
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NODE-WISE FILTERING IN GRAPH NEURAL NET-
WORKS: A MIXTURE OF EXPERTS APPROACH

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph Neural Networks (GNNs) have proven to be highly effective for node
classification tasks across diverse graph structural patterns. Most GNNs employ
a uniform global filter—typically a low-pass filter for homophilic graphs and a
high-pass filter for heterophilic graphs. However, real-world graphs often exhibit
a complex mix of homophilic and heterophilic patterns, rendering a single global
filter approach suboptimal. While few methods have introduced multiple global
filters, they often apply these filters uniformly across all nodes, which may not
effectively capture the diverse structural patterns present in real-world graphs. In
this work, we theoretically demonstrate that a global filter optimized for one pattern
can adversely affect performance on nodes with differing patterns. To address
this, we introduce a novel GNN framework NODE-MOE that utilizes a mixture of
experts to adaptively select the appropriate filters for different nodes. Extensive
experiments demonstrate the effectiveness of NODE-MOE on both homophilic and
heterophilic graphs.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Veličković et al., 2017) have emerged as
powerful tools in representation learning for graph structure data, and have achieved remarkable
success on various graph learning tasks (Wu et al., 2020; Ma & Tang, 2021), especially the node
classification task. GNNs usually can be designed and viewed from two domains, i.e., spatial domain
and spectral domain. In the spatial domain, GNNs (Kipf & Welling, 2016; Hamilton et al., 2017;
Gasteiger et al., 2018) typically follow the message passing mechanism (Gilmer et al., 2017), which
propagate messages between neighboring nodes. In the spectral domain, GNNs (Defferrard et al.,
2016; Chien et al., 2020) apply different filters on the graph signals in the spectral domain of the
graph Laplacian matrix.

Most GNNs have shown great effectiveness in the node classification task of homophilic
graphs (Veličković et al., 2017; Wu et al., 2019; Gasteiger et al., 2018; Baranwal et al., 2021),
where connected nodes tend to share the same labels. These GNNs usually leverage the low-pass
filters, where the smoothed signals are preserved. However, the heterophilic graphs exhibit the
heterophilic patterns, where the connected nodes tend to have different labels. As a result, several
GNNs (Sun et al., 2022; Li et al., 2024; Bo et al., 2021) designed for heterophilic graphs introduce
the high-pass filter to better handle such diversity. To adapt to both homophilic and heterophilic
graphs, GNNs with learnable graph convolution (Chien et al., 2020; Bianchi et al., 2021; He et al.,
2021; 2022) can automatically learn different types of filters for different types of graphs. Despite the
great success, these GNNs usually apply a uniform global filter across all nodes.

However, real-world graphs often display a complex interplay of homophilic and heterophilic pat-
terns (Li et al., 2022; Luan et al., 2022; Mao et al., 2024), challenging this one-size-fits-all filtering
approach. Specifically, while some nodes tend to connect with others that share similar labels, reflect-
ing homophilic patterns, others are more inclined to form connections with nodes that have differing
labels, indicative of heterophilic patterns. There are few methods, such as ACM-GNN (Luan et al.,
2022), AutoGCN (Wu et al., 2022), PC-Conv (Li et al., 2024) and ASGAT (Li et al., 2021) leverage
different filters to alleviate this issue. These methods, referred to as post-fusion methods, apply
multiple filters to all nodes and subsequently combine the predictions of different filters. However,
applying the same filters to all nodes can lead to potential issues. For example, applying a uniform
type of filter, tailored for just one of these patterns, across all nodes may hurt the performance of

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

0

1

1

1

0

0

0

1

1

1

0

0

0

1

1

1

0

0

Global
Filter Node-wise

Filters

(a) Global Filter (b) Node-wise Filters

Figure 1: A toy example to illustrate the effect of global and node-wise filters. The node color
represents features, and the number indicates the labels. Solid nodes represent nodes that follow
homophilic patterns, whereas dotted circle nodes represent those with heterophilic patterns. For the
solid-edge nodes, 2 out of their 3 neighbors have the same label, indicating homophilic patterns.
Conversely, for the dashed-edge nodes, 2 out of their 3 neighbors have different labels, indicating
heterophilic patterns.

other patterns. To illustrate this, we provide an example as shown in Figure 1(a), where different
colors represent distinct node features, and numbers indicate node labels. The nodes are marked as
either solid or dotted circles to denote homophilic and heterophilic patterns, respectively. Applying a
global low-pass filter 1− λ, where λ is the eigenvalue of graph Laplacian matrix, uniformly across
all nodes results in a scenario where nodes on the left possess the same feature, while those on the
right possess another. Therefore, all the left nodes or the right nodes will have the same prediction.
However, nodes on the left or right don’t share the same label. Consequently, this global filtering
approach leads to misclassification. Moreover, the indistinguishability of the filtered features can
adversely impact post-fusion methods, such as those using attention mechanisms for combination.

This toy example clearly illustrates the limitations of a one-size-fits-all filtering strategy and motivates
the need for a more tailored approach. To address this, Instead of applying one or multiple filters to
all nodes, we propose a node-wise filtering method that apply different filters to different nodes based
on their specific structural patterns. Figure 1(b) provides an example that we apply a low-pass filter,
such as 1− λ, to homophilic nodes, and a high-pass filter, such as λ− 1, to heterophilic nodes. From
the results, nodes in the same class would have the same features. Therefore, this node-wise filtering
approach allows for the perfect classification of all nodes in this example.

Present work. In this work, we observe that nodes in many real-world graphs not only exhibit
diverse structural patterns, but these patterns also vary significantly among different communities
within the same graph. Utilizing the CSBM model to generate graphs with mixed structural patterns,
we theoretically demonstrate that a global filter optimized for one pattern may incur significant
losses for nodes with other patterns, while node-wise filtering can achieve linear separability for all
nodes under mild conditions. Building on these insights, we propose a node-wise filtering method -
NODE-MOE, which leverages a Mixture of Experts framework to adaptively select appropriate filters
for different nodes. Extensive experiments validate the effectiveness of the proposed NODE-MOE on
both homophilic and heterophilic graphs, as well as the explainability of the method.

2 PRELIMINARY

In this section, we explore the structural patterns present in various graph datasets, which usually
exhibit mixed homophilic and heterophilic patterns. Then, we theoretically demonstrate that a global
filter often fails in graphs characterized by such mixed structural patterns. In contrast, node-wise
filtering can achieve linear separability under mild conditions. Before we start, we first define the
notations used in this paper and background knowledge.

Notations. We use bold upper-case letters such as X to denote matrices. Xi denotes its i-th row
and Xij indicates the i-th row and j-th column element. We use bold lower-case letters such as
x to denote vectors. Let G = (V, E) be a graph, where V is the node set, E is the edge set, and
|V| = n. Ni denotes the neighborhood node set for node vi. The graph can be represented by an
adjacency matrix A ∈ Rn×n, where Aij > 0 indices that there exists an edge between nodes vi
and vj in G, or otherwise Aij = 0. For a node vi, we use N (vi) = {vj : Aij > 0} to denote its
neighbors. Let D = diag(d1, d2, . . . , dn) be the degree matrix, where di =

∑
j Aij is the degree of

node vi. Furthermore, suppose that each node is associated with a d-dimensional feature x and we

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

use X = [x1, . . . ,xn]
⊤ ∈ Rn×d to denote the feature matrix. Besides, the label matrix is Y ∈ Rn×c,

where c is the number of classes. We use yv to denote the label of node v.

Graph Laplacian. The graph Laplacian matrix is defined as L = D−A. We define the normalized
adjacency matrix as Ã = D− 1

2AD− 1
2 and the normalized Laplacian matrix as L̃ = I − Ã. Its

eigendecomposition can be represented by L̃ = UΛU⊤, where the U ∈ Rn×n is the eigenvector
matrix and Λ = diag(λ1, λ2, . . . , λn) is the eigenvalue matrix. Specifically, 0 ≤ λ1 ≤ λ2 ≤
· · · ≤ λn < 2. The filtered signals can be represented by X̂ = Uf(Λ)U⊤X, where f is the filter
function. As a result, the graph convolution ÃX can be viewed as a low-pass filter, with the filter
f(λi) = 1−λi. Similarly, the graph convolution −ÃX is a high-pass filter with filter f(λi) = λi−1.

Homophily metrics. Homophily metrics measure the tendency of edges to connect nodes with
similar labels (Platonov et al., 2024). There are several commonly used homophily metrics, such as
edge homophily (Zhu et al., 2020), node homophily (Pei et al., 2020), and class homophily (Lim
et al., 2021b). In this paper, we adopt the node homophily H(G) = 1

|V|
∑

vi∈V h(vi), where

h(vi) =
|{u∈N (vi):yu=yv}|

di
measures the label similarity between node vi with its neighbors. A node

with higher h(v) exhibits a homophilic pattern while a low h(v) indicates a heterophilic pattern.

2.1 STRUCTURAL PATTERNS IN EXISTING GRAPHS

In this subsection, we examine the structural patterns present in existing graph datasets. Specifically,
we select two widely used homophilic datasets, i.e., Cora and CiteSeer (Sen et al., 2008), and two
heterophilic datasets, i.e., chameleon and squirrel (Rozemberczki et al., 2021). We first calculate the

0.0 0.2 0.4 0.6 0.8 1.0
Homophily

0

2

4

6

8

De
ns

ity

Cora
CiteSeer
chameleon
squirrel

Figure 2: Node homophily (h(v)) density.

2 4 6 8 10
Community

0.0

0.2

0.4

0.6

0.8

1.0

Ho
m

op
hi

ly

Cora
Citeseer
Chameleon
Squirrel

Figure 3: Homophily in different communities.
homophily distribution for all nodes in the graph. As shown in probability density function (PDF)
Figure 2, while the majority of nodes in homophilic graphs predominantly exhibit homophilic patterns,
and those in heterophilic graphs display heterophilic patterns, exceptions are evident. Notably, some
nodes in homophilic graphs show heterophilic tendencies, and conversely, some nodes in heterophilic
graphs demonstrate homophilic patterns. Consequently, all these graphs exhibit a mixture of
homophilic and heterophilic patterns, which aligns with the findings in the previous works (Luan
et al., 2022; Mao et al., 2024).

We further analyze the position of nodes with different structural patterns within the graphs. To do
this, we divide each graph into several subgraphs using community detection algorithms (Fortunato,
2010). We focus on the largest 10 communities and calculate the homophily level for each subgraph.
The results, as shown in Figure 3, reveal significant variations in homophily across different
communities. For instance, in the Cora dataset, homophily levels in some communities approach
1, indicating strong homophily, while in some communities it drops below 0.5. Similarly, in the
chameleon dataset, the lowest homophily levels are near 0, with the highest reaching above 0.6.
These findings highlight the considerable diversity in node interaction patterns, even within the same
graph, underscoring the complexity of graph structures in real-world datasets. The variability in
homophily levels clearly illustrates that nodes in various parts of the graph may require distinct
processing approaches. Therefore, applying the same global filter to all nodes may lead to suboptimal
performance.

2.2 ANALYSIS BASED ON CSBM MODEL

To further illustrate why applying a global filter may result in suboptimal performance, we utilize
the Contextual Stochastic Block Model (CSBM) (Deshpande et al., 2018), which has been widely

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

applied to graph analysis (Fortunato & Hric, 2016; Jiang et al., 2023), such as analyzing the behavior
of GNNs (Palowitch et al., 2022; Baranwal et al., 2021; Ma et al., 2021). The CSBM is a generative
model, which is often used to generate graph structures and node features. Typically, CSBMs are
based on the assumption that graphs are generated following a uniform pattern, such as nodes with
the same label are connected with probability p while nodes with different labels are connected with
probability q (Ma et al., 2021). However, the real-world complexity of graphs features a mixture of
homophilic and heterophilic patterns, as illustrated in section 2.1. We adapt the CSBM by mixing
two CSBMs to generate one graph, following Mao et al. (2024).
Definition 1. CSBM(n,µ,ν, (p0, q0), (p1, q1), P). The generated nodes consist of two classes,
C0 = {i ∈ [n] : yi = 0} and C1 = {j ∈ [n] : yj = 1}. For each node, consider X ∈ Rn×d to be the
feature matrix such that each row Xi is an independent d-dimensional Gaussian random vectors with
Xi ∼ N

(
µ, 1

dI
)

if i ∈ C0 and Xj ∼ N
(
ν, 1

dI
)

if j ∈ C1. Here µ,ν are the fixed class mean vectors
with ∥µ∥2, ∥ν∥2 ≤ 1 and I is the identity matrix. Suppose there are two patterns of nodes in the
adjacency matrix A = (aij), i.e., the homophilic pattern: H0 = {i ∈ [n] : aij = Ber(p0) if yi = yj
and aij = Ber(q0) if yi ̸= yj , p0 > q0} and the heterophilic pattern: H1 = {i ∈ [n] : aij = Ber(p1)
if yi = yj and aij = Ber(q1) if yi ̸= yj , p1 < q1}. P denotes the probability that a node is in the
homophilic pattern. We also assume the nodes follow the same degree distribution p0 + q0 = p1 + q1.

For simplification, we consider a linear model with parameters w ∈ Rd and b ∈ R, following the
approach (Baranwal et al., 2021). The predicted label for nodes is given by ŷ = σ(X̃w+ b1), where
σ(x) = (1 + e−x)−1 is the sigmoid function, and X̃ represents the features after filtering. The
binary cross-entropy loss over nodes V is formulated as L(V,w, b) = − 1

|V|
∑

i∈V yi log(ŷi) + (1−
yi) log(1− ŷi).

Theorem 1. Suppose n is relatively large, the graph is not too sparse with pi, qi = ω(log2(n)/n)

and the feature center distance is not too small with ∥µ− ν∥ = ω(logn√
dn(p0+q0)

) and ∥w∥ ≤ R. For

the graph G(V, E ,X) ∼ CSBM(n,µ,ν, (p0, q0), (p1, q1), P), we have the following:

1. If the low-pass global filter, i.e., 1 − λ, is applied to the whole graph G, we can find a optimal
w∗, b∗ that achieve near linear separability for the homophilic node set H0. However, the loss for
the heterophilic node set H1 can be relatively large with:

L(H1,w
∗, b∗) ≥ R(q1 − p1)

2(q1 + p1)
∥µ− ν∥ (1 + od(1)) .

2. If different filters are applied to homophilic and heterophilic sets separately, we can find an optimal
w∗, b∗ that all the nodes are linear separable with the probability:

P
((

X̃i

)
i∈V

is linearly separable
)

= 1− od(1).

3. Homophilic and heterophilic nodes can be separated based on the feature distance between a
node and the average feature vector of its neighbors, given by ∥Xi −

∑
j∈N (i)

Xj

Dii
∥ with probability

P = 1− od(1).

The proof of these results is detailed in Appendix A. Theorem 1 reveals critical insights into the
filtering strategies for graphs with mixed homophilic and heterophilic patterns, as generated by the
CSBM model. The first part of the theorem illustrates that applying a global low-pass filter can
create an optimal classifier for homophilic nodes, achieving near-linear separability. However, this
classifier may result in a large loss value for heterophilic nodes, highlighting the limitations of a
uniform filtering strategy. Conversely, the second part of the theorem demonstrates that by applying
different filters to different patterns of nodes separately, it is possible to achieve linear separability
across all nodes. These findings strongly motivate the exploration of a node-wise filtering method,
which can automatically apply different filters to distinct nodes based on their specific patterns, to
improve the overall performance.

3 THE PROPOSED METHOD

The investigations presented in Section 2 underscore the complex nature of real-world datasets,
revealing a mixture of homophilic and heterophilic patterns within them. Additionally, these patterns

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

are not uniformly distributed throughout the graph; rather, the level of homophily varies significantly
across different communities. Our theoretical analysis further demonstrates that global filtering, as
commonly employed in numerous GNNs, may not effectively capture such complex patterns, often
leading to suboptimal performance. In contrast, node-wise filtering, which applies distinct filters to
individual nodes based on their specific patterns, shows great promise in handling the intricacies of
such complex graphs.

However, implementing the node-wise filtering approach presents two significant challenges. First,
how can we incorporate various filters into a single unified framework? It requires a flexible
architecture that can seamlessly accommodate multiple filtering mechanisms without compromising
the efficiency and scalability of the model. Second, without ground truth on node patterns, how can
we select the appropriate filters for different nodes? In the following subsections, we aim to address
these challenges.

Classifierv1

v2

v3 𝑔(#)

𝑤!

𝑤"

𝑤#

∑
𝑦#ℎ

Gating
Experts

Figure 4: The overall framework of the proposed NODE-MOE. For each node, the gating model will
assign different weights for each expert based on the node’s feature and context. The experts can be
any GNNs with different filters. The number of experts is also flexible.

3.1 NODE-MOE: NODE-WISE FILTERING VIA MIXTURE OF EXPERTS

Mixture of Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994), which follows the divide-
and-conquer principle to divide the complex problem space into several subspaces so that each
one can be easily addressed by specialized experts, have been successfully adopted across various
domains (Masoudnia & Ebrahimpour, 2014; Shazeer et al., 2017; Riquelme et al., 2021). For
node classification tasks in graphs exhibiting a mixture of structural patterns, the diversity of node
interactions necessitates applying distinct filters to different nodes as we discussed in Sections 2. This
necessity aligns well with the MoE methodology, which processes different samples with specific
experts. Building on this principle, we introduce a flexible and efficient Node-wise Filtering via
Mixture of Experts (NODE-MOE) framework, designed to dynamically apply appropriate filters to
nodes based on their structural characteristics.

The overall NODE-MOE framework is illustrated in Figure 4, which consists of two primary com-
ponents: the gating model and the multiple expert models. With the graph data as input, the gating
model g(·) computes the weight assigned to each expert for every node, reflecting the relevance
of each expert’s contribution to that specific node. Each expert model, implemented as any GNN
with different filters, generates node representations independently. The final node classification is
determined by a weighted sum of these representations, where the weights are those assigned by the
gating model. The prediction for node i can be represented by:

ŷi = Classifier

(
m∑
o=1

g(A,X)i,oEo(A,X)i

)
, (1)

where m is the number of experts, Eo denotes the o-th expert, g(A,X)i,o represents the weight
assigned to the o-th expert for node i by the gating model, and Classifier is a classifier, which could
be a model like a neural network or a simple activation function like Softmax. In the following, we
will delve into the specific designs of the gating model and the expert models.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

3.2 GATING MODEL

The gating model is a pivotal component of the Node-MoE framework, aimed at selecting the most
appropriate experts for each node. Its primary function is to dynamically assign higher weights to
experts whose filtering characteristics best match the node’s patterns. For instance, an expert utilizing
a high-pass filter may receive a higher weight for a node that exhibits heterophilic patterns. However,
a significant challenge arises as there is no explicit ground truth indicating which pattern each node
belongs to. In traditional MoE models, the gating model often utilizes a straightforward feed-forward
network that processes the features of the sample as its input (Shazeer et al., 2017; Riquelme et al.,
2021; Du et al., 2022; Wang et al., 2024). Nevertheless, the nodes with different patterns may share
similar node features, making this method ineffective.

To address this challenge, we estimate node patterns by incorporating the contextual features sur-
rounding each node. If a node’s features significantly differ from those of its neighboring nodes, it
is likely that this node exhibits a heterophilic pattern. Specifically, the input to our gating model
includes a composite vector [X, |AX−X|, |A2X−X|]. This vector combines the node’s original
features with the absolute differences between its features and those of its neighbors over one and two
hops, respectively, to indicate the node’s structural patterns. Moreover, as discussed in Section 2.1,
different structural patterns are not uniformly distributed across the graph, and distinct communities
may exhibit varying structural characteristics. To capitalize on this phenomenon, we employ GNNs
with low-pass filters, such as GIN (Xu et al., 2018), for the gating model. These networks are chosen
due to their strong community detection capabilities (Shchur & Günnemann, 2019; Bruna & Li,
2017), ensuring that neighboring nodes are likely to receive similar expert selections. Experimental
results in Section 4.3 clearly demonstrate the proposed gating can efficiently assign different nodes to
their suitable filters.

3.3 EXPERT MODELS

The mixed structural patterns observed in real-world graphs necessitate that the expert models in our
NODE-MOE framework possess diverse capabilities. To achieve this, we consider multiple existing
GNNs equipped with different filters. Traditional GNNs often utilize fixed filters, which may not
adequately capture the complexity of diverse structural patterns. To address this limitation, we opt for
GNNs with learnable graph convolutions (Chien et al., 2020; Bianchi et al., 2021; He et al., 2021;
2022), which are capable of adapting their filters to better fit the graph structural patterns. However,
the same experts would make the gating model hard to learn the right features (Chen et al., 2022)
and may result in all experts’ filters being optimized in the same direction. To encourage diversity
and ensure that each expert is adept at handling specific structural patterns, we adopt a differentiated
initialization strategy for the filters in the experts. Instead of using a fixed filter initialization, we
initialize different experts with distinct types of filters, such as low-pass, constant, and high-pass
filters. More details can be found in Section 4.

Filter Smoothing Loss. While integrating multiple experts with diverse filters significantly enhances
the expressive capacity of our NODE-MOE framework, this complexity can also make the model
more challenging to fit. For example, training multiple filters simultaneously may lead to oscillations
in the spectral domain for each filter as shown in Appendix B. This not only complicates fitting the
model to the data but also impacts its explainability. The specific role and function of each oscillating
filter become difficult to discern, making it harder to understand and interpret the model’s behavior.
To mitigate these issues, we introduce a filter smoothing loss designed to ensure that the learned
filters exhibit smooth behavior in the spectral domain. This loss is defined as follows:

Lo
s =

K∑
i=1

|fo(si)− fo(si−1)|2, (2)

where fo(·) is the learnable filter function of the o-th expert, s0 ≤ s1 ≤ · · · ≤ sK are K + 1 values
spanning the spectral domain. By minimizing the activation differences between neighboring values
in the spectral domain, the filter functions become smoother. The overall training loss is then given by
L = Ltask + γ

∑m
o=1 L

o
s, where the Ltask is the node classification loss and γ is a hyperparameter

that adjusts the influence of the filter smoothing loss.

3.4 TOP-K GATING

The soft gating that integrates all experts in the Node-MoE framework significantly enhances its
modeling capabilities, but it also increases computational complexity since each expert must process

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

all samples. To improve computational efficiency while maintaining performance, we introduce
a variant of NODE-MOE by leveraging the Top-K gating mechanism (Shazeer et al., 2017). In
this variant, the NODE-MOE with Top-K gating selectively activates only the top k experts with
the highest relevance for each node. Specifically, the gating function for a node vi is defined as
g(vi) = Softmax (TopK (g (A,X)i , k)). To prevent the gating model from consistently favoring a
limited number of experts, we incorporate a load-balancing loss as suggested by Shazeer et al. (2017).

3.5 TIME COMPLEXITY OF NODE-MOE
The time complexity of the proposed NODE-MOE can be significantly reduced through sparse Top-K
gating. For instance, when setting K = 1, each node only needs to be processed by a single expert.
In this case, the time complexity of NODE-MOE becomes comparable to that of a single expert,
with the addition of a lightweight gating model. In the section 4.4, we demonstrate the effective and
efficiency of the proposed NODE-MOE.

4 EXPERIMENT

In this section, we conduct comprehensive experiments to validate the effectiveness of the proposed
NODE-MOE. Specifically, we aim to address the following research questions: RQ1: How does
NODE-MOE perform compared with the state-of-the-art baselines on both homophilic and het-
erophilic graphs? RQ2: Do the experts within NODE-MOE learn diverse structural patterns and does
the gating model accurately assign each node to its most suitable experts? RQ3: How do different
factors affect the performance of NODE-MOE?

4.1 EXPERIMENTAL SETTINGS.
Datasets. To evaluate the efficacy of our proposed NODE-MOE, we conduct experiments across
seven widely used datasets. These include four homophilic datasets: Cora, CiteSeer, Pubmed (Sen
et al., 2008), and ogbn-arxiv (Hu et al., 2020); along with four heterophilic datasets: Chameleon,
Squirrel (Pei et al., 2020), Penn94 and pokec Lim et al. (2021a). For Cora, CiteSeer, and Pubmed, we
generate ten random splits, distributing nodes into 60% training, 20% validation, and 20% testing
partitions. For the heterophilic datasets, we utilize the ten fixed splits as specified in Pei et al. (2020)
and Lim et al. (2021a). The ogbn-arxiv dataset is evaluated using its standard split (Hu et al., 2020).
We run the experiments 3 times for each split and report the average performance and standard
deviation. More details about these datasets are shown in Appendix C.1.

Baselines. We compare our method with a diverse set of baselines, which can be divided into five
categories: (1) Non-GNN methods like MLP and Label Propagation (LP) (Zhou et al., 2003); (2) Ho-
mophilic GNNs utilizing fixed low-pass filters such as GCN (Kipf & Welling, 2016), GAT (Veličković
et al., 2017), APPNP (Gasteiger et al., 2018), and GCNII (Chen et al., 2020); (3) Heterophilic GNNs
including AutoGCN (Wu et al., 2022), WRGCN (Suresh et al., 2021), PC-Conv (Li et al., 2024),
ACM-GCN (Luan et al., 2022), ASGAT (Li et al., 2021) and LinkX (Lim et al., 2021a); (4) GNNs with
learnable filters like GPRGNN (Chien et al., 2020) and ChebNetII (He et al., 2022); (5) MoE-based
GNNs such as GMoE (Wang et al., 2024) and Mowst (Zeng et al., 2023).

NODE-MOE settings. The proposed NODE-MOE framework is highly flexible, allowing for a wide
range of choices in both gating and expert models. In this work, we employ the GIN (Xu et al.,
2018) as the gating model due to its exceptional expressive power and ability to leverage community
properties as discussed in Section 2. As for the expert models, we utilize ChebNetII (He et al., 2022),
known for its efficiency in learning filters. Specifically, we experiment with configurations of 2, 3,
and 5 ChebNetII experts, each initialized with different filters. More details and parameter settings
are in Appendix C.3.

4.2 PERFORMANCE COMPARISON ON BENCHMARK DATASETS

In this section, we evaluate the efficacy of the proposed NODE-MOE across both homophilic and
heterophilic datasets. The results of node classification experiments are detailed in Table 1. From the
results, we can have the following observations:

• The proposed NODE-MOE demonstrates robust performance across both homophilic and het-
erophilic datasets, outperforming the baselines in most cases. This indicates its effectiveness in
handling diverse graph structures.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

• The GNNs and methods like LP that use fixed low-pass filters generally do well on homophilic
datasets but tend to underperform on heterophilic datasets. Conversely, specialized models like
LinkX, designed for heterophilic graphs, do not perform as well on homophilic datasets.

• The GNNs equipped with learnable filters generally perform well on both types of datasets, as
they can adapt their filters to the dataset’s structural patterns. However, their performance is still
not optimal. The proposed Node-MoE, which utilizes multiple ChebNetII as experts, significantly
outperforms a single ChebNetII, especially on heterophilic datasets. This result validates the
effectiveness of our node-wise filtering approach.

• We also compare the proposed NODE-MOE with two MoE methods, i.e., GMoE, which adapts
the receptive field for each node but still applies traditional graph convolution with low-pass filters
and Mowst, which selects MLP or GNN for prediction based on the confidence of GNN. We can
find NODE-MOE consistently outperforms GMoE and Mowst across all datasets.

Table 1: Node classification accuracy (%) on benchmark datasets. OOM means out-of-memory. The
bold and underline markers denote the best and second-best performance respectively. ∗indicates a
t-test with p < 0.05.

Homophilic datasets Heterophilc datasetsMethods Cora CiteSeer PubMed ogbn-arxiv Chameleon Squirrel Penn94 Pokec
MLP 76.49 ± 1.13 73.15 ± 1.36 86.14 ± 0.64 55.68 ± 0.11 48.11 ± 2.23 31.68 ± 1.90 73.61±0.40 62.39 ± 0.06
LP 86.05 ± 1.35 69.39 ± 2.01 83.38 ± 0.64 68.14 ± 0.00 44.10 ± 4.10 31.92 ± 0.82 63.26 ± 0.41 53.28 ± 0.05

GCN 88.60 ± 1.19 76.88 ± 1.78 88.48 ± 0.46 71.91 ± 0.15 67.96 ± 1.82 54.47 ± 1.17 82.37 ± 0.24 75.43 ± 0.15
GAT 88.68 ± 1.13 76.70 ± 1.81 86.52 ± 0.56 71.92 ± 0.17 65.29 ± 2.54 49.46 ± 1.69 81.53 ± 0.55 71.77 ± 6.18

APPNP 88.49 ± 1.28 77.42 ± 1.47 87.56 ± 0.52 71.61 ± 0.30 54.32 ± 2.61 36.41 ± 1.94 74.33 ± 0.38 62.58 ± 0.08
GCNII 88.12 ± 1.05 77.30 ±1.58 90.17 ± 0.57 72.74 ± 0.16 55.54 ± 2.02 56.63 ± 1.17 82.92±0.59 78.94 ± 0.11

AutoGCN 87.59 ± 1.17 75.12 ± 1.94 89.13 ± 0.51 69.34 ± 0.63 65.21 ± 2.97 45.55 ± 1.54 81.02 ± 0.16 79.49 ± 0.33
WRGCN 88.06 ± 1.50 76.28 ± 1.98 86.39 ± 0.55 >24h 65.24 ± 0.87 48.85 ± 0.78 75.50 ± 0.09 >24h
PC-Conv 88.85 ± 1.29 77.30 ± 1.79 85.79 ± 0.64 67.21 ± 0.19 66.86 ± 1.97 44.75 ± 1.58 85.36 ± 0.06 77.86 ± 0.07

ACMGCN 88.01 ± 1.26 76.52 ± 1.72 89.51 ± 0.49 62.09 ± 1.29 69.62 ± 1.22 57.02 ± 0.79 83.02 ± 0.65 74.13 ± 0.14
ASGAT 86.63 ± 1.51 73.76 ± 1.17 OOM OOM 66.50 ± 2.80 55.80 ± 3.20 OOM OOM
LinkX 82.89 ± 1.27 70.05 ± 1.88 84.81 ± 0.65 66.54 ± 0.52 68.42 ± 1.38 61.81 ± 1.80 84.71 ± 0.52 81.86 ± 0.21

GPR-GNN 88.54 ± 0.67 76.44 ± 1.89 88.46 ± 0.31 71.78 ± 0.18 62.85 ± 2.90 54.35 ± 0.87 83.54 ± 0.32 80.74±0.22
ChebNetII 88.71 ± 0.93 76.93 ± 1.57 88.93 ± 0.29 72.32 ± 0.23 71.14 ± 2.13 57.12 ± 1.13 84.86 ± 0.33 81.16 ± 0.04

GMoE 87.27 ± 1.74 76.56 ± 1.57 88.14 ± 0.56 71.74 ± 0.29 71.88 ± 1.60 51.97 ± 3.16 75.76 ± 4.39 59.30 ± 1.92
Mowst 86.18 ± 1.45 75.27 ± 2.19 88.92 ± 0.61 70.37 ± 0.16 65.50 ± 1.86 52.14 ± 1.25 79.78 ± 0.26 77.05 ± 0.06

NODE-MOE 89.38 ± 1.26∗ 77.78 ± 1.36 89.58 ± 0.60 73.19 ± 0.22∗ 73.64 ± 1.80∗ 62.31 ± 1.98∗ 85.37 ± 0.31 82.94 ± 0.06∗

4.3 ANALYSIS OF NODE-MOE
In this section, we delve into an in-depth analysis of the behaviors of NODE-MOE to demonstrate its
rationality and effectiveness. We aim to uncover several key aspects of how NODE-MOE operates
and performs: What specific types of filters does Node-MoE learn? Are nodes appropriately assigned
to these diverse filters by the gating model? Finally, which types of nodes benefit the most from
the proposed NODE-MOE for different datasets? We conduct experiments on both CiteSeer and
Chameleon datasets using configurations with 2 experts. The results for the Chameleon dataset are
presented below. For more results and analysis, please refer to Appendix D.

Figure 5: Learned 2 filters by
NODE-MOE on Chameleon.

Figure 6: The average weight generated by the gating model
for nodes in different homophily groups on Chameleon.

Figure 5 showcases the two filters learned by NODE-MOE on the Chameleon dataset, where filter 0
functions as a low-pass filter and filter 1 as a high-pass filter. To analyze the behavior of the gating
model in NODE-MOE, we split nodes into different groups based on their homophily levels. Figure 6
displays the weights assigned by the gating model to these two experts. The results reveal that nodes
with lower homophily levels predominantly receive higher weights for the high-pass filter (filter 1),
and as the homophily level increases, the weight for this filter correspondingly decreases. This pattern

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

confirms our design that nodes with varying structural patterns require different filters, demonstrating
the effectiveness of the proposed gating model.

Figure 7 shows the performance of different models on node groups with varying levels of homophily.
We observe that the proposed NODE-MOE improves the performance of low-homophilic nodes in the
Cora dataset, while it enhances the performance of high-homophilic nodes in the Chameleon dataset,
compared to the single-expert ChebNetII. Besides, NODE-MOE outperforms GAT on low-homophilic
nodes in both datasets. These observations further demonstrate the effectiveness of our node-wise
filtering method.

(a) Cora (b) Chameleon

Figure 7: The performance of different models on node groups with different homophily.

4.4 ABLATION STUDIES

In this section, we conduct ablation studies to further investigate the effectiveness of two key
components within the Node-MoE framework: the gating model and the filter smoothing loss. For
the gating model, we explore two variants: a traditional MLP-based gating mechanism that utilizes
the input features X, and the Top-K gating approach as detailed in Section 3.4. Specifically, we
choose K = 1 to ensure the proposed NODE-MOE has similar efficiency with the single expert.
Figure 8 presents the results on CiteSeer, ogbn-arxiv, Chameleon, and Squirrel datasets. We observe
two findings: (1) Traditional gating does not perform as well as the proposed gating in NODE-MOE
and only achieves results comparable to an individual ChebNetII expert. (2) The Top-1 gating, which
selects only one expert, can achieve similar results to those of the soft gating NODE-MOE that utilizes
all experts. This indicates that the proposed NODE-MOE can effectively enhance performance while
maintaining a complexity level comparable to that of an individual expert model.

Table 2: Average training time (s) per epoch.
Dataset ChebNetII NODE-MOE-3 NODE-MOE-5

ogbn-arxiv 1.57 1.77 1.93
pokec 15.58 16.6 16.79

We compared the average training time of
the proposed NODE-MOE with Top-1 gating.
Specifically, we select two large datasets, ogbn-
arxiv and pokec, and compared the average train-
ing time of NODE-MOE with 3 and 5 experts,
denoted as NODE-MOE-3 and NODE-MOE-5, respectively. As shown in Table 2, despite utilizing 3
or 5 experts, NODE-MOE ’s training time remains comparable to that of the single-expert ChebNetII
as the gating model only select Top-1 expert, demonstrating its efficiency.

Figure 8: The performance comparison of differ-
ent gating variants.

0 0.1 0.5 1 5
gamma

55

60

65

70

75

80

A
cc

ur
ac

y

Citeseer
Squirrel

Figure 9: The performance with different weight
parameters γ of the filter smoothing loss.

We also investigate the impact of the weight parameter, γ, of the filter smoothing loss on the overall
performance. Specifically, we conduct experiments on the Citeseer and Squirrel datasets and the γ is
chosen in [0, 0.1, 0.5, 1, 5]. As shown in Figure 9, incorporating the filter smoothing loss generally

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

enhances performance, especially for the Citeseer dataset. The reason is that the filter smoothing loss
can mitigate filter oscillation, which may lead to the model being hard to learn. For more detailed
insights into the effects of the filter smoothing loss, please refer to Appendix B.

Additionally, we explore the effects of the number of experts and the value of K in Top-K gating.
The results, shown in the Appendix D.2 and D.3, demonstrate that NODE-MOE achieves excellent
performance with just a few experts (e.g., 2) and small K values (e.g., 1). We also evaluate NODE-
MOE’s performance under noisy feature settings. As shown in Appendix D.4, NODE-MOE still
outperforms the single-expert model even at higher noise levels, though the performance gap tends to
decrease as noise increases.

5 RELATED WORKS

Graph Neural Networks (GNNs) (Kipf & Welling, 2016; Veličković et al., 2017) have achieved
remarkable success across a wide range of tasks (Zhou et al., 2020). Most GNNs usually follow
the message-passing mechanism (Gilmer et al., 2017), which can be regarded as low-pass graph
filters (Nt & Maehara, 2019; Zhao & Akoglu, 2019). As a result, these GNNs are usually suitable for
homophilic graphs. To address heterophilic graphs, specialized models like GloGNN (Li et al., 2022),
LinkX (Lim et al., 2021a), MixHop (Abu-El-Haija et al., 2019) haven been developed. Additionally,
models such as Bernnet (He et al., 2021), GPRGNN (Chien et al., 2020), and ChebNetII (He et al.,
2022) feature learnable filters that adapt to various graph types. Recent studies have highlighted that
real-world graphs often exhibit a mixture of structural patterns (Suresh et al., 2021; Li et al., 2022;
Mao et al., 2024). Traditional GNNs typically apply the same global filter across all nodes, which can
be suboptimal for such mixed scenarios. In response, our proposed NODE-MOE introduces a node-
wise filtering approach, applying distinct filters to nodes based on their individual patterns, enhancing
adaptability and performance. We note there are few methods, such as ACM-GNN (Luan et al., 2022),
AutoGCN (Wu et al., 2022), PC-Conv (Li et al., 2024) and ASGAT (Li et al., 2021) also leverage
multiple filters. Our method is distinct from these methods: these models typically use post-fusion,
where all nodes are passed through all filters, and the resulting representations are then combined
using mechanisms like attention. However, this post-fusion strategy increases computational cost, as
all nodes must be processed by every filter. In contrast, the Top-K gating mechanism in NODE-MOE
significantly reduces computational cost. Furthermore, the filtered representations in these methods
may not accurately capture the importance of each filter, as indicated by the poor calibration of
GNNs (Hsu et al., 2022). The experimental results in section 4.2 show NODE-MOE outperforms
all these post-fusion methods. Additionally, while many of these methods use predefined filters, our
results in Appendix D.5 show that learnable filters perform better than multiple fixed filters.

Mixture of Experts (MoE) (Jacobs et al., 1991; Jordan & Jacobs, 1994) architecture has been widely
used in NLP (Du et al., 2022; Zhou et al., 2022) and Computer Vision (Riquelme et al., 2021) to
improve efficiency of large models. In graph domain, GraphMETRO (Wu et al., 2023) leverage MoE
to address the graph distribution shift issue. GMoE (Wang et al., 2024) utilizes MoE to adaptive select
propagation hops for different nodes. Link-MoE (Ma et al., 2024) finds different node pairs require
different heuristics to predict and different GNN4LP models have different abilities for different
heuristics. They leverage MoE to use different GNN4LP models for different node pairs. Despite
these advancements, these methods still face challenges in handling complex graph patterns. Another
related work is Mowst (Zeng et al., 2023), which selects the prediction from either MLP or GNN
based on the confidence of the GNN’s prediction. However, this method still relies on post-fusion
and uses fixed filters, limiting its flexibility. In contrast, the proposed NODE-MOE demonstrates both
superior effectiveness and efficiency.
6 CONCLUSION

In this paper, we explored the complex structural patterns inherent in real-world graph datasets, which
typically exhibit a mixture of homophilic and heterophilic patterns. Notably, these patterns exhibit
significant variability across different communities within the same dataset, highlighting the intricate
and diverse nature of graph structures. Our theoretical analysis reveals that the conventional single
global filter, commonly used in many GNNs, is often inadequate for capturing such complex structural
patterns. To address this limitation, we proposed the node-wise filtering method, NODE-MOE, a
flexible and effective solution that adaptively selects appropriate filters for different nodes. Extensive
experiments demonstrate the proposed NODE-MOE demonstrated excellent performance on both
homophilic and heterophilic datasets. Further, our behavioral analysis and ablation studies validate
the design and effectiveness of the proposed NODE-MOE.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

7 REPRODUCIBILITY STATEMENT

The experimental setup, including hyperparameters settings and dataset details, along with a link to
anonymously source code, can be found in Appendix C to ensure reproducibility.

REFERENCES

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Nazanin Alipourfard, Kristina Lerman, Hrayr
Harutyunyan, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolutional
architectures via sparsified neighborhood mixing. In international conference on machine learning,
pp. 21–29. PMLR, 2019.

Aseem Baranwal, Kimon Fountoulakis, and Aukosh Jagannath. Graph convolution for semi-
supervised classification: Improved linear separability and out-of-distribution generalization.
arXiv preprint arXiv:2102.06966, 2021.

Filippo Maria Bianchi, Daniele Grattarola, Lorenzo Livi, and Cesare Alippi. Graph neural networks
with convolutional arma filters. IEEE transactions on pattern analysis and machine intelligence,
44(7):3496–3507, 2021.

Deyu Bo, Xiao Wang, Chuan Shi, and Huawei Shen. Beyond low-frequency information in graph
convolutional networks. In Proceedings of the AAAI conference on artificial intelligence, volume 35,
pp. 3950–3957, 2021.

Joan Bruna and X Li. Community detection with graph neural networks. stat, 1050:27, 2017.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In International conference on machine learning, pp. 1725–1735. PMLR,
2020.

Zixiang Chen, Yihe Deng, Yue Wu, Quanquan Gu, and Yuanzhi Li. Towards understanding mixture
of experts in deep learning. arXiv preprint arXiv:2208.02813, 2022.

Eli Chien, Jianhao Peng, Pan Li, and Olgica Milenkovic. Adaptive universal generalized pagerank
graph neural network. arXiv preprint arXiv:2006.07988, 2020.

Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. Convolutional neural networks on
graphs with fast localized spectral filtering. Advances in neural information processing systems,
29, 2016.

Yash Deshpande, Subhabrata Sen, Andrea Montanari, and Elchanan Mossel. Contextual stochastic
block models. Advances in Neural Information Processing Systems, 31, 2018.

Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu, Maxim
Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling of language
models with mixture-of-experts. In International Conference on Machine Learning, pp. 5547–5569.
PMLR, 2022.

Santo Fortunato. Community detection in graphs. Physics reports, 486(3-5):75–174, 2010.

Santo Fortunato and Darko Hric. Community detection in networks: A user guide. Physics reports,
659:1–44, 2016.

Johannes Gasteiger, Aleksandar Bojchevski, and Stephan Günnemann. Predict then propagate: Graph
neural networks meet personalized pagerank. arXiv preprint arXiv:1810.05997, 2018.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Mingguo He, Zhewei Wei, Hongteng Xu, et al. Bernnet: Learning arbitrary graph spectral filters via
bernstein approximation. Advances in Neural Information Processing Systems, 34:14239–14251,
2021.

Mingguo He, Zhewei Wei, and Ji-Rong Wen. Convolutional neural networks on graphs with
chebyshev approximation, revisited. Advances in neural information processing systems, 35:
7264–7276, 2022.

Hans Hao-Hsun Hsu, Yuesong Shen, Christian Tomani, and Daniel Cremers. What makes graph
neural networks miscalibrated? Advances in Neural Information Processing Systems, 35:13775–
13786, 2022.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. Advances in
neural information processing systems, 33:22118–22133, 2020.

Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive mixtures of
local experts. Neural computation, 3(1):79–87, 1991.

Zhimeng Jiang, Xiaotian Han, Chao Fan, Zirui Liu, Xiao Huang, Na Zou, Ali Mostafavi, and Xia Hu.
Topology matters in fair graph learning: a theoretical pilot study. 2023.

Michael I Jordan and Robert A Jacobs. Hierarchical mixtures of experts and the em algorithm. Neural
computation, 6(2):181–214, 1994.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
arXiv preprint arXiv:1609.02907, 2016.

Bingheng Li, Erlin Pan, and Zhao Kang. Pc-conv: Unifying homophily and heterophily with two-
fold filtering. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pp.
13437–13445, 2024.

Shouheng Li, Dongwoo Kim, and Qing Wang. Beyond low-pass filters: Adaptive feature propagation
on graphs. In Machine Learning and Knowledge Discovery in Databases. Research Track:
European Conference, ECML PKDD 2021, Bilbao, Spain, September 13–17, 2021, Proceedings,
Part II 21, pp. 450–465. Springer, 2021.

Xiang Li, Renyu Zhu, Yao Cheng, Caihua Shan, Siqiang Luo, Dongsheng Li, and Weining Qian.
Finding global homophily in graph neural networks when meeting heterophily. In International
Conference on Machine Learning, pp. 13242–13256. PMLR, 2022.

Derek Lim, Felix Hohne, Xiuyu Li, Sijia Linda Huang, Vaishnavi Gupta, Omkar Bhalerao, and
Ser Nam Lim. Large scale learning on non-homophilous graphs: New benchmarks and strong
simple methods. Advances in Neural Information Processing Systems, 34:20887–20902, 2021a.

Derek Lim, Xiuyu Li, Felix Hohne, and Ser-Nam Lim. New benchmarks for learning on non-
homophilous graphs. arXiv preprint arXiv:2104.01404, 2021b.

Sitao Luan, Chenqing Hua, Qincheng Lu, Jiaqi Zhu, Mingde Zhao, Shuyuan Zhang, Xiao-Wen
Chang, and Doina Precup. Revisiting heterophily for graph neural networks. Advances in neural
information processing systems, 35:1362–1375, 2022.

Li Ma, Haoyu Han, Juanhui Li, Harry Shomer, Hui Liu, Xiaofeng Gao, and Jiliang Tang. Mixture of
link predictors. arXiv preprint arXiv:2402.08583, 2024.

Yao Ma and Jiliang Tang. Deep learning on graphs. Cambridge University Press, 2021.

Yao Ma, Xiaorui Liu, Neil Shah, and Jiliang Tang. Is homophily a necessity for graph neural
networks? arXiv preprint arXiv:2106.06134, 2021.

Haitao Mao, Zhikai Chen, Wei Jin, Haoyu Han, Yao Ma, Tong Zhao, Neil Shah, and Jiliang Tang.
Demystifying structural disparity in graph neural networks: Can one size fit all? Advances in
Neural Information Processing Systems, 36, 2024.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42:275–293, 2014.

Hoang Nt and Takanori Maehara. Revisiting graph neural networks: All we have is low-pass filters.
arXiv preprint arXiv:1905.09550, 2019.

John Palowitch, Anton Tsitsulin, Bryan Perozzi, and Brandon A Mayer. Synthetic graph generation
to benchmark graph learning. In NeurIPS 2022 Workshop: New Frontiers in Graph Learning,
2022.

Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, and Bo Yang. Geom-gcn: Geometric
graph convolutional networks. arXiv preprint arXiv:2002.05287, 2020.

Oleg Platonov, Denis Kuznedelev, Michael Diskin, Artem Babenko, and Liudmila Prokhorenkova. A
critical look at the evaluation of gnns under heterophily: Are we really making progress? arXiv
preprint arXiv:2302.11640, 2023.

Oleg Platonov, Denis Kuznedelev, Artem Babenko, and Liudmila Prokhorenkova. Characterizing
graph datasets for node classification: Homophily-heterophily dichotomy and beyond. Advances
in Neural Information Processing Systems, 36, 2024.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Advances in Neural Information Processing Systems, 34:8583–8595, 2021.

Benedek Rozemberczki, Carl Allen, and Rik Sarkar. Multi-scale attributed node embedding. Journal
of Complex Networks, 9(2):cnab014, 2021.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI magazine, 29(3):93–93, 2008.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Oleksandr Shchur and Stephan Günnemann. Overlapping community detection with graph neural
networks. arXiv preprint arXiv:1909.12201, 2019.

Jiaqi Sun, Lin Zhang, Shenglin Zhao, and Yujiu Yang. Improving your graph neural networks:
a high-frequency booster. In 2022 IEEE International Conference on Data Mining Workshops
(ICDMW), pp. 748–756. IEEE, 2022.

Susheel Suresh, Vinith Budde, Jennifer Neville, Pan Li, and Jianzhu Ma. Breaking the limit of
graph neural networks by improving the assortativity of graphs with local mixing patterns. In
Proceedings of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining, pp.
1541–1551, 2021.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. arXiv preprint arXiv:1710.10903, 2017.

Haotao Wang, Ziyu Jiang, Yuning You, Yan Han, Gaowen Liu, Jayanth Srinivasa, Ramana Kompella,
Zhangyang Wang, et al. Graph mixture of experts: Learning on large-scale graphs with explicit
diversity modeling. Advances in Neural Information Processing Systems, 36, 2024.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In International conference on machine learning, pp.
6861–6871. PMLR, 2019.

Shirley Wu, Kaidi Cao, Bruno Ribeiro, James Zou, and Jure Leskovec. Graphmetro: Mitigating
complex distribution shifts in gnns via mixture of aligned experts. arXiv preprint arXiv:2312.04693,
2023.

Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and S Yu Philip. A
comprehensive survey on graph neural networks. IEEE transactions on neural networks and
learning systems, 32(1):4–24, 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Zonghan Wu, Shirui Pan, Guodong Long, Jing Jiang, and Chengqi Zhang. Beyond low-pass filtering:
Graph convolutional networks with automatic filtering. IEEE Transactions on Knowledge and
Data Engineering, 35(7):6687–6697, 2022.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Hanqing Zeng, Hanjia Lyu, Diyi Hu, Yinglong Xia, and Jiebo Luo. Mixture of weak & strong experts
on graphs. arXiv preprint arXiv:2311.05185, 2023.

Lingxiao Zhao and Leman Akoglu. Pairnorm: Tackling oversmoothing in gnns. arXiv preprint
arXiv:1909.12223, 2019.

Dengyong Zhou, Olivier Bousquet, Thomas Lal, Jason Weston, and Bernhard Schölkopf. Learning
with local and global consistency. Advances in neural information processing systems, 16, 2003.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu, Lifeng Wang,
Changcheng Li, and Maosong Sun. Graph neural networks: A review of methods and applications.
AI open, 1:57–81, 2020.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew M Dai, Quoc V
Le, James Laudon, et al. Mixture-of-experts with expert choice routing. Advances in Neural
Information Processing Systems, 35:7103–7114, 2022.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in neural
information processing systems, 33:7793–7804, 2020.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Appendix
A PROOF OF THEOREM 1

In this section, we present the proof of Theorem 1. This theorem analyzes the separability
when different filters are applied to graphs generated by a mixed CSBM model in Defination 1-
CSBM(n,µ,ν, (p0, q0), (p1, q1), P) using a linear classifier.

Notably, the following proof is derived based on Baranwal et al. (2021), which analyzes the
linear separability of a single graph convolution under a single CSBM model with only one pattern -
CSBM(n,µ,ν, (p, q)). We extend the analysis to graphs with mixed CSBM models. Besides, we
analyze the scenarios in which different filters are applied to the same graph.

We follow the assumption 1 and 2 in Baranwal et al. (2021): The graph size n should be relatively
large with ω(d log d) ≤ n ≤ O(poly(d)), and the graph is not too sparse with p0, q0, p1, q1 =
ω
(
log2(n)/n

)
.

A.1 PROOF OF PART 1 OF THEOREM 1

Proof. For the low-pass filter, consider the filtered feature X̃ = D−1AX. Due to the normal
distribution of node feature X, the filtered feature of node i still follows the normal distribution.
Specifically, the mean of nodes in different classes and partterns can be represented by:

m(i) = E(X̃i) =



p0µ+ q0ν

p0 + q0
(1 + o(1)) for i ∈ C0 and i ∈ H0

q0µ+ p0ν

p0 + q0
(1 + o(1)) for i ∈ C1 and i ∈ H0

p1µ+ q1ν

p1 + q1
(1 + o(1)) for i ∈ C0 and i ∈ H1

q1µ+ p1ν

p1 + q1
(1 + o(1)) for i ∈ C1 and i ∈ H1

,

where C0 and C1 represent the class 0 and class 1, respectively; H0 and H1 are the homophilic and
heterophilic node sets, respectively. The covariance matrix can be represented by: Cov(X̃i) =

1
dDii

I.. Lemma 2 in Baranwal et al. (2021) demostrate that for any unit vector w, we have:∣∣∣(X̃i −m(i)
)
·w
∣∣∣ = O

(√
logn

dn(p0+q0)

)
.

If we only consider the nodes with homophilic patterns, i.e., i ∈ H0, we can find the optimal linear
classifier with w∗ = R ν−µ

∥ν−µ∥ and b∗ = − 1
2 ⟨ν + µ,w∗⟩. We also have the assumption that the

distance between µ and ν are relatively large, with ∥ν − µ∥ = Ω
(

logn
dn(p0+q0)

)
.

Then, for i ∈ C0 and i ∈ H0, we have:

⟨X̃i,w
∗⟩+ b∗ =

⟨p0µ+ q0ν,w
∗⟩

p0 + q0
(1 + o(1)) +O

(
∥w∗∥

√
log n

dn(p+ q)

)
− 1

2
⟨ν + µ,w∗⟩

=
⟨2p0µ+ 2qoν − (p0 + q0)(µ+ ν),w∗⟩

p0 + q0
(1 + o(1)) + o(∥w∗∥)

=
p0 − q0

2(p0 + q0)
⟨µ− ν,w∗⟩(1 + o(1)) + o(∥w∗∥)

= −R(p0 − q0)

2(p0 + q0)
∥µ− ν∥(1 + o(1)) < 0

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Similarly, for i ∈ C1 and i ∈ H0, we have:

⟨X̃i,w
∗⟩+ b∗ = −R(q0 − p0)

2(p0 + q0)
∥µ− ν∥(1 + o(1)) > 0

Therefore, the linear classifier with w∗ and b∗ can separate class C0.

However, if we apply this linear classifier to the heterophilic node set H1, where p1 < q1, we have:

⟨X̃i,w
∗⟩+ b∗ =


−R(p1 − q1)

2(p1 + q1)
∥µ− ν∥(1 + o(1)) > 0 for i ∈ C0 and i ∈ H1

−R(q1 − p1)

2(p1 + q1)
∥µ− ν∥(1 + o(1)) < 0 for i ∈ C1 and i ∈ H1

Therefore, all nodes in H1 are misclassified. The binary cross-entropy over node set H1 can be
represented by:

L(H1,w
∗, b∗) =

1

|H1|
∑
i∈H1

−yi log
(
σ
(〈

X̃i,w
∗
〉
+ b̃
))

− (1− yi) log
(
1− σ

(〈
X̃i,w

∗
〉
+ b∗

))
=

1

|H1|
∑
i∈H1

log
(
1 + exp

(
(1− 2yi)

(〈
X̃i, w̃

〉
+ b∗

)))
= log

(
1 + exp

(
−R(p1 − q1)

2(p1 + q1)
∥µ− ν∥(1 + o(1))

))

As for x = −R(p1−q1)
2(p1+q1)

∥µ− ν∥ > 0, we have ex ≥ x. As a result, we have

L(H1,w
∗, b∗) ≥ R(q1 − p1)

2(p1 + q1)
∥µ− ν∥(1 + o(1))

A.2 PROOF OF PART 2 OF THEOREM 1

Proof. Suppose we apply a high-pass filter to the heterophilic nodes H1 and the filtered features are
X̃ = −D−1AX. For nodes in H1,

m(i) = E(X̃i) =


−p1µ+ q1ν

p1 + q1
(1 + o(1)) for i ∈ C0 and i ∈ H1

−q1µ+ p1ν

p1 + q1
(1 + o(1)) for i ∈ C1 and i ∈ H1

Therefore, if we apply the same linear classifier with w∗ and b∗, then we have:

⟨X̃i,w
∗⟩+ b∗ =


R(p1 − q1)

2(p1 + q1)
∥µ− ν∥(1 + o(1)) < 0 for i ∈ C0 and i ∈ H1

R(q1 − p1)

2(p1 + q1)
∥µ− ν∥(1 + o(1)) > 0 for i ∈ C1 and i ∈ H1

As a result, the same linear classifier can separate both the homophilic set H0 and heterophilic set
H1.

A.3 PROOF OF PART 2 OF THEOREM 1

Proof. Let A be the adjacency matrix of G, D be the diagonal degree matrix where Dii is the degree
of node i, and X ∈ Rn×d be the feature matrix with Xi denoting the feature vector of node i. The

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

filtered feature is defined as:
X̃ = D−1AX,

where D−1A averages features across neighbors of each node.

We now analyze the squared feature change, f2
i = (X̃i−Xi)

2, which represents the squared deviation
of the aggregated feature from the original feature. For node i, this is:

f2
i =

 ∑
j∈N (i)

Xj

Dii
−Xi

2

,

where N (i) is the neighborhood of i.

Nodes are divided into:

• H0: Homophilic nodes where intra-class connections dominate.

• H1: Heterophilic nodes where inter-class connections dominate.

Each node belongs to one of two classes C0 or C1, with the class means µ and ν, respectively.

If fi = X̃i −Xi ∼ N(µfi , σ
2
fi
), then f2

i follows a scaled Chi-squared distribution:

f2
i ∼

σ2
fi

σ2
χ2(1, λi),

where:

• χ2(1, λi) is a non-central Chi-squared distribution with 1 degree of freedom and non-

centrality parameter λi =
µ2
fi

σ2
fi

.

• σ2
fi

= σ2

d

(
1 + 1

Dii

)
for node i.

• The mean µfi depends on the node type (homophilic or heterophilic):

µfi =


q0

p0+q0
(ν − µ), if i ∈ H0, C0,

− q0
p0+q0

(ν − µ), if i ∈ H0, C1,
q1

p1+q1
(ν − µ), if i ∈ H1, C0.

− q1
p1+q1

(ν − µ), if i ∈ H1, C1.

For each node i, the expected squared feature change f2
i is:

E[f2
i] = µ2

fi + σ2
fi ,

and the variance of f2
i is:

Var(f2
i) = 2σ4

fi + 4µ2
fiσ

2
fi .

Misclassification occurs when the squared feature changes of nodes i ∈ H0 and j ∈ H1 overlap.
Define the difference in squared feature changes:

DFij = f2
i − f2

j .

The expectation of DFij is:
E[DFij] = E[f2

i]− E[f2
j].

Substituting E[f2
i] = µ2

fi
+ σ2

fi
, we get:

E[DFij] = (µ2
fi − µ2

fj) + (σ2
fi − σ2

fj),

where:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

• The difference in means µ2
fi
− µ2

fj
is:

µ2
fi − µ2

fj =

(
q0

p0 + q0
− q1

p1 + q1

)2

(ν − µ)2 = ∆2(ν − µ)2.

Here, ∆ = q0
p0+q0

− q1
p1+q1

represents the normalized connection bias between classes.

• The variance difference σ2
fi
− σ2

fj
is:

σ2
fi − σ2

fj =
σ2

d

(
1

Dii
− 1

Djj

)
.

As d → ∞, this term vanishes.

Thus:

E[DFij] = ∆2(ν − µ)2 +O
(
1

d

)
.

The variance of DFij is:
Var(DFij) = Var(f2

i) + Var(f2
j).

For each node:
Var(f2

i) = 2σ4
fi + 4µ2

fiσ
2
fi .

Since σ2
fi

= σ2

d

(
1 + 1

Dii

)
and µ2

fi
∝ 1

d , we get:

Var(f2
i) ∼ O

(
1

d

)
.

The misclassification probability P(DFij ≤ ϵ) can be bounded using the Chernoff inequality:

P(DFij ≤ ϵ) ≤ exp

(
− (E[DFij]− ϵ)2

2Var(DFij)

)
.

Substituting the results:

E[DFij] = ∆2(ν − µ)2 +O
(
1

d

)
, Var(DFij) ∼ O

(
1

d

)
.

Thus:
(E[DFij]− ϵ)2

2Var(DFij)
∼ O(d),

implying that the exponential decay in the Chernoff bound becomes increasingly sharp as d → ∞,
making P(DFij ≤ ϵ) approach 1.

B THE IMPACT OF FILTER SMOOTHING LOSS

In this section, we explore the impact of the proposed filter smoothing loss on the behavior of the
learned filters in our NODE-MOE framework. Figures 10 and 11 display the effects of the NODE-
MOE framework without and with the application of filter smoothing loss, respectively. Without the
filter smoothing loss, as shown in Figure 10, the learned filters exhibit significant oscillations, making
it challenging to discern their specific functions. In contrast, with the filter smoothing loss applied, as
illustrated in Figure 11, the behavior of the filters becomes more distinct: filter 0 clearly functions as
a low-pass filter, and filter 1 as a high-pass filter.

Additionally, we assessed the training dynamics of the proposed Node-MoE framework by comparing
performance with and without the filter smoothing loss, while keeping other hyperparameters constant.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 10: Learned 2 filters by NODE-MOE on
Chameleon without filter smoothing loss.

Figure 11: Learned 2 filters by NODE-MOE on
Chameleon with filter smoothing loss.

For the Citeseer dataset, applying the filter smoothing loss resulted in a higher average training
accuracy of 99.37 ± 0.17, compared to 93.51 ± 1.27 when the loss was not applied. A similar pattern
was observed on the Squirrel dataset, where the training accuracy was 96.54 ± 1.42 with the filter
smoothing loss, versus 95.54 ± 0.94 without it. These results suggest that oscillations in the filters
without the smoothing loss can hinder the model’s ability to fit the data effectively, resulting in
suboptimal performance as shown in Section 4.4.

C DATASETS AND EXPERIMENTAL SETTINGS

In this section, we detail the datasets used and the experimental settings for both the baseline models
and the proposed NODE-MOE framework.

C.1 DATASETS

We conduct experiments across seven widely recognized datasets, which encompass both homophilic
and heterophilic types. The homophilic datasets include Cora, CiteSeer, and Pubmed (Sen et al.,
2008), along with ogbn-arxiv (Hu et al., 2020); the heterophilic datasets comprise Chameleon,
Squirrel (Pei et al., 2020), Penn94 and pokec Lim et al. (2021a). For Cora, CiteSeer, and Pubmed, we
generate ten random splits, allocating nodes into training, validation, and testing sets with proportions
of 60%, 20%, and 20%, respectively. For the heterophilic datasets, we adhere to the ten fixed splits as
defined in Pei et al. (2020). The ogbn-arxiv dataset is assessed using its standard split as established
by (Hu et al., 2020). Detailed statistics of these datasets are shown in Table 3.

Table 3: Statistics of datasets. The split ratio is for train/validation/test.
Homophilic Datasets Heterophilc Datasets

Cora CiteSeer PubMed ogbn-arxiv Chameleon Squirrel Penn94 pokec

#Nodes 2,708 3,327 19,717 169, 343 2,277 5,201 41,554 1,632,803
#Edges 5,429 4,732 44,338 1, 166, 243 31,421 198,493 1,362,229 30,622,564

#Classes 7 6 3 40 5 5 2 2
#Node Features 1,433 3,703 500 128 2,325 2,089 4814 65

#Split Ratio 60/20/20 60/20/20 60/20/20 54/18/28 48/32/20 48/32/20 50/25/25 50/25/25

C.2 ALGORITHM OF NODE-MOE

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Algorithm 1: NODE-MOE
1 Input graph A, Node feature X, m experts, i.e., E1, E2, . . . , Em, Gating model g, Top-K gating
k

2 for i = 1, 2, . . . ,m do
3 Initialize the filter i-th expert Ei

4 Calculate the gating input GX = [X, |AX−X|, |A2X−X|]
5 repeat
6 G = Softmax(KeepTopK(g(GX), k))
7 ŷ =

∑m
o=0 GoEo(A,X)

8 Update NODE-MOE weight by gradient descent on L
9 until Model converges;

The algorithm of NODE-MOE is shown in Algorithm 1. Lines 2-3 initialize the filters of experts
based on the setting in Section C.3. Line 4 calculates the input for the gating model. Lines 6-7
calculate the prediction with top-k gating. Line 8 update the model based on the loss in Section 3.3.

C.3 EXPERIMENTAL SETTINGS

For the baseline models, we adopt the same parameter setting in their original paper. For the proposed
NODE-MOE, we adopt GCNII as the experts. Specifically, for smaller datasets, we use GIN as the
gating model, while for larger datasets, such as Pokec, we use an MLP as the gating model. Notably,
the GCNII model has different learning rates and weight decay for the filters and other parameters.
All the hyperparameters are tuned based on the validation accuracy from the following search space:

• Gating Learning Rate: {0.0001, 0.001, 0.01 }

• Gating Dropout: {0, 0.5, 0.8}

• Gating Weight Decay: {0, 5e-5, 5e-4}

• Expert Learning Rate for Filters: {0.001, 0.01, 0.1}

• Expert Weight Decay for Filters: {0, 5e-5, 5e-3, 5e-2 }

• Expert Learning Rate: {0.001, 0.01, 0.1, 0.5}

• Expert Dropout: {0, 0.5, 0.8}

• Filter Smoothing loss weight: {0, 0.01, 0.1, 1}

• Load balancing weight for top-k gating: {0, 0.001, 0.01, 0.1, 1}

• Number of experts: {2, 3, 5}

For the initialization of filters in ChebNetII, which uses a K-order approximation, we employ a set of
initialization strategies for the polynomial coefficients. These strategies include: decreasing powers
[α0, α1, · · · , αK], increasing powers [αK , αK−1, · · · , α0], and uniform values [1, 1, · · · , 1]. For
configurations with 2 or 3 experts, we set α = 0.9. When expanding to 5 experts, we use two values
of α, setting them at 0.9 and 0.8, respectively, to diversify the response characteristics of the filters.
The code of the proposed NODE-MOE can be found via: https://anonymous.4open.science/r/Node-
MoE-A05D/.

We use a single GPU of NVIDIA RTX A5000 24Gb, to run the experiments.

D ANALYSIS OF THE PROPOSED NODE-MOE

In this section, we provide more analysis of the proposed NODE-MOE by comprehensive experiments.

D.1 THE BEHAVIOR OF NODE-MOE WITH 2 EXPERTS

The learned filters and the corresponding gating weights for nodes with different homophily levels
are illustrated below. For the Chameleon dataset, these are displayed in Figure 12 for the filters and

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 13 for the gating weights. Similarly, for the Citeseer dataset, the filters are shown in Figure 14
and the gating weights in Figure 15.

Figure 12: Learned 2 filters by
NODE-MOE on Chameleon.

Figure 13: The average weight generated by the gating model
for nodes in different homophily groups on Chameleon.

Figure 14: Learned 2 filters by
NODE-MOE on Citeseer.

Figure 15: The average weight generated by the gating model
for nodes in different homophily groups on Citeseer.

For both datasets, the learned filters demonstrate distinct characteristics: filter 0s function as low-pass
filters, effectively smoothing signals, while filter 1s respond more strongly to high-frequency signals,
characteristic of high-pass filters. Specifically, for the heterophilic dataset, such as Chameleon, the
gating model generally assigns higher weights to filter 1, indicating a preference for high-pass filtering
to accommodate the less homophilic nature of the dataset. Conversely, for the homophilic dataset,
such as Citeseer, higher weights are typically assigned to filter 0, emphasizing low-pass filtering.

Moreover, within the Chameleon dataset, the weight assigned to the high-pass filter (filter 1) decreases
as the homophily level increases. In contrast, in the Citeseer dataset, the weight to the low-pass
filter (filter 0) increases with rising homophily levels. This pattern supports our initial hypothesis:
nodes with lower homophily are better served by high-pass filters to capture the dissimilarity among
neighbors, while nodes with higher homophily benefit from low-pass filters to reinforce the similarity
among neighboring nodes.

D.2 EFFECT OF THE NUMBER OF EXPERTS IN NODE-MOE

In this section, we analyze the impact of using different numbers of experts in NODE-MOE with soft
gating. Specifically, we experiment with 1, 2, 3, and 5 experts on the Cora and Chameleon datasets,
following the same settings as outlined in Section 4.1. The experimental results, shown in Table 4,
indicate that NODE-MOE achieves excellent performance with only a few experts. Notably, even
with just 2 experts, it outperforms the baseline models.

D.3 EFFECT OF THE NUMBER OF SELECTED EXPERTS IN TOP-K GATING

In this section, we explore the impact of the number of selected experts K in NODE-MOE with Top-K
gating. Specifically, we use 3 experts in the MoE and vary K in [1, 2, 3] in the the Top-K gating. The

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 4: The performance of Node-MoE with different number of experts.
Experts 1 2 3 5

Cora 88.71 ± 0.93 89.19 ± 1.53 89.38 ± 1.26 89.47 ± 0.85
Chameleon 71.14 ± 2.13 73.55 ± 1.74 73.64 ± 1.80 73.42 ± 1.43

results in Table 5 demonstrate that even with Top-1 gating, Node-MoE achieves superior performance,
highlighting its effectiveness and maintaining good efficiency.

Table 5: The performance of Top-K gating for Node-MoE with 3 experts.
K Single Expert 1 2 3

Cora 88.71 ± 0.93 89.58 ± 1.44 89.56 ± 1.39 89.38 ± 1.26
Chameleon 71.14 ± 2.13 73.18 ± 1.45 73.37 ± 1.86 73.64 ± 1.80

D.4 NOISE FEATURE

The effectiveness of the gating model in NODE-MOE depends on the quality of node features, and
noisy features can hinder its ability to accurately classify node patterns. In this section, we investigate
the impact of noisy features on NODE-MOE. Specifically, we add varying levels of Gaussian noise to
the features in Cora and Chameleon dataset, i.e., X = X + ϵN (0, 1) with ϵ ∈ [0, 0.01, 0.03, 0.05],
where N (0, 1) is the standard normal distribution.

The results on Cora and Chameleon dataset are shown in Table 6. As the noise level increases,
the performance gap between NODE-MOE and the single-expert ChebyNetII decreases. However,
NODE-MOE consistently outperforms the single expert, even with higher noise levels. The reason is
that when noise is too high, the gating model may randomly assign nodes to different experts, making
the learned filters converge to a performance similar to the single-expert model.

Table 6: Node classification performance with different levels of noise in the node features.
Dataset Cora Chameleon
Noise 0 0.01 0.03 0.05 0 0.01 0.03 0.05
MLP 76.49 ± 1.13 59.08 ± 2.36 31.05 ± 1.23 29.58 ± 1.39 48.11 ± 2.23 30.31 ± 1.74 23.71 ± 1.79 21.80 ± 1.76
GAT 88.68 ± 1.13 87.78 ± 0.98 85.35 ± 0.98 84.61 ± 1.29 65.29 ± 2.54 64.47 ± 2.77 63.73 ± 2.19 62.92 ± 2.42

ChebyNetII 88.71±0.93 87.90 ± 1.41 86.25 ± 1.62 85.85 ± 1.09 71.14 ± 2.13 71.45 ± 1.87 71.54 ± 1.48 71.62 ± 1.56
NODE-MOE 89.38 ± 1.26 87.98 ± 1.51 86.45 ± 1.35 86.05 ± 1.19 73.64 ± 1.80 73.16 ± 1.18 72.13 ± 1.62 71.95 ± 1.66

D.5 EFFECT OF LEARNABLE FILTERS IN NODE-MOE

The propose NODE-MOE leverages ChebNetII as the experts, which automatically learn the filters.
In contrast, a few prior works use multiple fixed filters. To evaluate the effect of learnable filters,
we conducted experiments with fixed filters. Specifically, we used 3 experts in NODE-MOE and
fixed the filters in each expert to predefined types (low-pass, high-pass, and all-pass), referred to as
NODE-MOE-fixed.

The performance comparison between NODE-MOE and NODE-MOE-fixed is shown in Table 7.
NODE-MOE with learnable filters achieves better performance than with fixed filters across all
datasets. This suggests that learnable filters are better suited for capturing the complex patterns
present in real-world graphs.

Table 7: Comparison between the fixed filters and learnable filters.
Method Cora CiteSeer Chameleon squirrel

NODE-MOE-Fixed 87.26 ± 1.79 76.15 ± 1.99 71.78 ± 3.37 56.96 ± 1.51
NODE-MOE 89.38 ± 1.26 77.78 ± 1.36 73.64 ± 1.80 62.31 ± 1.98

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

D.6 DUPLICATES IN THE CHAMELEON AND SQUIRREL DATASETS

Platonov et al. (2023) identified that some nodes in the Chameleon and Squirrel datasets are duplicated,
sharing identical neighbors, which may affect the performance of GNNs. To further validate the
effectiveness of the proposed method, we also tested it on filtered versions of the Chameleon and
Squirrel datasets, where the duplicate nodes were removed, referred to as Chameleon-filtered and
Squirrel-filtered.

As shown in Table 8, NODE-MOE continues to perform well on these filtered datasets, demonstrating
its robustness.

Table 8: Node classification performance with filtered datasets.
Method Chameleon Squirrel Chameleon-filterd Squirrel-filtered
PCNet 41.23 ± 1.42 26.28 ± 0.32 34.51 ± 1.86 33.08 ± 0.20

ASGAT 66.50 ± 2.80 55.80 ± 3.20 37.4 ± 6.40 35.10 ± 1.30
ACM-GCN 69.62 ± 1.22 57.02 ± 0.79 37.78 ± 2.28 36.59 ± 1.75

Mowst 65.50 ± 1.86 52.14 ± 1.25 43.45 ± 3.90 38.04 ± 2.14
NODE-MOE 73.64 ± 1.80 62.31 ± 1.98 43.32 ± 3.56 42.37 ± 1.98

D.7 NODE CLASSIFICATION WITH LOW LABELING RATE

We also evaluate the semi-supervised node classification performance under a low labeling rate.
Specifically, we randomly select 20 training nodes per class for the Cora dataset and use 20% of
the training nodes for the Chameleon dataset. The results are shown in Table 9. Even under these
low-labeling rate conditions, the proposed NODE-MOE continues to outperform the baseline models.

Table 9: Semi-supervised Node classification performance with low labeling rate.
Cora 20 Chameleon 20%

GCN 79.41 ± 1.30 56.71 ± 1.72
LinkX 52.93 ± 3.04 60.62 ± 1.93
GMoE 76.00 ± 1.14 65.18 ± 1.45

ChebNetII 81.20 ± 1.04 64.66 ± 1.86
Node-MoE 82.12 ± 1.19 68.81 ± 1.96

23

	Introduction
	Preliminary
	Structural Patterns in Existing Graphs
	Analysis based on CSBM model

	The Proposed Method
	Node-MoE: Node-wise Filtering via Mixture of Experts
	Gating Model
	Expert Models
	Top-K gating
	Time complexity of Node-MoE

	Experiment
	Experimental settings.
	Performance Comparison on Benchmark Datasets
	Analysis of Node-MoE
	Ablation studies

	Related Works
	Conclusion
	Reproducibility Statement
	 Appendix
	Proof of Theorem 1
	Proof of part 1 of Theorem 1
	Proof of part 2 of Theorem 1
	Proof of part 2 of Theorem 1

	The Impact of Filter Smoothing Loss
	Datasets and Experimental Settings
	Datasets
	Algorithm of Node-MoE
	Experimental Settings

	Analysis of the proposed Node-MoE
	The behavior of Node-MoE with 2 experts
	Effect of the Number of Experts in Node-MoE
	Effect of the Number of Selected Experts in Top-K gating
	Noise Feature
	Effect of Learnable Filters in Node-MoE
	Duplicates in the Chameleon and Squirrel Datasets
	Node Classification with Low Labeling Rate

