

Where d(x, y) represents the semantic distance,
f is the characteristic function, a, means the ser-
vice sample, and r, represents the immediate re-
ward. The p; and ¢; respectively represent QoS ser-
vice_level and latency. Significantly, we can obtain
more non-zero samples, which is conducive to im-
proving the robustness of this system. Specifically,
F'(+) in this paper represents a Gaussian function,
thus the reward is expressed as:

7o = exp {—[d(fi, far) — D]2/262} - ru+ lti (6)

5.2 Concrete Service Composition Model

After end-users determine the process in the ab-
stract layer, we will further compose the candidate
concrete services in the concrete layer. Since the
sample enhancement module is the same as section
5.1, we will not repeat it in Figure 4.

l User Feedback

Recommend
Concrete Services

Abstract Word Compilation
Process
‘ Sample Enhancement

ConcreteAgent

Environment

Figure 4: Concrete Service Composition Model
(Composition-ConService) Based on Reinforcement
learning.

Environment and Action space. The environ-
ment includes the abstract service determined in
Section 5.1 and the specific service matrix mapped
by some abstract services. The service matrix
is composed of three QoS: service_level, latency,
price. The action is to select the concrete service.

Reward function. Unlike the Bussiness-
AbService, the Composition-ConService focuses
on the composition of concrete services, hence
there is only an immediate reward that is defined
as follows:

i 1

Ti = Tyser + ‘s + 1T price @)



Where r,s.r represents user feedback; p;, t;
and price respectively represent QoS service_level,
latency and price, which describes the non-
functionality of the service.

6 Implementation and Evaluation

6.1 Data Sets

In order to verify the HSC-Rocket, we store the
RapidAPI datasets into the service warehouse
Rockethouse. RapidAPT! is the largest API li-
brary in the world, including various types of ser-
vices, such as data, sports, finance, travel, etc.,
which is shown in Figure 5. Rockethouse can meet
the service requirements of different groups, which
also conforms to the generality of HSC-Rocket.

W Data
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Finance and Financial

Travel and Transportation
W Entertainment
W Location

W Science

W Food

Business A"Vﬂﬁﬂn&

Software M Music and Movies
Video, W Business
Images me-l Gam..

W Visual Recognition
- ... o
el -

Tﬂvel Weather

Figure 5: Distribution of RapidAPI Types.

Further, we store the semantic description and
QoS attributes (latency, service level, price) in the
Rockethouse based on the knowledge graph. The
storage structure in Rockethouse is shown in Fig-
ure 6.

Service level: 100%
Latency: 123ms
Price: Free

Currency
Exchange
Travel
Advisor/locations
Travel
Advisor/hotels

Service level: 100%
Latency: 1275ms
Price: $20.00 / month

Service level: 100%
Latency: 434ms
Price: $10.00 / month

Open Weather
map
COVID- 19 data

Service level: 100%
Latency: 55ms
Price: $5.00 / month

Service level: 100%
Latency: 1275ms
Price: $20.00 / month

Figure 6: An example of the storage structure of services
and their attribute QoS in Rockethouse.

"https://rapidapi.com/hub

6.2 Experimental setup and training

In the Abstract Service Layer, we propose the Ab-
stractRL Algorithm based on a deterministic strat-
egy DDPG. The parameters involved in this model
and their specific values are shown in Table 1. And
we utilize ConcreteRL Algorithm based on SAC
in the concrete service composition layer. The pa-
rameters of actor and critic networks are randomly
initialized, and the other parameters are shown in
Table 2. The pseudo codes of the two algorithms
are in the Appendix.

Parameter Symbol/Value
Learning rate of Actor  «=0.001
Learning rate of Critic ~ «'=0.002
Discount factor ~v=0.8

Soft update coefficient =~ 7=0.01
Number of samples m=64
Q-network update C=100
Maximum iterations T=500
Random noise function N (Gaussian)
Enhanced samples n=100

Reward in enhancement F'(Normal function)

Table 1: The detail names and values of parameters in
Abstract Service Layer-AbstractRL Algorithm

6.3 Effectiveness of HSC-Rocket

In this section, we mainly evaluate the effectiveness
of HSC-Rocket. We use 213 user data for training,
which comes from the feedback of students, epi-
cure, and financiers. To test the performance of the
model, we utilize the TopN index, which means
that the first N services composed by HSC-Rocket
can meet users’ requirements. For instance, Top3
means that the three services composed by the sys-
tem can meet the needs of users. The data used for
testing are mainly divided into two types, including
40 pieces respectively. The first category belongs to
the sample coverage, and the experimental results

Parameter Symbol/Value
Learning rate of Actor a=0.001
Learning rate of Critic ('=0.002
Discount factor ~'=0.8
Exploration rate €'=0.01
Number of enhanced samples n/=32
Maximum iterations T=500

Table 2: The detail names and values of parameters in
Concrete Service Layer-ConcreteRL Algorithm



are shown in Figure 7(a); The second type of data
is not within the sample coverage, and Figure 7(b)
shows the results.

Topt Top3 Tops Top10 Top1 Top3 Tops Top10

(a) Within sample coverage (b) Out of sample coverage

Figure 7: Experimental results of two different types of
test data

In Figure 7(a), ‘normal’ means that the HSC-
Rocket without sample enhancement technology,
conversely, ‘sample enhancement’ means that the
sample enhancement technology is used in HSC-
Rocket. It can be clearly shown that the accuracy of
this system can be significantly improved by using
sample enhancement when there is little sample
data at the initial stage of user-system interaction.
Simultaneously, as the number of composed ser-
vices NN increases, the accuracy will be improved
accordingly.

It can be further concluded from Figure 7(b)
that when our HSC-Rocket processes data that is
not within the sample range, that is, when interact-
ing with unfamiliar requirements, it can also well
consider user requirements and present composed
results. And as the user system interaction becomes
more frequent, the understanding performance of
HSC-Rocket will become stronger and stronger.

6.4 Scenario Cases

To better verify the practicability of HSC-Rocket,
we provide the following real-life scenarios to ex-
plain the interaction process. As described in Fig-
ure 8, the user enters "I want to get a film re-
view". Firstly, our assistant composes abstract ser-
vice P ={ Get the basic information and IMDB
number of the movie -> Get movie details -> Get
movie reviews -> Get emotional analysis of film
reviews} for users through interactive feedback
with users. Then, for each abstract service in
P, our system can compose the corresponding
concrete services {OTT details/Search}, {IMDB-
Internet Movie Database/Film}, {movie.douban},
{Text Sentiment Analysis Method} according to the

user feedback button. Furthermore, the user inputs
the movie name "Wolf Warriors", and HSC-Rocket
will respond to the details of this movie. More
detailed cases are in the Appendix.

(1]

=]
O]
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Figure 8: Two screenshots of the our HSC-Rocket assis-
tant user interface

7 Conclusion

In this paper, we propose a service composition al-
gorithm based on human-computer interaction and
design a dialogue assistant HSC-Rocket, which can
better complete the interactive question and answer
process combined with real-time feedback. In ad-
dition to meeting users’ demands, our HSC-Rocket
could complete the dynamic composition of ab-
stract services and concrete services. Furthermore,
we verify the effectiveness of the assistant through
the case scenario, which has significant application
value. In the future, we intend to consider more
QoS and simultaneously focus on the execution of
concrete services.
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A Appendix

A.1 Scenario case

The financial and food scenario cases of HSC-
Rocket user interface are shown in Figure 9 and 10
respectively.

A.2 Pseudo code

Algorithms 1 and 2 are AbstractRL and Con-
creteRL algorithm respectively.
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Figure 9: User cases in financial scenarios

B[O

B[O

LIE:

Figure 10: User cases in food scenes




Algorithm 1 AbstractRL algorithm

Input:

user demand;

Output:

Serve_list =[ |;

: user_feature = use word2vec to get feature vec-

tor;

2: 1s_end=false;

10:
11:

13:

14:

15:

17:

18:

19:

while is_end is false do
S = Transform To State (s, serve_list,
user_feature);
in Actor network get action:
mo(9(s)) + N ;
Do the action to get Reward(R), next
state(s’) and isend;
R=GetReward Through
tion(serve_action);
Use soft Sample enhancement to get more
experiences;
Action_list,R_list,S_list=Soft SampleEn-
hancement(A,R,S);
For i=0 to Action.length;
put (¢(S),Action_list[i],R_list[i],¢(S’),isend
) in experience replay D;
S=S’;
M samples are sampled from the experience
playback set D to get target value Q) ;;

(608, 45, Ry, 0(8))), isends },

A

Userlnterac-

j=1,2,....m;
R;, is_end; = true
Y; = Rj + VQI(¢(S§)7779’(¢(S§'))>w/)7

is_end; = false

Using mean square loss function
L (v Q(6(S)), Aj,w))*  to
update the critic net work parameter w;
Using J(§) = —1 T Q(S),4;,0) to
update all parameters of actor’s network 6;
If T%C =1 update critic target network and
actor target network parameters:
w —Tw+ (1 —71)u
0 10+ (1—1)0

end while
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Algorithm 2 ConcreteRL algorithm

Input:

one_abstract_services, s;

Output:

concrete_service_list;

: user_feature = use word2vec to get feature vec-

tor;

S = Transform To State(s, serve_list,
user_feature, concrete_service_list);
Continue = true;

4: while Continue do

10:
11:
12:
13:
14:

16:
17:

18:

19:
20:
21:
22:

23:
24:

25:

26:
27:

Get action in Actor network and the next S’
: serve_action, S’ = ¢(S, serve_action);
Compute reward R in actor network
Through user interaction;
R=GetRewardThroughUserInteraction
(serve_action);
if R in Positive then

Serve_list.add();

isend=true;

Continue =false;
else

1send=false;

Continue=true;
end if
In critic network use S and S’ to get V(S),
V(S);
Compute TD loss: § = R+ vV (So)V (S);
Use the Mean square error loss function
to update the critic network parameter w :
SR+ 4V (So)V ()2
To update the parameter 6;
0 =0+ aVylogmy(S, A)J;
Use soft Sample enhancement to get more
experiences;
Action_list,R_list=SoftSampleEnhancement
(serve_action,R);
For i=0 to Action.length;

put (p(S), Action_list[i], R_list[i], ¢(S"), isend)

into experience replay D;
Use D to update the base decision-makers e
every time period m;

end while

Return serve_action




