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A B S T R A C T

Remote sensing (RS) instance segmentation is an important but challenging task due to multi-oriented, densely
arranged objects and lack of mask annotation. Compared with redundant horizontal bounding-box (HBB)
and expensive pixel-level annotation, oriented bounding box (OBB) annotations can provide compact object
depicts with lower annotation costs. Therefore, we propose the first weakly supervised remote sensing instance
segmentation method with OBB supervision (namely OBBInst) to reduce the annotation burden and make full
use of existing abundant OBB annotations. Based on BoxInst (a high-performance instance segmentation method
with box annotations), OBBInst has customized a framework for OBB annotation to unify the incompatibility
between existing HBB-based and OBB-based methods. In addition, we propose an oriented projection method
with a corresponding loss function to achieve more precise target depicts of OBB annotation. Moreover, we
propose an edge similarity loss to incorporate Canny edge prior into deep learning framework for more precise
edge identification of densely arranged objects. We have conducted extensive experiments on iSAID and HRSC
datasets, and the experimental results demonstrate that OBBInst can achieve the state-of-the-art performance
as compared to existing box-supervised methods. In addition, OBBInst dramatically narrows the performance
gap between weakly and fully supervised instance segmentation (23.9% vs. 35.6% in iSAID dataset and 79.5%
vs. 84.9% in HRSC dataset).
1. Introduction

Object detection and segmentation in remote sensing images (RSIs)
has been a significant yet challenging task in remote sensing (RS) in-
terpretation systems, and has various important applications, including
environmental monitoring (Ali et al., 2022; Dai et al., 2023), geological
disaster detection (Xie et al., 2022; Teng et al., 2021) and land use
& development (Bhagavathy and Manjunath, 2006; Shi et al., 2020).
Unlike the extensive explorations of horizontal bounding-box (HBB)
annotations for natural images in the field of computer vision, HBB
is seldom used in RSIs due to their unique characteristics of multi-
direction, non-overlap, and dense arrangement. As shown in Fig. 1,
HBB annotation results in a large number of redundant information
(e.g., as shown in Fig. 1(a), the green area occupies 88.6% of the HBB
annotation Liu et al., 2016) and ambiguous semantics (e.g., as shown in
Fig. 1(c), the HBB annotation of ship A contains much information of
ship B). Compared with HBB annotation, oriented bounding box (OBB)
annotation introduces an additional angle parameter to perform a more
precise and compact object description, as shown in Fig. 1(e) and (f).

Based on OBB annotation, a large number of methods have emerged
(Zhang et al., 2021a; Chen et al., 2021a; Liu et al., 2021; Zhang et al.,
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2018; Xu et al., 2020) to pursue the box-based detection performance
peak. However, per-pixel mask can further provide finer pixel-level
location (Gong et al., 2021; Zhang et al., 2021b) to facilitate various
downstream tasks, including terrain classification (Julius Fusic et al.,
2022; Hu et al., 2023), change detection (Su et al., 2022; Venugopal,
2020), and urban planning (Guo et al., 2018; Mao et al., 2022).
Therefore, numerous RS semantic segmentation methods (Diakogiannis
et al., 2020; Li et al., 2021b,a) have been proposed to perform per-
pixel mask inference. However, the inherent instance-agnostic problem
of semantic segmentation results in inferior performance on densely
arranged objects (Liang et al., 2022; He et al., 2022). As shown in
Fig. 2, semantic segmentation methods can only segment a cluster of
objects with a single mask and corresponding class prediction, which
provides confusing signals for subsequent direction determination (Li
et al., 2021c; Yue et al., 2022) and posture depiction (Chanlongrat
et al., 2022).

Recently, several works (Gong et al., 2021; Zhang et al., 2021b;
Chen et al., 2021b; Jian et al., 2019) have been proposed to per-
form instance segmentation in RSIs. Jian et al. (2019) combined the
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Fig. 1. Differences between HBB and OBB annotation. (a), (b) compare the redundancy
(i.e., green and yellow areas) between HBB and OBB. (c), (d) illustrate the ambiguous
semantics of HBB. (e), (f) show different representations of HBB and OBB in the
rectangular image coordinate system. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

Fig. 2. Differences between semantic segmentation and instance segmentation. (a),
(b), (c) show the image and corresponding semantic segmentation and instance
segmentation results. We show the zoom-in regions of densely arranged objects for
better visualization, and the yellow arrow represents the direction generated by Li
et al. (2021c). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

modified U-Net (Ronneberger et al., 2015) with multi-task learning
(MTL) to perform instance segmentation of buildings in RSIs. Gong
et al. (2021) incorporated the boundary information in Mask R-CNN
(He et al., 2017) to achieve more precise instance segmentation. Based
on the fully convolutional network (FCN) (Long et al., 2015), Zhang
et al. (2021b) utilized semantic attention with extra supervision to
strengthen the feature representation capability for performance im-
provement. However, there are only a few attempts, and its potential
remains locked, unlike the extensive explorations (Ronneberger et al.,
2015; Long et al., 2015; Badrinarayanan et al., 2017; Zhao et al.,
2017; Chen et al., 2017) for natural images. This is mainly due to the
potential reasons, including lack of large-scale, accurately annotated
datasets and RS objects featured by their usually small size, arbitrary
orientation, and locally dense arrangement. Moreover, most existing
methods are fully supervised, which usually requires large-scale object
mask annotations for training. As shown in Fig. 2(c), this is extremely
time-consuming and labor-intensive (Bearman et al., 2016; Everingham
et al., 2009; Khoreva et al., 2017).

Therefore, a natural question arises: Can we develop a new frame-
work for RS instance segmentation with box annotations? In fact,
to substantially reduce the annotation cost for segmentation tasks,
weakly supervised segmentation methods with HBB annotation (Arun
et al., 2020; Dai et al., 2015; Kulharia et al., 2020; Papandreou et al.,
2015; Rajchl et al., 2016; Song et al., 2019; Tian et al., 2021) have
been studied in the field of computer vision. Although these weakly
2

Fig. 3. Illustrations of (a) horizontal projection in rectangular image coordinate system
and (b) oriented projection in rotated image coordinate system. The red lines represent
the projections of mask on the coordinate system, while the yellow ones represent those
of OBB. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

supervised methods achieve promising results, they are not compatible
with RS instance segmentation methods due to the following reasons:
(1) RS objects are usually labeled with OBB, while HBB-based methods
(Dai et al., 2015; Kulharia et al., 2020) cannot be directly applied
for RS instance segmentation methods. (2) Horizontal projection (Tian
et al., 2021) produces large coordinate offsets due to the unsuitable
coordinate system, and thus results in severe accuracy loss (see details
in Section 4.2.1). As shown in Fig. 3(a), the horizontal projection of
OBB differs from that of mask for a large gap (over 30%).

In this work, we intend to conduct the first study of weakly super-
vised remote sensing instance segmentation with OBB supervision, and
propose a framework tailored for OBB annotation based on BoxInst
(Tian et al., 2021) (namely OBBInst) to unify the incompatibility
between existing HBB-based (Khoreva et al., 2017; Hsu et al., 2019;
Tian et al., 2021) and OBB-based methods. OBBInst consists of OBB
regression branch and mask regression branch to perform OBB predic-
tion and instance segmentation, respectively. In addition, inspired by
horizontal projection loss (Tian et al., 2021), we propose an oriented
projection loss to eliminate the projection differences between OBB
and mask by rotated image coordinate system, as shown in Fig. 3(b).
Furthermore, since edge information is beneficial for mask prediction
(He et al., 2017; Gong et al., 2021), we propose an edge similarity
loss to further incorporate the Canny (1986) edge supervision for
substantial performance improvement. Specifically, the edge similarity
loss calculates the structural similarity (SSIM) between the predicted
and GT edges generated by Canny to fully use the model-based edge
prior in a data-driven manner. Several approaches (Rodriguez-Serrano
et al., 2016; Gong et al., 2021; Cheng et al., 2023) have demonstrated
that data-driven approaches can improve the efficiency of data usage
and adaptability to complex data.

The main contributions can be summarized as follows:
1. We propose the first weakly supervised RS instance segmentation

method with OBB supervision (namely OBBInst), which can largely
reduce the annotation burden.

2. OBBInst breakthroughs the gap between HBB-based and OBB-
based box-supervised methods, and can perform more precise object
depicts by an oriented projection loss. In addition, OBBInst introduces
an edge similarity loss to incorporate the model-based edge prior in a
data-driven manner for further performance improvement.

3. Extensive experiments on iSAID (Waqas Zamir et al., 2019) and
HRSC 2016 (Liu et al., 2017) datasets have demonstrated that OBBInst
can surpass the existing HBB-based weakly supervised methods for a
large margin with minor parameter and FLOPS increases. In addition,
with low OBB annotation cost, OBBInst can achieve over 67.1% and
93.6% mask AP of their fully supervised performance in iSAID and
HRSC datasets, respectively.
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2. Related works

2.1. Box-supervised segmentation

In the field of computer vision, a few works attempted to obtain se-
mantic masks using box annotations. As the pioneering work, Dai et al.
(2015) proposed BoxSup to iteratively train a convolutional network to
refine the estimated masks from region proposals generated by MCG
(Pont-Tuset et al., 2016). Supervised by pseudo labels generated by
GrabCut (Rother et al., 2004), Kulharia et al. (2020) proposed Box2Seg
to predict per-class attention maps for false alarm elimination. Song
et al. (2019) introduced a box-driven class-wise masking model (BCM)
to predict pixel labels by calculating the mean filling rates between
predictions and segment proposals generated by CRF (Arun et al., 2020)
as prior cues. Note that, the aforementioned methods employ pseudo
labels generated by unsupervised segmentation methods as supervision
and develop elaborate methods for mask refinement. Therefore, they
cannot work without mask annotation, and drastically decrease the
training efficiency.

Since semantic segmentation cannot provide distinct results of
densely arranged objects, box-supervised instance segmentation has
raised more and more attention recently. The earliest framework SDI
(Khoreva et al., 2017) utilized region proposals generated by MCG
(Pont-Tuset et al., 2016) to refine the estimated masks by an iterative
training strategy. Hsu et al. (2019) combined Mask R-CNN (He et al.,
2017) with multiple instance learning (MIL), and sampled positive and
negative bags based on region of interest (ROI) annotations. In con-
clusion, the aforementioned methods all require region segmentation
proposals generated by unsupervised segmentation methods. To relieve
the supervision burden, modified from CondInst (Tian et al., 2020a),
BoxInst (Tian et al., 2021) introduced a projection loss and pairwise
affinity loss to achieve instance segmentation without any auxiliaries.
Note that, BoxInst is designed for HBB annotation, which cannot be
directly applied to RS instance segmentation with OBB annotation. In
addition, as shown in Fig. 3(a), projection loss (Tian et al., 2021) cannot
provide precise object depicts, resulting in a severe performance drop.
Our OBBInst can well address the aforementioned problems to unify
the incompatibility between HBB-based and OBB-based methods and
provide more precise object depicts.

2.2. Remote sensing segmentation

FCN (Long et al., 2015) has been widely used for semantic seg-
mentation in natural images. Following this idea, various methods,
including SegNet (Badrinarayanan et al., 2017), U-Net (Ronneberger
et al., 2015), PSPNet (Zhao et al., 2017), and DeepLab (Chen et al.,
2017) have been developed for substantial performance improvements.
Based on the current powerful paradigms on generic semantic segmen-
tation, RS semantic segmentation methods (Diakogiannis et al., 2020;
Li et al., 2021b,a; Julius Fusic et al., 2022; Guo et al., 2018; Venu-
gopal, 2020) have emerged in recent years. ResUNet-a (Diakogiannis
et al., 2020) combined residual connections, atrous convolutions, and
pyramid scene parsing pooling with MTL to perform RSIs segmentation.
MAResU-Net (Li et al., 2021a) incorporated multi-scale features of
U-Net, and designed a multi-scale skip connection with symmetric
convolution for more distinct feature representation. MANet (Li et al.,
2021b) employed multiple efficient attention modules to exploit con-
textual dependencies while alleviating the computational burden of
attention modules. Cheng et al. (2023) adopted the Canny operator to
extract the edge information of images as the auxiliary modality fusion
for road segmentation in RSIs. Schuegraf et al. (2022) used morphology
and watershed algorithms in traditional methods to post-process the
deep network semantic output to generate instance-level segmentation.
Qiu et al. (2024) proposed an efficient generative adversarial trans-
former (GATrans) to achieve high-precision remote sensing semantic
3

segmentation while maintaining an extremely efficient size. RSSGLT
(Satyawant et al., 2024) captured the global and local features by
leveraging the benefits of the transformer and convolution mechanisms
for remote sensing image segmentation.

Compared with the extensive explorations of semantic segmentation
in RSIs, RS instance segmentation is rarely discussed. However, due to
the ambiguous semantics of densely arranged objects shown in Fig. 2,
instance segmentation raises more and more attention in RSIs. Jian
et al. (2019) combined the modified U-Net (Ronneberger et al., 2015)
with MTL to perform instance segmentation of buildings in RSIs. Gong
et al. (2021) incorporated the boundary information in Mask R-CNN
(He et al., 2017) by a penalty map for more discriminative edges of
different objects. Based on FCN (Long et al., 2015), Zhang et al. (2021b)
utilized semantic attention with extra supervision to strengthen the
feature representation capability and reduce the background noise. The
above methods are all fully supervised, which need extra supervision.
Instead, our OBBInst can combine box supervision with model-based
edge prior to perform instance segmentation in RSIs without per-pixel
mask supervision.

3. Method

In this section, we introduce our OBBInst in detail. Specifically, Sec-
tion 3.1 introduces the overall framework of our method. Sections 3.2
and 3.3 introduce the OBB and mask regression branch to perform OBB
and mask predictions under OBB supervision.

3.1. Overall framework

As shown in Fig. 4, OBBInst consists of a backbone (He et al., 2016)
for feature extraction, a feature pyramid network (FPN) (Papandreou
et al., 2015) for multi-scale feature fusion, and two sub-branches (i.e.,

BB and mask regression branches) to generate the OBB and mask
utputs. The input image is first sent to the ResNet (He et al., 2016) for
asic feature extraction, which is then sent to FPN (Papandreou et al.,
015) for multi-level feature fusion. On the one hand, the fused multi-
evel feature (i.e., P3–P7 features) are sent to five shared OBB heads to
egress class, OBB and center-ness map (Tian et al., 2020b) predictions.
n the other hand, the P3 feature is processed by convolutions to
btain mask feature 𝐹𝑚𝑎𝑠𝑘, which is first concatenated by the relative
oordinates (i.e., 𝐹𝑚𝑎𝑠𝑘) and then sent to the mask head for mask
rediction. Note that, without GT mask, we utilize oriented projection
oss to minimize the discrepancy between the projections of the mask
redictions and GT OBBs. This essentially ensures that the tightest OBB
overing the predicted mask matches the GT OBB. In addition, we
tilize pairwise affinity loss and edge similarity loss for classification
uidance and edge enhancement.

.2. OBB regression branch

As shown in Fig. 5(a), OBB regression branch employs convolutional
locks to generate class prediction 𝑐, OBB prediction (𝑙, 𝑡, 𝑟, 𝑏, 𝜃) and

center-ness score 𝑐𝑡𝑛 of each regression point. Among them, 𝑐 represents
the classification score, and (𝑙, 𝑡, 𝑟, 𝑏) represents the distance from the
egression point to the left, top, right, and bottom of OBB, respectively.
represents the angle prediction of OBB. Note that, our method em-

loys a pixel-by-pixel regression strategy to reduce missing detection.
owever, this approach unavoidably results in a large number of low-
uality and center-offset boxes due to the imbalance between regression
oints and GT objects. Inspired by FCOS (Tian et al., 2020b), we
mploy a center-ness branch to suppress low-quality boxes by assigning
center-aware value 𝑐𝑡𝑛, which can exhibit higher response values of

ixels that are close to the center of OBB. 𝑐𝑡𝑛 can be formulated as:

𝑐𝑡𝑛 =

√

min(𝑙, 𝑟)
×

min(𝑡, 𝑏)
. (1)
max(𝑙, 𝑟) max(𝑡, 𝑏)
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Fig. 4. The overall framework of OBBInst, which consists of three main parts: backbone, feature pyramid, and OBB and mask regression. C3–C5 and P3–P7 represent multi-level
feature maps. The OBB regression branch consists of five shared OBB heads to perform class, OBB and center-ness prediction. P3 feature is first processed by a convolution layer
and then concatenated by the relative coordinates, which are sent to the mask regression branch to generate the output masks. Note that, without GT masks, we utilize orienting
projection loss, edge similarity loss, and pairwise affinity loss to supervise the network training.
Fig. 5. An illustration of (a) OBB, class and (b) Center-ness map predictions. 𝑐
represents the classification score, and (𝑙, 𝑡, 𝑟, 𝑏) represents the distance from the
regression point to the left, top, right, and bottom of OBB. 𝜃 represents the angle
prediction of OBB. 𝑐𝑡𝑛 ∈ [0, 1] is the center-ness score, which represents the distance
from the center of the object. Red represents higher value, and blue represents lower
value. Center-ness map are used to suppress the low-quality boxes in the inference
stage. Note that, the final classification score 𝑐𝑓 is the multiplication between 𝑐 and
𝑐𝑡𝑛. (For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

Fig. 6. An illustration of two-step oriented projection. (a) shows that the rotated image
coordinate system 𝑋∗𝑂∗𝑌 ∗ is generated by rotating the rectangle image coordinate
system 𝑋𝑂𝑌 via 𝜃 degree in clockwise manner, and (b) shows the oriented projection
of OBB

(

𝑥∗1𝑥
∗
2 , 𝑦

∗
1𝑦

∗
2

)

on the rotated image coordinate system along the 𝑋∗-axis and
𝑌 ∗-axis.
4

As shown in Fig. 5(b), red represents higher value and blue rep-
resents lower value. 𝑐𝑡𝑛 decreases from 1 to 0 as the predicted loca-
tion is far away from the center of the object. 𝑐𝑡𝑛 is used to adjust
the confidence of each regression point to suppress the low-quality
boxes, and the final confidence 𝑐𝑓 is generated by the multiplication
of classification score 𝑐 and center-ness score 𝑐𝑡𝑛.

We design an OBB regression loss (i.e., 𝐿𝑂𝐵𝐵𝑟𝑒𝑔) to supervise the
network training, including classification loss (i.e., 𝐿𝑐𝑙𝑠), OBB regres-
sion loss (i.e., 𝐿𝑟𝑒𝑔) and center-ness loss (i.e., 𝐿𝑐𝑒𝑛𝑡𝑒𝑟), which can be
formulated as:

𝐿𝑂𝐵𝐵𝑟𝑒𝑔 = 𝐿𝑐𝑙𝑠 + 𝐿𝑟𝑒𝑔 + 𝐿𝑐𝑒𝑛𝑡𝑒𝑟, (2)

where 𝐿𝑐𝑙𝑠 represents focal loss (Lin et al., 2017) to address class
imbalance and can be formulated as:

𝐿𝑐𝑙𝑠 = −𝛼𝑡(1 − 𝑝𝑡)𝛾 log(𝑝𝑡), (3)

𝑝𝑡 =
{

𝑝, if y = 1
1 − 𝑝, otherwise , (4)

𝛼𝑡 =
{

𝛼, if y = 1
1 − 𝛼, otherwise , (5)

where 𝑦 ∈ {0, 1} represents the label and 𝑝 represents the prediction
probability. 𝛾 is the focal parameter to adjust the rate of weight
reduction and is set to 2. 𝛼 is the positive–negative sample ratio, and
is set to 0.25.

𝐿𝑟𝑒𝑔 represents KFIoU loss (Yang et al., 2022) to measure the
difference between the predicted and GT OBB for boundary continuity
improvement, and can be formulated as:

𝐿𝑟𝑒𝑔 = 1 −
𝜐𝐵3

(𝐶𝑜𝑣)
𝜐𝐵1

(𝐶𝑜𝑣1) + 𝜐𝐵2
(𝐶𝑜𝑣2) + 𝜐𝐵3

(𝐶𝑜𝑣)
, (6)

where 𝜐𝐵 represents the union region of target boxes and predicted
boxes. 𝐶𝑜𝑣 represents the covariance of two Gaussian distributions.

𝐿𝑐𝑒𝑛𝑡𝑒𝑟 represents cross entropy loss (Tian et al., 2020b) for regres-
sion point refinement and low-quality OBB suppression, and can be
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𝑐

Fig. 7. An illustration of edge similarity loss. ⊗ represents the Hadamard production.
Inverse center-ness scores (i.e., 1 − 𝑐𝑡𝑛) are used to suppress the inner edges of the GT
OBBs, and we employ SSIM between the predicted and GT edges as the loss function
for edge supervision.

formulated as:

𝐿𝑐𝑒𝑛𝑡𝑒𝑟 = −
𝐶
∑

𝑖=1
𝑥𝑖 log 𝑦𝑖, (7)

where 𝐶 represents the total number of the GT label 𝑦. 𝑥𝑖 and 𝑦𝑖
represent the label and score of 𝑖𝑡ℎ predicted OBB.

3.3. Mask regression branch

As shown in Fig. 4, P3 feature is first sent to convolutions to
generate feature 𝐹𝑚𝑎𝑠𝑘. Then 𝐹𝑚𝑎𝑠𝑘 is concatenated with its relative
coordinates and then sent to the mask head (Tian et al., 2020a) to
predict the instance mask. To supervise the network training, we design
a mask regression loss 𝐿𝑆𝑒𝑔 , which can be formulated as:

𝐿𝑆𝑒𝑔 = 𝐿𝑂𝑂𝐵𝐵 + 𝐿𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 + 𝐿𝐸𝑆 , (8)

where 𝐿𝑂𝑂𝐵𝐵 represents oriented projection loss that minimizes the
discrepancy of the oriented projections between the predicted and the
GT mask. 𝐿𝑝𝑎𝑖𝑟𝑤𝑖𝑠𝑒 represents pairwise affinity loss that encourages
predicted and GT masks to have the same pairwise label similarity in
proximal pixels. 𝐿𝐸𝑆 represents edge similarity loss that incorporates
the model-based edge prior in a data-driven manner to refine the output
segmentation results. The overall loss function is a summation of the
mask and the OBB regression losses, and the details of 𝐿𝑂𝑂𝐵𝐵 and 𝐿𝐸𝑆
are presented in Sections 3.3.1 and 3.3.2.

3.3.1. Oriented projection loss
As shown in Fig. 6(a), to generate the rotated image coordinate sys-

tem 𝑋∗𝑂∗𝑌 ∗, we turn the rectangle image coordinate system 𝑋𝑂𝑌 by 𝜃
degrees in a counterclockwise manner. The process can be formulated
as:
{

𝑥∗ = 𝑥 cos 𝜃 − 𝑦 sin 𝜃,
𝑦∗ = 𝑥 sin 𝜃 + 𝑦 cos 𝜃,

(9)

where (𝑥, 𝑦) represents a point in 𝑋𝑂𝑌 and (𝑥∗, 𝑦∗) represents the
corresponding point in 𝑋∗𝑂∗𝑌 ∗. Let 𝐦𝑂𝐵𝐵 ∈ R𝐻×𝑊 be the OBB mask
in rotated image coordinate system 𝑋∗𝑂∗𝑌 ∗. As shown in Fig. 6(b), the
oriented projection in 𝑋∗-axis and in 𝑌 ∗-axis can be formulated as:
{

OProj𝑥(𝐦𝑂𝐵𝐵) = max𝑦(𝐦𝑂𝐵𝐵) = 𝐨𝐩𝑥,
OProj𝑦(𝐦𝑂𝐵𝐵) = max𝑥(𝐦𝑂𝐵𝐵) = 𝐨𝐩𝑦,

(10)

where OProj𝑥 ∶ R𝐻×𝑊 → R𝑊 and OProj𝑦 ∶ R𝐻×𝑊 → R𝐻 represents
oriented projection along 𝑋∗ and 𝑌 ∗ axis. max𝑥 and max𝑦 are the max
operations along with 𝑋∗-axis and 𝑌 ∗-axis, and 𝐨𝐩𝑥 ∈ R𝑊 , 𝐨𝐩𝑦 ∈ R𝐻

denotes the 1-D segmentation mask on 𝑋∗ and 𝑌 ∗ axis, respectively.
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Finally, we calculate the oriented projection loss (i.e., 𝐿𝑂𝑂𝐵𝐵) to
supervise the network training, which can be formulated as:

𝐿𝑂𝑂𝐵𝐵 = 𝐿(OProj𝑥(𝐦𝑔),OProj𝑥(𝐦𝑝))

+ 𝐿(OProj𝑦(𝐦𝑔),OProj𝑦(𝐦𝑝))

= 𝐿(𝐨𝐩𝑔𝑥, 𝐨𝐩
𝑝
𝑥) + 𝐿(𝐨𝐩𝑔𝑦 , 𝐨𝐩

𝑝
𝑦) ,

(11)

where 𝐦𝑔 , 𝐦𝑝 represent the GT and predicted masks, respectively. 𝐿(⋅, ⋅)
represents the Dice loss (Tian et al., 2020a), and can be formulated as:

𝐿(𝑋, 𝑌 ) = 1 −
2 |𝑋 ∩ 𝑌 |
|𝑋| + |𝑌 |

, (12)

where 𝑋 and 𝑌 represent the oriented projection of the GT and pre-
dicted masks, respectively.

3.3.2. Edge similarity loss
Since edge information is beneficial to mask prediction (He et al.,

2017; Gong et al., 2021), we incorporate the Canny edge (Canny, 1986)
as an additional supervision due to its high response to edges and
extremely low computational cost. As shown in Fig. 7, to generate the
GT edges, we first utilize Canny algorithm (Canny, 1986) to segment
the edges, and then eliminate the edges beyond the GT bboxes. Then
the edge image is multiplied with the inverse center-ness score (i.e.,
𝑡̂𝑛 = 1− 𝑐𝑡𝑛) to suppress the inner edges of the GT OBBs. The predicted

edge is generated in the same way by replacing GT OBB with mask
prediction. We employ SSIM to measure the difference between the
predicted and the GT edges and introduce an edge similarity loss (i.e.,
𝐿𝐸𝑆 ), which can be formulated as:

𝐿𝐸𝑆 = SSIM(Canny(𝐼 ⊗ 𝐺) × (1 − 𝑐𝑡𝑛),

Canny(𝐼 ⊗ 𝑃 ) × (1 − 𝑐𝑡𝑛)),
(13)

where 𝐼 ∈ R𝐻×𝑊 represents the grayscale of the input image and
𝐺, 𝑃 ∈ R𝐻×𝑊 represent the GT OBB and the mask prediction. 𝑐𝑡𝑛 is
the center-ness score map. Canny(⋅) represents the canny operation and
SSIM(⋅, ⋅) represents the structural similarity measure.

3.3.3. Pairwise affinity loss
We employ pairwise affinity loss (Tian et al., 2021) to encourage the

predicted and GT masks to exhibit the same pairwise label similarity on
neighborhood pixels. Specifically, we first build an undirected graph
𝐺 = (𝑉 ,𝐸), where 𝑉 = {𝑣1, 𝑣2,… , 𝑣𝑚} is the set of the pixels in the
image, and 𝐸 = {𝑒1, 𝑒2,… , 𝑒𝑛} is the set of the edges. Note that, each
pixel in 𝑉 is connected with its 𝐾 ×𝐾 − 1 dilated neighborhood pixels
and 𝐾 is set to 3. Then we define 𝑦𝑒𝑖 ∈ {0, 1} be the label for edge
𝑒𝑖, where 𝑦𝑒𝑖 = 1 represents that two pixels linked by edge 𝑒𝑖 have the
same GT label, and 𝑦𝑒𝑖 = 0 is vice versa. Let pixels (𝑎, 𝑏) and (𝑐, 𝑑) be
the two endpoints of edge 𝑒𝑖. The network prediction 𝑚̃𝑎,𝑏 ∈ {0, 1} can
be viewed as the probability of pixel (𝑎, 𝑏) being foreground. Then the
probability of 𝑦𝑒𝑖 = 1 is defined as:

𝑃 (𝑦𝑒𝑖 = 1) = 𝑚̃𝑎,𝑏 ⋅ 𝑚̃𝑐,𝑑 + (1 − 𝑚̃𝑎,𝑏) ⋅ (1 − 𝑚̃𝑐,𝑑 ). (14)

We employ binary cross entropy (BCE) loss for optimization, which
can be formulated as:

𝐿𝑃𝑎𝑖𝑟𝑤𝑖𝑠𝑒 = − 1
𝑁

∑

𝑒∈𝐸𝑖𝑛

(𝑦𝑒 log𝑃 (𝑦𝑒 = 1)

+ (1 − 𝑦𝑒) log𝑃 (𝑦𝑒 = 0)),
(15)

where 𝐸𝑖𝑛 is the set of the edges containing at least one pixel in the
box. 𝑁 is the number of edges in 𝐸𝑖𝑛.

4. Experiments

In this section, we first introduce the experiment settings, and then
conduct ablation studies to validate our method. Finally, we compare
our OBBInst with several segmentation methods under full supervision
and box supervision to demonstrate the superiority of our method.



International Journal of Applied Earth Observation and Geoinformation 128 (2024) 103717

6

X. Cao et al.

Fig. 8. Visualizations of mask prediction under different projection methods in the 4𝑡ℎ, 8𝑡ℎ, 16𝑡ℎ, and 24𝑡ℎ epochs during training. 𝑋∗𝑂∗𝑌 ∗ and 𝑋𝑂𝑌 represent the rotated and
rectangle image coordinate system, respectively. 𝐿𝐻𝐻𝐵𝐵 , 𝐿𝐻𝑂𝐵𝐵 and 𝐿𝑂𝑂𝐵𝐵 represent the corresponding losses of horizontal projection with HBB annotation, horizontal projection
with OBB annotation, and oriented projection with OBB annotation, respectively.

Fig. 9. Visualizations of edge predictions of OBBInst trained with and without edge similarity loss. We superimpose GT edges with two edge predictions, and display the patch
of each object separately. Note that, we rotate the image patch at a certain angle for better visualization. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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Table 1
Ablation studies of different projection methods for instance segmentation. ‘‘H-HBB’’
represents horizontal projection with HBB annotation. ‘‘H-OBB’’ represents horizontal
projection with OBB annotation. ‘‘O-OBB’’ represents oriented projection with OBB
annotation. Best results are shown in boldface.

Projection Evaluation metrics (%)

AP𝑚 AP𝑚
50 AP𝑚

75 Prec. Rec. F1

H-HBB 72.32 77.64 73.57 72.06 79.57 75.53
H-OBB 68.92 72.33 69.41 62.32 75.41 68.24
O-OBB 75.90 82.45 76.51 90.55 76.20 82.76

Table 2
Ablation results of different loss functions for object detection. 𝐿𝐻𝐻𝐵𝐵 represents
horizontal projection loss with HBB annotation, and 𝐿𝑂𝑂𝐵𝐵 represents the oriented
projection loss with OBB annotation. 𝐿𝐸𝑆 represents the edge similarity loss. Best results
are shown in boldface.
𝐿𝐻𝐻𝐵𝐵 𝐿𝑂𝑂𝐵𝐵 𝐿𝐸𝑆 AP𝑏 (%) AP𝑏

50 (%) AP𝑏
75 (%)

✓ 70.82 86.86 71.21
✓ ✓ 71.44 87.78 71.95

✓ 71.90 88.06 72.34
✓ ✓ 72.08 88.11 72.63

4.1. Experimental settings

In this subsection, we sequentially introduce the datasets, the eval-
uation metrics and the implementation details.

4.1.1. Datasets
The iSAID (Waqas Zamir et al., 2019) dataset contains 2806 images,

655,451 object instances across 15 categories. As the first large-scale
RS instance segmentation dataset, iSAID fully reflects the common fea-
tures and scale distribution differences in RSIs. Therefore, performance
evaluation on iSAID for RS instance segmentation algorithms is highly
reliable.

The HRSC 2016 (Li et al., 2021a) dataset (i.e., a specific version
that contains OBB and mask annotation) presents several challenges
for the box-supervised RSIs segmentation on the ship. First, ships near
the shore are densely arranged, and thus HBB annotation presents a
high overlap rate, and cannot provide proper supervision for network
training. Second, the complex backgrounds of RSIs (e.g., nearshore
textures) and high similarity among different ship result in a high
false alarms rate. In addition, since HRSC 2016 dataset includes both
OBB and HBB annotations for ship objects, it is suitable to verify the
effectiveness of the proposed method.

4.1.2. Evaluation metrics
For performance evaluation of pixel-wise instance segmentation,

we use pixel-level precision (Prec.) and recall (Rec.) to evaluate the
localization and classification accuracy of the predicted masks. F1-score
and mask average precision (AP𝑚) are also used for comprehensive
evaluation. For performance evaluation of box-wise object detection,
we use box-level average precision (AP𝑏) based on the Intersection of
Union (IoU) and Rotated IoU (RIoU) for HBB and OBB, respectively.
The evaluation metrics can be formulated as follows:
𝑃𝑟𝑒𝑐. = (𝑇𝑃 + 𝑇𝑁)∕(𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁),

𝑅𝑒𝑐. = 𝑇𝑃∕(𝑇𝑃 + 𝐹𝑁),

F1 = 2 × 𝑅𝑒𝑐. × 𝑃𝑟𝑒𝑐.∕(𝑃𝑟𝑒𝑐. + 𝑅𝑒𝑐.),

AP𝑚 = ∫

1

0
𝑝𝑚(𝑟𝑚)𝑑𝑟,AP𝑏 = ∫

1

0
𝑝𝑏(𝑟𝑏)𝑑𝑟,

(16)

where 𝑇𝑃 , 𝑇𝑁 , 𝐹𝑃 and 𝐹𝑁 represent the numbers of true positive,
true negative, false positive, and false negative samples, respectively.
𝑝𝑚, 𝑟𝑚 and 𝑝𝑏, 𝑟𝑏 represent the pixel-level and box-level precision and
recall, respectively. Moreover, we introduce AP𝑆 , AP𝑀 and AP𝐿 for
performance evaluation on objects with different sizes (i.e., small,
medium and large). AP50 and AP75 are calculated under IoU = 0.5 and
IoU = 0.75, respectively.
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Fig. 10. Loss curves under different loss functions during the training process. 𝐿𝐻𝐻𝐵𝐵
represents horizontal projection loss with HBB annotation, and 𝐿𝑂𝑂𝐵𝐵 represents the
oriented projection loss with OBB annotation. 𝐿𝐸𝑆 represents the edge similarity loss.

4.1.3. Implementation details
We evaluated our method on a PC with an Nvidia GTX-3090Ti

GPU (24 GB), Intel Core i7 CPU and Ubuntu18.04. All models are
implemented by MMDetection (Chen et al., 2019) code library. We
use the standard partition of training and validation sets in both
datasets. We cropped the original images into 1024 × 1024 patches
with 128 overlapped pixels, and used the cropped patches for training
and inference. In the training phase, random flip was used for data
augmentation.

If not specified, we employed ResNet50 (He et al., 2016) as the
default backbone, which was initialized with ImageNet (Deng et al.,
2009) pre-trained weights. All models were trained for 24 epochs with
a batch size of 2. The initial learning rate was set to 0.01 and reduced
by a factor of 10 at epochs 16 and 22, respectively.

4.2. Ablation studies

In this subsection, we compare our oriented projection with other
projection methods to validate its effectiveness. Then we investigate the
influence of different loss functions on mask prediction, OBB prediction
and network convergence.

4.2.1. Different projection methods
To evaluate the effectiveness of the proposed oriented projection,

we employ BoxInst (with ResNet-50 as the backbone) as the base-
line model, and design three variants (i.e., H-HBB, H-OBB, O-OBB)
to compare three different projection methods. Among them, H-HBB
represents horizontal projection with HBB annotation (i.e., projection
method in BoxInst (Tian et al., 2021)). H-OBB represents horizontal
projection with OBB annotation. O-OBB represents oriented projection
with OBB annotation.

Quantitative segmentation results are listed in Table 1. It can be
observed that O-OBB can achieve the highest AP𝑚 (75.90%) and F1-
score (82.76%), 3.58% and 7.23% higher than H-HBB. This is because,
oriented projection with OBB annotation can provide more precise
object depicts and more reasonable projection guidance for box-to-
mask learning, and thus results in superior performance. It is worth
noticing that, H-OBB achieves the lowest AP𝑚 and F1-score, lower than
H-HBB for 3.40% and 7.39%. As shown in Fig. 3(a), even if OBB
provides more precise target depicts, inaccurate mask projection can
introduce many false alarms by coordinate offset, and thus greatly
degrade the segmentation performance.

As shown in Fig. 8, we visualize the mask predictions of dif-
ferent projection methods in the 4th, 8th, 16th, and 24th training
epochs. Note that, corresponding projection loss is used to supervise
the network training. It can be observed that H-HBB shows inferior
segmentation performance and slow network convergence. Due to more
precise target depicts, H-OBB introduces more visual-pleasing mask
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Table 3
Ablation results of different loss functions for instance segmentation. 𝐿𝐻𝐻𝐵𝐵 represents horizontal projection loss with HBB annotation,
and 𝐿𝑂𝑂𝐵𝐵 represents the oriented projection loss with OBB annotation. 𝐿𝐸𝑆 represents the edge similarity loss. Best results are shown in
boldface.
𝐿𝐻𝐻𝐵𝐵 𝐿𝑂𝑂𝐵𝐵 𝐿𝐸𝑆 AP𝑚 (%) AP𝑚

50 (%) AP𝑚
75 (%) Prec. (%) Rec. (%) F1 (%) Params (MB) GFlops FPS

✓ 72.32 77.64 73.57 72.06 79.57 75.53 33.85 122.58 5.3
✓ ✓ 73.19 80.92 74.80 80.74 78.20 78.46 33.85 122.60 5.3

✓ 75.90 82.45 76.51 90.55 76.20 82.76 36.21 135.32 5.3
✓ ✓ 76.12 83.50 76.84 90.83 77.45 83.60 36.21 135.34 5.3
Fig. 11. Qualitative results achieved by different methods on HRSC 2016 dataset. White and gray regions in GT masks represent the land and other unknown objects. We highlight
the significant region by yellow boxes. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Quantitative results achieved by fully supervised (Full Sup.) methods and box-supervised (Box Sup.) methods on iSAID and HRSC 2016 datasets. ‘‘#Sched.’’ represents the training
strategy, and ‘‘𝑛×’’ represents 𝑛 × 12 training epochs. ‘‘Params.’’ represents the parameters of the algorithms. Best results are shown in boldface.

Methods Backbone #Sched. Params. iSAID HRSC 2016

AP𝑚 AP𝑚
50 AP𝑚

75 AP𝑚
𝑆 AP𝑚

𝑀 AP𝑚
𝐿 AP𝑚 AP𝑚

50 AP𝑚
75 AP𝑚

𝑆 AP𝑚
𝑀 AP𝑚

𝐿

Full Sup.

Mask R-CNN (He et al., 2017) ResNet 50-FPN 3× 44.4M 24.7 50.3 22.5 13.4 30.5 38.3 79.6 84.3 79.0 61.2 79.0 81.6
Mask R-CNNa (He et al., 2017) ResNet 50-FPN 3× 44.4M 33.2 55.9 35.4 35.3 45.3 21.8 83.4 85.0 80.2 62.7 82.5 83.0
PANet (Liu et al., 2018) ResNet 50-FPN 2× 66.1M 34.1 56.3 36.2 19.2 42.4 46.8 84.6 85.1 80.7 63.2 84.1 83.4
SS-MRCNN (Zhang et al., 2021b) ResNet 101-FPN 2× 72.3M 35.6 57.4 38.3 25.1 45.2 37.7 84.9 85.5 82.2 63.5 85.7 82.7
PolarMask (Xie et al., 2020) ResNet 101-FPN 2× 38.5M 21.1 45.6 22.3 16.0 26.8 36.1 75.3 81.2 74.8 58.2 72.0 79.0

Box Sup.

SDI (Khoreva et al., 2017) VGG-16 2× 22.4M 12.9 18.3 13.5 8.6 15.3 17.5 45.5 51.4 46.9 28.1 42.2 45.2
BBTP (Hsu et al., 2019) ResNet 101-FPN 1× 42.6M 16.5 22.6 16.8 12.1 20.9 31.5 58.2 61.1 57.0 40.9 60.7 61.5
BoxInst (Tian et al., 2021) ResNet 50-FPN 3× 33.9M 20.5 40.6 20.5 13.6 23.6 34.0 72.3 77.6 73.6 53.3 70.2 73.0
BoxInst (Tian et al., 2021) ResNet 101-FPN 3× 52.9M 21.6 43.9 22.3 17.9 27.4 36.8 74.7 78.1 73.3 54.1 70.3 74.3
OBBInst ResNet 50-FPN 2× 36.2M 21.2 45.3 22.1 16.5 26.0 36.6 76.1 83.5 76.8 58.3 74.1 79.6
OBBInst ResNet 101-FPN 2× 55.2M 23.9 45.5 24.9 20.2 27.9 36.9 79.5 85.5 78.9 62.4 76.8 80.2

a Indicates that Mask R-CNN trained with edge label.
prediction and accelerates network convergence. However, the coor-
dinate offset of incorrect mask projection leads to noisy predictions.
Compared with H-HBB and H-OBB, our oriented projection with OBB
annotation under rotated image coordinate system 𝑋∗𝑂∗𝑌 ∗ guarantees
faster convergence speed and higher prediction accuracy.

4.2.2. Different loss functions for instance segmentation
We conduct ablation experiments to investigate the influence of

different loss functions for instance segmentation, and the results are
shown in Table 3. Compared with horizontal projection loss 𝐿
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𝐻𝐻𝐵𝐵
with HBB annotation in BoxInst (Tian et al., 2021), oriented projection
loss 𝐿𝑂𝑂𝐵𝐵 with OBB annotation can provide more precise clues of
target mask, and thus introduces significant performance improvement
with a reasonable recall drop. To validate the effectiveness and general-
ization of edge similarity loss 𝐿𝐸𝑆 , we add 𝐿𝐸𝑆 to 𝐿𝐻𝐻𝐵𝐵 and 𝐿𝑂𝑂𝐵𝐵 ,
and retrain the network from scratch on HBB and OBB annotations,
respectively. Note that, pairwise affinity loss is used as the default
setting for fair comparison. It can be observed that edge similarity
loss introduces substantial performance improvements on both losses,
which demonstrates that edge supervision improves the accuracy of
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Fig. 12. Qualitative results achieved by different methods on iSAID dataset. We highlight the significant region by yellow boxes. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
pixel-wise classification. In addition, oriented projection loss introduces
an additional angle prediction branch to supervise OBB, and thus
results in 2.4 M and 12.8 G increases in terms of parameters and
FLOPs. However, the increases introduced by edge similarity loss are
minor that can be ignored. Despite of parameters and FLOPs increases,
inference speed (FPS) is not affected to maintain the same as BoxInst
(Tian et al., 2021).

We visualize the edge of the predictions of OBBInst trained with
and without 𝐿𝐸𝑆 in Fig. 9. For better visualization, we first rotate the
image at a certain angle, and then visualize the zoom-in region of each
target with overlapped edges (i.e., GT edges and two edge predictions).
It can be observed that green edges (i.e., OBBInst trained without 𝐿𝐸𝑆 )
usually exceed the ground truth (GT) edges, while the red edges (i.e.,
OBBInst trained with 𝐿𝐸𝑆 ) are closer to GT edges. Specifically, for
object D in image 1, red edges can better preserve the small bumps on
the left of the object. In addition, objects B and D in scene 2 are densely
arranged, and green edges identify B and D as one object while red
edges tend to distinguish B from D. It is demonstrated that additional
edge supervision can benefit edge identification, and thus improve the
performance of instance segmentation.

4.2.3. Different loss functions for object detection
We conduct ablation experiments to investigate the influence of

different loss functions for object detection, and the results are shown
in Table 2. Similar to the conclusions in Section 3.3.2, compared with
𝐿𝐻𝐻𝐵𝐵 , 𝐿𝑂𝑂𝐵𝐵 introduces more precise target depicts, and thus results
in great performance gain (1.12% in AP𝑏). 𝐿𝐸𝑆 provides additional
edge supervision to show consistent performance improvements both
on 𝐿𝐻𝐻𝐵𝐵 and 𝐿𝑂𝑂𝐵𝐵 . It is worth noting that even if 𝐿𝑂𝑂𝐵𝐵 and 𝐿𝐸𝑆
are designed to promote the mask prediction branch, they also benefit
object detection by providing more sophisticated target clues.

4.2.4. Different loss functions for network convergence
To make quantitative analyses of network convergence under dif-

ferent loss functions, we display the loss curves of networks trained
by 𝐿𝐻𝐻𝐵𝐵 , 𝐿𝑂𝑂𝐵𝐵 , 𝐿𝑂𝑂𝐵𝐵 & 𝐿𝐸𝑆 in Fig. 10. It can be observed
that the loss curve of the network trained by 𝐿𝑂𝑂𝐵𝐵 & 𝐿𝐸𝑆 declines
the fastest and the lowest, which fully demonstrates the superiority
of our method. In addition, the loss curve of the network trained by
𝐿𝑂𝑂𝐵𝐵 declines faster and lower than the network trained by 𝐿𝐻𝐻𝐵𝐵 .
Moreover, at the 10th iteration stage, the network trained by 𝐿𝐻𝐻𝐵𝐵
has a loss fluctuation, while the network trained by 𝐿 convergent
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𝑂𝑂𝐵𝐵
steadily, which demonstrates that oriented projection loss can stabilize
the training process. Furthermore, visualization in Fig. 8, shows that
𝐿𝑂𝑂𝐵𝐵 can supervise the network to predict accurate masks at a very
early stage.

4.3. Comparisons with state-of-the-art methods

We compare our proposed OBBInst with current state-of-the-art
fully supervised segmentation methods Mask R-CNN (He et al., 2017),
PANet (Liu et al., 2018), SS-MRCNN (Zhang et al., 2021b), PolarMask
(Xie et al., 2020) and box-supervised instance segmentation methods
SDI (Khoreva et al., 2017), BBTP (Hsu et al., 2019), BoxInst (Tian et al.,
2021) on the iSAID (Waqas Zamir et al., 2019) and the HRSC 2016
(Li et al., 2021a) datasets. Note that, we use HBB annotation to train
networks that are not compatible with OBB annotations.

Quantitative results are shown in Table 4. It can be observed
that our method can achieve 23.9% mask AP in the iSAID dataset,
79.5% mask AP in the HRSC 2016 dataset, which outperforms the
previous state-of-the-art method (Tian et al., 2021) over 2.3% and 4.8%
with the same backbone and training settings. In addition, OBBInst
also presents competitive performance as compared with current state-
of-the-art fully supervised instance segmentation methods. Without
mask annotations to supervise the network training, OBBInst can even
perform superior than some recent fully supervised methods such as
PolarMask (Xie et al., 2020) (e.g., 21.1% vs. 23.9% of AP𝑚 in the iSAID
dataset) and Mask R-CNN (He et al., 2017) (e.g., 79.6% v.s. 79.5%
of AP𝑚 in the HRSC 2016 dataset). The above experimental results
demonstrate that OBBInst dramatically narrows the performance gap
between the fully supervised and box-supervised instance segmentation
algorithms, and reveals the great potential of box-supervised in RS
instance segmentation at the first time.

Qualitative results achieved by different methods on HRSC 2016
and iSAID datasets are shown in Figs. 11 and 12. It can be observed
from Fig. 11 that OBBInst exhibits higher overlapped rate and lower
false alarm rate with the GT mask. In addition, OBBInst shows high
robustness to objects with arbitrary orientations due to more precise
target depicts by oriented projection method and corresponding loss
function. It can be observed from Fig. 12 that, SDI and BBTP misidentify
multiple densely arranged small objects as a single instance in scenes
2 and 4. BoxInst shows improved performance, but also fails in some
instances due to imprecise depicts and semantic ambiguity of HBB
annotations. Compared with them, our OBBInst can well address the
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Fig. 13. Qualitative results achieved by OBBInst on iSAID dataset. We zoom in the regions with densely arranged objects and complex contours in the last row.
multiple densely arranged objects and overcome the drawbacks of
unsuitable HBB annotation and projection.

Qualitative results achieved by OBBInst on iSAID dataset are shown
in Fig. 13. It is observed that OBBInst performs better on objects
with more regular contours (e.g., tennis courts in the second column).
For objects with complex contours (e.g., aircrafts in the fifth column),
OBBInst can basically segment the object contours with slight perfor-
mance degradation. For densely arranged objects (e.g., ships in the first
column and cars in the third column), OBBInst shows high robustness
to achieve precise instance segmentation, which fully demonstrates the
effectiveness and superiority of our method.

5. Conclusion

In this work, we propose the first work to achieve RSIs instance
segmentation using OBB supervision. In our method, we propose an
OBBInst framework together with oriented projection loss to perform
precise instance segmentation. In addition, an edge similarity loss
is introduced to incorporate the Canny edge supervision in a data-
driven manner. Extensive experiments have demonstrated the effective-
ness and superiority of OBBInst. In addition, OBBInst can even sur-
pass some existing fully supervised methods, which demonstrates the
great potential of box-supervised methods in remote sensing instance
segmentation.
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