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Abstract

Neural network in the mean-field regime is known to be capable of feature learning,
unlike the kernel (NTK) counterpart. Recent works have shown that mean-field
neural networks can be globally optimized by a noisy gradient descent update
termed the mean-field Langevin dynamics (MFLD). However, all existing guaran-
tees for MFLD only considered the optimization efficiency, and it is unclear if this
algorithm leads to improved generalization performance and sample complexity
due to the presence of feature learning. To fill this important gap, in this work we
study the sample complexity of MFLD in learning a class of binary classification
problems. Unlike existing margin bounds for neural networks, we avoid the typical
norm control by utilizing the perspective that MFLD optimizes the distribution of
parameters rather than the parameter itself; this leads to an improved analysis of the
sample complexity and convergence rate. We apply our general framework to the
learning of k-sparse parity functions, where we prove that unlike kernel methods,
two-layer neural networks optimized by MFLD achieves a sample complexity
where the degree k is “decoupled” from the exponent in the dimension dependence.

1 Introduction

Mean-field Langevin dynamics. The optimization dynamics of two-layer neural networks in the
mean-field regime can be described by a nonlinear partial differential equation of the distribution of
parameters (Nitanda and Suzuki, 2017; Chizat and Bach, 2018; Mei et al., 2018; Rotskoff and Vanden-
Eijnden, 2018; Sirignano and Spiliopoulos, 2020). Such a description has multiple advantages: (i)
global convergence guarantees can be obtained by exploiting convexity of the loss function, and
(ii) the parameters are allowed to evolve away from initialization and learn informative features, in
contrast to the neural tangent kernel (“lazy”) regime (Jacot et al., 2018).

Among the gradient-based optimization algorithms for mean-field neural networks, the mean-field
Langevin dynamics (MFLD) (Mei et al., 2018; Hu et al., 2019) is particularly attractive due to the
recently established quantitative optimization guarantees. MFLD arises from a noisy gradient descent
update on the parameters, where Gaussian noise is injected to the gradient to encourage “exploration”.
It has been shown that MFLD globally optimizes an entropy-regularized convex functional in the
space of measures, and for the infinite-width and continuous-time dynamics, the convergence rate is
exponential under suitable isoperimetric conditions (Nitanda et al., 2022; Chizat, 2022). Furthermore,
uniform-in-time estimates of the particle discretization error have also been established (Suzuki et al.,
2023a; Chen et al., 2022), meaning that optimization guarantees for the infinite-dimensional problem
can be effectively translated to a finite-width neural network.

However, existing analyses of MFLD only considered the optimization of neural networks; this alone
does not demonstrate the benefit of mean-field regime nor the presence of feature learning. Therefore,
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an important problem is to characterize the generalization of the learned models, and prove efficient
sample complexity guarantees. The goal of this work is to address the following question.

Can we show that neural network + simple noisy gradient descent (MFLD) efficiently learns an
interesting class of functions, with a better rate of convergence compared to the “lazy” regime?

Learning sparse parity functions. One particularly relevant learning task is the k-sparse parity
problem, where the response y is given by the sign of the product of k coordinates of the input (on
hypercube); as a special case, setting k = 2 recovers the classical XOR problem. When k ≪ d, this
target function is low-dimensional, and hence we expect feature learning to be beneficial in that it
can “zoom in” to relevant subspace. In contrast, for kernel methods (including neural networks in the
lazy regime) which cannot adapt to such structure, it has been shown that a sample complexity of
n = Ω(dk) is unavoidable (Ghorbani et al., 2019; Hsu; Abbe et al., 2022).

For the XOR case (k = 2), recent works have shown that neural networks in the mean-field regime
can achieve a sample complexity of n = O(d/ϵ) (Wei et al., 2019; Chizat and Bach, 2020; Telgarsky,
2023), which indeed improves upon the NTK complexity (Ji and Telgarsky, 2019). However, all
these results directly assumed convergence of the dynamics (t→∞) with no iteration complexity.
Moreover, Wei et al. (2019); Chizat and Bach (2020) directly analyzed the infinite-width limit, and
while Telgarsky (2023) provided a finite-width characterization, the dynamics is restricted to the
low-rotation regime, and a very large number of particles N = O(dd) is required. Lastly, these
analyses are specialized to XOR, and do not directly generalize to the k-parity setting.

1.1 Our Contributions

In this work, we bridge the aforementioned gap by presenting a simple and general framework to
establish sample complexity of MFLD in learning binary classification problems. We then apply this
framework to the sparse k-parity problem, and obtain improved rate of convergence for the fully time-
and space-discretized algorithm. More specifically, our contributions can be summarized as follows.

• We present a general framework to analyze MFLD in the learning of binary classification tasks.
Our framework has two main ingredients: (i) an annealing procedure that applies to common
classification losses that removes the exponential dependence on regularization parameters in the
logarithmic Sobolev inequality, and (ii) a novel local Rademacher complexity analysis for the
distribution of parameters optimized by MFLD. As a result, we can obtain generalization guarantee
for the learned neural network in discrete-time and finite-width settings.

• We apply our general framework to the k-sparse parity problem, and derived learning guarantees
with improved rate of convergence and dimension dependence, as shown in Table 1. Specially, in
the n ≍ d2 regime we obtain exponentially converging classification error, whereas in the n ≍ d
regime we achieve linear dimension dependence. Note that this improves upon the NTK analysis
(which gives a sample complexity of n = Ω(dk)) in that it “decouple” the degree k from the
exponent in the dimension dependence. Our theoretical results are supported by empirical findings.

Authors regime/method k-parity class error width # iterations
Ji and Telgarsky (2019) NTK/SGD No d2/n d8 d2/ϵ

Telgarsky (2023) NTK/SGD No d2/n d2 d2/ϵ

Barak et al. (2022) Two phase SGD Yes d(k+1)/2/
√
n O(1) d/ϵ2

Wei et al. (2019) mean-field/GF No d/n ∞ ∞
Telgarsky (2023) mean-field/GF No d/n dd ∞

Ours mean-field/MFLD Yes exp(−O(
√
n/d)) eO(d) eO(d)

Ours mean-field/MFLD Yes d/n eO(d) eO(d)

Table 1: Statistical and computational complexity (omitting poly-log terms) for the k-sparse (or 2-sparse) parity
problem. Column “k-parity” indicates applicability to the general k-sparse parity setting, and for references that
does not handle k-parity we state the complexity for 2-parity (XOR). d is the input dimensionality, and n is the
sample size. For SGD, n is the total sample size given by product of mini-batch size and iterations.

1.2 Additional Related Works

In addition to the mean-field analysis, parity-like functions can be learned via other feature learning
procedures such as the one gradient step analysis in Daniely and Malach (2020); Ba et al. (2022);
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Damian et al. (2022); Barak et al. (2022). Such analysis requires nontrivial gradient concentration at
initialization, which translates to a sample complexity that scales as n = Θ(dk) (Barak et al., 2022).
For “narrow” neural networks, Abbe et al. (2023) showed that a modified projected (online) gradient
descent algorithm can learn the k-parity problem with a sample complexity of n = O(dk−1 + ϵ−c)
(for some unknown c). Also, Refinetti et al. (2021); Ben Arous et al. (2022) showed that a two-layer
ReLU network with more than 4 neurons can learn the Gaussian XOR problem with gradient descent.

2 Problem Setting

Throughout this paper, we consider a classification problem given by the following model:

Y = 1A(Z)− 1Ac(Z) ∈ {±1}

where Z = (Z1, . . . , Zd) is the input random variable on Rd and 1A is the indicator function
corresponding to a measurable set A ∈ B(Rd), i.e., 1A(Z) = 1 if Z ∈ A and 1A(Z) = 0 if Z ̸∈ A.
Let PZ be the distribution of Z. We are given input-output pairs Dn = (zi, yi)

n
i=1 independently

identically distributed from this model as training data. Then, we construct a binary classifier that
predicts the label for the test input data as accurate as possible. To achieve this, we learn a two-layer
neural network model in the mean-field regime via the mean-field Langevin dynamics.

One important problem setting for our analysis is the k-sparse parity problem defined as follows.

Example 1 (k-sparse parity problem). PZ is the uniform distribution on the grid {±1/
√
d}d and

A = {ζ = (ζ1, . . . , ζd) ∈ {±1/
√
d}d | ζ1 · · · ζk > 0}1.

As a special case, k = 2 (XOR) has been extensively studied (Wei et al., 2019; Telgarsky, 2023).

Mean-field two-layer network. Given input z, let hx(z) be one neuron in a two-layer neural
network with parameter x = (x1, x2, x3) ∈ Rd+1+1 defined as

hx(z) = R̄[tanh(z⊤x1 + x2) + 2 tanh(x3)]/3,

where R̄ ∈ R is a hyper-parameter determining the scale of the network2. We place an extra tanh
activation for the bias term x3 ∈ R because the boundedness of hx is required in the convergence
analysis. Let P be the set of probability measures on (Rd̄,B(Rd̄)) where d̄ = d + 2 and B(Rd̄)

is the Borel σ-algebra on Rd̄ and Pp be the subset of P such that its p-th moment is bounded:
Eµ[∥X∥p] <∞ (µ ∈ P). The mean-field neural network is defined as an integral over neurons hx,

fµ(·) =
∫
hx(·)µ(dx),

for µ ∈ P . To evaluate the performance of fµ, we define the empirical risk and the population risk as

L(µ) := 1
n

∑n
i=1 ℓ(yifµ(zi)), L̄(µ) := E[ℓ(Y fµ(Z))],

respectively, where ℓ : R → R≥0 is a convex loss function. In particular, we consider the logistic
loss ℓ(f, y) = log(1 + exp(−yf)) for y ∈ {±1} and f ∈ R. To avoid overfitting, we consider a
regularized empirical risk F (µ) := L(µ) + λEX∼µ[λ1∥X∥2], where λ, λ1 ≥ 0 are regularization
parameters. One advantage of this mean-field definition is that fµ is a linear with respect to µ, and
hence the functional L(µ) becomes a convex functional.

Mean-field Langevin dynamics. We optimize the training objective via MFLD, which is given by
the following stochastic differential equation:

dXt = −∇
δF (µt)

δµ
(Xt)dt+

√
2λdWt, µt = Law(Xt), (1)

where X0 ∼ µ0, Law(X) denotes the distribution of the random variable X and (Wt)t≥0 is the
d-dimensional standard Brownian motion. Readers may refer to Theorem 3.3 of Huang et al. (2021)
for the existence and uniqueness of the solution. Here, δF (µt)

δµ is the first variation of F .

Definition 1. For a functional G : P → R, the first-variation δG
δµ (µ) at µ ∈ P is a continuous

functional P × Rd → R satisfying lim
ϵ→0

G(ϵν+(1−ϵ)µ)
ϵ =

∫
δG
δµ (µ)(x)d(ν − µ) for any ν ∈ P .

1We present the axis-aligned setting for conciseness, but the same result holds under orthogonal transforms.
2We may also deal with more general activation function that is smooth and bounded.
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In our setting, we have δF (µ)
δµ (x) = 1

n

∑n
i=1 ℓ

′(yifµ(zi))yihx(zi) + λ(λ1∥x∥2). It is known that the
Fokker-Planck equation of the SDE (1) is given by3

∂tµt = λ∆µt +∇ ·
[
µt∇ δF (µt)

δν

]
= ∇ ·

[
µt∇

(
λ log(µt) +

δF (µt)
δν

)]
. (2)

Then, we can verify that this is equivalent to the Wasserstein gradient flow to optimize the following
entropy regularized risk (Mei et al., 2018; Hu et al., 2019):

L(µ) = F (µ) + λEnt(µ) = L(µ) + λKL(ν, µ) + (const.) (3)

where KL(ν, µ) =
∫
log(µ/ν)dµ is the KL divergence between ν and µ, and ν is the Gaussian

distribution with mean 0 and variance I/(2λ1), i.e., ν = N (0, I/(2λ1)).

For a practical algorithm, we need to consider a space- and time-discretized version of the MFLD,
that is, we approximate the solution µt by an empirical measure µX = 1

N

∑N
i=1 δXi

corresponding
to a set of finite particles X = (Xi)Ni=1 ⊂ Rd̄. Let Xτ = (Xi

τ )
N
i=1 ⊂ Rd̄ be N particles at the τ -th

update (τ ∈ {0, 1, 2, . . . }), and define µτ = µXτ
as a finite particle approximation of the population

counterpart. Then, the discretized MFLD is defined as follows: Xi
0 ∼ µ0, and Xτ is updated as

Xi
τ+1 = Xi

τ − η∇
δF (µτ )

δµ
(Xi

τ ) +
√

2ληξiτ , (4)

where η > 0 is the step size, and ξiτ ∼i.i.d. N(0, I). This is the Euler-Maruyama approximation of
the MFLD with a discretized measure; we present the discretization error bounds in the next section.

3 Main Assumptions and Theoretical Tools

In this section, we introduce the basic assumptions and technical tools for our analysis.

Condition on the loss function To derive the convergence of the classification error, we assume
that the loss function satisfies the following condition.
Assumption 1. The convex loss function ℓ : R→ R≥0 satisfies the following conditions:

• ℓ is first order differentiable, its derivative is Lipschitz continuous and its derivative is bounded
by 1: |ℓ′(x)− ℓ′(x′)| ≤ C|x− x′| and supx |ℓ′(x)| ≤ 1.

• ℓ is monotonically decreasing, and is classification calibrated: ℓ′(0) < 0 (Bartlett et al., 2006).

• ψ(u)−1 := ℓ(0)− (ℓ(u)− uℓ′(u)) > 0 for any u > 0.

This standard assumption is satisfied by several loss functions such as the logistic loss. We remark
that the first assumption is used to show the well-definedness of the mean-field Langevin dynamics
and derive its discretization error, and also to obtain a uniform generalization error bound through the
classical contraction argument (Boucheron et al., 2013; Ledoux and Talagrand, 1991). The second
and third assumptions are used to show the convergence of classification error of our estimator.

Logarithmic Sobolev inequality. Nitanda et al. (2022); Chizat (2022) showed that the convergence
of MFLD crucially relies on properties of the proximal Gibbs distribution whose density is given by

pµ(X) ∝ exp

(
− 1

λ

δF (µ)

δµ
(X)

)
,

where µ ∈ P . By the smoothness of the loss function (Assumption 1) and the tanh activation, we can
show that the objective L has a unique solution µ∗ which is also a proximal Gibbs measure of itself.
Proposition 1 (Proposition 2.5 of Hu et al. (2019)). The functional L has a unique minimizer in
P2 that is absolutely continuous with respect to the Lebesgue measure. Moreover, µ∗ ∈ P2 is the
optimal solution if and only if µ∗ is absolutely continuous and its density function is given by pµ∗ .

The next question is how fast the solution µt converges to the optimal solution µ∗. As we will see,
the convergence of MFLD heavily depends on a logarithmic Sobolev inequality (LSI) on pµ.

3This should be interpreted in a weak sense, that is, for any continuously differentiable function ϕ with a
compact support,

∫
ϕdµt −

∫
ϕdµs = −

∫ t

s

∫
∇ϕ · (∇ log(µt)−∇ δF (µt)

δν
)dµτdτ .

4



Definition 2 (Logarithmic Sobolev inequality). Let µ be a probability measure on (Rd,B(Rd)). µ
satisfies the LSI with constant α > 0 if for any smooth function ϕ : Rd → R with Eµ[ϕ

2] <∞,

Eµ[ϕ
2 log(ϕ2)]− Eµ[ϕ

2] log(Eµ[ϕ
2]) ≤ 2

α
Eµ[∥∇ϕ∥22].

This is equivalent to the condition that the KL divergence from µ is bounded by the Fisher divergence:∫
log(dν/dµ)dν ≤ 2

α

∫
∥∇ log(dν/dµ)∥2dµ, for any ν ∈ P which is absolutely continuous with

respect to µ. The LSI of proximal Gibbs measure can be established via standard perturbation criteria.
For L(µ) with bounded first-variation, we may apply the classical Bakry-Emery and Holley-Stroock
arguments (Bakry and Émery, 1985; Holley and Stroock, 1987) (Corollary 5.7.2 and 5.1.7 of Bakry
et al. (2014)): If ∥ δL(µ)

δµ ∥∞ ≤ B is satisfied for any µ ∈ P2, then µ∗ and pX satisfy the LSI with

α ≥ λ1 exp (−4B/λ) . (5)

With the LSI condition on the proximal Gibbs distribution, it is known that the MFLD converges to
the optimal solution in an exponential order by using a so-called Entropy sandwich technique.

Proposition 2 (Entropy sandwich (Nitanda et al., 2022; Chizat, 2022)). Suppose that µ0 satisfies
L(µ0) < ∞ and the proximal Gibbs measure pµt

corresponding to the solution µt has the LSI
constant α for all t ≥ 0, then the solution µt of MFLD satisfies

λKL(µ∗, µt) ≤ L(µt)− L(µ∗) ≤ exp(−2αλt)(L(µ0)− L(µ∗)),

where µ∗ = argminµ∈P L(µ) (the existence and uniqueness of µ∗ is guaranteed by Proposition 1).

Hence we know that time horizon T = O( 1
λα log(1/ϵ̃)) is sufficient to achieve ϵ̃ > 0 accuracy.

Convergence of the discretized algorithm. While Proposition 2 only established the convergence
rate of the continuous dynamics, similar guarantee can be shown for the discretized setting. Let

LN (µ(N)) = NEX ∼µ(N) [F (µX )] + λEnt(µ(N)),

where µ(N) is a distribution of N particles X = (Xi)Ni=1 ⊂ Rd̄. Let µ(N)
τ be the distribution of

the particles Xτ = (Xi
τ )

N
i=1 at the τ -th iteration. Suzuki et al. (2023b) showed that, if λαη ≤ 1/4

and η ≤ 1/4, then for B̄2 := E[∥Xi
0∥2]+ 1

λλ1

[(
1
4 + 1

λλ1

)
R̄2+λd

]
= O(d + λ−2) and δη :=

C1L̄
2(η2 + λη), where L̄ = 2R̄+ λλ1 = O(1) and C1 = 8(R̄2 + λλ1B̄

2 + d) = O(d+ λ−1),

1

N
E[LN (µ(N)

τ )]−L(µ∗)≤exp
(
−λαητ

2

)(
E[LN (µ

(N)
0 )]

N −L(µ∗)

)
+

4

λα
L̄2C1

(
λη + η2

)
+

4Cλ

λαN
,

where Cλ is a constant depending on λ. In particular, for a given ϵ̃ > 0, the right hand side can
be bounded by ϵ̃ + 4Cλ

λαN after T = O
(

L̄2C1

αϵ̃ + L̄
√
C1√

λαϵ̃

)
1
λα log(1/ϵ̃) iterations with the step size

η = O
((

L̄2C1

αϵ̃ + L̄
√
C1√

λαϵ̃

)−1)
. Furthermore, the convergence of the loss function can be connected to

the convergence of the function value of the neural network as follows,

E
Xτ∼µ

(N)
k

[
sup

z∈supp(PZ)

(fµXτ
(z)− fµ∗(z))2

]

≤ 4L̄2

λα

(
LN (µ(N)

τ )
N − L(µ∗)

)
+ 2EX∗∼(µ∗)⊗N

[
sup

z∈supp(PZ)

(
1
N

∑N
i=1 hXi

∗
(z)−

∫
hx(z)dµ

∗(z)
)2]

.

Here the second term in the right hand side can be bounded by 32R̄2

N

[
1 + 2

(
2R̄2

(λλ1)2
+ d̄

λ1

)]
via

Lemma 2, if ∥z∥ ≤ 1 for any z ∈ supp(PZ) as in the k-sparse parity problem. Hence, by taking the
number of particles as N = ϵ−2[(λα)−2 + (λλ1)

−2 + d/λ1] and letting ϵ̃ = λαϵ2 with the choice
of T and η as described above, we have supz∈supp(PZ) |fµXT

(z)− fµ∗(z)| = Op(ϵ).
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Assumptions on the model specification. We restrict ourselves to the situation where a perfect
classifier with margin c0 is included in our model class, stated in the following assumption.
Assumption 2. There exists c0 > 0 and R > 0 such that the following conditions are satisfied:

• For some R̄, there exists µ∗ ∈ P such that KL(ν, µ∗) ≤ R and L(µ∗) ≤ ℓ(0)− c0.
• For any λ < c0/R, the regularized expected risk minimizer µ[λ] := argminL(µ) + λKL(ν, µ)

satisfies Y fµ[λ]
(X) ≥ c0 almost surely.

Importantly, we can apply the same general analysis for different classification problems, as long
as Assumption 2 is verified. The advantage of this generality is that we do not need to tailor our
convergence proof for individual learning problems. Note that the convergence rate of MFLD is
strongly affected by the values of R̄ and R; therefore, it is crucial to establish this condition using the
smallest possible values of R̄ and R, in order to obtain a tight bound of the classification error. As an
illustrative example, we now show that the k-sparse parity estimation satisfies the above assumption.

Example: k-sparse parity estimation. In the k-sparse parity setting (Example 1), Assumption 2 is
satisfied with constants specified in the following propositions. The proofs are given in Appendix A.
Proposition 3 (k-sparse parity). Under Assumption 1 and for R̄ = k, there exists µ∗ ∈ P such that

KL(ν, µ∗) ≤ c1k log(k)2d (= R),

and L(µ∗) ≤ ℓ(0)− c2, where c1, c2 > 0 are absolute constants.
Proposition 4. Under Assumption 1 and the settings of R and R̄ given in Proposition 3, if λ <
c2/(2R), then µ[λ] satisfies

max{L̄(µ[λ]), L(µ[λ])} ≤ ℓ(0)− c2 + λR < ℓ(0)− c2
2 ,

and fµ[λ]
is a perfect classifier with margin c2, i.e., Y fµ[λ]

(X) ≥ c2
2 .

In other words, Assumption 2 is achieved with R = O(k log(k)2d), R̄ = k and c0 = c2/2. By
substituting these values of R and R̄ to our general results presented below, we can easily derive a
bound for the classification error of the MFLD estimator.

4 Main Result: Annealing Procedure and Classification Error Bound

4.1 Annealing Procedure

The convergence rate of MFLD is heavily dependent on the LSI constant which may impose a large
computational cost. We alleviate this dependency by employing a novel annealing scheme where we
gradually decrease the regularization parameter λ. In particular, at the κ-th round, we run the MFLD
until (near) convergence with a regularization parameter λ(κ) = 2−κλ(0): µ0 = µ(κ−1),

dXt = −
[
∇ δL(µt)

δµ (Xt)dt+ 2λ(κ)λ1Xt

]
+
√
2λ(κ)dWt, (6)

which corresponds to minimizing L(κ)(µ) := L(µ) + λ(κ)KL(ν, µ). Then, we obtain a near optimal
solution µ(κ) as L(κ)(µ(κ)) ≤ minµ∈P L(κ)(µ) + ϵ∗ for a given ϵ∗ > 0. We terminate the procedure
after K rounds and obtain µ(K) as the output.

Suppose that there exists µ∗ such that KL(ν, µ∗) ≤ R and L(µ∗) ≤ δ∗. Then, as long as λ(κ) ≥ δ∗
and ϵ∗ < δ∗, we have that

L(µ(κ)) + λ(κ)KL(ν, µ(κ)) ≤ L(µ∗) + λ(κ)KL(ν, µ∗) + ϵ∗ ≤ 2δ∗ + λ(κ)R ≤ (R+ 2)λ(κ).

Since L(κ)(µt) is monotonically decreasing during the optimization, we always have L(µt) ≤
L(κ)(µ(κ−1)) ≤ L(κ−1)(µ(κ−1)) ≤ (R + 2)λ(κ−1). Now we utilize the following structure on
common classification losses to ensure that ∥δL(µ)/δµ∥∞ is small when the loss L(µ) is small.

Assumption 3. There exists cL > 0, such that, for any µ ∈ P , it holds that ∥ δL(µ)
δµ ∥∞ ≤ cLR̄L(µ).

For example, the logistic loss satisfies this assumption:

|∂u log(1 + exp(−u))| = exp(−u)
1+exp(−u) ≤ log(1 + exp(−u)).
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Hence, the condition holds for cL = 1 because ∥ δL(µ)
δµ ∥∞ ≤

1
n

∑n
i=1 |ℓ′(yi, fµ(zi))|∥hzi(·)∥∞ ≤

1
n

∑n
i=1 R̄ℓ(yi, fµ(zi)) = R̄L(µ). Under this assumption, the Holley–Strook argument yields that

the log-Sobolev constant during the optimization can be bounded as

α ≥ λ1 exp
(
− 4cLR̄(R+2)λ(κ−1)

λ(κ)

)
≥ λ1 exp

(
−8cLR̄(R+ 2)

)
,

which is independent of λ(κ) and the final accuracy δ∗. Hence, after K = log2(R/(λ
(0)ϵ∗))

round, we achieve that L(µ(K)) ≤ δ∗ + 2ϵ∗ where each round takes Tκ = log(1/ϵ∗)/(2αλ) =
O(log(1/ϵ∗) exp(8cLR̄(R+ 2))/(λ1λ

(k))) for the continuous time setting.

For the discrete setting, Tκ = O
((

C1

αϵ∗ +
√
C1√

λ(κ)αϵ∗

)
log(1/ϵ∗) exp(8cLR̄(R+ 2))/(λ1λ

(κ))
)

iterations in each round is sufficient (where C1 is given for λ(K)), where the step size is
η = O

(
C−1

1 αϵ∗ ∧ C−1/2
1

√
λ(κ)αϵ∗

)
. As long as ϵ∗ = O(λ(κ)/α) for all κ, the total itera-

tion number can be simplified as O
(
log(1/ϵ∗) exp(16cLR̄(R+ 2))C1/(λ

(K)ϵ∗)
)
, and the width

N (number of particles) can be taken as N = O([(λ(K)α)−2 + (λ(K))−2 + d]/(ϵ∗)2) =
O
(
[exp(16cLR̄(R+ 2))/(λ(K))2 + d]/(ϵ∗)2

)
.

Remark 1. We make the following remarks on the annealing procedure.

• The main advantage of this annealing approach is that the exponential factor induced by the LSI
constant α is not dependent on the choice of the regularization parameter λ(k) (note that the
LSI is solely determined by the intermediate solution µt). In contrast, the naive Holley–Stroock
argument of Eq. (5) imposes exponential dependency on the regularization parameter.

• Our annealed algorithm differs from the procedure considered in Chizat (2022, Section 4);
importantly, we make use of the structure of classification loss functions to obtain a refined
computational complexity analysis.

4.2 Generalization Error Analysis

We utilize the local Rademacher complexity (Mendelson, 2002; Bartlett et al., 2005; Koltchinskii,
2006; Giné and Koltchinskii, 2006) to obtain a faster generalization error rate. For the function
class of mean-field neural networks, we introduce F := {fµ | µ ∈ P}, and the KL-constrained
model class FM (µ◦) := {fµ | µ ∈ P, KL(µ◦, µ) ≤M} for µ◦ ∈ P and M > 0. The Rademacher
complexity of a function class F̃ is defined as

Rad(F̃) := Eεi,zi

[
supf∈F̃

1
n

∑n
i=1 ϵif(zi)

]
,

where (zi)
n
i=1 are i.i.d. observations from PZ and (εi)

n
i=1 is an i.i.d. Rademacher sequence (P (εi =

1) = P (εi = −1) = 1/2)). We have the following bound on the Rademacher complexity of the
function class FM (µ◦).

Lemma 1 (Local Rademacher complexity of FM (µ◦), Chen et al. (2020) adapted). For any fixed

µ◦ ∈ P and M > 0, it holds that Rad(FM (µ◦)) ≤ 2R̄
√

M
n .

The proof is given in Appendix B.2 in the supplementary material. Combining this local Rademacher
complexity bound with the peeling device argument (van de Geer, 2000), we can roughly obtain the
following estaimte (note that this is an informal derivation):

L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)
δL̄(µ∗)

δµ︸ ︷︷ ︸
(II)

+λKL(µ∗, µ̂)︸ ︷︷ ︸
(I)

≲

√
KL(µ∗, µ̂)

n
≲

1

nλ
+ λKL(µ∗, µ̂), (7)

with high probability, where µ̂ = argminµ∈P L(µ), µ∗ = argminµ∈P L̄(µ) + λKL(ν, µ), R and
R̄ are regarded as constants, and the last inequality is by the AM-GM relation. Observe that on
the left hand side, we have two non-negative terms (I) and (II). Corresponding to each term, we
obtain different types of classification error bounds (Type I and Type II in the following subsection,
respectively). Note that there appears a O(1/n) factor in the right hand side, which cannot be
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obtained by a vanilla Rademacher complexity evaluation because it only yields an O(1/
√
n) bound.

In other words, localization is essential to obtain our fast convergence rate.

We remark that a local Rademacher complexity technique is also utilized by Telgarsky (2023) to
derive a O(1/n) rate. They adapted a technique developed for a smooth loss function by Srebro
et al. (2010), which requires the training loss L(µ̂) to be sufficiently small, that is, of order L(µ̂) =
O(1/n). In our setting, to achieve such a small training loss, we need to take large R̄ such as
R̄ = Ω(log(n)). Unfortunately, such a large R̄ induces exponentially small log-Sobolev constant like
α ≲ exp(−cd log(n)) = n−cd. In contrast, our analysis focuses on the local Rademacher complexity
around µ∗, and hence we do not require the training loss to be close to 0; instead, it suffices to have a
training loss that is close to or smaller than that of µ∗.

4.2.1 Type I: Perfect Classification with Exponentially Decaying Error

In the regime of n = Ω(1/λ(K)2), we can prove that the MFLD estimator attains a perfect classi-
fication with an exponentially converging probability by evaluating the term (I). From Eq. (7) we
can establish KL(µ∗, µ̂) ≤ Op(1/(nλ

(K)2)); this KL divergence bound can be used to control the
L∞-norm between fµ̂ and fµ∗ . Indeed, we can show that ∥fµ̂ − fµ∗∥2∞ ≤ 2R̄2KL(µ∗, µ̂) (see the
proof of Theorem 1). Then, under the margin assumption of fµ∗ (Assumption 2), we have that fµ̂
also yields a Bayes optimal classifier. More precisely, we have the following theorem.

Theorem 1. Suppose Assumptions 1 and 2 hold. Let M0 = (ϵ∗ + 2(R̄ + 1))/λ(K). Moreover,
suppose that λ(K) < c0/R and

Q := c20 −
4R̄2

nλ(K)2

[
λ(K)

(
4R̄+

λ(K)

32R̄2n

)
+ 8R̄2(4 + log log2(8n

2M0R̄)) + nλ(K)ϵ∗
]
> 0,

then fµ̂ yields perfect classification, i.e., P (Y fµ̂(Z) > 0) = 1, with probability 1−exp(−nλ(K)2

32R̄4 Q).

The proof is given in Appendix C.1 in the supplementary material. From Proposition 3 we see that the
requirement n ≍ 1/λ(K)2 implies that in the n ≍ d2 regime, Theorem 1 gives a perfect classification
guarantee with a failure probability decaying exponentially fast.

4.2.2 Type II: Polynomial Order Classification Error

Next we evaluate the classification error bound from term (II) in Eq. (7). In this case, we do not
require an L∞-norm bound as in the Type I analysis above; this results in a milder dependency on
λ(K) and hence a better sample complexity.

Theorem 2. Suppose Assumptions 1 and 2 hold. Let λ(K) < c0/R and M0 = (ϵ∗+2(R̄+1))/λ(K).
Then, with probability 1− exp(−t), the classification error of fµ(K) is bounded as

P (Y fµ(K)(Z) ≤ 0) ≤ 2ψ(c0)

[
8R̄2

nλ(K)

(
4 + t+ log log2(8n

2M0R̄)
)
+

1

n

(
4R̄+

λ(K)

32R̄2n

)
+ ϵ∗

]
.

The proof is given in Appendix C.2 in the supplementary material. We notice that the right hand side
scales with O(1/(nλ(K))), which is better than O(1/(nλ(K)2)) in Theorem 1; this implies that a
sample size linear in the dimensionality is sufficient to achieve small classification error. The reason
for such improvement in the λK-dependence is that the stronger L∞-norm convergence is not used
in the proof; instead, only the convergence of the loss is utilized. On the other hand, this analysis
does not guarantee a perfect classification.

4.2.3 Computational Complexity of MFLD

From the general result in Section 4.1, we can evaluate the computational complexity to achieve the
statistical bounds derived above. In both cases (Theorems 1 and 2), we may set the optimization error
ϵ∗ = O(1/(nλ(K))). Then, the total number of iteration can be∑K

κ=1
Tκ ≤ O

(
(d+ λ(K)−1)n exp(16cLR̄(R+ 2)) log(nλ(K))

)
.

The width N (the number of particles) can be taken as N = O((ϵ∗λ(K)α)−2) = O(n2α−2) =
O
(
n2 exp(16cLR̄(R+ 2))

)
.
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Corollary 1 (k-sparse parity setting). In the k-sparse parity setting, we may takeR = O(k log(k)2d),
R̄ = k and λ(K) = O(1/R) = O(1/(k log(k)2d)). Therefore, the classification error is bounded by

P (Y fµ(K) < 0) ≤ O
(
k2 log(k)2d

n
(log(1/δ) + log log(n))

)
,

with probability 1− δ. Moreover, if n = Ω(k6 log(k)4d2), then P (Y fµ(K) > 0) = 1 with probability

1− exp(−Ω(nk6 log(k)4/d2)).

As for the computational complexity, we require O(k log(k)2dn log(nd) exp[O(k2 log(k)2d)]) itera-
tions, and the number of particles is O(exp(O(k2 log(k)2d)))).

Comparison with prior results. In the 2-sparse parity setting, neural network in the kernel
(NTK) regime achieves only O(d2/n) convergence in the classification error, as shown in Ji and
Telgarsky (2019) and Telgarsky (2023, Theorem 2.3), whereas we demonstrate that mean-field
neural network can improve the rate to O(d/n) via feature learning. Telgarsky (2023) also analyzed
the learning of 2-sparse parity problem beyond the kernel regime, and showed that 2-layer ReLU
neural network can achieve the best known classification error O(d/n). However, their analysis
considered a low-rotation dynamics and assumed convergence at t→∞, whereas our framework
also provides a concrete estimate of the computational complexity. Indeed, the number of iterations
can be bounded as O(dn log(nd) exp[O(d)]). In addition, while we still require exponential width
N = O(n2 exp(O(d))), such a condition is an improvement over N = O(dd) in Telgarsky (2023).

Barak et al. (2022) considered a learning method in which one-step gradient descent is performed
for the purpose of feature learning, and then a network with randomly re-initialized bias units is
used to fit the data. For the k-sparse parity problem, they derived a classification error bound
of O(d(k+1)/2/

√
n). In contrast, our analysis yields a much better statistical complexity of

O(k2 log(k)2d/n ∧ exp(−Ω(nk6 log(k)4/d2))), which “decouples” the degree k in the exponent of
the dimension dependence.

5 Numerical Experiment

We validate our theoretical results by numerical experiment on synthetic data. Specifically, we
consider the classification of 2-sparse parity with varying dimensionality d and sample size n.

Recall that the samples {(zi, yi)}ni=1 are independently generated so that zi follows the uniform
distribution on {±1/

√
d}d and yi = dζi,1ζi,2 ∈ {±1} (zi = (ζi,1, . . . , ζi,d)). A finite-width

approximation of the mean-field neural network 1
N

∑N
j=1 hxj

(z) is employed with the width N =
2, 000. For each neuron of the network, all parameters are initialized to independently follow the
standard normal distribution (meaning that the network is rotation invariant at initialization) and the
scaling parameter R̄ is set to 15. We set d to take values 5, 10, · · · , 150, and n = 50, 100, · · · , 2000.
We trained the network using noisy gradient descent with η = 0.2, λ1 = 0.1, and λ = 0.1/d (fixed
during the whole training) until T = 10, 000. The logistic loss is used for the training objective.
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Figure 1: Test accuracy of two-layer neural
network optimized by the MFLD to learn a d-
dimensional 2-sparse parity (XOR) problem.

Figure 1 shows the average test accuracy over
five trials. We make the following observations.

• The red line corresponds to the sample size
n = Θ(d2), above which we observe that
almost-perfect classification is achieved. Ac-
cording to Section 4.2 (Type I), the classifi-
cation error gets exponentially small with re-
spect to n/d2, which predicts very small clas-
sification error above the line of n = Θ(d2),
which matches our experimental result.

• The boundary of test accuracy above 50% is
almost linear, as indicated by the blue line.
This matches the theoretical conditions (Type
II) to obtain the polynomial order classifica-
tion error in Section 4.2.
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6 Conclusion and Discussion

We provided a general framework to evaluate the classification error of a two-layer neural network
trained by the mean-field Langevin dynamics. Thanks to the generality of our framework, an error
bound for specific settings can be derived by directly specifying the parameters in Assumption 2 such
as R, R̄, and c0. We also proposed an annealing procedure to alleviate the exponential dependencies
in the LSI constant. As a special (but important) example, we investigated the k-sparse parity problem,
for which we obtained more general and better sample complexity than existing works.

A limitation of our approach is that the required width and number of iterations are exponential with
respect to the dimensionality d; in contrast, certain tailored algorithms for learning low-dimensional
target functions such as Abbe et al. (2023); Chen and Meka (2020) do not require such exponential
computation. An important open problem is whether we can reduce the width and number of
iterations to poly(d) for the vanilla noisy gradient descent algorithm. Another interesting direction is
to investigate the interplay between structured data and the efficiency of feature learning, as done in
Ghorbani et al. (2020); Refinetti et al. (2021); Ba et al. (2023); Mousavi-Hosseini et al. (2023).
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—————————– Appendix —————————–

A Proofs of Propositions 3 and 4

Proof of Proposition 3. Remember that

hx(z) = R̄[tanh(z⊤x1 + x2) + 2 tanh(x3)]/3.

Let bi = 2i−k for i = 0, . . . , k, let ζ > 0 be the positive real such that Eu∼N(0,1)[2 tanh(ζ+u)] = 1
(note that, this also yields Eu∼N(0,1)[2 tanh(−ζ + u)] = −1 by the symmetric property of tanh and
the Gaussian distribution), and let

ξ = [
√
d,
√
d, . . . ,

√
d︸ ︷︷ ︸

k-dimension

, 0, . . . , 0︸ ︷︷ ︸
d − k-dimension

]⊤ ∈ Rd.

Let

Σ :=

(
I/(2λ1) 0 0

0 1/(2λ1) 0
0 0 1

)
∈ R(d+1+1)×(d+1+1),

and ρ > 1 be a constant which will be adjusted later on. Then, for ξ2i := [log(ρk)ξ⊤,− log(ρk)(bi−
1), ζ]⊤ ∈ Rd̄ and ξ2i+1 := −[log(ρk)ξ⊤,− log(ρk)(bi + 1), ζ]⊤ ∈ Rd̄ for i = 0, . . . , k, we define

µ̂2i := N(ξ2i,Σ), µ̂2i+1 := N(ξ2i+1,Σ).

Then, we can see that, for z ∈ {±1/
√
d}d, it holds that

Ex∼µ̂2i
[hx(z)] = R̄Eu∼N(0,1/λ1){tanh[log(ρk)(⟨ξ, z⟩ − (bi − 1)) + u] + 1}/3

because we have ⟨x1, z⟩+x2 = log(ρk)(⟨ξ, z⟩−(bi−1))+
∑d

j=1 ujzj+ud+1 for x ∼ N([ξ⊤, (bi−
1)]⊤, I/(2λ1)) where uj ∼ N(0, 1/(2λ1)) (i.i.d.) and

∑d
j=1 ujzj + ud+1 obeys the Gaussian

distribution with mean 0 and variance
∑d

j=1
1

2λ1

1
d + 1

2λ1
= 1

λ1
. In the same vein, we also have

Ex∼µ̂2i+1 [hx(z)] = −R̄Eu∼N(0,1/λ1){tanh[log(ρk)(⟨ξ, z⟩ − (bi + 1)) + u] + 1}/3.

Here, define |z| := |{i ∈ {1, . . . , k} | zi > 0}| for z ∈ {±1/
√
d}d which is the number of positive

elements of z in the index set {1, . . . , k}. For a fixed number i ∈ {0, . . . , k}, we let

f1(z;u) = {tanh[log(ρk)(⟨ξ, z⟩ − (bi − 1)) + u] + 1}/3,
f2(z;u) = {tanh[log(ρk)(⟨ξ, z⟩ − (bi + 1)) + u] + 1}/3,

then we can see that

f1(z; 0) =

{
O(1/(ρk)) (|z| < i),

1−O(1/(ρk)) (|z| ≥ i),
and

f2(z; 0) =

{
O(1/(ρk)) (|z| < i+ 1),

1−O(1/(ρk)) (|z| ≥ i+ 1),

because ⟨ξ, z⟩ − bi =
∑k

j=1 sign(zj)bi = 2|z| − k − bi = 2(|z| − i). Hence, we have that

f(z;u) := f1(z;u)− f2(z;u) =
{
Ω(1) (|z| = i),

O(1/(ρk)) (otherwise).

Then, since tanh(u) + 1 = eu−e−u

eu+e−u + 1 = 2
1+e−2u , if |z| = i and |u| ≤ 1/λ1,

f(z;u) ≥ Ω(1),

and if |z| ≠ i and |u| ≤ log(ρk)/2,

f(z;u) ≤ O(1/(ρk)).

13



Therefore, when |z| = i,

Eu∼N(0,1/λ1)[f(z;u)] ≥
∫ 1/λ1

−1/λ1

f(z;u)g(u)du > Ω(1).

where g is the density function of N(0, 1/λ1), and when |z| ≠ i,

Eu∼N(0,1/λ1)[f(z;u)] ≤
∫ log(ρk)/2

− log(ρk)/2

f(z;u)g(u)du+

∫
|u|≥log(ρk)/2

f(z;u)g(u)dz

≤ O(1/(ρk)) +O

(
exp(−λ1 log(ρk)2/2)

log(ρk)

)
= O(1/(ρk)),

where we used the upper-tail inequality of the Gaussian distribution in the second inequality. Hence,
it holds that

f̂i(z) := Ex∼µ̂2i
[hx(z)] + Ex∼µ̂2i+1

[hx(z)] =

{
Ω(k) (|z| = i),

O(1/ρ) (otherwise),

because R̄ = k. Therefore, by taking ρ > 1 sufficiently large, we also have

f̂(z) :=
1

2(k + 1)

k∑
i=0

(−1)if̂i(z) =
{
Ω(1) (|z| is even),
−Ω(1) (|z| is odd),

where the constant hidden in Ω(·) is uniform over any |z|. Hence, there exists c′2 > 0 such that
Y f̂(Z) > c′2 almost surely. Then, if we let µ⟨a⟩(A) := µ(aA) for a ∈ R, a probability measure µ
and a measurable set A, then we can see that f̂ is represented as

f̂(·) = Ex∼µ∗ [hx(·)],

where

µ∗ =
1

2(k + 1)

k∑
i=0

(µ̂2i,⟨(−1)i⟩ + µ̂2i+1,⟨(−1)i⟩).

Then, by letting c2 = ℓ(0)− ℓ(c′2), we have

L(µ∗) ≤ ℓ(0)− c2.

Next, we bound the KL-divergence between ν and µ∗. Notice that the convexity of KL-divergence
yields that

KL(ν, µ∗) ≤ 1

2(k + 1)

k∑
i=0

(KL(ν, µ̂2i) + KL(ν, µ̂2i+1))

≤ λ1 log(ρk)2[∥ξ∥2 + (max
i
|bi|+ 1)2] + log(1/(2λ1)) + λ1(1 + ζ2)

= O(log(k)2(dk + k2)) = O(log(k)2dk) (= R),

because k ≤ d, which gives the assertion.

Proof of Proposition 4. The first assertion can be seen by L̄(µ[λ]) ≤ L̄(µ∗)+λKL(ν||µ∗) ≤ ℓ(0)−
c2 + λR < ℓ(0) − c2 + c2/2 = ℓ(0) − c2/2, by the assumption of λ such that λ < c2/(2R). The
same argument is also applied to L(µ[λ]), that is, L(µ[λ]) ≤ ℓ(0)− c2/2.

We show that the optimal solution fµ[λ]
should satisfy |fµ[λ]

(z)| = |fµ[λ]
(z′)| for all z, z′ ∈

{±1/
√
d}d by the symmetric property of the distribution. For that purpose, we construct a group

action on {−1/
√
d, 1/
√
d}d. For notational simplicity, we consider Zd := {−1,+1}d instead. Zd

can be equipped with a group structure where the binary operation between z, z′ ∈ Zd is given by
the element wise product z · z′ = (ziz

′
i)

d
i=1. Let Tj : Zd → Zd be a group action that flips the

j-th element Tjz = (z1, . . . ,−zj , . . . , zd). It is obvious that Tj is bijective. Then, we can show
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that there exists a sequence of indices σ(1), . . . , σ(2d) ∈ {1, . . . , d} such that the “orbit” generated
by the chain of the group actions Tσ(k) ◦ · · · ◦ Tσ(2) ◦ Tσ(1)z for k = 1, . . . , 2d covers the entire
elements of Zd for any initial state z ∈ Zd and the last state turns back to the initial state, that is,
Tσ(2d)z = z. This can be shown by induction. If d = 1, we just need to take σ(1) = σ(2) = 1
(indeed, Tσ(1)z = −z and Tσ(2) ◦ Tσ(1)z = z, which satisfies the condition). Suppose that the
argument is true for d = 1, 2, . . . , d′ − 1, then we show that it is true for d = d′. Indeed, if we write
σ′(1), . . . , σ′(2d

′−1) be the corresponding sequence for d = d′ − 1, then let

σ(i) = σ′(i)

for i = 1, . . . , 2d
′−1 − 1, then the corresponding orbit covers all the elements with the last element is

fixed except the initial state. Then, we flip the last coordinate at the 2d
′−1 + 1-th step as

σ(2d
′−1) = d,

and then we “trace-back” the orbit as

σ(2d
′−1 + i) = σ′(2d

′−1 − i),

for i = 1, . . . , 2d
′−1 − 1. By the construction, we notice that, after 2d

′−1 + 2d
′−1 − 1 steps, the state

becomes
Tσ(2d′−1) ◦ Tσ(2d′−2) ◦ · · · ◦ Tσ(1)z = [z1, . . . , zd′−1,−zd′ ]⊤.

Therefore, by flipping the last coordinate again, the state can come back to the initial state, that is, by
setting σ(2d

′
) = d, we have Tσ(2d′ ) ◦ · · · ◦ Tσ(1)z = z while the orbit covers the entire elements of

Zd′
.

We can define the action Tj to {±1/
√
d}d in the same manner. We note that the distribution of Z

is invariant against the action of Tj , that is, PZ = Tj#PZ where Tj# is the push-forward induced

by Tj . Here, let µ̂ := µ[λ] and f̂ = fµ̂. We also define an “adjoint operator” T ∗
j : P → P for

j ∈ {k + 1, . . . , d} such that fµ(Tjz) = fT∗
j µ(z) for all z ∈ {±1/

√
d}d. We can easily check that

there exists T ∗
j µ that satisfies this condition. Indeed, we may take T ∗

j µ such that T ∗
j µ(A×B×C) =

µ(TjA×B × C) where TjA = {Tjz | z ∈ A} for any measurable set A ∈ B(Rd), B ∈ B(R) and
C ∈ B(R). Since the probability on product sets uniquely determines the probability on the Borel
sigma algebra B(Rd)× B(R)× B(R) = B(Rd+2), T ∗

j µ is uniquely determined.

Now, we consider the sequence of the group action Tσ(1), . . . , Tσ(2d−k) constructed above acting
on the last d− k coordinates. Since the label is independent of the last d− k coordinates, we have
L(T ∗

σ(1) ◦ · · · ◦ T
∗
σ(i)µ̂) = L(µ̂) for all i = 1, . . . , 2d−k. Moreover, the symmetricity of the Gaussian

distribution yields that KL(ν, T ∗
j µ) = KL(ν, µ). Hence, if we take

µ̂′ =
1

2d−k

2d−k∑
i=1

T ∗
σ(1) ◦ · · · ◦ T

∗
σ(i)µ̂,

then by the convexity of the objective L, we have

L(µ̂′) ≤ 1

2d−k

2d−k∑
i=1

L(T ∗
σ(1) ◦ · · · ◦ T

∗
σ(i)µ̂) ≤ L(µ̂).

Then, by the strong convexity of the objective L (due to the KL-divergence), we have µ̂′ = µ̂. Then,
we notice that

fµ̂(z) =
1

2d−k

2d−k∑
i=1

fµ̂(Tσ(i) ◦ · · · ◦ Tσ(1)z),

for any z ∈ {±1/
√
d}d, which means that fµ̂(z) is constant against any change of the last d − k

coordinates.

Next, we consider to change the first k coordinates. We also construct a sequence of the group action
Tσ(1), . . . , Tσ(2k) acting on the first k coordinates. In this case, the action of Tj on z also flips the
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corresponding label. Hence, if y(z) is the label of z, then the label for Tjz is −y(z) = y(Tjz). By
defining the adjoint operator T ∗

j as

T ∗
j µ(A×B × C) = µ((−TjA)× (−B)× (−C)),

for j ∈ {1, . . . , k}, then by the symmetric shape of tanh, we have

y(Tjz)fµ̂(Tjz) = y(z)fT∗
j µ̂(z),

for any z ∈ {±1/
√
d}d. We also have that KL(ν, µ̂) = KL(ν, T ∗

j µ̂) by the symmetry of the Gaussian
distribution. Therefore, onece again by the invariance of the PZ against the action of Tj and the
convexity of L, we have that

L(µ̂′) ≤ L(µ̂),
where

µ̂′ =
1

2k

2k∑
i=1

T ∗
σ(1) ◦ · · · ◦ T

∗
σ(i)µ̂. (8)

By the strong convexity of L due to the KL-divergence term, we have µµ′ = µ̂. Hence,

yzfµ̂(z) =
1

2k

2k∑
i=1

y(Tσ(i)◦···◦T1z)fµ̂(Tσ(i) ◦ · · · ◦ T1z), (9)

for any z ∈ {±1/
√
d}d, which means that yzfµ̂(z) is constant.

Finally, combining Eq. (9) with the fact L̄(µ̂) ≤ ℓ(0)− c2/2, we have that P (Y fµ̂(Z) > 0) = 1 and
Y fµ̂(Z) ≥ c2/2 almost surely because ∥ℓ′∥∞ ≤ 1.

B Proofs of auxiliary lemmas

B.1 Difference between finite particle network and its integral form for the optimal solution

Lemma 2. Under Assumption 1, if ∥z∥ ≤ 1 for any z ∈ supp(PZ), then it holds that

EX∗∼(µ∗)⊗N

 sup
z∈supp(PZ)

(
1

N

N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(z)

)2
 ≤ 16R̄2

N

[
1 + 2

(
2R̄2

(λλ1)2
+

d̄

λ1

)]
.

Proof. Note that the left hand side can be rewritten as

EXi
∗∼µ∗

( sup
z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(z)

∣∣∣∣∣
)2
 .

From the standard argument of concentration inequality corresponding to the Rademacher complexity,
it holds that

P

(
sup

z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(z)

∣∣∣∣∣
≥ 2Eϵ,X∗

[
sup

z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

ϵihXi
∗
(z)

∣∣∣∣∣
]
+

√
2tR̄2

N

)
≤ exp(−t),

for any t > 0, where ϵ = (ϵi)
N
i=1 is an i.i.d. sequence of the Rademacher variable, X∗ = (Xi

∗)
N
i=1 is

an i.i.d. sequence generated from µ∗, and the probability is taken with respect to the realization of X∗.
Since tanh is Lipschitz continuous with | tanh′ | ≤ 1, the contraction inequality of the Rademacher
complexity yields that

Eϵ,X∗

[
sup

z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

ϵihXi
∗
(z)

∣∣∣∣∣
]
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≤2 R̄
3
Eϵ,X∗

[
sup

z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

ϵi(z
⊤Xi

∗,1 +Xi
∗,2)

∣∣∣∣∣
]
+

2R̄

3
Eϵ,X∗

[∣∣∣∣∣ 1N
N∑
i=1

ϵi tanh(X
i
∗,3)

∣∣∣∣∣
]

≤2 R̄
3

√√√√√Eϵ,X∗

 sup
z∈supp(PZ)

(∥z∥2 + 1)

∥∥∥∥∥ 1

N

N∑
i=1

ϵi[Xi
∗,1;X

i
∗,2]

∥∥∥∥∥
2


+
2R̄

3

√√√√√Eϵ,X∗

∣∣∣∣∣ 1N
N∑
i=1

ϵi tanh(Xi
∗,3)

∣∣∣∣∣
2


≤2 R̄
√
2

3

√
1

N
E[∥X1

∗,1∥2 + (X1
∗,2)

2] +
2R̄

3
√
N
.

To bound the right hand side, we evaluate the moment of µ∗. Since µ∗ is the stationary distribution
of the SDE (1). Hence, if X0 ∼ µ∗, the process (Xt)t≥0 obeying the MFLD (1) satisfies Xt ∼ µ∗

for any t ≥ 0. Then, the infinitesimal generator of the MFLD gives that

0 =
d

dt
E[∥Xt∥2] = E

[
(2Xt)

⊤
(
−∇δL(µt)

δµ
(Xt)− λλ1Xt

)
+ 2λd̄

]
= −2λλ1E

[
∥Xt∥2

]
+ E

[
(2Xt)

⊤
(
∇δL(µt)

δµ
(Xt)

)]
+ 2λd̄

= −2λλ1E
[
∥Xt∥2

]
+ E

[
λλ1∥Xt∥2 +

1

λλ1

∥∥∥∥∇δL(µt)

δµ
(Xt)

∥∥∥∥2
]
+ 2λd̄,

which yields that

E
[
∥Xt∥2

]
≤ (2R̄)2

(λλ1)2
+

2d̄

λ1
.

Therefore,

Eϵ,X∗

[
sup

z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

ϵihXi
∗
(z)

∣∣∣∣∣
]
≤ 2R̄

3
√
N

2

√
2R̄2

(λλ1)2
+

d̄

λ1
+ 1

 =:
D̄√
N
.

Then, for x ≥ 0, it holds that

P

( sup
z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(z)

∣∣∣∣∣
)2

≥ x


≤ min

{
1, exp

(
− N

4R̄2

(
x− 8D̄2

N

))}
.

This yields that

E

( sup
z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(z)

∣∣∣∣∣
)2


≤
∫ ∞

0

P

( sup
z∈supp(PZ)

∣∣∣∣∣ 1N
N∑
i=1

hXi
∗
(z)−

∫
hx(z)dµ

∗(z)

∣∣∣∣∣
)2

≥ x

dx

≤8D̄2

N
+

∫ ∞

0

exp

(
− N

4R̄2
x̄

)
dx̄

≤8D̄2

N
+

4R̄2

N
≤ 16R̄2

N

[
1 + 2

(
2R̄2

(λλ1)2
+

d̄

λ1

)]
.

This gives the assertion.
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B.2 Proof of Lemma 1

The proof follows the line of Lemma 5.5 of Chen et al. (2020). Let the empirical Rademacher
complexity of a function class F̃ be

R̂ad(F̃) := Eϵ

[
sup
µ∈F̃

1

n

n∑
i=1

ϵif(zi)

]
.

We can see that Rad(·) = E(zi)ni=1
[R̂ad(·)]. Then, it holds that

R̂ad(FM (µ◦)) =
1

γ
Eϵ

[
sup

µ∈FM (µ◦)

γ

n

n∑
i=1

ϵi

∫
hx(zi)dµ(x)

]

≤ 1

γ

{
M + Eϵ log

[∫
exp

(
γ

n

n∑
i=1

ϵihx(zi)

)
dµ◦(x)

]}

≤ 1

γ

{
M + log

∫
Eϵ

[
exp

(
γ

n

n∑
i=1

ϵihx(zi)

)]
dµ◦(x)

}
,

where the first inequality is by the Donsker-Varadha duality formula of the KL-divergence (Donsker
and Varadhan, 1983). The second term in the right hand side can be bounded as

Eϵ

[
exp

(
γ

n

n∑
i=1

ϵihx(zi)

)]
≤ Eϵ

[
exp

(
γ2

n2

n∑
i=1

ϵ2ihx(zi)
2

)]
≤ exp

(
γ2

n
R̄2

)
.

Therefore, we have that

R̂ad(FM (µ◦)) ≤ 1

γ

{
M +

γ2

n
R̄2

}
.

The right hand side can be minimized by γ =
√
nM/R̄, which yields

R̂ad(FM (µ◦)) ≤ 2R̄

√
M

n
.

This gives the assersion.

C Proofs of Theorems 1 and 2

To show the theorems, we first prepare the following uniform bound, which is crucial to obtain the
fast learning rate.
Lemma 3. It holds that

L̄(µ)− L(µ) + L(µ∗)− L̄(µ∗)

≤ 2

[
Rad(F2KL(µ,µ∗)∨ 1

n
(µ∗)) + (2∥fµ − fµ∗∥∞ ∨ n−1)

√
t+ log log2(8n

2MR̄)

n

]
,

uniformly over µ ∈ P with KL(µ, µ∗) ≤M with probability 1− exp(−t) for any t > 0.

Proof. Let Bk = M/2−k and Ck = 2R̄/2−k′
for k = 0, 1, 2, ..., and Fk,k′ := {µ ∈ P |

KL(µ, µ∗) ≤, ∥fµ − fµ∗∥∞ ≤ Ck}. Then, the standard concentration inequality regarding to
the Rademacher complexity (Theorem 3.1 of Mohri et al. (2012)) with the contraction inequality
(Theorem 11.6 of Boucheron et al. (2013) or Theorem 4.12 of Ledoux and Talagrand (1991)) yields
that

P

(
sup

µ∈Fk,k′

L̄(µ)− L(µ) + L(µ∗)− L̄(µ∗) ≤ 2

[
Rad(FBk

(µ∗)) + Ck

√
t

n

])
≥ 1− exp(−t),
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for each k, k′. Then, since ∥fµ − fµ′∥∞ ≤ 2R̄ for any µ, µ′ ∈ P , by taking uniform bound for all
k = 0, . . . , log2(n

2) and k′ = 0, . . . , log2(2R̄n), we have that

P

(
L̄(µ)− L(µ) + L(µ∗)− L̄(µ∗) ≤ 2

[
Rad(F2KL(µ,µ∗)∨ 1

n
(µ∗)) + (2∥fµ − fµ∗∥∞ ∨

1

n
)

√
t

n

]
,

∀f ∈ Fn(µ
∗)

)
≥ 1− (2 + log2(nM) + log2(2R̄n)) exp(−t).

By resetting t← t+ log log2(8n
2MR̄), we obtain the assertion.

C.1 Proof of Theorem 1

By Assumption 2, we have

max{L̄(µ[λ(K)]), L(µ[λ(K)])} ≤ ℓ(0)− c0,

and
P
(
Y fµ

[λ(K)]
(Z) ≥ c0

)
= 1.

Let µ̂ := µ(K) and µ∗ := µ[λ(K)]. By the optimality condition of µ̂, we have

L(µ̂) + λ(K)KL(ν, µ̂) ≤ L(µ[λ(K)]) + λ(K)KL(ν, µ[λ(K)]) + ϵ∗ < 1/2− 2δ∗ = c0.

Moreover,

L̄(µ̂) + λ(K)KL(ν, µ̂)− (L̄(µ∗) + λ(K)KL(ν, µ∗))

≤ L(µ̂) + λ(K)KL(ν, µ̂)− (L(µ∗) + λ(K)KL(µ∗, ν)) + (L̄(µ̂)− L(µ̂) + L(µ∗)− L̄(µ∗))

≤ ϵ∗ + (L̄(µ̂)− L(µ̂) + L(µ∗)− L̄(µ∗)).

By the optimality of µ∗, the right hand side can be lower bounded as

L̄(µ̂) + λ(K)KL(ν, µ̂)− (L̄(µ∗) + λ(K)KL(ν, µ∗))

≥ L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)
δL̄(µ∗)

δµ
+ λ(K)KL(µ∗, µ̂).

Then, we have KL(µ∗, µ̂) ≤ (ϵ∗ + 2(R̄+ 1))/λ(K). Hence, the uniform bound on the Rademacher
complexity (Lemma 3) with M0 = (ϵ∗ + 2(R̄+ 1))/λ(K), it holds that

L̄(µ̂)− L(µ̂) + L(µ∗)− L̄(µ∗)

≤ 2

[
Rad(F2KL(µ∗,µ̂)∨ 1

n
(µ∗)) + (2∥fµ̂ − fµ∗∥∞ ∨ n−1)

√
t+ log log2(8n

2M0R̄)

n

]
,

with probability 1− exp(−t) for any t > 0. Moreover, Lemma 1 gives

Rad(F2KL(µ̂,µ∗)∨ 1
n
(µ∗)) ≤ 2R̄

√
2KL(µ∗, µ̂) ∨ n−1

n
.

Therefore, by setting t = s
√
n with s < 1, we obtain that

L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)
δL̄(µ∗)

δµ
+ λ(K)KL(µ∗, µ̂)

≤ 2

[
2R̄

√
2KL(µ∗, µ̂) ∨ n−1

n
+ (2∥fµ̂ − fµ∗∥∞ ∨ n−1)

√
s
√
n+ log log2(8n

2M0R̄)

n

]

≤ 1

4
λ(K)KL(µ∗, µ̂) +

32R̄2

nλ(K)
+

4R̄

n

+ λ(K) ∥fµ̂ − fµ∗∥2∞
8R̄2

+
λ(K)

32R̄2n2
+

8R̄2

λ(K)

s
√
n+ log log2(8n

2M0R̄)

n
,
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with probability 1 − exp(−s
√
n), where a arithmetic-geometric mean relation and an inequality

(a ∨ b)2 ≤ a2 + b2 (a, b ≥ 0) are used in the last inequality. Here, we know that the Hellinger
distance between µ∗ and µ̂ can be bounded as

2

∫
(
√
µ∗ −

√
µ̂)2dx = 2dH(µ

∗, µ̂) ≤ KL(µ∗, µ̂).

Hence,

∥fµ̂ − fµ∗∥2∞ = ∥
∫
hx(·)(µ̂(x)− µ∗(x))dx∥2∞

=

∥∥∥∥∫ hx(·)(
√
µ̂(x) +

√
µ∗(x))(

√
µ̂(x)−

√
µ∗(x))dx

∥∥∥∥2
∞

≤
∥∥∥∥∫ hx(·)2(

√
µ̂(x) +

√
µ∗(x))2dx

∥∥∥∥
∞

∫
(
√
µ̂(x)−

√
µ∗(x))2dx

≤
∥∥∥∥2 ∫ hx(·)2(µ̂(x) + µ∗(x))dx

∥∥∥∥
∞

∫
(
√
µ̂(x)−

√
µ∗(x))2dx

≤ 4R̄2dH(µ
∗, µ̂) ≤ 2R̄2KL(µ∗, µ̂).

By summarizing the argument above and noticing L̄(µ̂)− L̄(µ∗)− (µ̂−µ∗) δL̄(µ∗)
δµ ≥ 0, it holds that

L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)
δL̄(µ∗)

δµ
+

1

2
λ(K)KL(µ∗, µ̂)

≤ 1

2
λ(K)KL(µ∗, µ̂)

≤ 32R̄2

nλ(K)
+

4R̄

n
+

λ(K)

32R̄2n2
+

8R̄2

λ(K)

s
√
n+ log log2(8n

2M0R̄)

n
,

with probability 1− exp(−s
√
n). Then, letting s = τλ(K), then we have

∥fµ̂ − fµ∗∥2∞

≤ 4R̄2

(
32R̄2

nλ(K)2
+

4R̄

nλ(K)
+

1

32R̄2n2
+ 8R̄2 τλ

(K)
√
n+ log log2(8n

2M0R̄)

nλ(K)2

)
≤ 4R̄2

nλ(K)2

(
32R̄2 + 4R̄λ(K) +

λ(K)2

32R̄2n
+ 8R̄2[τ

√
nλ(K)2 + log log2(8n

2M0R̄)]

)
,

with probability 1− exp(−τλ(K)
√
n) for any τ > 0. Hence, if we take n sufficiently large and τ

sufficiently small so that the right hand side is smaller than c20, then we have

P (Y fµ̂(Z) > 0) = 1.

More precisely, if we let

sn =
nλ(K)2

32R̄4

{
c20 −

4R̄2

nλ(K)2

[
λ(K)

(
4R̄+

λ(K)

32R̄2n

)
+ 8R̄2(4 + log log2(8n

2M0R̄))

]}
,

and sn > 0, then P (Y fµ̂(Z) > 0) = 1 with probability 1− exp(−sn).

C.2 Proof of Theorem 2

Let µ̂ := µ(K) and µ∗ := µ[λ(K)]. From the proof of Theorem 1, with probability 1 − exp(−t), it
holds that

32R̄2

nλ(K)
+

4R̄

n
+

λ(K)

32R̄2n2
+

8R̄2

nλ(K)

(
t+ log log2(8n

2M0R̄)
)

≥ L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)
δL̄(µ∗)

δµ
+

1

2
λ(K)KL(µ∗, µ̂)

≥ 1

2

[
L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)

δL̄(µ∗)

δµ
+ λ(K)KL(µ∗, µ̂)

]
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≥ 1

2

[
L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)

δL̄(µ∗)

δµ

]
.

Since Y fµ∗(X) ≥ c0 almost surely, the Markov’s inequality yields that

P (Y fµ̂ < 0)

≤ 1

ℓ(0)− (−c0ℓ′(c0) + ℓ(c0))

(
L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)

δL̄(µ∗)

δµ

)
= 2ψ(c0)

1

2

(
L̄(µ̂)− L̄(µ∗)− (µ̂− µ∗)

δL̄(µ∗)

δµ

)
.

This yields the assertion.

D Additional Experiments

In addition to the 2-sparse parity problem, here we give additional experiments for the k-sparse parity
problems with k = 3 and k = 4. The setting is the same with the main text, except that the width,
step size, the number of iterations are modified to N = 2, 000, η = 0.2, and T = 10, 000, and we
take different grids of n and d. We ran the experiment 10 times and plotted the mean for each n and
d. The results are provided in Figure 2.

For k = 3, which is shown in Figure 2 (a), we can see that there appear phase-transition lines of
n = Θ(d2) and n = Θ(d), which correspond to the test accuracy of around 90% and the test accuracy
of around 70%, respectively. The former almost perfect classification means the Type I convergence
in 4.2, where the classification error gets exponentially small with respect to n/d2. The latter means
the Type II polynomial convergence.

For k = 4, presented in Figure 2 (b), only the linear phase-transition, that corresponds to the test
accuracy of around 70%, is observed.

Together with Section 5, we conclude that the our theoretical results are experimentally verified for
the 2-sparse parity problem as well as higher-order sparse parity problems. The reason why the
quadratic line was not observed in k = 4 would be partially because the hidden coefficients and the
required number of steps are exponentially large with respect to k.
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(a) Result with k = 3.
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(b) Result with k = 4.

Figure 2: Test accuracy of two-layer neural network trained by MFLD to learn a d-dimensional
k-sparse parity problems.
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