© Weight Squeezing: Reparameterization for Knowledge Transfer and
Model Compression

Anonymous ACL submission

Abstract

In this work, we present a novel approach to
simultaneous knowledge transfer and model
compression called Weight Squeezing. With
this method, we perform knowledge transfer
from a teacher model by learning the map-
ping from its weights to smaller student
model weights.

We applied Weight Squeezing to a pre-trained
text classification model based on a BERT-
Medium model. We compared our method to
various other knowledge transfer and model
compression methods using the GLUE mul-
titask benchmark. We observed that our ap-
proach produces better results while being sig-
nificantly faster than other methods for train-
ing student models.

We also proposed a variant of Weight Squeez-
ing called Gated Weight Squeezing, in which
we combined fine-tuning a small BERT model
and learning mapping from larger BERT
weights. We showed that, in most cases,
fine-tuning a BERT model with Gated Weight
Squeezing can outperform plain fine-tuning.

1 Introduction

Fine-tuning pre-trained models became a de-facto
standard technique in natural language processing
(NLP). Devlin et al. (2019) introduced BERT (Bidi-
rectional Encoder Representations from Transform-
ers), a language representation Transformer model
(Vaswani et al., 2017) trained to predict masked
tokens in texts from unlabeled data.

While BERT is capable of learning rich rep-
resentations of text, using it for solving simple
downstream tasks can be excessive. This is espe-
cially important when running downstream models
on edge devices, such as mobile phones. A com-
mon approach in such cases is model compression
(Ganesh et al., 2020).

In this work, we present a novel approach to
simultaneous transfer learning and model compres-
sion called Weight Squeezing where we learn the

mapping from a teacher model’s weights to a stu-
dent model’s weights.

We applied Weight Squeezing to a pre-trained
teacher text classification model to obtain a smaller
student model. We compared our method with
common model compression approaches, including
variations of Knowledge Distillation (Ba and Caru-
ana, 2014; Hinton et al., 2015; Romero et al., 2014)
without any reparameterizations and low-rank ma-
trix factorization methods. Our experiments show
that in most cases, Weight Squeezing achieves bet-
ter performance than other methods.

We also proposed a method called Gated Weight
Squeezing to improve fine-tuning BERT models.
This method combines fine-tuning with mapping
larger BERT-Base weights. We showed that Gated
Weight Squeezing produces more accurate results
than plain fine-tuning.

2 Related Work

Approaches to compress BERT include pruning
(Voita et al., 2019; McCarley et al., 2019), parame-
ter sharing (Lan et al., 2019), and knowledge dis-
tillation. Task-agnostic KD involves reducing the
size of BERT itself (Sanh et al., 2019; Sun et al.,
2020), while task-specific KD can be seen as fine-
tuning BERT on a downstream task first, and then
applying compression techniques to train a smaller
model Turc et al. (2019).

Some of these methods can be combined to
achieve better results (Mao et al., 2020). Low-rank
matrix factorization approaches (e.g., SVD) also
focus on reducing the size of model parameters.

3 Weight Squeezing

We now introduce a method to perform knowledge
transfer and model compression by learning the
mapping between teacher and student weights.

W/O REPARAM. WS SVD
CPU Time | (x1, x1) (x1, x1) (x5.3, x4.9)
GPU Time | (x1, x1) (x1, x1) (x2.2, x2.2)
MLE | KD [KD-EO | MLE [KD | KD-EO [MLE | KD | KD-EO
SST2 32| 827 821 831 [828 837 838 [80 813 820
16 | 821 823 829 | 841 829 829 | 820 818 817
MNLLmm |32] 650 649 705 [715 644 682 [681 6L1 709
16 | 570 594 592 | 573 573 643 | 563 553 608
COLA 32173 181 174 [170 193 207 [183 177 180
16 | 161 170 156 | 150 166 165 | 168 167 16.0
STSB 32210 209 208 [274 165 281 [276 288 280
16 | 204 211 212 | 179 199 251 | 293 273 215
MRPC 2716 713 719 [790 785 7715 [777 718 782
16 | 788 782 780 | 781 785 782 | 765 767 715
QQP 32766 717 770 [762 766 761 [791 766 784
16 | 749 757 732 | 739 753 735 | 726 731 740
ONLI 32 613 616 634 [743 667 799 [645 649 768
16 | 617 621 619 | 646 646 686 | 628 627 628
RTE 32| 592 596 592 [603 596 596 [607 610 603
16 | 585 588 592 | 574 603 610 | 585 585 581

Table 1: Accuracy on GLUE tasks for the Model Compression experiment (see Section 4). We report inference
time results (lower is better) for each of the reparameterization methods. We refer to d as the model hidden size.
We report inference time for CPU and GPU in "(d=16 time, d=32 time)" format. WS outperformed training without

reparameterization.

Suppose we have a pre-trained teacher Trans-
former model with a large hidden state. For some
linear layer I, we have a weight matrix O} with the
shape n; x m; (we will omit the [/ subscript later
for simplicity).

We explore a case where the weights of a pre-
trained teacher model are too big to run and store
the model on an edge device. For this reason, we
may want to train a student model with a smaller
number of parameters. Let us say that we want the
student model to make the weight matrix ©° at the
same layer [to have the shape equal to a x b, where
a < nand b << m.

In this approach, instead of training student
model weights ©° from scratch, we reparameterize
them as a trainable linear mapping from teacher
model weights ©'. Doing so allows us to trans-
fer knowledge stored in the teacher weights to the
student weights.

0° = LO'R (1

where £ and R are randomly initialized trainable
parameters of the mapping with shapes equal to
a x n and m x b respectively .

At the same time, mapping of teacher biases and
word embeddings is performed as a single linear

mapping as follows:

s =0'R (2)

single

where biases are matrices of size 1 x b and word
embeddings have size V' x b, and V is the total
number of words in the vocabulary.

After reparameterization of the student model
weights using Equations 1 and 2, we train map-
ping weights £ and R using plain negative log-
likelihood (Weight Squeezing) or KD loss (Weight
Squeezing combined with KD). When the mapping
weights are trained, we compute student weights
and then use them to make predictions dropping £
and ‘R matrices.

4 Model Compression with Weight
Squeezing

In this work, we focus on applying Weight Squeez-
ing for task-specific model compression. For this
purpose, we fine-tuned the BERT-Medium model
(41M parameters) on a particular dataset to ob-
tain the pre-trained teacher model. We then ap-
plied Weight Squeezing to reparameterize weights
of the significantly smaller target model (1M and
0.5M parameters, 40 and 80 times smaller than the
teacher model, respectively.).

We trained all models on GLUE datasets (Wang
et al.,, 2018). For each dataset, we trained a

teacher model by fine-tuning the pre-trained BERT-
Medium model.

We consider the following methods for repa-
rameterization of student models: without weight
reparametrization, Weight Squeezing, and SVD.
Each of the baselines above could be trained with
ambiguous methods. We used the following ap-
proaches: MLE, Knowledge Distillation (KD),
Knowledge Distillation on Encoder Outputs (distil-
lation on hidden states of teacher model).

Since we focused on making models smaller
in terms of the overall number of parameters, we
trained student models in two configurations of
small hidden sizes equal to 16 and 32. For all
models, we used the number of heads equal to 4,
and a fixed number of Transformer layers equal to
8 for teacher models.

SA Heads: 4 8
Hidden size: 16 32 512
Plain BERT 0.52M | 1.1M | 41.3M
WS 4.18M | 8.4M
SVD 0.53M | 1.1IM

Table 2: The number of trainable parameters for each
model. Note that once the WS model is trained, we no
longer have to store mapping matrices £ and R. There-
fore, student models trained with WS will have their
number of parameters equal to Plain BERT during in-
ference.

For Weight Squeezing, we used fine-tuned
teacher models as the source of the mapping for
weight reparameterization. This way, we reparame-
terized all linear layers in the model as in Equation
1 and embedding vectors as in Equation 2. We
optimized the loss with respect to the mapping pa-
rameters used to reparameterize the student model
weights and the rest of the student model parame-
ters that were not reparameterized (e.g., the layer
normalization weights).

Note that in Low-Rank approach, we did not
directly train the student model with the specified
hidden state size as in Non Low-Rank Factorization
methods (Non-LRMF). Instead, we injected a bot-
tleneck in the middle of each layer, which allowed
us to reduce the total number of parameters in the
model. For this reason, we evaluated the number
of parameters for Non-LRMF models for hidden
sizes equal to 16 and 32 and then found appropriate
factorization ranks to make SVD models have an
approximately similar number of parameters. This

way, we compared Non-LRMF models of hidden
size equal to 16 and 32 with SVD models with r
equal to 2 and 7 (See Table 2).

4.1 Training Details

Hyperparameters for each model were tuned using
Bayesian hyperparameter search. We performed
a search for about 8-15 GPU days for each model
with NVIDIA A100 GPU. We maximized the ap-
propriate metric on each GLUE dataset dev split to
find each method’s best training configuration and
report the best performing method’s results.

We used Adam (Kingma and Ba, 2015) opti-
mizer to train all models with linear warmup and
linear decay of the learning rate. We also applied
dropout to the attention matrix and to the averaged
hidden state before the last linear layer, which pro-
duced logits of predictions.

5 Fine-Tuning with Gated Weight
Squeezing

We also propose Gated Weight Squeezing, where
we fine-tuned BERT-Base on specific task to obtain
a large teacher network and then reparameterized
the weights of a student model (in our experiments,
we used BERTg with 66M parameters) as follows:

0 =(1—-0(s) OLOR +0(s) ©0" (3)

©! are the weights of the teacher model (the ones
after fine-tuning a BERT-Base model), ©° are the
weights of BERTg which we want to fine-tune, s is
a scalar value, o is the sigmoid function, and ® is
an elementwise multiplication. We used £, R, ©°,
and s as trainable parameters. Embeddings were
also reparameterized in a gated way according to
Equation 2.

We compared plain fine-tuning and fine-tuning
via Gated Weight Squeezing of the 66M BERTj
model (6 layers, d = 768, 12 heads) on GLUE
tasks in this experiment. We also compared results
obtained with other models trained by plain fine-
tuning of compressed BERTs (Sanh et al., 2019;
Jiao et al., 2019; Wang et al., 2020; Lan et al.,,
2019).

5.1 Training Details

We first trained a teacher model by fine-tuning
BERT-Base (109M parameters). Then we used
this fine-tuned model and the BERTg model for the

Model Params SST2 CoLA QNLI RTE MNLI-m
BERT¢* 66M 92.1 57.7 89.6 72.2 81.9
Gated WS* 66M 92.7 60.8 90.0 72.2 82.3
DistilBERT 66M 92.7 51.3 89.2 59.9 82.2
TinyBERT 66M 93.0 54.0 91.1 73.4 84.5
MiniLM 66M 92.0 49.2 91.0 71.5 84.0

Table 3: Accuracy on the GLUE tasks for fine-tuning with the Gated Weight Squeezing experiment (See Section
5 for more details). "*" denotes experiments conducted by us. Results for DistilBERT, TinyBERT, and MiniLM
were obtained from the TinyBERT paper (Jiao et al., 2019), while results for ALBERT models were taken from
Lan et al. (2019). BERT-Medium results refer to teacher models used in Model Compression experiments (see

Section 4 and Table 1).

reparameterization of student model weights pro-
posed in the Equation 3. This resulted in a student
model with 66M parameters, which we compared
with baseline fine-tuning. The reparameterized stu-
dent model was trained with MLE loss.

Since BERT-Base and BERTg have a different
number of hidden layers (12 and 6 respectively),
we used the first 6 layers of BERT-Base to perform
weight mapping.

We followed the same training strategy as in
Section 4.1. We added a new hyperparameter for
training the Gated WS model for the initial gate s
value, which we used to select from a range equal
to [1; 4]. In addition, we optimized parameter s and
O separately from £ and R with different learning
rates.

6 Results

See Table 1 for the list of best model accuracy and
relative speed measurements. We observed that
WS generally produced better results than models
trained without weight reparameterization. SVD
were competitive to WS for some datasets due
to the fact SVD operates with substantially big-
ger hidden states to evaluate attention. However,
SVD models were significantly slower in inference
than Non-LRMF (up to 2-5 times slower for SVD),
which makes WS the more appropriate choice when
speed is of essence.

6.1 Fine-Tuning

Fine-tuning of BERTg with Gated Weight Squeez-
ing produced better results than plain fine-tuning
without involving knowledge from the BERT-Base
model. We also outperformed DistilBERT and
MiniLLM on most tasks. Although TinyBERT out-
performed Gated WS on most tasks, which is the
groundwork for the future.

7 Conclusion & Future Work

We introduced Weight Squeezing and Gated
Weight Squeezing, a novel approach to knowledge
transfer and model compression. Our work shows
that it can compress pre-trained text classification
models and create competitive lightweight and fast
models.

We conducted experiments with GLUE and
demonstrated that Weight Squeezing produced bet-
ter results than models trained without weight repa-
rameterization. In addition, our results show that
Weight Squeezing could be a competitive alterna-
tive to Low-Rank Factorizing Methods in terms of
accuracy, while being substantially faster.

Furthermore, we demonstrated that Gated
Weight Squeezing could be used to fine-tune pre-
trained models, improving the resulting accuracy
compared to plain fine-tuning.

While our current work focused on transferring
knowledge to task-specific models, an important
area of research is the application of WS to task-
agnostic compression in order to create more appli-
cable BERT models trained for MLM tasks.

Another important direction of research is exper-
imenting with the initialization of mappings. We
are interested in applying this method in domains
beyond NLP to compress other types of layers (con-
volutional, etc.). In addition, reducing memory
footprint during WS training is crucial to making
the training more effective.

References

Jimmy Ba and Rich Caruana. 2014. Do deep nets really
need to be deep? In Advances in neural information
processing systems, page 2654-2662.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of

the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171-4186.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali
Khan, Yin Yang, Deming Chen, Marianne Winslett,
Hassan Sajjad, and Preslav Nakov. 2020. Compress-
ing large-scale transformer-based models: A case
study on bert. In arXiv preprint arXiv:2002.11985.

Geoffrey Hinton, Oriol Vinyals, , and Jeff Dean. 2015.
Distilling the knowledge in a neural network. In
arXiv preprint arXiv:1503.02531.

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.
2019. Tinybert: Distilling bert for natural language
understanding. In arXiv preprint arXiv:1909.10351.

Diederik Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In ICLR.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learning
of language representations. In International Con-
ference on Learning Representations.

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang,
Yang Wang, Yaming Yang, Quanlu Zhang, Yunhai
Tong, and Jing Bai. 2020. Ladabert: Lightweight
adaptation of bert through hybrid model compres-
sion. In arXiv preprint arXiv:2004.04124.

J.S. McCarley, Rishav Chakravarti, and Avirup
Sil. 2019. Structured pruning of a bert-based

question answering model. In arXiv preprint
arXiv:1910.06360.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-
hou, Antoine Chassang, Carlo Gatta, and Yoshua
Bengio. 2014. Fitnets: Hints for thin deep nets.
arXiv preprint arXiv:1412.6550.

Victor Sanh, Lysandre Debut, Julien Chaumond, and
Thomas Wolf. 2019. Distilbert, a distilled version of
bert: smaller, faster, cheaper and lighter. In NeurIPS
EMC?2 Workshop.

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,
Yiming Yang, and Denny Zhou. 2020. Mobilebert:
a compact task-agnostic bert for resource-limited de-
vices. In arXiv preprint arXiv:2004.02984.

Tulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina
Toutanova. 2019. Well-read students learn better:
On the importance of pre-training compact models.
In arXiv preprint arXiv:1908.08962.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998—6008.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-head
self-attention: Specialized heads do the heavy lift-
ing, the rest can be pruned. In Proceedings of the
57th Annual Meeting of the Association for Compu-
tational Linguistics, pages 5797-5808.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings
of the 2018 EMNLP Workshop BlackboxNLP: An-
alyzing and Interpreting Neural Networks for NLP,
pages 353-355.

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao,
Nan Yang, and Ming Zhou. 2020. Minilm: Deep
self-attention distillation for task-agnostic compres-
sion of pre-trained transformers. arXiv preprint
arXiv:2002.10957.

