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ABSTRACT

Graph Neural Networks (GNNs) have proven to be highly effective for node
classification tasks across diverse graph structural patterns. Most GNNs employ
a uniform global filter—typically a low-pass filter for homophilic graphs and a
high-pass filter for heterophilic graphs. However, real-world graphs often exhibit
a complex mix of homophilic and heterophilic patterns, rendering a single global
filter approach suboptimal. While few methods have introduced multiple global
filters, they often apply these filters uniformly across all nodes, which may not
effectively capture the diverse structural patterns present in real-world graphs. In
this work, we theoretically demonstrate that a global filter optimized for one pattern
can adversely affect performance on nodes with differing patterns. To address
this, we introduce a novel GNN framework NODE-MOE that utilizes a mixture of
experts to adaptively select the appropriate filters for different nodes. Extensive
experiments demonstrate the effectiveness of NODE-MOE on both homophilic and
heterophilic graphs.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Kipf & Welling, 2016}, [Velickovi¢ et al.,[2017) have emerged as

powerful tools in representation learning for graph structure data, and have achieved remarkable

success on various graph learning tasks (Wu et al, 2020; Ma & Tang| [2021)), especially the node
classification task. GNNs usually can be designed and viewed from two domains, i.e., spatial domain

and spectral domain. In the spatial domain, GNNs (Kipf & Welling}, 2016}, [Hamilton et al.}, 2017}
Gasteiger et al}, 2018)) typically follow the message passing mechanism (Gilmer et al.,2017)), which

propagate messages between neighboring nodes. In the spectral domain, GNNs (Defferrard et al.,

[2016}; [Chien et al, [2020) apply different filters on the graph signals in the spectral domain of the
graph Laplacian matrix.

Most GNNs have shown great effectiveness in the node classification task of homophilic
graphs (Veli¢kovi et all, 2017; [Wu et all, 2019 |Gasteiger et all, 2018} [Baranwal et all, [2021),
where connected nodes tend to share the same labels. These GNNs usually leverage the low-pass
filters, where the smoothed signals are preserved. However, the heterophilic graphs exhibit the
heterophilic patterns, where the connected nodes tend to have different labels. As a result, several
GNNs (Sun et all 2022} [Li et al.} 2024} [Bo et al.},[2021)) designed for heterophilic graphs introduce
the high-pass filter to better handle such diversity. To adapt to both homophilic and heterophilic
graphs, GNN's with learnable graph convolution (Chien et al., [2020; Bianchi et al., 2021}, [He et al.]
can automatically learn different types of filters for different types of graphs. Despite the
great success, these GNNs usually apply a uniform global filter across all nodes.

However, real-world graphs often display a complex interplay of homophilic and heterophilic pat-
terns (Li et al., [2022; [Cuan et al,[2022} Mao et al., 2024)), challenging this one-size-fits-all filtering
approach. Specifically, while some nodes tend to connect with others that share similar labels, reflect-
ing homophilic patterns, others are more inclined to form connections with nodes that have differing
labels, indicative of heterophilic patterns. There are few methods, such as ACM-GNN
[2022), AutoGCN [2022), PC-Conv [2024) and ASGAT leverage
different filters to alleviate this issue. These methods, referred to as post-fusion methods, apply
multiple filters to all nodes and subsequently combine the predictions of different filters. However,
applying the same filters to all nodes can lead to potential issues. For example, applying a uniform
type of filter, tailored for just one of these patterns, across all nodes may hurt the performance of
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Figure 1: A toy example to illustrate the effect of global and node-wise filters. The node color
represents features, and the number indicates the labels. Solid nodes represent nodes that follow
homophilic patterns, whereas dotted circle nodes represent those with heterophilic patterns. For the
solid-edge nodes, 2 out of their 3 neighbors have the same label, indicating homophilic patterns.
Conversely, for the dashed-edge nodes, 2 out of their 3 neighbors have different labels, indicating
heterophilic patterns.

other patterns. To illustrate this, we provide an example as shown in Figure[T[a), where different
colors represent distinct node features, and numbers indicate node labels. The nodes are marked as
either solid or dotted circles to denote homophilic and heterophilic patterns, respectively. Applying a
global low-pass filter 1 — A, where A is the eigenvalue of graph Laplacian matrix, uniformly across
all nodes results in a scenario where nodes on the left possess the same feature, while those on the
right possess another. Therefore, all the left nodes or the right nodes will have the same prediction.
However, nodes on the left or right don’t share the same label. Consequently, this global filtering
approach leads to misclassification. Moreover, the indistinguishability of the filtered features can
adversely impact post-fusion methods, such as those using attention mechanisms for combination.

This toy example clearly illustrates the limitations of a one-size-fits-all filtering strategy and motivates
the need for a more tailored approach. To address this, Instead of applying one or multiple filters to
all nodes, we propose a node-wise filtering method that apply different filters to different nodes based
on their specific structural patterns. Figure[I(b) provides an example that we apply a low-pass filter,
such as 1 — A, to homophilic nodes, and a high-pass filter, such as A — 1, to heterophilic nodes. From
the results, nodes in the same class would have the same features. Therefore, this node-wise filtering
approach allows for the perfect classification of all nodes in this example.

Present work. In this work, we observe that nodes in many real-world graphs not only exhibit
diverse structural patterns, but these patterns also vary significantly among different communities
within the same graph. Utilizing the CSBM model to generate graphs with mixed structural patterns,
we theoretically demonstrate that a global filter optimized for one pattern may incur significant
losses for nodes with other patterns, while node-wise filtering can achieve linear separability for all
nodes under mild conditions. Building on these insights, we propose a node-wise filtering method -
NODE-MOE, which leverages a Mixture of Experts framework to adaptively select appropriate filters
for different nodes. Extensive experiments validate the effectiveness of the proposed NODE-MOE on
both homophilic and heterophilic graphs, as well as the explainability of the method.

2 PRELIMINARY

In this section, we explore the structural patterns present in various graph datasets, which usually
exhibit mixed homophilic and heterophilic patterns. Then, we theoretically demonstrate that a global
filter often fails in graphs characterized by such mixed structural patterns. In contrast, node-wise
filtering can achieve linear separability under mild conditions. Before we start, we first define the
notations used in this paper and background knowledge.

Notations. We use bold upper-case letters such as X to denote matrices. X; denotes its i-th row
and X;; indicates the i-th row and j-th column element. We use bold lower-case letters such as
x to denote vectors. Let G = (V,€) be a graph, where V is the node set, £ is the edge set, and
[V| = n. N; denotes the neighborhood node set for node v;. The graph can be represented by an
adjacency matrix A € R™*", where A;; > 0 indices that there exists an edge between nodes v;
and v; in G, or otherwise A;; = 0. For a node v;, we use N (v;) = {v; : A;; > 0} to denote its
neighbors. Let D = diag(d, da, . .., dy) be the degree matrix, where d; = >, A is the degree of
node v;. Furthermore, suppose that each node is associated with a d-dimensional feature x and we
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use X = [x1,...,%,] " € R"*?to denote the feature matrix. Besides, the label matrix is Y € R™*¢,
where c is the number of classes. We use ¥, to denote the label of node v.

Graph Laplacian. The graph Lapla01an matrix is defined as L = D — A. We define the normalized
adjacency matrix as A = D 2AD" 2 and the normalized Laplacian matrix as L=I-A.Its

eigendecomposition can be represented by L = UAUT, where the U € R™*" is the eigenvector
matrix and A = diag(\1, \a,..., \,) is the eigenvalue matrix. Specifically, 0 < A < Ay <

- < Ap < 2. The filtered signals can be represented by X=U F(A)UTX, where f is the filter
function. As a result, the graph convolution AX can be viewed as a low-pass filter, with the filter
f(X\;) = 1—\;. Similarly, the graph convolution —A X is a high-pass filter with filter f(\;) = \; — 1.
Homophily metrics. Homophily metrics measure the tendency of edges to connect nodes with
similar labels (Platonov et al.|[2024). There are several commonly used homophily metrics, such as
edge homophily (Zhu et al.| 2020), node homophily (Pei et al., 2020)), and class homophily (Lim!
et al} [2021b). In this paper, we adopt the node homophily H(G) = ﬁ Zv cy h(vi), where
h(v;) = Wiw measures the label similarity between node v; with its neighbors. A node
with higher h(v) exhibits a homophilic pattern while a low h(v) indicates a heterophilic pattern.

2.1 STRUCTURAL PATTERNS IN EXISTING GRAPHS

In this subsection, we examine the structural patterns present in existing graph datasets. Specifically,
we select two widely used homophilic datasets, i.e., Cora and CiteSeer (Sen et al., 2008)), and two
heteranhilic datacete i e chamelean and ecamirre] (Rozemberczki et al | D021). We first calenlate the
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Figure 2: Node homophily (i (v)) density. Figure 3: Homophily in different communities.

homophily distribution for all nodes in the graph. As shown in probability density function (PDF)
Figure[2] while the majority of nodes in homophilic graphs predominantly exhibit homophilic patterns,
and those in heterophilic graphs display heterophilic patterns, exceptions are evident. Notably, some
nodes in homophilic graphs show heterophilic tendencies, and conversely, some nodes in heterophilic
graphs demonstrate homophilic patterns. Consequently, all these graphs exhibit a mixture of
homophilic and heterophilic patterns, which aligns with the findings in the previous works (Luan
et al., 2022; Mao et al., [2024).

We further analyze the position of nodes with different structural patterns within the graphs. To do
this, we divide each graph into several subgraphs using community detection algorithms (Fortunato,
2010). We focus on the largest 10 communities and calculate the homophily level for each subgraph.
The results, as shown in Figure |3| reveal significant variations in homophily across different
communities. For instance, in the Cora dataset, homophily levels in some communities approach
1, indicating strong homophily, while in some communities it drops below 0.5. Similarly, in the
chameleon dataset, the lowest homophily levels are near 0, with the highest reaching above 0.6.
These findings highlight the considerable diversity in node interaction patterns, even within the same
graph, underscoring the complexity of graph structures in real-world datasets. The variability in
homophily levels clearly illustrates that nodes in various parts of the graph may require distinct
processing approaches. Therefore, applying the same global filter to all nodes may lead to suboptimal
performance.

2.2 ANALYSIS BASED ON CSBM MODEL

To further illustrate why applying a global filter may result in suboptimal performance, we utilize
the Contextual Stochastic Block Model (CSBM) (Deshpande et al.| 2018)), which has been widely
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applied to graph analysis (Fortunato & Hric} 2016 Jiang et al.,[2023)), such as analyzing the behavior
of GNNs (Palowitch et al.} [2022; Baranwal et al., [2021; Ma et al., 2021). The CSBM is a generative
model, which is often used to generate graph structures and node features. Typically, CSBMs are
based on the assumption that graphs are generated following a uniform pattern, such as nodes with
the same label are connected with probability p while nodes with different labels are connected with
probability g (Ma et al.,|2021). However, the real-world complexity of graphs features a mixture of
homophilic and heterophilic patterns, as illustrated in section[2.T] We adapt the CSBM by mixing
two CSBMs to generate one graph, following Mao et al.|(2024)).

Definition 1. CSBM (n, p,v, (po,q), (p1,q1), P). The generated nodes consist of two classes,
Co={i€n]:yi=0}and Cy = {j € [n] : y; = 1}. For each node, consider X € R™*% to be the
Sfeature matrix such that each row X; is an independent d-dimensional Gaussian random vectors with
X; ~N (u, %I) ifi € Coand X; ~ N (V, éI) ifj € C1. Here p, v are the fixed class mean vectors
with ||pt]2, |[v]|2 < 1 and 1 is the identity matrix. Suppose there are two patterns of nodes in the
adjacency matrix A = (a;;), i.e., the homophilic pattern: Hy = {i € [n] : a;; = Ber(po) if yi = y;
and a;; = Ber(qo) if yi # yj, po > qo} and the heterophilic pattern: Hy = {1 € [n] : a;; = Ber(p1)
ify; = yj and a;; = Ber(q1) if yi # y;,p1 < q1}. P denotes the probability that a node is in the
homophilic pattern. We also assume the nodes follow the same degree distribution pyo + qo = p1 + q1.

For simplification, we consider a linear model with parameters w € R and b € R, following the
approach (Baranwal et al.,|2021). The predicted label for nodes is given by y = a(f(w + b1), where
o(z) = (1 + e *)~! is the sigmoid function, and X represents the features after filtering. The
binary cross-entropy loss over nodes V is formulated as L(V, w,b) = —‘17‘ Zz‘ev yi log(g;) + (1 —
yi) log(1 — ).

Theorem 1. Suppose n is relatively large, the graph is not too sparse with p;, ¢; = w(log®(n)/n)
and the feature center distance is not too small with || — v|| = w(——22—) and ||w| < R. For

v/ dn(po+qo)
the graph GV, E,X) ~ CSBM (n, u,v, (po, q0), (1, q1), P), we have the following:

1. If the low-pass global filter, i.e., 1 — ), is applied to the whole graph G, we can find a optimal
w*, b* that achieve near linear separability for the homophilic node set Hy. However, the loss for
the heterophilic node set Hy can be relatively large with:

L(Hy, w*,b*) > Rla —p1)

> S v (1 ou(1).

2. If different filters are applied to homophilic and heterophilic sets separately, we can find an optimal
w*, b that all the nodes are linear separable with the probability:

P <<X1) v is linearly separable) =1-—o04(1).
ic

3. Homophilic and heterophilic nodes can be separated based on the feature distance between a
node and the average feature vector of its neighbors, given by || X; — > ) % || with probability
P=1- 0,1(1).

JEN (i

The proof of these results is detailed in Appendix [A] Theorem [I| reveals critical insights into the
filtering strategies for graphs with mixed homophilic and heterophilic patterns, as generated by the
CSBM model. The first part of the theorem illustrates that applying a global low-pass filter can
create an optimal classifier for homophilic nodes, achieving near-linear separability. However, this
classifier may result in a large loss value for heterophilic nodes, highlighting the limitations of a
uniform filtering strategy. Conversely, the second part of the theorem demonstrates that by applying
different filters to different patterns of nodes separately, it is possible to achieve linear separability
across all nodes. These findings strongly motivate the exploration of a node-wise filtering method,
which can automatically apply different filters to distinct nodes based on their specific patterns, to
improve the overall performance.

3 THE PROPOSED METHOD

The investigations presented in Section [2] underscore the complex nature of real-world datasets,
revealing a mixture of homophilic and heterophilic patterns within them. Additionally, these patterns
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are not uniformly distributed throughout the graph; rather, the level of homophily varies significantly
across different communities. Our theoretical analysis further demonstrates that global filtering, as
commonly employed in numerous GNNs, may not effectively capture such complex patterns, often
leading to suboptimal performance. In contrast, node-wise filtering, which applies distinct filters to
individual nodes based on their specific patterns, shows great promise in handling the intricacies of
such complex graphs.

However, implementing the node-wise filtering approach presents two significant challenges. First,
how can we incorporate various filters into a single unified framework? It requires a flexible
architecture that can seamlessly accommodate multiple filtering mechanisms without compromising
the efficiency and scalability of the model. Second, without ground truth on node patterns, how can
we select the appropriate filters for different nodes? In the following subsections, we aim to address
these challenges.
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Figure 4: The overall framework of the proposed NODE-MOE. For each node, the gating model will
assign different weights for each expert based on the node’s feature and context. The experts can be
any GNNs with different filters. The number of experts is also flexible.

3.1 NODE-MOE: NODE-WISE FILTERING VIA MIXTURE OF EXPERTS

Mixture of Experts (MoE) (Jacobs et al., [1991}; Jordan & Jacobsl |1994)), which follows the divide-
and-conquer principle to divide the complex problem space into several subspaces so that each
one can be easily addressed by specialized experts, have been successfully adopted across various
domains (Masoudnia & Ebrahimpour, 2014; Shazeer et al., 2017; Riquelme et al., [2021)). For
node classification tasks in graphs exhibiting a mixture of structural patterns, the diversity of node
interactions necessitates applying distinct filters to different nodes as we discussed in Sections[2] This
necessity aligns well with the MoE methodology, which processes different samples with specific
experts. Building on this principle, we introduce a flexible and efficient Node-wise Filtering via
Mixture of Experts (NODE-MOE) framework, designed to dynamically apply appropriate filters to
nodes based on their structural characteristics.

The overall NODE-MOE framework is illustrated in Figure 4] which consists of two primary com-
ponents: the gating model and the multiple expert models. With the graph data as input, the gating
model g(-) computes the weight assigned to each expert for every node, reflecting the relevance
of each expert’s contribution to that specific node. Each expert model, implemented as any GNN
with different filters, generates node representations independently. The final node classification is
determined by a weighted sum of these representations, where the weights are those assigned by the
gating model. The prediction for node i can be represented by:

; = Classifier <Z g(A,X)@oEo(AvX)i) ) M

o=1

where m is the number of experts, E, denotes the o-th expert, g(A,X), , represents the weight
assigned to the o-th expert for node ¢ by the gating model, and Classifier is a classifier, which could
be a model like a neural network or a simple activation function like Softmax. In the following, we
will delve into the specific designs of the gating model and the expert models.
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3.2 GATING MODEL

The gating model is a pivotal component of the Node-MoE framework, aimed at selecting the most
appropriate experts for each node. Its primary function is to dynamically assign higher weights to
experts whose filtering characteristics best match the node’s patterns. For instance, an expert utilizing
a high-pass filter may receive a higher weight for a node that exhibits heterophilic patterns. However,
a significant challenge arises as there is no explicit ground truth indicating which pattern each node
belongs to. In traditional MoE models, the gating model often utilizes a straightforward feed-forward
network that processes the features of the sample as its input (Shazeer et al.|[2017; Riquelme et al.,
20215 Du et al., |2022; |Wang et al., 2024). Nevertheless, the nodes with different patterns may share
similar node features, making this method ineffective.

To address this challenge, we estimate node patterns by incorporating the contextual features sur-
rounding each node. If a node’s features significantly differ from those of its neighboring nodes, it
is likely that this node exhibits a heterophilic pattern. Specifically, the input to our gating model
includes a composite vector [X,|AX — X|, |A2X — X|]. This vector combines the node’s original
features with the absolute differences between its features and those of its neighbors over one and two
hops, respectively, to indicate the node’s structural patterns. Moreover, as discussed in Section 2.1}
different structural patterns are not uniformly distributed across the graph, and distinct communities
may exhibit varying structural characteristics. To capitalize on this phenomenon, we employ GNNs
with low-pass filters, such as GIN (Xu et al.| |2018), for the gating model. These networks are chosen
due to their strong community detection capabilities (Shchur & Giinnemann, 2019} [Bruna & Li,
2017)), ensuring that neighboring nodes are likely to receive similar expert selections. Experimental
results in Section f.3|clearly demonstrate the proposed gating can efficiently assign different nodes to
their suitable filters.

3.3 EXPERT MODELS

The mixed structural patterns observed in real-world graphs necessitate that the expert models in our
NODE-MOE framework possess diverse capabilities. To achieve this, we consider multiple existing
GNN’s equipped with different filters. Traditional GNNs often utilize fixed filters, which may not
adequately capture the complexity of diverse structural patterns. To address this limitation, we opt for
GNNs with learnable graph convolutions (Chien et al.| 2020; Bianchi et al.l 2021; He et al., 2021}
2022)), which are capable of adapting their filters to better fit the graph structural patterns. However,
the same experts would make the gating model hard to learn the right features (Chen et al.| [2022)
and may result in all experts’ filters being optimized in the same direction. To encourage diversity
and ensure that each expert is adept at handling specific structural patterns, we adopt a differentiated
initialization strategy for the filters in the experts. Instead of using a fixed filter initialization, we
initialize different experts with distinct types of filters, such as low-pass, constant, and high-pass
filters. More details can be found in Section

Filter Smoothing Loss. While integrating multiple experts with diverse filters significantly enhances
the expressive capacity of our NODE-MOE framework, this complexity can also make the model
more challenging to fit. For example, training multiple filters simultaneously may lead to oscillations
in the spectral domain for each filter as shown in Appendix [B| This not only complicates fitting the
model to the data but also impacts its explainability. The specific role and function of each oscillating
filter become difficult to discern, making it harder to understand and interpret the model’s behavior.
To mitigate these issues, we introduce a filter smoothing loss designed to ensure that the learned
filters exhibit smooth behavior in the spectral domain. This loss is defined as follows:

K
L= [ folsi) = folsimn)I%, @)
i=1

where f,(-) is the learnable filter function of the o-th expert, sg < s; < --- < sk are K + 1 values
spanning the spectral domain. By minimizing the activation differences between neighboring values
in the spectral domain, the filter functions become smoother. The overall training loss is then given by
L = Ligsk + 7> e, L2, where the Ly, is the node classification loss and ~ is a hyperparameter
that adjusts the influence of the filter smoothing loss.

3.4 ToP-K GATING

The soft gating that integrates all experts in the Node-MoE framework significantly enhances its
modeling capabilities, but it also increases computational complexity since each expert must process
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all samples. To improve computational efficiency while maintaining performance, we introduce
a variant of NODE-MOE by leveraging the Top-K gating mechanism (Shazeer et al., 2017). In
this variant, the NODE-MOE with Top-K gating selectively activates only the top k experts with
the highest relevance for each node. Specifically, the gating function for a node v; is defined as
g(v;) = Softmax (TopK (g (A, X), , k)). To prevent the gating model from consistently favoring a
limited number of experts, we incorporate a load-balancing loss as suggested by Shazeer et al.| (2017).

3.5 TIME COMPLEXITY OF NODE-MOE

The time complexity of the proposed NODE-MOE can be significantly reduced through sparse Top-K
gating. For instance, when setting K = 1, each node only needs to be processed by a single expert.
In this case, the time complexity of NODE-MOE becomes comparable to that of a single expert,
with the addition of a lightweight gating model. In the section[f.4] we demonstrate the effective and
efficiency of the proposed NODE-MOE.

4 EXPERIMENT

In this section, we conduct comprehensive experiments to validate the effectiveness of the proposed
NODE-MOE. Specifically, we aim to address the following research questions: RQ1: How does
NODE-MOE perform compared with the state-of-the-art baselines on both homophilic and het-
erophilic graphs? RQ2: Do the experts within NODE-MOE learn diverse structural patterns and does
the gating model accurately assign each node to its most suitable experts? RQ3: How do different
factors affect the performance of NODE-MOE?

4.1 EXPERIMENTAL SETTINGS.

Datasets. To evaluate the efficacy of our proposed NODE-MOE, we conduct experiments across
seven widely used datasets. These include four homophilic datasets: Cora, CiteSeer, Pubmed (Sen
et al., 2008)), and ogbn-arxiv (Hu et al [2020)); along with four heterophilic datasets: Chameleon,
Squirrel (Pei et al.,[2020), Penn94 and pokec Lim et al.|(2021a). For Cora, CiteSeer, and Pubmed, we
generate ten random splits, distributing nodes into 60% training, 20% validation, and 20% testing
partitions. For the heterophilic datasets, we utilize the ten fixed splits as specified inPei et al.| (2020)
and|Lim et al.|(2021a). The ogbn-arxiv dataset is evaluated using its standard split (Hu et al., [2020).
We run the experiments 3 times for each split and report the average performance and standard
deviation. More details about these datasets are shown in Appendix [C.T}

Baselines. We compare our method with a diverse set of baselines, which can be divided into five
categories: (1) Non-GNN methods like MLP and Label Propagation (LP) (Zhou et al.,|2003)); (2) Ho-
mophilic GNNs utilizing fixed low-pass filters such as GCN (Kipf & Welling| [2016)), GAT (Velickovic
et al.} 2017), APPNP (Gasteiger et al., 2018)), and GCNII (Chen et al., [2020); (3) Heterophilic GNNs
including AutoGCN (Wu et al., [2022), WRGCN (Suresh et al., [2021]), PC-Conv (Li et al., [2024),
ACM-GCN (Luan et al.,[2022)), ASGAT (Li et al.,|2021)) and LinkX (Lim et al.,2021a); (4) GNNs with
learnable filters like GPRGNN (Chien et al., 2020) and ChebNetII (He et al., 2022); (5) MoE-based
GNNs such as GMoE (Wang et al., [2024)) and Mowst (Zeng et al., | 2023)).

NODE-MOE settings. The proposed NODE-MOE framework is highly flexible, allowing for a wide
range of choices in both gating and expert models. In this work, we employ the GIN (Xu et al.,
2018) as the gating model due to its exceptional expressive power and ability to leverage community
properties as discussed in Section@ As for the expert models, we utilize ChebNetll (He et al.| [2022),
known for its efficiency in learning filters. Specifically, we experiment with configurations of 2, 3,
and 5 ChebNetll experts, each initialized with different filters. More details and parameter settings

are in Appendix[C.3]

4.2 PERFORMANCE COMPARISON ON BENCHMARK DATASETS

In this section, we evaluate the efficacy of the proposed NODE-MOE across both homophilic and
heterophilic datasets. The results of node classification experiments are detailed in Table[I] From the
results, we can have the following observations:

* The proposed NODE-MOE demonstrates robust performance across both homophilic and het-
erophilic datasets, outperforming the baselines in most cases. This indicates its effectiveness in
handling diverse graph structures.
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* The GNNs and methods like LP that use fixed low-pass filters generally do well on homophilic
datasets but tend to underperform on heterophilic datasets. Conversely, specialized models like
LinkX, designed for heterophilic graphs, do not perform as well on homophilic datasets.

* The GNNs equipped with learnable filters generally perform well on both types of datasets, as
they can adapt their filters to the dataset’s structural patterns. However, their performance is still
not optimal. The proposed Node-MoE, which utilizes multiple ChebNetlI as experts, significantly
outperforms a single ChebNetll, especially on heterophilic datasets. This result validates the
effectiveness of our node-wise filtering approach.

* We also compare the proposed NODE-MOE with two MoE methods, i.e., GMoE, which adapts
the receptive field for each node but still applies traditional graph convolution with low-pass filters
and Mowst, which selects MLP or GNN for prediction based on the confidence of GNN. We can
find NODE-MOE consistently outperforms GMoE and Mowst across all datasets.

Table 1: Node classification accuracy (%) on benchmark datasets. OOM means out-of-memory. The
bold and underline markers denote the best and second-best performance respectively. *indicates a
t-test with p < 0.05.

Methods Homophilic datasets Heterophilc datasets
Cora CiteSeer PubMed ogbn-arxiv Chameleon Squirrel Penn94 Pokec
MLP 7649 +1.13 73.15+1.36 86.14+0.64 5568+0.11 | 48.11+223 31.68+190 73.61+0.40 62.39£0.06
LP 86.05+135 69.39+£2.01 8338+0.64 68.14+0.00 | 44.10£4.10 31.92+0.82 63.26+0.41 53.28 +0.05
GCN 88.60+1.19 76.88+1.78 8848+046 7191+0.15 | 6796182 5447+1.17 8237+024 7543+0.15
GAT 88.68+1.13 76.70+1.81 86.52+0.56 71.92+0.17 | 6529+£254 49.46+1.69 81.53+0.55 71.77+6.18

APPNP 8849128 7742+147 8756+052 71.61+030 | 5432£2.61 3641+194 7433+038 62.58+0.08
GCNII 88.12+1.05 77.30+1.58 90.17+0.57 7274+0.16 | 5554+£2.02 56.63+1.17 82924059 78.94+0.11
AutoGCN 87.59+1.17 7512194 89.13+051 6934+0.63 | 6521£297 4555+1.54 81.02+0.16 79.49+0.33
WRGCN 88.06+1.50 76.28+1.98 86.39+0.55 >24h 6524 +£0.87 48.85+0.78 75.50+0.09 >24h
PC-Conv 88854129 7730+£1.79 8579+£0.64 67.21%£0.19 | 6686197 4475+1.58 8536+0.06 77.86+0.07
ACMGCN 88.01 126 76.52+1.72 89.51+049 62.09+129 | 69.62+1.22 57.02+0.79 83.02+0.65 74.13+0.14
ASGAT 86.63+1.51 73.76+1.17 OOM OOM 66.50 £2.80  55.80+3.20 OOM OOM
LinkX 82.89+127 70.05+1.88 84.81+0.65 6654052 | 6842+138 61.81+1.80 8471+052 81.86+0.21
GPR-GNN 88.54+0.67 7644+189 8846+031 71.78+0.18 | 62.85+£290 5435+0.87 83.54+0.32 80.74+0.22
ChebNetll 88.71+£0.93 76.93+1.57 8893+029 7232+023 | 71.14+£2.13 57.12+1.13 84.86+033 81.16+0.04
GMoE 8727174 7656157 88.14+056 71.74+029 | 71.88+1.60 51.97+3.16 7576+4.39 59.30+1.92
Mowst 86.18 145 75274219 88.92+0.61 7037+0.16 | 6550186 52.14+1.25 79.78+0.26 77.05+0.06
NODE-MOE | 89.38 £1.26° 77.78+1.36 89.58 +0.60 73.19+0.22" | 73.64+1.80° 62.31+1.98° 8537+0.31 82.94+0.06

4.3 ANALYSIS OF NODE-MOE

In this section, we delve into an in-depth analysis of the behaviors of NODE-MOE to demonstrate its
rationality and effectiveness. We aim to uncover several key aspects of how NODE-MOE operates
and performs: What specific types of filters does Node-MoE learn? Are nodes appropriately assigned
to these diverse filters by the gating model? Finally, which types of nodes benefit the most from
the proposed NODE-MOE for different datasets? We conduct experiments on both CiteSeer and
Chameleon datasets using configurations with 2 experts. The results for the Chameleon dataset are
presented below. For more results and analysis, please refer to Appendix
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Figure 5: Learned 2 filters by Figure 6: The average weight generated by the gating model
NODE-MOE on Chameleon. for nodes in different homophily groups on Chameleon.

Figure [5] showcases the two filters learned by NODE-MOE on the Chameleon dataset, where filter 0
functions as a low-pass filter and filter 1 as a high-pass filter. To analyze the behavior of the gating
model in NODE-MOE, we split nodes into different groups based on their homophily levels. Figure[6]
displays the weights assigned by the gating model to these two experts. The results reveal that nodes
with lower homophily levels predominantly receive higher weights for the high-pass filter (filter 1),
and as the homophily level increases, the weight for this filter correspondingly decreases. This pattern
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confirms our design that nodes with varying structural patterns require different filters, demonstrating
the effectiveness of the proposed gating model.

Figure[7]shows the performance of different models on node groups with varying levels of homophily.
We observe that the proposed NODE-MOE improves the performance of low-homophilic nodes in the
Cora dataset, while it enhances the performance of high-homophilic nodes in the Chameleon dataset,
compared to the single-expert ChebNetll. Besides, NODE-MOE outperforms GAT on low-homophilic
nodes in both datasets. These observations further demonstrate the effectiveness of our node-wise
filtering method.

10| m- GAT - GAT
= Chebietl] = ChebNetl]
= Node-MoE = Node-MoF

0.00-0.20 0.20 - 0.40 0.40 - 0.60 0.60 - 0.80 0.80 - 1.00 ” 0.00-0.20 0.20 - 0.40 0.40 - 0.60 0.60 - 0.80 0.80 - 1.00
Homophily Homophily

(a) Cora (b) Chameleon

Figure 7: The performance of different models on node groups with different homophily.
4.4 ABLATION STUDIES

In this section, we conduct ablation studies to further investigate the effectiveness of two key
components within the Node-MoE framework: the gating model and the filter smoothing loss. For
the gating model, we explore two variants: a traditional MLP-based gating mechanism that utilizes
the input features X, and the Top-K gating approach as detailed in Section [3.4] Specifically, we
choose K = 1 to ensure the proposed NODE-MOE has similar efficiency with the single expert.
Figure@presents the results on CiteSeer, ogbn-arxiv, Chameleon, and Squirrel datasets. We observe
two findings: (1) Traditional gating does not perform as well as the proposed gating in NODE-MOE
and only achieves results comparable to an individual ChebNetII expert. (2) The Top-1 gating, which
selects only one expert, can achieve similar results to those of the soft gating NODE-MOE that utilizes
all experts. This indicates that the proposed NODE-MOE can effectively enhance performance while
maintaining a complexity level comparable to that of an individual expert model.

We compared the average training time of o
the proposed NODE-MOE with Top-1 gating. ~_Table 2: Average training time (s) per epoch.

. Dataset ChebNetll NODE-MOE-3 NODE-MOE-5
Specifically, we select two large datasets, ogbn- ogbn-arxv 157 77 193

arxiv and pokec, and compared the average train- pokec 15.58 16.6 16.79
ing time of NODE-MOE with 3 and 5 experts,
denoted as NODE-MOE-3 and NODE-MOE-5, respectively. As shown in Table[2] despite utilizing 3
or 5 experts, NODE-MOE ’s training time remains comparable to that of the single-expert ChebNetII
as the gating model only select Top-1 expert, demonstrating its efficiency.

80 80

= ChebNetil ~e- Glesser
m= Traditional Gating I

= Top-1 Gating 75 =

= Node-MoE v

Accuracy (%)
o ~
L

-
o

[=))
i
Accuracy

o
a

o
=3

&
o

Citeseer ogbn-arxiv Chameleon Squirrel
Datasets

0.1 0.5 1 5

Figure 8: The performance comparison of differ- Figure 9: The performance with different weight
ent gating variants. parameters -y of the filter smoothing loss.

We also investigate the impact of the weight parameter, -, of the filter smoothing loss on the overall
performance. Specifically, we conduct experiments on the Citeseer and Squirrel datasets and the -y is
chosen in [0,0.1,0.5, 1, 5]. As shown in Figure@> incorporating the filter smoothing loss generally
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enhances performance, especially for the Citeseer dataset. The reason is that the filter smoothing loss
can mitigate filter oscillation, which may lead to the model being hard to learn. For more detailed
insights into the effects of the filter smoothing loss, please refer to Appendix [B]

Additionally, we explore the effects of the number of experts and the value of K in Top-K gating.
The results, shown in the Appendix and demonstrate that NODE-MOE achieves excellent
performance with just a few experts (e.g., 2) and small K values (e.g., 1). We also evaluate NODE-
MOE’s performance under noisy feature settings. As shown in Appendix [D.4] NODE-MOE still
outperforms the single-expert model even at higher noise levels, though the performance gap tends to
decrease as noise increases.

5 RELATED WORKS

Graph Neural Networks (GNNs) (Kipf & Welling}, 2016; |Velickovic et al.l [2017)) have achieved
remarkable success across a wide range of tasks (Zhou et al.,|2020). Most GNNs usually follow
the message-passing mechanism (Gilmer et al.l [2017)), which can be regarded as low-pass graph
filters (Nt & Maeharal 2019;|Zhao & Akoglu, [2019)). As a result, these GNNs are usually suitable for
homophilic graphs. To address heterophilic graphs, specialized models like GIoGNN (Li et al.| 2022)),
LinkX (Lim et al.,[2021a), MixHop (Abu-El-Haija et al.,[2019)) haven been developed. Additionally,
models such as Bernnet (He et al., 2021)), GPRGNN (Chien et al., 2020), and ChebNetII (He et al.|
2022) feature learnable filters that adapt to various graph types. Recent studies have highlighted that
real-world graphs often exhibit a mixture of structural patterns (Suresh et al.| 2021} |L1 et al.| 2022}
Mao et al.|[2024). Traditional GNNS typically apply the same global filter across all nodes, which can
be suboptimal for such mixed scenarios. In response, our proposed NODE-MOE introduces a node-
wise filtering approach, applying distinct filters to nodes based on their individual patterns, enhancing
adaptability and performance. We note there are few methods, such as ACM-GNN (Luan et al., 2022)),
AutoGCN (Wu et al.,[2022), PC-Conv (Li et al., [2024) and ASGAT (Li et al.,[2021) also leverage
multiple filters. Our method is distinct from these methods: these models typically use post-fusion,
where all nodes are passed through all filters, and the resulting representations are then combined
using mechanisms like attention. However, this post-fusion strategy increases computational cost, as
all nodes must be processed by every filter. In contrast, the Top-K gating mechanism in NODE-MOE
significantly reduces computational cost. Furthermore, the filtered representations in these methods
may not accurately capture the importance of each filter, as indicated by the poor calibration of
GNNs (Hsu et al.| [2022). The experimental results in section 4.2] show NODE-MOE outperforms
all these post-fusion methods. Additionally, while many of these methods use predefined filters, our
results in Appendix [D.5]show that learnable filters perform better than multiple fixed filters.

Mixture of Experts (MoE) (Jacobs et al., |1991; Jordan & Jacobs| |1994) architecture has been widely
used in NLP (Du et al., [2022; Zhou et al., |2022) and Computer Vision (Riquelme et al.l |2021) to
improve efficiency of large models. In graph domain, GraphMETRO (Wu et al.| [2023)) leverage MoE
to address the graph distribution shift issue. GMoE (Wang et al., 2024) utilizes MoE to adaptive select
propagation hops for different nodes. Link-MoE (Ma et al.| [2024) finds different node pairs require
different heuristics to predict and different GNN4LP models have different abilities for different
heuristics. They leverage MoE to use different GNN4LP models for different node pairs. Despite
these advancements, these methods still face challenges in handling complex graph patterns. Another
related work is Mowst (Zeng et al.,|2023), which selects the prediction from either MLP or GNN
based on the confidence of the GNN’s prediction. However, this method still relies on post-fusion
and uses fixed filters, limiting its flexibility. In contrast, the proposed NODE-MOE demonstrates both
superior effectiveness and efficiency.

6 CONCLUSION

In this paper, we explored the complex structural patterns inherent in real-world graph datasets, which
typically exhibit a mixture of homophilic and heterophilic patterns. Notably, these patterns exhibit
significant variability across different communities within the same dataset, highlighting the intricate
and diverse nature of graph structures. Our theoretical analysis reveals that the conventional single
global filter, commonly used in many GNN:ss, is often inadequate for capturing such complex structural
patterns. To address this limitation, we proposed the node-wise filtering method, NODE-MOE, a
flexible and effective solution that adaptively selects appropriate filters for different nodes. Extensive
experiments demonstrate the proposed NODE-MOE demonstrated excellent performance on both
homophilic and heterophilic datasets. Further, our behavioral analysis and ablation studies validate
the design and effectiveness of the proposed NODE-MOE.

10
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7 REPRODUCIBILITY STATEMENT

The experimental setup, including hyperparameters settings and dataset details, along with a link to
anonymously source code, can be found in Appendix[C|to ensure reproducibility.
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Appendix

A PROOF OF THEOREM 1

In this section, we present the proof of Theorem [T} This theorem analyzes the separability
when different filters are applied to graphs generated by a mixed CSBM model in Defination
CSBM (n, p,v, (po,qo), (p1,41), P) using a linear classifier.

Notably, the following proof is derived based on Baranwal et al.| (2021), which analyzes the
linear separability of a single graph convolution under a single CSBM model with only one pattern -
CSBM (n, pu,v,(p,q)). We extend the analysis to graphs with mixed CSBM models. Besides, we
analyze the scenarios in which different filters are applied to the same graph.

We follow the assumption 1 and 2 in|[Baranwal et al.|(2021): The graph size n should be relatively
large with w(dlogd) < n < O(poly(d)), and the graph is not too sparse with pg, qo, P1,q1 =

w (log2(n)/n).
A.1 PROOF OF PART 1 OF THEOREM 1
Proof. For the low-pass filter, consider the filtered feature X = D~'AX. Due to the normal

distribution of node feature X, the filtered feature of node 7 still follows the normal distribution.
Specifically, the mean of nodes in different classes and partterns can be represented by:

M(lﬂ)(l)) fori € Cyandi € Hy
Do T Qo
gli$£95(1+*ﬂlh fori € Cyandi € Hy
j X Po T 4o
m(Z) - E(XZ) - P11 + qQv )
g, (L to(l) fori€ Coandi € H,
P1Taq1
%?}%50+00D fori € Cyandi € H;
1 1

where Cy and C represent the class 0 and class 1, respectively; Hy and H; are the homophilic and

heterophilic node sets, respectively. The covariance matrix can be represented by: Cov(f(i) =

ﬁI.. Lemma 2 in Baranwal et al.| (2021) demostrate that for any unit vector w, we have:

ermm»~ﬂ=o(J%%%ﬂ)

If we only consider the nodes with homophilic patterns, i.e., ¢ € Hy, we can find the optimal linear

classifier with w* = Rﬁ and b* = —1(v + p,w*). We also have the assumption that the

distance between p and v are relatively large, with ||v — p|| = Q (%).

Then, for i € Cyandi € Hy, we have:

- * 1 1
(X, W*) + b = w(l +o(1)) + 0 <||W*|| Og”) _ §<,, +opw®)

Po + qo dn(p+q)
— L2uie 2 2000 = B AL (14 o(0))+ of ')
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Similarly, for ¢ € Cy andi € Hy, we have:

= R(qo — po)

(X, W) +b" = — 20po + 00 [ =v[|(1+0(1)) >0

Therefore, the linear classifier with w* and b* can separate class Cj.

However, if we apply this linear classifier to the heterophilic node set H1, where p1 < q1, we have:

—M||#—VH(1+0(1))>0 fori € Cpandi € Hy
(X, w*) +b* = 2(p1 +q1)
v R(q1 — p1) ~ ~
————|ljp—v|[(14+0(1)) <0 forie Ciandi € H
s 1+ o(1) vandi € Hy

Therefore, all nodes in H; are misclassified. The binary cross-entropy over node set H; can be
represented by:

o) = s oo (5o +8) - 1 o (5 1)
= U;T iezl;l log (1 + exp ((1 — 2y;) (<X'Z,v~v> + b*)))

~tog (1 exp (BP0

R(p1—q1)

o1 Tas) [lee — v|| > 0, we have € > x. As aresult, we have

L(H:, w*,b*) > Elg—p)
2(;1 + q1)

As for x = —

[l = v[[(1 4 0(1))

A.2 PROOF OF PART 2 OF THEOREM 1

Proof. Suppose we apply a high-pass filter to the heterophilic nodes H; and the filtered features are
X = —D~'AX. For nodes in H;,

JLI‘“"Q +o(1)) forie Cyandi € H;
. % P1Tq1
i) =EX) =9 g+ puw
——=————(14o0(1)) forie Cyandi € H;
P11+ a1
Therefore, if we apply the same linear classifier with w* and b*, then we have:
R(p: —
MHM —v||(1+0(1)) <0 forie Cyandi € Hy
< 2(p1 +q1)
(X, w") +0" = R( )
ﬁ”# —v|(1+0(1)) >0 forie Ciandi € Hy

As aresult, the same linear classifier can separate both the homophilic set Hy and heterophilic set
H;.

O

A.3 PROOF OF PART 2 OF THEOREM 1

Proof. Let A be the adjacency matrix of GG, D be the diagonal degree matrix where D,; is the degree
of node i, and X € R"*% be the feature matrix with X; denoting the feature vector of node . The
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filtered feature is defined as: ~
X =D !AX,
where D! A averages features across neighbors of each node.

We now analyze the squared feature change, f? = (Xi —X;)?, which represents the squared deviation
of the aggregated feature from the original feature. For node ¢, this is:

where N (7) is the neighborhood of .

Nodes are divided into:

* Hy: Homophilic nodes where intra-class connections dominate.

* H,: Heterophilic nodes where inter-class connections dominate.

Each node belongs to one of two classes Cy or C'y, with the class means p and v, respectively.
If f; = X; — Xi ~ N(ug,, 07,), then f7 follows a scaled Chi-squared distribution:
2
2 %Fi 2
Ii~ FX (1, M),

where:

* x%(1,);) is a non-central Chi-squared distribution with 1 degree of freedom and non-
2
centrality parameter \; = iél .

i

© 0} = %2 (1 + Di) for node i.

* The mean jif, depends on the node type (homophilic or heterophilic):

poqﬁqo(y_'LL)’ ifi € Hy, Cy,

_Po(ﬁ-}qo (V — /J), ifi € Ho,cl,

K = iy
) S (v—p), ifie Hy, Co.

S (v—p), ifie Hy,Ch.

For each node i, the expected squared feature change f7 is:

and the variance of f2 is:
Var(f?) = 203%1, + 4;& U?‘i.

Misclassification occurs when the squared feature changes of nodes ¢« € Hy and j € H; overlap.
Define the difference in squared feature changes:

DF;; = f} - fj2'

The expectation of D Fj; is:
E[DF;] = E[f{] - E[f].
Substituting E[f7] = p3, + 07, we get:
E[DF;;] = (u?i - ,u?cj) + (O'?‘i - a]%j)7

where:
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 The difference in means u?py_’ — [L?j is:

2
2 2 q0 q1 2 2 2
Wy, — 1y, = - v—u) =A% —p).
Fi 13 (Po +q p1+ (11> ( ) ( )
Here, A = —%0— — 9L represents the normalized connection bias between classes.

Po+qo p1+aq1

e The variance difference 0? — 0% is:
fi e

2
2 2 _ ¢ ! !
95 9 T 1 (D” B Djj> ‘

As d — oo, this term vanishes.

Thus:
E[DF,;] = A*(v — pu)* + O <c1l> .

The variance of D Fj; is:
Var(DF;;) = Var(f7) + Var(f7).

For each node:
Var(f?) = 20;%1, + 4;&, oi.

2

Since 07, = % (1 + A ) and ;15 o 5, we get:

Di;
\% 2 O 71
ar(fi ) ~ ( ) .

The misclassification probability P(DF;; < ¢€) can be bounded using the Chernoff inequality:

P(DF;; <€) < exp <%) '

Substituting the results:

E[DF;j] = A%(v — p)?> + O <;) . Var(DFy) ~ O (Cll) .

Thus:
(E[DFy] —¢)*

implying that the exponential decay in the Chernoff bound becomes increasingly sharp as d — oo,
making P(DF;; < €) approach 1.

~ 0(d),

O

B THE IMPACT OF FILTER SMOOTHING LOSS

In this section, we explore the impact of the proposed filter smoothing loss on the behavior of the
learned filters in our NODE-MOE framework. Figures[I0]and [T]display the effects of the NODE-
MOE framework without and with the application of filter smoothing loss, respectively. Without the
filter smoothing loss, as shown in Figure[I0} the learned filters exhibit significant oscillations, making
it challenging to discern their specific functions. In contrast, with the filter smoothing loss applied, as
illustrated in Figure[TT] the behavior of the filters becomes more distinct: filter O clearly functions as
a low-pass filter, and filter 1 as a high-pass filter.

Additionally, we assessed the training dynamics of the proposed Node-MoE framework by comparing
performance with and without the filter smoothing loss, while keeping other hyperparameters constant.
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Figure 10: Learned 2 filters by NODE-MOE on  Figure 11: Learned 2 filters by NODE-MOE on
Chameleon without filter smoothing loss. Chameleon with filter smoothing loss.

For the Citeseer dataset, applying the filter smoothing loss resulted in a higher average training
accuracy of 99.37 + 0.17, compared to 93.51 + 1.27 when the loss was not applied. A similar pattern
was observed on the Squirrel dataset, where the training accuracy was 96.54 + 1.42 with the filter
smoothing loss, versus 95.54 + 0.94 without it. These results suggest that oscillations in the filters
without the smoothing loss can hinder the model’s ability to fit the data effectively, resulting in
suboptimal performance as shown in Section[4.4]

C DATASETS AND EXPERIMENTAL SETTINGS

In this section, we detail the datasets used and the experimental settings for both the baseline models
and the proposed NODE-MOE framework.

C.1 DATASETS

We conduct experiments across seven widely recognized datasets, which encompass both homophilic
and heterophilic types. The homophilic datasets include Cora, CiteSeer, and Pubmed (Sen et al.,
2008), along with ogbn-arxiv (Hu et al.| 2020); the heterophilic datasets comprise Chameleon,
Squirrel (Pei et al.,[2020), Penn94 and pokec Lim et al.|(2021a). For Cora, CiteSeer, and Pubmed, we
generate ten random splits, allocating nodes into training, validation, and testing sets with proportions
of 60%, 20%, and 20%, respectively. For the heterophilic datasets, we adhere to the ten fixed splits as
defined in Pei et al.|(2020). The ogbn-arxiv dataset is assessed using its standard split as established
by (Hu et al., 2020). Detailed statistics of these datasets are shown in Table

Table 3: Statistics of datasets. The split ratio is for train/validation/test.

Homophilic Datasets Heterophilc Datasets
Cora CiteSeer PubMed ogbn-arxiv | Chameleon  Squirrel Penn94 pokec
#Nodes 2,708 3,327 19,717 169, 343 2,277 5,201 41,554 1,632,803
#Edges 5,429 4,732 44,338 1, 166, 243 31,421 198,493 1,362,229 30,622,564
#Classes 7 6 3 40 5 5 2 2
#Node Features 1,433 3,703 500 128 2,325 2,089 4814 65

#Split Ratio 60/20/20  60/20/20  60/20/20  54/18/28 48/32/20  48/32/20  50/25/25 50/25/25

C.2 ALGORITHM OF NODE-MOE
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Algorithm 1: NODE-MOE
Input graph A, Node feature X, m experts, i.e., Fq, Fs, ..., E,,, Gating model g, Top-K gating
k

fori:=1,2,...,mdo
| Initialize the filter i-th expert F;
Calculate the gating input GX = [X, |AX — X|,|A%X — X]]
repeat
G = Softmax(KeepTopK(g(GX), k))
§=30-0 GoEo(A, X)
Update NODE-MOE weight by gradient descent on L
until Model converges;

The algorithm of NODE-MOE is shown in Algorithm[I} Lines 2-3 initialize the filters of experts
based on the setting in Section [C.3] Line 4 calculates the input for the gating model. Lines 6-7
calculate the prediction with top-k gating. Line 8 update the model based on the loss in Section [3.3]

C.3 EXPERIMENTAL SETTINGS
For the baseline models, we adopt the same parameter setting in their original paper. For the proposed
NODE-MOE, we adopt GCNII as the experts. Specifically, for smaller datasets, we use GIN as the
gating model, while for larger datasets, such as Pokec, we use an MLP as the gating model. Notably,
the GCNII model has different learning rates and weight decay for the filters and other parameters.
All the hyperparameters are tuned based on the validation accuracy from the following search space:

* Gating Learning Rate: {0.0001, 0.001, 0.01 }

¢ Gating Dropout: {0, 0.5, 0.8}

* Gating Weight Decay: {0, Se-5, Se-4}

* Expert Learning Rate for Filters: {0.001, 0.01, 0.1}

» Expert Weight Decay for Filters: {0, 5e-5, Se-3, 5e-2 }

* Expert Learning Rate: {0.001, 0.01, 0.1, 0.5}

* Expert Dropout: {0, 0.5, 0.8}

* Filter Smoothing loss weight: {0, 0.01, 0.1, 1}

* Load balancing weight for top-k gating: {0, 0.001, 0.01, 0.1, 1}

e Number of experts: {2, 3,5}
For the initialization of filters in ChebNetlI, which uses a K-order approximation, we employ a set of
initialization strategies for the polynomial coefficients. These strategies include: decreasing powers
[@® al,---  aX], increasing powers [af, a® 71 ... Y], and uniform values [1,1,---,1]. For
configurations with 2 or 3 experts, we set « = 0.9. When expanding to 5 experts, we use two values
of a, setting them at 0.9 and 0.8, respectively, to diversify the response characteristics of the filters.

The code of the proposed NODE-MOE can be found via: https://anonymous.4open.science/r/Node-
MoE-A05D/.

We use a single GPU of NVIDIA RTX A5000 24Gb, to run the experiments.

D ANALYSIS OF THE PROPOSED NODE-MOE

In this section, we provide more analysis of the proposed NODE-MOE by comprehensive experiments.

D.1 THE BEHAVIOR OF NODE-MOE WITH 2 EXPERTS

The learned filters and the corresponding gating weights for nodes with different homophily levels
are illustrated below. For the Chameleon dataset, these are displayed in Figure [12|for the filters and
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Figure T3] for the gating weights. Similarly, for the Citeseer dataset, the filters are shown in Figure[T4]
and the gating weights in Figure[T3]
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Figure 12: Learned 2 filters by Figure 13: The average weight generated by the gating model
NODE-MOE on Chameleon. for nodes in different homophily groups on Chameleon.
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Figure 14: Learned 2 filters by Figure 15: The average weight generated by the gating model
NODE-MOE on Citeseer. for nodes in different homophily groups on Citeseer.

For both datasets, the learned filters demonstrate distinct characteristics: filter Os function as low-pass
filters, effectively smoothing signals, while filter 1s respond more strongly to high-frequency signals,
characteristic of high-pass filters. Specifically, for the heterophilic dataset, such as Chameleon, the
gating model generally assigns higher weights to filter 1, indicating a preference for high-pass filtering
to accommodate the less homophilic nature of the dataset. Conversely, for the homophilic dataset,
such as Citeseer, higher weights are typically assigned to filter 0, emphasizing low-pass filtering.

Moreover, within the Chameleon dataset, the weight assigned to the high-pass filter (filter 1) decreases
as the homophily level increases. In contrast, in the Citeseer dataset, the weight to the low-pass
filter (filter 0) increases with rising homophily levels. This pattern supports our initial hypothesis:
nodes with lower homophily are better served by high-pass filters to capture the dissimilarity among
neighbors, while nodes with higher homophily benefit from low-pass filters to reinforce the similarity
among neighboring nodes.

D.2 EFFECT OF THE NUMBER OF EXPERTS IN NODE-MOE

In this section, we analyze the impact of using different numbers of experts in NODE-MOE with soft
gating. Specifically, we experiment with 1, 2, 3, and 5 experts on the Cora and Chameleon datasets,
following the same settings as outlined in Section[d.1} The experimental results, shown in Table
indicate that NODE-MOE achieves excellent performance with only a few experts. Notably, even
with just 2 experts, it outperforms the baseline models.

D.3 EFFECT OF THE NUMBER OF SELECTED EXPERTS IN TOP-K GATING

In this section, we explore the impact of the number of selected experts K in NODE-MOE with Top-K
gating. Specifically, we use 3 experts in the MoE and vary K in [1, 2, 3] in the the Top-K gating. The
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Table 4: The performance of Node-MoE with different number of experts.
Experts 1 2 3 5

Cora 88.71+0.93 89.19+1.53 89.38+1.26 89.47+£0.85

Chameleon | 71.14+£2.13 73.55+1.74 73.64+1.80 7342+1.43

results in Table[5|demonstrate that even with Top-1 gating, Node-MOoE achieves superior performance,
highlighting its effectiveness and maintaining good efficiency.

Table 5: The performance of Top-K gating for Node-MoE with 3 experts.
K Single Expert 1 2 3
Cora 88.71£0.93 89.58+1.44 §89.56+1.39 §89.38+1.26
Chameleon | 71.14+2.13 73.18+145 7337+1.86 73.64+1.80

D.4 NOISE FEATURE

The effectiveness of the gating model in NODE-MOE depends on the quality of node features, and
noisy features can hinder its ability to accurately classify node patterns. In this section, we investigate
the impact of noisy features on NODE-MOE. Specifically, we add varying levels of Gaussian noise to
the features in Cora and Chameleon dataset, i.e., X = X + eN (0, 1) with € € [0, 0.01, 0.03,0.05],
where N (0, 1) is the standard normal distribution.

The results on Cora and Chameleon dataset are shown in Table [} As the noise level increases,
the performance gap between NODE-MOE and the single-expert ChebyNetlI decreases. However,
NODE-MOE consistently outperforms the single expert, even with higher noise levels. The reason is
that when noise is too high, the gating model may randomly assign nodes to different experts, making
the learned filters converge to a performance similar to the single-expert model.

Table 6: Node classification performance with different levels of noise in the node features.

Dataset Cora Chameleon
Noise 0 0.01 0.03 0.05 0 0.01 0.03 0.05
MLP 7649 +1.13 59.08+236 31.05+1.23 2958+1.39 | 48.11+£223 30.31+1.74 2371179 21.80+1.76
GAT 88.68+1.13 87.78£0.98 8535+098 84.61+1.29 | 6529+2.54 6447277 63.73+£2.19 62.92+242
ChebyNetIl | 88.71+0.93 87.90+1.41 86.25+1.62 8585+1.09 | 71.14+2.13 7145187 71.54+148 71.62+1.56
NODE-MOE | 8938 +1.26 87.98+1.51 8645+1.35 86.05+1.19 | 73.64+1.80 73.16+1.18 72.13+1.62 71.95+1.66

D.5 EFFECT OF LEARNABLE FILTERS IN NODE-MOE

The propose NODE-MOE leverages ChebNetll as the experts, which automatically learn the filters.
In contrast, a few prior works use multiple fixed filters. To evaluate the effect of learnable filters,
we conducted experiments with fixed filters. Specifically, we used 3 experts in NODE-MOE and
fixed the filters in each expert to predefined types (low-pass, high-pass, and all-pass), referred to as
NODE-MOE-fixed.

The performance comparison between NODE-MOE and NODE-MOE-fixed is shown in Table
NODE-MOE with learnable filters achieves better performance than with fixed filters across all
datasets. This suggests that learnable filters are better suited for capturing the complex patterns
present in real-world graphs.

Table 7: Comparison between the fixed filters and learnable filters.
Method Cora CiteSeer Chameleon squirrel
NODE-MOE-Fixed | 87.26 £1.79 76.15+1.99 71.78 £3.37 56.96 +1.51
NODE-MOE 80.38+1.26 77.78+1.36 73.64+1.80 62.31+1.98
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D.6 DUPLICATES IN THE CHAMELEON AND SQUIRREL DATASETS

Platonov et al.[(2023) identified that some nodes in the Chameleon and Squirrel datasets are duplicated,
sharing identical neighbors, which may affect the performance of GNNs. To further validate the
effectiveness of the proposed method, we also tested it on filtered versions of the Chameleon and
Squirrel datasets, where the duplicate nodes were removed, referred to as Chameleon-filtered and
Squirrel-filtered.

As shown in Table[8] NODE-MOE continues to perform well on these filtered datasets, demonstrating
its robustness.

Table 8: Node classification performance with filtered datasets.

Method Chameleon Squirrel Chameleon-filterd ~ Squirrel-filtered
PCNet 41.23+£1.42 2628+0.32 34.51+£1.86 33.08 £0.20
ASGAT 66.50 £2.80 55.80+3.20 37.4 £6.40 3510+ 1.30
ACM-GCN | 69.62+1.22 57.02+0.79 37.78 £2.28 36.59 £ 1.75
Mowst 65.50+1.86 52.14+1.25 43.45 £3.90 38.04 £2.14
NODE-MOE | 73.64 +1.80 62.31+1.98 43.32 +3.56 42.37 +1.98

D.7 NODE CLASSIFICATION WITH LOW LABELING RATE

We also evaluate the semi-supervised node classification performance under a low labeling rate.
Specifically, we randomly select 20 training nodes per class for the Cora dataset and use 20% of
the training nodes for the Chameleon dataset. The results are shown in Table[9] Even under these
low-labeling rate conditions, the proposed NODE-MOE continues to outperform the baseline models.

Table 9: Semi-supervised Node classification performance with low labeling rate.

Cora 20 Chameleon 20%
GCN 79.41 +£1.30 56.71 £ 1.72
LinkX 52.93 +3.04 60.62 +1.93
GMoE 76.00 £ 1.14 65.18 + 1.45
ChebNetIl | 81.20 + 1.04 64.66 + 1.86
Node-MoE | 82.12+1.19 68.81 £1.96
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