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Abstract

Reward models (RMs) are crucial for the train-001
ing and inference-time scaling up of large lan-002
guage models (LLMs). However, existing re-003
ward models primarily focus on human prefer-004
ences, neglecting verifiable correctness signals005
which have shown strong potential in training006
LLMs. In this paper, we propose agentic re-007
ward modeling, a reward system that combines008
reward models with verifiable correctness sig-009
nals from different aspects to provide reliable010
rewards. We empirically implement a reward011
agent, named REWARDAGENT, that combines012
human preference rewards with two verifiable013
signals: factuality and instruction following,014
to provide more reliable rewards. We conduct015
comprehensive experiments on existing reward016
model benchmarks and inference time best-of-n017
searches on real-world downstream tasks. RE-018
WARDAGENT significantly outperforms vanilla019
reward models, demonstrating its effectiveness.020
We further construct training preference pairs021
using REWARDAGENT and train an LLM with022
the DPO objective, achieving superior perfor-023
mance on various NLP benchmarks compared024
to conventional reward models. We will release025
our code and data to facilitate further research.026

1 Introduction027

Reward models (RMs) are designed to score the028

quality of responses and are typically used in the029

post-training of large language models (LLMs),030

such as RL (Ouyang et al., 2022) and DPO train-031

ing (Rafailov et al., 2024), and in inference-time032

scaling laws (Wu et al., 2024; Snell et al., 2024),033

such as best-of-n search (Brown et al., 2024). Reli-034

able RMs are key to the success of modern LLMs.035

Despite the success of reward models, existing036

RMs primarily focus on human preferences, which037

may be susceptible to subjective biases (Saito et al.,038

2023; Singhal et al., 2023), while neglecting verifi-039

able correctness signals like factuality (Liu et al.,040

2024b; Tan et al., 2024). As illustrated in Figure 1,041

Write a bio of Qomolangma within 100 words.

Consider these perspectives：
Helpfulness Coherence Honesty Fluency …

A is better than B

Human Preferences Reward Model

Agentic Reward Modeling

Qomolangma, the tallest 
mountain on Earth at 8,868.86 
meters, stands in the Himalayas 
on the Nepal-Tibet border. It 
attracts climbers … (132 words)

Response A:

Qomolangma is Earth‘s highest 
mountain above sea level. Its 
elevation (snow height) of 
8,848.86 m was most recently 
established in 2020.… (96 words)

Response B:

B is better than A…

Verification Agents
Factuality

Instruction-
Following

Judger
Router

Base Reward

Figure 1: An illustration of agentic reward modeling.

existing RMs may prefer the response A due to its 042

language style and longer length (Singhal et al., 043

2023), overlooking factual errors and failure to fol- 044

low instructions. This could affect the reliability 045

of reward models and further influence the relia- 046

bility of the trained LLMs (Singhal et al., 2023; 047

Chen et al., 2024c). Conversely, verifiable correct- 048

ness rewards exhibit notable potential in specific 049

scenarios (Guo et al., 2025), providing a valuable 050

complement to conventional reward models. 051

Based on the above considerations, we propose 052

agentic reward modeling, a reward system that com- 053

bines reward models with verifiable correctness sig- 054

nals from different aspects to provide more reliable 055

rewards. For example in Figure 1, a verification 056

agent that specifically provides correctness signals, 057

such as rule-based rewards (Mu et al., 2024), can be 058

used to assess factual accuracy or verify adherence 059

to instruction constraints. By integrating verifiable 060

correctness rewards with human preferences, the re- 061

ward system selects the superior response B. Agen- 062

tic reward modeling enhances reliability through 063

multi-dimensional correctness signals, enables flex- 064
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ible integration of diverse verification agents, and065

improves the interpretability of the final reward.066

In this paper, we empirically implement a reward067

agent, named REWARDAGENT, which integrates068

the conventional human preference-based reward069

models with correctness signals from two key as-070

pects: (1) factuality, which assesses the factual cor-071

rectness of the claimed facts in the response, and072

(2) instruction-following, which evaluates whether073

the response adheres to the hard constraints in the074

instruction (Zhou et al., 2023), such as length con-075

straints, which significantly impact user experience076

in real-world applications (Sun et al., 2024b; Qi077

et al., 2024). The architecture of REWARDAGENT078

is shown in Figure 1, consisting of three main mod-079

ules: (1) Router, which analyzes the instruction080

to determine the appropriate verification agents to081

invoke. (2) Verification agents, which evaluate the082

correctness of response in different aspects, includ-083

ing factuality and instruction-following. Specifi-084

cally, for factuality, we design a verification agent085

that efficiently evaluates factual correctness com-086

pared to the previous factuality evaluation frame-087

work (Min et al., 2023) through a process including088

pairwise comparison, query generation, evidence089

generation, and verification, where evidence gen-090

eration can utilize either a search engine or the091

model’s parametric knowledge. For instruction-092

following, we design a verification agent that ex-093

tracts hard constraints, generates constraint checker094

code, and executes the code for verification, where095

the constraint checker is the Python code script to096

verify whether a given response satisfies a specific097

hard constraint. (3) Judger, which integrates the098

correctness signals from the verification agents and099

human preference scores from the reward models100

to provide an overall reward score. We adopt Ar-101

moRM (Wang et al., 2024a) as the reward model for102

computing human preference scores in REWARDA-103

GENT. We use GPT-4o mini (OpenAI, 2024a) and104

Llama3-8B Instruct (Dubey et al., 2024) as the105

backbone LLMs for all the modules and implement106

REWARDAGENTMINI and REWARDAGENTLLAMA,107

respectively, except that in REWARDAGENTLLAMA,108

the LLM backbone of the instruction-following109

agent is Qwen2.5-Coder 7B (Hui et al., 2024).110

We conduct extensive experiments to validate the111

effectiveness of REWARDAGENT. First, we con-112

duct an evaluation on several reward model bench-113

marks, including RM-Bench (Liu et al., 2024b) and114

JudgeBench (Tan et al., 2024), as they contain re-115

sponse pairs that involve factual correctness, and IF-116

Bench, which is newly constructed for instruction- 117

following and contains 444 instances, each of 118

which includes an instruction with several hard 119

constraints, a chosen response that satisfies all con- 120

straints, and a rejected response that violates some 121

constraints. REWARDAGENT significantly out- 122

performs other advanced reward models on these 123

benchmarks. We further apply reward models in 124

real-world downstream tasks, including inference- 125

time best-of-n search and constructing training pref- 126

erence pairs. We evaluate best-of-n search on fac- 127

tuality question answering dataset TriviaQA (Joshi 128

et al., 2017) and instruction-following datasets, 129

IFEval (Zhou et al., 2023) and CELLO (He et al., 130

2024). We adopt Llama3-8B Instruct and GPT- 131

4o (OpenAI, 2024b) as policy models to generate 132

32 responses for each instruction with 1.0 sam- 133

pling temperature. REWARDAGENT significantly 134

outperforms the base reward model AromRM in 135

the best-of-n search, suggesting its ability to select 136

superior responses and unleash inference scaling 137

laws. Finally, we apply REWARDAGENT to con- 138

struct training preference pairs and train an LLM 139

using DPO (Rafailov et al., 2024). Specifically, we 140

construct training data from two sources: Ultra- 141

Feedback (Cui et al., 2024) and on-policy data. We 142

adopt Zephyr-7B (Tunstall et al., 2023) as the pol- 143

icy model and train it using DPO. The LLM trained 144

on REWARDAGENT-constructed data consistently 145

outperforms those trained on AromRM annotations 146

on several NLP benchmarks, which further demon- 147

strates the effectiveness of REWARDAGENT. We 148

encourage the community to explore more verifi- 149

able correctness signals to develop reliable reward 150

systems for LLM development and alignment. 151

2 Preliminaries 152

In the LLM domain, a reward model is typically a 153

regression model that takes an instruction and a re- 154

sponse as input and outputs a reward score (Ouyang 155

et al., 2022), which can be formulated as rRM(x, y), 156

where x denotes an instruction and y represents a 157

response. Reward models are typically trained on a 158

large set of preference pairs based on the Bradley- 159

Terry (BT) model (Bradley and Terry, 1952). 160

However, due to the subjectivity and complex- 161

ity of human preferences and the capacity limita- 162

tions of the BT model (Munos et al., 2023; Swamy 163

et al., 2024; Sun et al., 2024a), reward models of- 164

ten exhibit subjective bias, such as favoring longer 165

and detailed outputs (Saito et al., 2023), while ne- 166

2



glecting verifiable correctness signals like factual-167

ity (Liu et al., 2024b; Tan et al., 2024). On the168

other hand, training LLMs with verifiable correct-169

ness signals has shown strong potential (Lambert170

et al., 2024a; Guo et al., 2025). Based on these con-171

siderations, we propose agentic reward modeling,172

a reward system that integrates reward models with173

verifiable correctness signals from different aspects174

to provide more reliable rewards. Agentic reward175

modeling can be formulated as follows:176

r(x, y) = λ · rRM(x, y)︸ ︷︷ ︸
base reward

+
∑
i∈Ax

wi · ai(x, y)︸ ︷︷ ︸
correctness signals

(1)177

λ denotes the weight of the base reward model. ai178

denotes a specific verification agent that provides179

verifiable correctness signals, such as rule-based180

rewards (Mu et al., 2024). wi denotes the corre-181

sponding weight for each verification agent, which182

can be set as a hyper-parameter or adaptive to the183

instruction. Ax is an index subset of the complete184

set of verification agents A and is determined based185

on the instruction x. Equation 1 provides the funda-186

mental concept of agentic reward modeling, which187

can be implemented in various ways to construct a188

reward agent and our implementation is in § 3.189

3 REWARDAGENT190

In this work, we empirically implement a reward191

agent, named REWARDAGENT, which integrates192

the base human preference reward model with veri-193

fiable correctness signals from two key aspects: fac-194

tuality, which assesses the correctness of claimed195

facts, and instruction-following, which evaluates196

whether the response satisfies the hard constraints197

specified in the instruction (Zhou et al., 2023). Both198

aspects significantly impact reliability and user ex-199

perience in real-world applications and are chal-200

lenging to evaluate effectively with existing reward201

models (Liu et al., 2024b). This section introduces202

the overall model architecture (§ 3.1) and the spe-203

cific modules (§§ 3.2 to 3.4) of REWARDAGENT.204

3.1 Model Architecture205

Following the concept in Euqation 1, the overall206

architecture of REWARDAGENT is illustrated in207

Figure 2, which consists of three main modules:208

(1) Router, which analyzes the instruction and de-209

termines which agents to invoke, corresponding to210

Ax in Equation 1. As different instructions may re-211

quire evaluations of different aspects of responses,212

dynamically selecting verification agents helps re- 213

duce inference costs and mitigate potential cumula- 214

tive errors. (2) Verification agents, which evaluate 215

different aspects of response correctness. In our im- 216

plementation, we design two agents for assessing 217

factuality and instruction-following, both based on 218

LLMs augmented with additional tools. (3) Judger, 219

which integrates the scores from the verification 220

agents and human preferences from the base reward 221

model to produce a final reward, corresponding to 222

determining λ and wi in Equation 1. We will pro- 223

vide detailed descriptions in the following sections. 224

3.2 Router 225

Given an instruction, the router analyzes its re- 226

quirements to the response to select the appropri- 227

ate verification agents. The router is powered by 228

an existing LLM backbone. Specifically, we first 229

manually provide a concise description for each 230

verification agent, explaining its functionality and 231

specifying the conditions for its usage. Then, we 232

input the instruction with all agent descriptions into 233

the LLM, prompting it to select appropriate veri- 234

fication agents for correctness assessment. More 235

implementation details are placed in appendix A. 236

3.3 Verification Agents 237

Factuality Previous studies have proposed vari- 238

ous methods to evaluate the factuality of responses, 239

such as FactScore (Min et al., 2023), which can 240

be directly used as a verification agent. However, 241

these methods typically require extensive search 242

engine queries to verify the correctness of each 243

atomic fact, which is costly and inefficient for re- 244

ward scoring. Intuitively, pairwise scoring based 245

on only the differences between two responses can 246

effectively reduce search engine queries and time 247

costs. Therefore, we propose a pairwise factual- 248

ity verification agent for efficiently evaluating the 249

factual correctness of response pairs. The agent is 250

illustrated in Figure 2, which consists of four main 251

components: (1) Difference proposal, which identi- 252

fies key differences in claimed facts between two 253

given responses. (2) Query generation, which con- 254

structs queries based on the identified differences 255

to retrieve evidence for distinguishing these differ- 256

ences. (3) Evidence generation, which uses the 257

generated queries to retrieve supporting evidence 258

using either external search engines or parametric 259

knowledge in LLMs. (4) Verification, which as- 260

signs an integer score from 0 to 1 to each response, 261

using the collected evidence and original responses 262
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Write a bio of Qomolangma within 100 words.

Qomolangma, the 
tallest mountain on Earth 
at 8,868.86. … (132 
words)

Response A
… Its elevation (snow 
height) of 8,848.86 m was 
most recently established 
in 2020.… (96 words)

Response B

Router
Please select the appropriate verification 
agents based on the instruction.

Factuality Instruction-Following

Factuality
Verification Agents 

Instruction-Following

1 Difference Proposal
8,868.86 vs 8,848.86 

2 Query Generation
How high is Qomolangma?

3 Evidence generation
The height is 8848.86m.

4 Verification
a(A) = 0    a(B) = 1

1 Constraint parsing
within 100 words

2 Code Generation
def check_following
(response):

num = response.
split(" ")
return num <= 100

3 Verification
a(A) = 0    a(B) = 1

Judger
r(x, y) = λ · rRM(x, y) + wfactuality · afactuality + winstruction-following · ainstruction-following

r(instruction, response A) < r(instruction, response B): B is better than A

Figure 2: The framework of REWARDAGENT, including three modules: Router, Verification Agents, and Judger.

as inputs. The verification agent can effectively263

capture subtle factuality differences (Jiang et al.,264

2023) between responses while significantly reduc-265

ing inference-time costs by verifying only their dif-266

ferences rather than all claimed facts. All modules267

are implemented using an LLM backbone. The268

implementation details are placed in appendix A.269

Instruction-Following The evaluation of the in-270

struction following primarily assesses the adher-271

ence to hard constraints (Zhou et al., 2023) spec-272

ified in the instruction, such as length constraints.273

Typically, instruction-following constraints can be274

categorized into soft and hard constraints, where275

the former focuses on semantic aspects, such as276

language style, while the latter focuses on surface-277

form constraints, such as format, which can be278

objectively evaluated. For instruction-following,279

our verification agent focuses on hard constraints,280

which are difficult to evaluate with existing reward281

models but can be efficiently verified using exter-282

nal tools, such as Python code scripts. The agent is283

shown in Figure 2, including three components: (1)284

Constraint parsing, which extracts hard constraints285

from the instruction. (2) Code generation and re-286

finement, which generates Python scripts used to287

check the adherence to the extracted constraints.288

The generated code takes the response as input and289

returns either 0 or 1, where 1 indicates that the con-290

straint is satisfied, and 0 otherwise. We also incor-291

porate a refinement step like Madaan et al. (2024)292

to correct invalid or syntactically incorrect code.293

Specifically, we execute the generated Python code294

using a Python interpreter, and if an error occurs,295

the error information and original code are fed back 296

into the model to generate a refined code script. (3) 297

Verification, which executes the generated code in 298

the Python interpreter to obtain a binary score (0 299

or 1). The final score is the average of all hard con- 300

straint scores. All the modules are implemented 301

using LLMs. The specific prompts and implemen- 302

tation details are provided in appendix A. 303

3.4 Judger 304

The judger integrates reward scores from verifi- 305

cation agents and human preferences from base 306

reward models. In our implementation, we use a 307

weighted sum as the judger, where λ and wi are 308

all set to 1.0, to compute the final reward score in 309

Equation 1. One can also adopt different λ and wi 310

for better applicability in different scenarios. Addi- 311

tionally, the judger can dynamically adjust λ and wi 312

based on the instruction like gating network (Wang 313

et al., 2024a), we leave it as future work. 314

4 Experiments 315

This section presents experiments on several re- 316

ward model benchmarks, including experimental 317

setup (§ 4.1), results (§ 4.2), and analyses (§ 4.3). 318

4.1 Experimental Setup 319

REWARDAGENT Implementation We adopt the 320

advanced and lightweight ArmoRM (Wang et al., 321

2024a) as the base reward model to compute human 322

preference scores. As REWARDAGENT is agnostic 323

to reward models, one can also adopt other ad- 324

vanced reward models. We use GPT-4o mini (Ope- 325
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Model RM-Bench JudgeBench IFBench Overall
Normal Hard Simple Normal Hard

ArmoRM-Llama3-8B-v0.1 76.7 34.6 51.9 72.3 66.2 59.5 56.5
INF-ORM-Llama3.1-70B 77.5 25.1 59.1 78.7 69.2 53.8 55.7
Skywork-Reward-Llama-3.1-8B-v0.2 78.0 31.8 57.8 78.7 69.2 59.8 58.1
Skywork-Reward-Gemma-2-27B 82.7 35.1 55.8 87.2 68.4 56.1 59.2
internlm2-7b-reward 72.6 19.9 56.2 74.5 61.7 55.7 52.0
internlm2-20b-reward 74.4 26.1 61.7 74.5 68.4 58.7 56.4

GPT-4o 71.4 27.9 64.6 85.1 66.2 54.4 56.3
GPT-4o mini 60.5 15.0 51.9 70.2 59.4 51.9 45.9
o3-mini 76.0 38.6 66.6 81.9 76.3 64.6 62.8
Llama3-8B Instruct 9.3 20.2 2.6 12.8 12.8 13.6 11.3
DeepSeek-R1 83.7 50.1 74.4 72.3 74.4 64.0 69.1
DeepSeek-R1-Distill-Llama-8B 42.1 56.8 47.7 53.2 55.6 54.2 50.3

REWARDAGENTLLAMA 79.3 53.5 52.9 70.2 63.9 67.8 63.2
w/ search engine 76.0 49.9 55.2 74.5 69.2 67.8 62.5

REWARDAGENTMINI 86.0 60.2 68.2 78.7 69.2 78.0 72.5
w/ search engine 84.2 59.7 60.7 68.1 80.5 76.1 70.3

Table 1: Experimental results (%) of all investigated baselines and REWARDAGENT. The overall score is the average
of RM-Bench, JudgeBench, and the micro-averaged score of three subsets of IFBench. By default, REWARDAGENT
relies on its parametric knowledge, and “w/ search engine” denotes using Google API as an external source.

nAI, 2024a) as the LLM backbone for imple-326

menting all modules and developing REWARDA-327

GENTMINI. We also employ the open-source LLM328

Llama3-8B Instruct (Dubey et al., 2024) as the329

backbone and develop REWARDAGENTLLAMA, ex-330

cept for the instruction-following verification agent,331

which requires strong coding capabilities and is in-332

stead powered by Qwen2.5-Coder 7B (Hui et al.,333

2024). We adopt two knowledge sources for the334

factuality verification agent: an external search en-335

gine using Google API and the LLM’s parametric336

parameters. More details are placed in appendix A.337

Evaluation Benchmarks Reward model bench-338

marks typically involve an instruction and a re-339

sponse pair and require selecting the better re-340

sponse as the chosen one. We use RM-Bench (Liu341

et al., 2024b), JudgeBench (Tan et al., 2024), and342

a new benchmark IFBENCH as evaluation bench-343

marks, as both RM-Bench and JudgeBench include344

response pairs involving factual correctness. We345

select the chat subset of RM-Bench as the eval-346

uation set, using both the normal and hard set-347

tings. For JudgeBench, we use the knowledge348

subset as the evaluation set. We further construct349

a new benchmark IFBENCH to evaluate reward350

models on selecting responses that better follow351

constraints in instructions as there is no existing352

relevant benchmark. Specifically, we first construct353

instructions with several implicit constraints, in-354

tegrating the constraint information with the pri-355

mary task objective through paraphrasing. The356

constraints include both hard constraints, such as 357

length, format, and keywords, as well as soft con- 358

straints, such as content and style. We then use 359

GPT-4o to generate 8 responses for each instruc- 360

tion with a sampling temperature of 1.0. For each 361

instruction, we create a response pair, selecting 362

the one that satisfies all constraints as the chosen 363

response and otherwise rejected. Based on the num- 364

ber of unsatisfied constraints (UC) in the rejected 365

response, we split IFBENCH instances into three 366

subsets: simple (#UC≥3), normal (#UC=2), and 367

hard (#UC=1), containing 47, 133, and 264 in- 368

stances respectively. We report the micro-averaged 369

accuracy across the three subsets as the final metric 370

for IFBENCH. More evaluation details on these 371

benchmarks are provided in appendix B. 372

Baselines We mainly investigate two categories 373

of baselines: (1) typical reward models, which 374

are specifically trained for reward modeling and 375

typically implemented as regression models to 376

score each response and select the one with the 377

highest reward score as the chosen response. We 378

investigate several advanced and representative 379

reward models, including ArmoRM (Wang et al., 380

2024a), INF-ORM-Llama3.1-70B (Infly, 2024), 381

Skywork-Reward (Liu et al., 2024a), internlm2 382

reward (Cai et al., 2024). (2) LLMs as generative 383

reward models, where large language models serve 384

as generative reward models to score responses or 385

perform pairwise comparisons to select the best re- 386

sponse (Lambert et al., 2024b). We evaluate propri- 387
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etary models, including GPT-4o (OpenAI, 2024b),388

GPT-4o mini (OpenAI, 2024a), o3-mini (OpenAI,389

2025), and open-source LLMs, including Llama3-390

8B Instruct (Dubey et al., 2024), DeepSeek-R1,391

and R1 distilled Llama3-8B model (Guo et al.,392

2025). We evaluate all the baselines using the code393

repository provided by Lambert et al. (2024b).394

4.2 Experimental Results395

Table 1 presents the experimental results, and we396

can observe that: (1) Existing reward models fall397

short in selecting more factual responses or better398

adhering to hard constraints in instructions, which399

may limit their reliability in real-world applications.400

(2) REWARDAGENT significantly outperforms the401

base reward model AromRM and the correspond-402

ing LLM backbone GPT-4o mini and Llama3-8B403

Instruct. It demonstrates that designing an appro-404

priate reward agentic workflow can effectively en-405

hance reward model performance. (3) Even when406

using Llama3-8B Instruct as the LLM backbone,407

REWARDAGENTLLAMA outperforms reward mod-408

els with much more parameters and more advanced409

proprietary LLMs such as GPT-4o, which suggests410

that REWARDAGENT is more cost-efficient with-411

out requiring additional reward modeling training412

data or more parameters to achieve advanced per-413

formance. (4) Using a search engine as an external414

knowledge source for factuality slightly reduces415

performance in RM-Bench and JudgeBench. One416

possible reason is that the retrieved information417

may contain noise or irrelevant information (Chen418

et al., 2024a). We leave the detailed analysis and de-419

sign of retrieval-augmented agents for future work.420

(5) REWARDAGENT achieves significant improve-421

ments on IFBench, particularly in the hard subset.422

It suggests that while not perfectly solved, exist-423

ing LLMs can effectively analyze hard constraints424

and generate verification code, which can help the425

training of advanced LLMs (Lambert et al., 2024a).426

In conclusion, incorporating additional verifica-427

tion agents for specific scenarios (Mu et al., 2024;428

Lambert et al., 2024a), particularly those with ver-429

ifiable correctness, can develop more reliable and430

advanced reward systems, presenting a promising431

direction for future reward model development.432

4.3 Analysis433

We first conduct an ablation study on the verifica-434

tion agents in REWARDAGENT. Specifically, we435

investigate three settings: – factuality verifier, – if436

verifier, and – both, where the corresponding verifi-437

Model RM-Bench JudgeBench IFBench

REWARDAGENTMINI 73.1 68.2 75.5
– factuality verifier 54.0 52.9 73.6
– if verifier 74.7 66.2 60.4
– both 55.4 58.8 58.8

Oracle setting 76.7 70.1 77.5

REWARDAGENTLLAMA 66.4 52.9 66.9
– factuality verifier 51.9 51.6 65.8
– if verifier 58.0 57.5 57.2
– both 44.8 55.5 57.2

Oracle setting 79.5 73.1 68.5

Table 2: Experimental results (%) of ablation study and
the oracle setting. – factuality verifier and – if verifier
refer to the reduction of the corresponding verification
agent into a single LLM scorer. The results are the
micro-averaged scores of all the corresponding subsets.

cation agents are reduced to a single step: using an 438

additional LLM backbone to directly score the re- 439

sponse, which is equivalent to the simple ensemble 440

of the reward model ArmoRM with the correspond- 441

ing LLM as a generative reward model (Coste et al., 442

2024). The ablation results are shown in Table 2. 443

We can observe that removing the well-designed 444

verification agent leads to a significant performance 445

decrease. It demonstrates the importance of well- 446

designed verification agents, and we encourage the 447

community to develop more advanced verification 448

agents for a more reliable REWARDAGENT. 449

We also observe the oracle setting of REWARDA- 450

GENT that invokes the most appropriate verifica- 451

tion agents, that is, invoking the factuality agent on 452

RM-Bench and JudgeBench, and the instruction- 453

following verification agent on IFBench. The ex- 454

perimental results are shown in Table 2, and we 455

observe that both REWARDAGENTMINI and RE- 456

WARDAGENTLLAMA perform significantly better in 457

the oracle setting. This further demonstrates the 458

effectiveness of the verification agents and suggests 459

that the planner in REWARDAGENT still has a large 460

room for improvement and we leave developing a 461

more advanced planner for future work. 462

5 Applications 463

This section explores applying REWARDAGENT to 464

inference-time search (§ 5.1) and the training of 465

LLMs (§ 5.2) to further validate its effectiveness. 466

5.1 Best-of-N Search 467

One important application of reward models is to 468

conduct the inference-time search to find a better 469

response (Brown et al., 2024; Zhang et al., 2024a), 470
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Figure 3: Best-of-n results (%) on TriviaQA, IFEval, and CELLO using the base reward model ArmoRM and
REWARDAGENT to search. “+Oracle” denotes using the oracle setting of REWARDAGENT as mentioned in § 4.3.

DPO Training Data MMLU MMLU-Pro TriviaQA TruthfulQA IFEval CELLO MT-Bench

– 58.9 28.8 54.8 39.5 43.3 51.5 5.2

Original UF 58.7 29.3 54.0 42.0 56.8 62.0 6.0
ArmoRM-UF 58.1 29.9 52.5 45.0 58.6 60.8 6.0
REWARDAGENTLLAMA-UF 59.1 30.5 55.1 44.1 59.4 60.1 5.8

ArmoRM-OP 58.4 30.4 51.6 44.4 52.7 58.1 6.0
REWARDAGENTLLAMA-OP 59.5 31.3 55.3 48.5 58.2 65.7 6.1

Table 3: Experimental results (%) of LLMs trained with DPO on different training data. “ArmoRM-UF” denotes
using ArmoRM to construct preference pairs from UltraFeedback. “UF” and “OP” are short for UltraFeedback
and on-policy data, respectively. “Original UF” refers to using the original GPT-4 annotated preference pairs from
UltraFeedback to train the LLM. “–” denotes the original LLM zephyr-7b-sft-full without further DPO training.

which unleashes the inference-time scaling laws of471

LLMs (Snell et al., 2024; Wu et al., 2024). There-472

fore, we explore applying REWARDAGENT to the473

best-of-n search on downstream tasks. Specifically,474

we evaluate the best-of-n performance searched by475

REWARDAGENT on factuality question answering476

and constrained instruction following tasks.477

Experimental Setup We conduct the best-of-478

n experiments on the factuality question answer-479

ing dataset TriviaQA (Joshi et al., 2017), and480

the instruction-following datasets IFEval (Zhou481

et al., 2023) and CELLO (He et al., 2024). We482

use Llama3-8B Instruct and GPT-4o as the policy483

models to generate 32 responses for each instruc-484

tion with 1.0 sampling temperature. We perform485

best-of-n search using the base reward model Ar-486

moRM (Wang et al., 2024a), REWARDAGENTMINI,487

and the oracle setting of REWARDAGENTMINI. The488

oracle setting refers to invoking the factuality ver-489

ification agent on TriviaQA, and the instruction-490

following verification agent on IFEval and CELLO.491

Experimental Results The results of the best-492

of-n experiments using Llama3-8B Instruct as the493

policy model are shown in Figure 3. We can ob-494

serve that REWARDAGENT significantly improves 495

the best-of-n performance compared to using the 496

base reward model ArmoRM, and the oracle setting 497

further improves the results. It further validates the 498

effectiveness of REWARDAGENT. The results us- 499

ing GPT-4o as the policy model are provided in ap- 500

pendix B, demonstrating the same trends and con- 501

clusions. We encourage the community to design 502

more verification agents to unleash the inference 503

scaling laws of LLMs across different scenarios. 504

5.2 DPO Training 505

Reward models are primarily used to train LLMs 506

using RL (Ouyang et al., 2022) or DPO (Rafailov 507

et al., 2024). Considering RL training is resource- 508

intensive, we explore employing REWARDAGENT 509

to construct preference pairs for DPO training to 510

validate its effectiveness in real-world applications. 511

Experimental Setup We construct two training 512

datasets based on: (1) UltraFeedback (Cui et al., 513

2024), where each instruction contains 4 responses 514

sampled from various LLMs. (2) on-policy, which 515

contains 20, 000 instructions sampled from Ultra- 516

Feedback and each instruction contains 8 responses 517

sampled from the policy model itself with 1.0 sam- 518
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pling temperature. We use reward models to score519

each response, taking the highest-scored response520

as the chosen one and the lowest as the rejected one521

to construct training pairs. We adopt the zephyr-7b-522

sft-full (Tunstall et al., 2023) model as the policy523

model to conduct DPO training because it is trained524

only using SFT (Ouyang et al., 2022). We evalu-525

ate the DPO-trained LLMs on various NLP bench-526

marks, including MMLU (Hendrycks et al., 2020),527

MMLU-Pro (Wang et al., 2024b), TriviaQA (Joshi528

et al., 2017), TruthfulQA (Lin et al., 2022), IFE-529

val (Zhou et al., 2023), CELLO (He et al., 2024),530

and MT-Bench (Zheng et al., 2023). More experi-531

mental details are provided in appendix B.532

Experimental Results The experimental results533

are shown in Table 3. We can observe that LLMs534

trained with data constructed by REWARDAGENT535

generally outperform those trained with ArmoRM,536

especially on the factuality question answering and537

instruction-following datasets. The improvement538

is more significant in on-policy data. Furthermore,539

models trained with REWARDAGENT-annotated540

data consistently outperform those trained on origi-541

nal UltraFeedback that is constructed with GPT-4.542

Notably, REWARDAGENTLLAMA uses open-source543

Llama3-8B Instruct and Qwen2.5-Coder 7B as the544

LLM backbones, at a much lower cost than GPT-4.545

The results further validate the effectiveness and ap-546

plicability of REWARDAGENT. We believe using a547

more powerful LLM backbone in REWARDAGENT548

can achieve more advanced results and encourage549

the community to explore more advanced reward550

agents for better performance and reliability.551

6 Related Work552

Reward models are typically employed to score553

responses and are crucial to the success of modern554

LLMs. Since the emergence of RLHF (Ouyang555

et al., 2022), numerous studies have focused on556

developing more advanced reward models to help557

train LLMs. The approaches mainly include design-558

ing model architectures (Wang et al., 2024a; Dorka,559

2024; Chen, 2025) and utilizing more high-quality560

data or new training objectives (Infly, 2024; Yuan561

et al., 2024; Park et al., 2024; Liu et al., 2024a; Cai562

et al., 2024; Cao et al., 2024; Lou et al., 2024; Li563

et al., 2024; Wang et al., 2024c). There are also564

various studies exploring using LLMs as generative565

reward models (Zheng et al., 2023; Mahan et al.,566

2024; Shiwen et al., 2024; Cao et al., 2024; Tan567

et al., 2024; Yu et al., 2024; Alexandru et al., 2025).568

Reward models are typically used for inference- 569

time scaling laws (Irvine et al., 2023; Wu et al., 570

2024; Snell et al., 2024; Brown et al., 2024; Xin 571

et al., 2024) or for training, such as RL(Ouyang 572

et al., 2022) or DPO (Rafailov et al., 2024). 573

Despite the success of reward models, they pri- 574

marily focus on human preferences, which may 575

be susceptible to subjective biases or reward hack- 576

ing (Saito et al., 2023; Singhal et al., 2023; Gao 577

et al., 2023; Zhang et al., 2024b; Chen et al., 2024c). 578

A notable limitation is verbosity bias (Saito et al., 579

2023), where reward models tend to favor longer 580

responses (Singhal et al., 2023; Liu et al., 2024b). 581

Additionally, some studies have shown that reward 582

models may overlook correctness signals, such as 583

factuality (Lin et al., 2024; Liu et al., 2024b; Tan 584

et al., 2024). These limitations affect the reliability 585

of reward models, thereby impacting the perfor- 586

mance of the trained LLMs (Singhal et al., 2023). 587

Recently, several studies have shown that rule- 588

based reward models or verifiable reward signals 589

achieve impressive results in specific domains such 590

as math (Guo et al., 2025), safety (Mu et al., 2024), 591

instruction-following (Lambert et al., 2024a), med- 592

ical (Chen et al., 2024b), and finance (Qian et al., 593

2025). The simplicity and advanced performance 594

of rule-based reward models demonstrate signif- 595

icant potential for training LLMs, but it is still 596

non-trivial to generalize to general domains. In this 597

paper, we explore combining human preferences 598

from reward models with verifiable correctness sig- 599

nals to develop more reliable reward systems. We 600

believe that combining human preferences with ver- 601

ifiable correctness signals is a promising direction 602

and encourage further research efforts in this area. 603

7 Conclusion 604

In this paper, we propose agentic reward modeling, 605

a reward system that integrates the human prefer- 606

ences from conventional reward models with veri- 607

fiable correctness signals to provide more reliable 608

rewards. We empirically implement a reward agent, 609

named REWARDAGENT, which consists of a router, 610

well-designed verification agents for factuality and 611

instruction-following, and a judger. We conduct 612

extensive experiments on reward modeling bench- 613

marks, best-of-n search, and DPO training. RE- 614

WARDAGENT significantly outperforms other re- 615

ward models and LLMs as generative reward mod- 616

els. We encourage more research efforts to develop 617

more advanced and reliable reward systems. 618
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Limitations619

The main limitations of this work lie in the imple-620

mentation of REWARDAGENT: (1) The verification621

agents are far from providing perfect rewards, as622

the average score on reward modeling benchmarks623

only reaches 72.5%. This suggests that achieving624

perfect rewards is challenging and requires further625

research efforts. (2) We only implement verifica-626

tion agents for factuality and instruction-following,627

which we believe are current weaknesses in reward628

models (Liu et al., 2024b) and important factors af-629

fecting LLM applications and user experiences. We630

encourage the community to explore more verifi-631

able correctness signals. In conclusion, we believe632

the contribution of agentic reward modeling con-633

cept is substantial, and we look forward to develop-634

ing more advanced reward systems in the future.635

Ethical Considerations636

We discuss the ethical considerations here: (1) In-637

tellectual property. We have strictly adhered to the638

licenses of all utilized artifacts, including datasets,639

models, and code repositories. We will open-source640

REWARDAGENT, code, and IFBench under the641

MIT license1. (2) Intended use and potential risk642

control. We propose agentic reward modeling, a643

reward system that integrates human preferences644

with correctness signals. We implement a reward645

agent named REWARDAGENT to provide more re-646

liable rewards. We believe that all data used is647

well anonymized. Our model does not introduce648

additional ethical concerns but may provide incor-649

rect rewards due to performance limitations. Users650

should not conduct reward hacking (Skalse et al.,651

2022) and should carefully check important infor-652

mation. (3) AI assistance. We have used ChatGPT653

to refine some sentences.654
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Appendices952

A REWARDAGENT Details953

Tables 4 to 6 present the LLM prompts used for the954

implementation of REWARDAGENT. We employed955

Serper2 to implement our external search engine956

and we utilize the gpt-4o-mini-2024-07-18957

model in the REWARDAGENTMINI version.958

B Experimental Details959

In this section, we provide a detailed description960

of the evaluation process, divided into three parts:961

the construction and distribution details of IF-962

BENCH B.1, the evaluation dataset settings B.2,963

and additional experimental results B.3.964

B.1 IFBENCH Details965

IFBENCH is a benchmark designed to evaluate966

reward models for multi-constraint instruction-967

following. The dataset comprises 444 carefully968

curated instances, each containing: an instruc-969

tion with 3 to 5 multi-constraints, a chosen re-970

sponse satisfying all constraints, and a rejected re-971

sponse violating specific constraints. All instances972

were constructed using gpt-4o-2024-11-20 ver-973

sion through the following systematic pipeline.974

Instruction Construction We sampled 500 ini-975

tial instructions from the Open Assistant (Köpf976

et al., 2023). To ensure clarity and simplicity, we977

constrained the initial instruction length to 5 to 20978

words. Subsequently, we employed GPT-4o to gen-979

erate five distinct categories of constraints for each980

initial instruction. It then autonomously selected 3981

to 5 constraints and paraphrased them into 1 to 2982

sentences. The paraphrased constraints were inte-983

grated into the initial instruction. Finally, we use984

GPT-4o to evaluate the final instructions and filter985

out those with internal contradictions, resulting in986

a final set of 444 instructions.987

• Content Constraints: Specify conditions988

governing response, including topic focus,989

detail depth, and content scope limitations.990

• Style Constraints: Control linguistic char-991

acteristics such as tone, sentiment polarity,992

empathetic expression, and humor.993

• Length Constraints: Dictate structural re-994

quirements including word counts, paragraph995

composition, and specific opening phrases.996

2https://serper.dev/

• Keyword Constraints: Enforce lexical con- 997

straints through keyword inclusion, prohibited 998

terms, or character-level specifications. 999

• Format Constraints: Define presentation 1000

standards that include specific formats such 1001

as JSON, Markdown, or Python, along with 1002

section organization and punctuation rules. 1003

Response Construction For each instruction, we 1004

generated 8 candidate responses using GPT-4o with 1005

temperature 1.0 to maximize diversity. The cho- 1006

sen response was selected as the unique candidate 1007

satisfying all constraints through automated veri- 1008

fication. Rejected responses were systematically 1009

selected to ensure balanced distributions of unsat- 1010

isfied constraint (UC) categories and counts. As 1011

shown in Figure 4, instances are stratified by dif- 1012

ficulty: simple (#UC≥3), normal (#UC=2), and 1013

hard (#UC=1), with detailed information of UC 1014

category distributions. Specifically, (a) shows 1015

the distribution by the number of unsatisfied con- 1016

straints in the rejected responses, where the sum 1017

of all parts equals the total number of instances. 1018

(b) presents the distribution by the categories of all 1019

unsatisfied constraints, where the sum of all parts 1020

equals the total number of unsatisfied constraints. 1021

11%

30%
59%

Simple

Normal

Hard

(a)

19%

12%

26%

25%

18%
Content

Style

Length

Keyword

Format

(b)

Figure 4: Proportion (%) of data in IFBENCH based on
the number of unsatisfied constraints per instance and
the categories of all unsatisfied constraints.

B.2 Evaluation Details 1022

Best-of-N For the TriviaQA, we sample 500 in- 1023

stances from the validation split in rc.nocontext 1024

version. The model is prompted to generate di- 1025

rect answers, and we report the exact match ac- 1026

curacies. For the IFEval, we report the average 1027

accuracy across the strict prompt, strict instruction, 1028

loose prompt, and loose instruction settings. For 1029

the CELLO, we report the average score based on 1030

the official evaluation script. All three tasks are 1031

conducted under a zero-shot setting. 1032
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Figure 5: Best-of-n results (%) on TriviaQA, IFEval, and CELLO using the base reward model ArmoRM and
REWARDAGENT to search. “+Oracle” denotes using the oracle setting of REWARDAGENT as mentioned in § 4.3.

DPO Training For MT-Bench and CELLO, we1033

employ FastChat3 and the official evaluation script1034

respectively, to conduct the evaluations and report1035

the average scores. For the other tasks, we use the1036

lm-evaluation-harness4 for evaluation. Specif-1037

ically, we adopt a 5-shot setting for the MMLU1038

and MMLU-Pro tasks, while using a zero-shot set-1039

ting for TriviaQA and TruthfulQA. Notably, for1040

TruthfulQA, we use the truthfulqa_gen setting.1041

B.3 More Results on Best-of-N1042

We conduct best-of-n search experiments using1043

gpt-4o-2024-11-20 as the policy model, with the1044

results presented in Figure 5. The results demon-1045

strate that REWARDAGENT significantly improves1046

best-of-n performance compared to the base reward1047

model ArmoRM, even when applied to a more pow-1048

erful policy model than REWARDAGENT.1049

3https://github.com/lm-sys/FastChat/tree/main/
fastchat/llm_judge

4https://github.com/EleutherAI/
lm-evaluation-harness
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Given the following instruction, determine whether the following check in needed.

[Instruction]
{instruction}

[Checks]
{ “name”: “constraint check”, “desp”: “A ‘constraint check’ is required if the instruction contains any additional constraints or
requirements on the output, such as length, keywords, format, number of sections, frequency, order, etc.”, “identifier”: “[[A]]” },
{ “name”: “factuality check”, “desp”: “A ‘factuality check’ is required if the generated response to the instruction potentially
contains claims about factual information or world knowledge.”, “identifier”: “[[B]]” }

If the instruction requires some checks, please output the corresponding identifiers (such as [[A]], [[B]]).
Please do not output other identifiers if the corresponding checkers not needed.

Table 4: Our prompt for the router, where the {instruction} part varies based on the input.

Prompt For Difference Proposal
[Answers]
{formatted_answers}

[Your Task]
Given the above responses, please identify and summarize one key points of contradiction or inconsistency between the claims.

[Requirements]
1. Return a Python list containing only the most significant differences between the two answers.
2. Do not include any additional explanations, only output the list.
3. If there are no inconsistencies, return an empty list.

Prompt For Query Generation
[Original question that caused the inconsistency]
{instruction}

[Inconsistencies]
{inconsistencies}

[Your Task]
To resolve the inconsistencies, We need to query search engine. For each contradiction, please generate a corresponding query
that can be used to retrieve knowledge to resolve the contradiction.

[Requirements]
1. Each query should be specific and targeted, aiming to verify or disprove the conflicting points.
2. Provide the queries in a clear and concise manner, returning a Python list of queries corrresponding to the inconsistencies.
3. Do not provide any additional explanations, only output the list.

Prompt For Verification
Evaluate which of the two answers is more factual based on the supporting information.
[Support knowledge sources]:
{supports}

[Original Answers]:
{formatted_answers}

[Remeber]
For each answer, provide a score between 1 and 10, where 10 represents the highest factual accuracy. Your output should only
consist of the following:
Answer A: [[score]] (Wrap the score of A with [[ and ]])
Answer B: «score» (Wrap the score of B with « and »)
Please also provide a compact explanation.

Table 5: Our prompt for assessing factuality in verification agents, with the {formatted_answers}, {supports},
{inconsistencies}, {instruction} and {supports} parts varying based on the input.
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Prompt For Constraint Parsing
You are an expert in natural language processing and constraint checking. Your task is to analyze a given instruction and identify
which constraints need to be checked.

The ‘instruction’ contains a specific task query along with several explicitly stated constraints. Based on the instructions, you
need to return a list of checker names that should be applied to the constraints.

Task Example:
Instruction: Write a 300+ word summary of the Wikipedia page “https://en.wikipedia.org/wiki/Raymond_III,_Count_of_Tripol”.
Do not use any commas and highlight at least 3 sections that have titles in markdown format, for example, *highlighted section
part 1*, *highlighted section part 2*, *highlighted section part 3*.
Response:
NumberOfWordsChecker: 300+ word
HighlightSectionChecker: highlight at least 3 sections that have titles in markdown format
ForbiddenWordsChecker: Do not use any commas

Task Instruction:
{instruction}

### Your task:
- Generate the appropriate checker names with corresponding descriptions from the original instruction description.
- Return the checker names with their descriptions separated by ‘\n’
- Focus only on the constraints explicitly mentioned in the instruction (e.g., length, format, specific exclusions).
- Do **not** generate checkers for the task query itself or its quality.
- Do **not** infer or output constraints that are implicitly included in the instruction (e.g., general style or unstated rules).
- Each checker should be responsible for checking only one constraint.

Prompt For Code Generation
You are tasked with implementing a Python function ‘check_following’ that determines whether a given ‘response’ satisfies a
constraint defined by a checker. The function should return ‘True’ if the constraint is satisfied, and ‘False’ otherwise.

[Instruction to check]:
{instruction}

[Specific Checker and Description]:
{checker_name}

Requirements:
- The function accepts only one parameter: ‘response’ which is a Python string.
- The function must return a boolean value (‘True’ or ‘False’) based on whether the ‘response’ adheres to the constraint described
by the checker.
- The function must not include any I/O operations, such as ‘input()’ or ‘ArgumentParser’.
- The Python code for each checker should be designed to be generalizable, e.g., using regular expressions or other suitable
techniques.
- Only return the exact Python code, with no additional explanations.

Table 6: Our prompt for assessing instruction-following in verification agents, with the {instruction} and
{checker_name} parts varying based on the input.
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