
Weight Squeezing: Reparameterization for Knowledge Transfer and
Model Compression

Anonymous ACL submission

Abstract
In this work, we present a novel approach to001
simultaneous knowledge transfer and model002
compression called Weight Squeezing. With003
this method, we perform knowledge transfer004
from a teacher model by learning the map-005
ping from its weights to smaller student006
model weights.007

We applied Weight Squeezing to a pre-trained008
text classification model based on a BERT-009
Medium model. We compared our method to010
various other knowledge transfer and model011
compression methods using the GLUE mul-012
titask benchmark. We observed that our ap-013
proach produces better results while being sig-014
nificantly faster than other methods for train-015
ing student models.016

We also proposed a variant of Weight Squeez-017
ing called Gated Weight Squeezing, in which018
we combined fine-tuning a small BERT model019
and learning mapping from larger BERT020
weights. We showed that, in most cases,021
fine-tuning a BERT model with Gated Weight022
Squeezing can outperform plain fine-tuning.023

1 Introduction024

Fine-tuning pre-trained models became a de-facto025

standard technique in natural language processing026

(NLP). Devlin et al. (2019) introduced BERT (Bidi-027

rectional Encoder Representations from Transform-028

ers), a language representation Transformer model029

(Vaswani et al., 2017) trained to predict masked030

tokens in texts from unlabeled data.031

While BERT is capable of learning rich rep-032

resentations of text, using it for solving simple033

downstream tasks can be excessive. This is espe-034

cially important when running downstream models035

on edge devices, such as mobile phones. A com-036

mon approach in such cases is model compression037

(Ganesh et al., 2020).038

In this work, we present a novel approach to039

simultaneous transfer learning and model compres-040

sion called Weight Squeezing where we learn the041

mapping from a teacher model’s weights to a stu- 042

dent model’s weights. 043

We applied Weight Squeezing to a pre-trained 044

teacher text classification model to obtain a smaller 045

student model. We compared our method with 046

common model compression approaches, including 047

variations of Knowledge Distillation (Ba and Caru- 048

ana, 2014; Hinton et al., 2015; Romero et al., 2014) 049

without any reparameterizations and low-rank ma- 050

trix factorization methods. Our experiments show 051

that in most cases, Weight Squeezing achieves bet- 052

ter performance than other methods. 053

We also proposed a method called Gated Weight 054

Squeezing to improve fine-tuning BERT models. 055

This method combines fine-tuning with mapping 056

larger BERT-Base weights. We showed that Gated 057

Weight Squeezing produces more accurate results 058

than plain fine-tuning. 059

2 Related Work 060

Approaches to compress BERT include pruning 061

(Voita et al., 2019; McCarley et al., 2019), parame- 062

ter sharing (Lan et al., 2019), and knowledge dis- 063

tillation. Task-agnostic KD involves reducing the 064

size of BERT itself (Sanh et al., 2019; Sun et al., 065

2020), while task-specific KD can be seen as fine- 066

tuning BERT on a downstream task first, and then 067

applying compression techniques to train a smaller 068

model Turc et al. (2019). 069

Some of these methods can be combined to 070

achieve better results (Mao et al., 2020). Low-rank 071

matrix factorization approaches (e.g., SVD) also 072

focus on reducing the size of model parameters. 073

074

3 Weight Squeezing 075

We now introduce a method to perform knowledge 076

transfer and model compression by learning the 077

mapping between teacher and student weights. 078

1



W/O REPARAM. WS SVD
CPU Time ↓ (×1, ×1) (×1, ×1) (×5.3, ×4.9)
GPU Time ↓ (×1, ×1) (×1, ×1) (×2.2, ×2.2)

MLE KD KD-EO MLE KD KD-EO MLE KD KD-EO

SST2 32 82.7 82.1 83.1 82.8 83.7 83.8 82.0 81.3 82.0
16 82.1 82.3 82.9 84.1 82.9 82.9 82.0 81.8 81.7

MNLI-mm 32 65.0 64.9 70.5 71.5 64.4 68.2 68.1 61.1 70.9
16 57.0 59.4 59.2 57.3 57.3 64.3 56.3 55.3 60.8

COLA 32 17.3 18.1 17.4 17.0 19.3 20.7 18.3 17.7 18.0
16 16.1 17.0 15.6 15.0 16.6 16.5 16.8 16.7 16.0

STSB 32 21.0 20.9 20.8 27.4 16.5 28.1 27.6 28.8 28.0
16 20.4 21.1 21.2 17.9 19.9 25.1 29.3 27.3 27.5

MRPC 32 77.6 77.3 77.9 79.0 78.5 77.5 77.7 77.8 78.2
16 78.8 78.2 78.0 78.1 78.5 78.2 76.5 76.7 77.5

QQP 32 76.6 77.7 77.0 76.2 76.6 76.1 79.1 76.6 78.4
16 74.9 75.7 73.2 73.9 75.3 73.5 72.6 73.1 74.0

QNLI 32 61.3 61.6 63.4 74.3 66.7 79.9 64.5 64.9 76.8
16 61.7 62.1 61.9 64.6 64.6 68.6 62.8 62.7 62.8

RTE 32 59.2 59.6 59.2 60.3 59.6 59.6 60.7 61.0 60.3
16 58.5 58.8 59.2 57.4 60.3 61.0 58.5 58.5 58.1

Table 1: Accuracy on GLUE tasks for the Model Compression experiment (see Section 4). We report inference
time results (lower is better) for each of the reparameterization methods. We refer to d as the model hidden size.
We report inference time for CPU and GPU in "(d=16 time, d=32 time)" format. WS outperformed training without
reparameterization.

Suppose we have a pre-trained teacher Trans-079

former model with a large hidden state. For some080

linear layer l, we have a weight matrix Θt
l with the081

shape nl ×ml (we will omit the l subscript later082

for simplicity).083

We explore a case where the weights of a pre-084

trained teacher model are too big to run and store085

the model on an edge device. For this reason, we086

may want to train a student model with a smaller087

number of parameters. Let us say that we want the088

student model to make the weight matrix Θs at the089

same layer l to have the shape equal to a×b, where090

a� n and b� m.091

In this approach, instead of training student092

model weights Θs from scratch, we reparameterize093

them as a trainable linear mapping from teacher094

model weights Θt. Doing so allows us to trans-095

fer knowledge stored in the teacher weights to the096

student weights.097

Θs = LΘtR (1)098

whereL andR are randomly initialized trainable099

parameters of the mapping with shapes equal to100

a× n and m× b respectively .101

At the same time, mapping of teacher biases and102

word embeddings is performed as a single linear103

mapping as follows: 104

Θs
single = ΘtR (2) 105

where biases are matrices of size 1× b and word 106

embeddings have size V × b, and V is the total 107

number of words in the vocabulary. 108

After reparameterization of the student model 109

weights using Equations 1 and 2, we train map- 110

ping weights L and R using plain negative log- 111

likelihood (Weight Squeezing) or KD loss (Weight 112

Squeezing combined with KD). When the mapping 113

weights are trained, we compute student weights 114

and then use them to make predictions dropping L 115

andR matrices. 116

4 Model Compression with Weight 117

Squeezing 118

In this work, we focus on applying Weight Squeez- 119

ing for task-specific model compression. For this 120

purpose, we fine-tuned the BERT-Medium model 121

(41M parameters) on a particular dataset to ob- 122

tain the pre-trained teacher model. We then ap- 123

plied Weight Squeezing to reparameterize weights 124

of the significantly smaller target model (1M and 125

0.5M parameters, 40 and 80 times smaller than the 126

teacher model, respectively.). 127

We trained all models on GLUE datasets (Wang 128

et al., 2018). For each dataset, we trained a 129

2



teacher model by fine-tuning the pre-trained BERT-130

Medium model.131

We consider the following methods for repa-132

rameterization of student models: without weight133

reparametrization, Weight Squeezing, and SVD.134

Each of the baselines above could be trained with135

ambiguous methods. We used the following ap-136

proaches: MLE, Knowledge Distillation (KD),137

Knowledge Distillation on Encoder Outputs (distil-138

lation on hidden states of teacher model).139

Since we focused on making models smaller140

in terms of the overall number of parameters, we141

trained student models in two configurations of142

small hidden sizes equal to 16 and 32. For all143

models, we used the number of heads equal to 4,144

and a fixed number of Transformer layers equal to145

8 for teacher models.146

SA Heads: 4 8

Hidden size: 16 32 512

Plain BERT 0.52M 1.1M 41.3M

WS 4.18M 8.4M -

SVD 0.53M 1.1M -

Table 2: The number of trainable parameters for each
model. Note that once the WS model is trained, we no
longer have to store mapping matrices L andR. There-
fore, student models trained with WS will have their
number of parameters equal to Plain BERT during in-
ference.

For Weight Squeezing, we used fine-tuned147

teacher models as the source of the mapping for148

weight reparameterization. This way, we reparame-149

terized all linear layers in the model as in Equation150

1 and embedding vectors as in Equation 2. We151

optimized the loss with respect to the mapping pa-152

rameters used to reparameterize the student model153

weights and the rest of the student model parame-154

ters that were not reparameterized (e.g., the layer155

normalization weights).156

Note that in Low-Rank approach, we did not157

directly train the student model with the specified158

hidden state size as in Non Low-Rank Factorization159

methods (Non-LRMF). Instead, we injected a bot-160

tleneck in the middle of each layer, which allowed161

us to reduce the total number of parameters in the162

model. For this reason, we evaluated the number163

of parameters for Non-LRMF models for hidden164

sizes equal to 16 and 32 and then found appropriate165

factorization ranks to make SVD models have an166

approximately similar number of parameters. This167

way, we compared Non-LRMF models of hidden 168

size equal to 16 and 32 with SVD models with r 169

equal to 2 and 7 (See Table 2). 170

4.1 Training Details 171

Hyperparameters for each model were tuned using 172

Bayesian hyperparameter search. We performed 173

a search for about 8-15 GPU days for each model 174

with NVIDIA A100 GPU. We maximized the ap- 175

propriate metric on each GLUE dataset dev split to 176

find each method’s best training configuration and 177

report the best performing method’s results. 178

We used Adam (Kingma and Ba, 2015) opti- 179

mizer to train all models with linear warmup and 180

linear decay of the learning rate. We also applied 181

dropout to the attention matrix and to the averaged 182

hidden state before the last linear layer, which pro- 183

duced logits of predictions. 184

185

5 Fine-Tuning with Gated Weight 186

Squeezing 187

We also propose Gated Weight Squeezing, where 188

we fine-tuned BERT-Base on specific task to obtain 189

a large teacher network and then reparameterized 190

the weights of a student model (in our experiments, 191

we used BERT6 with 66M parameters) as follows: 192

Θs = (1− σ(s))� LΘtR+ σ(s)�Θb (3) 193

Θt are the weights of the teacher model (the ones 194

after fine-tuning a BERT-Base model), Θb are the 195

weights of BERT6 which we want to fine-tune, s is 196

a scalar value, σ is the sigmoid function, and � is 197

an elementwise multiplication. We used L,R, Θb, 198

and s as trainable parameters. Embeddings were 199

also reparameterized in a gated way according to 200

Equation 2. 201

We compared plain fine-tuning and fine-tuning 202

via Gated Weight Squeezing of the 66M BERT6 203

model (6 layers, d = 768, 12 heads) on GLUE 204

tasks in this experiment. We also compared results 205

obtained with other models trained by plain fine- 206

tuning of compressed BERTs (Sanh et al., 2019; 207

Jiao et al., 2019; Wang et al., 2020; Lan et al., 208

2019). 209

5.1 Training Details 210

We first trained a teacher model by fine-tuning 211

BERT-Base (109M parameters). Then we used 212

this fine-tuned model and the BERT6 model for the 213

3



Model Params SST2 CoLA QNLI RTE MNLI-m
BERT6* 66M 92.1 57.7 89.6 72.2 81.9
Gated WS* 66M 92.7 60.8 90.0 72.2 82.3
DistilBERT 66M 92.7 51.3 89.2 59.9 82.2
TinyBERT 66M 93.0 54.0 91.1 73.4 84.5
MiniLM 66M 92.0 49.2 91.0 71.5 84.0

Table 3: Accuracy on the GLUE tasks for fine-tuning with the Gated Weight Squeezing experiment (See Section
5 for more details). "*" denotes experiments conducted by us. Results for DistilBERT, TinyBERT, and MiniLM
were obtained from the TinyBERT paper (Jiao et al., 2019), while results for ALBERT models were taken from
Lan et al. (2019). BERT-Medium results refer to teacher models used in Model Compression experiments (see
Section 4 and Table 1).

reparameterization of student model weights pro-214

posed in the Equation 3. This resulted in a student215

model with 66M parameters, which we compared216

with baseline fine-tuning. The reparameterized stu-217

dent model was trained with MLE loss.218

Since BERT-Base and BERT6 have a different219

number of hidden layers (12 and 6 respectively),220

we used the first 6 layers of BERT-Base to perform221

weight mapping.222

We followed the same training strategy as in223

Section 4.1. We added a new hyperparameter for224

training the Gated WS model for the initial gate s225

value, which we used to select from a range equal226

to [1; 4]. In addition, we optimized parameter s and227

Θb separately from L andR with different learning228

rates.229

6 Results230

See Table 1 for the list of best model accuracy and231

relative speed measurements. We observed that232

WS generally produced better results than models233

trained without weight reparameterization. SVD234

were competitive to WS for some datasets due235

to the fact SVD operates with substantially big-236

ger hidden states to evaluate attention. However,237

SVD models were significantly slower in inference238

than Non-LRMF (up to 2-5 times slower for SVD),239

which makes WS the more appropriate choice when240

speed is of essence.241

6.1 Fine-Tuning242

Fine-tuning of BERT6 with Gated Weight Squeez-243

ing produced better results than plain fine-tuning244

without involving knowledge from the BERT-Base245

model. We also outperformed DistilBERT and246

MiniLM on most tasks. Although TinyBERT out-247

performed Gated WS on most tasks, which is the248

groundwork for the future.249

7 Conclusion & Future Work 250

We introduced Weight Squeezing and Gated 251

Weight Squeezing, a novel approach to knowledge 252

transfer and model compression. Our work shows 253

that it can compress pre-trained text classification 254

models and create competitive lightweight and fast 255

models. 256

We conducted experiments with GLUE and 257

demonstrated that Weight Squeezing produced bet- 258

ter results than models trained without weight repa- 259

rameterization. In addition, our results show that 260

Weight Squeezing could be a competitive alterna- 261

tive to Low-Rank Factorizing Methods in terms of 262

accuracy, while being substantially faster. 263

Furthermore, we demonstrated that Gated 264

Weight Squeezing could be used to fine-tune pre- 265

trained models, improving the resulting accuracy 266

compared to plain fine-tuning. 267

While our current work focused on transferring 268

knowledge to task-specific models, an important 269

area of research is the application of WS to task- 270

agnostic compression in order to create more appli- 271

cable BERT models trained for MLM tasks. 272

Another important direction of research is exper- 273

imenting with the initialization of mappings. We 274

are interested in applying this method in domains 275

beyond NLP to compress other types of layers (con- 276

volutional, etc.). In addition, reducing memory 277

footprint during WS training is crucial to making 278

the training more effective. 279

References 280

Jimmy Ba and Rich Caruana. 2014. Do deep nets really 281
need to be deep? In Advances in neural information 282
processing systems, page 2654–2662. 283

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and 284
Kristina Toutanova. 2019. Bert: Pre-training of 285
deep bidirectional transformers for language under- 286
standing. In Proceedings of the 2019 Conference of 287

4



the North American Chapter of the Association for288
Computational Linguistics: Human Language Tech-289
nologies, Volume 1 (Long and Short Papers), pages290
4171–4186.291

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali292
Khan, Yin Yang, Deming Chen, Marianne Winslett,293
Hassan Sajjad, and Preslav Nakov. 2020. Compress-294
ing large-scale transformer-based models: A case295
study on bert. In arXiv preprint arXiv:2002.11985.296

Geoffrey Hinton, Oriol Vinyals, , and Jeff Dean. 2015.297
Distilling the knowledge in a neural network. In298
arXiv preprint arXiv:1503.02531.299

Xiaoqi Jiao, Yichun Yin, Lifeng Shang, Xin Jiang,300
Xiao Chen, Linlin Li, Fang Wang, and Qun Liu.301
2019. Tinybert: Distilling bert for natural language302
understanding. In arXiv preprint arXiv:1909.10351.303

Diederik Kingma and Jimmy Ba. 2015. Adam: A304
method for stochastic optimization. In ICLR.305

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,306
Kevin Gimpel, Piyush Sharma, and Radu Soricut.307
2019. Albert: A lite bert for self-supervised learning308
of language representations. In International Con-309
ference on Learning Representations.310

Yihuan Mao, Yujing Wang, Chufan Wu, Chen Zhang,311
Yang Wang, Yaming Yang, Quanlu Zhang, Yunhai312
Tong, and Jing Bai. 2020. Ladabert: Lightweight313
adaptation of bert through hybrid model compres-314
sion. In arXiv preprint arXiv:2004.04124.315

J.S. McCarley, Rishav Chakravarti, and Avirup316
Sil. 2019. Structured pruning of a bert-based317
question answering model. In arXiv preprint318
arXiv:1910.06360.319

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Ka-320
hou, Antoine Chassang, Carlo Gatta, and Yoshua321
Bengio. 2014. Fitnets: Hints for thin deep nets.322
arXiv preprint arXiv:1412.6550.323

Victor Sanh, Lysandre Debut, Julien Chaumond, and324
Thomas Wolf. 2019. Distilbert, a distilled version of325
bert: smaller, faster, cheaper and lighter. In NeurIPS326
EMC2 Workshop.327

Zhiqing Sun, Hongkun Yu, Xiaodan Song, Renjie Liu,328
Yiming Yang, and Denny Zhou. 2020. Mobilebert:329
a compact task-agnostic bert for resource-limited de-330
vices. In arXiv preprint arXiv:2004.02984.331

Iulia Turc, Ming-Wei Chang, Kenton Lee, and Kristina332
Toutanova. 2019. Well-read students learn better:333
On the importance of pre-training compact models.334
In arXiv preprint arXiv:1908.08962.335

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob336
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz337
Kaiser, and Illia Polosukhin. 2017. Attention is all338
you need. In Advances in neural information pro-339
cessing systems, pages 5998–6008.340

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen- 341
nrich, and Ivan Titov. 2019. Analyzing multi-head 342
self-attention: Specialized heads do the heavy lift- 343
ing, the rest can be pruned. In Proceedings of the 344
57th Annual Meeting of the Association for Compu- 345
tational Linguistics, pages 5797–5808. 346

Alex Wang, Amanpreet Singh, Julian Michael, Felix 347
Hill, Omer Levy, and Samuel Bowman. 2018. Glue: 348
A multi-task benchmark and analysis platform for 349
natural language understanding. In Proceedings 350
of the 2018 EMNLP Workshop BlackboxNLP: An- 351
alyzing and Interpreting Neural Networks for NLP, 352
pages 353–355. 353

Wenhui Wang, Furu Wei, Li Dong, Hangbo Bao, 354
Nan Yang, and Ming Zhou. 2020. Minilm: Deep 355
self-attention distillation for task-agnostic compres- 356
sion of pre-trained transformers. arXiv preprint 357
arXiv:2002.10957. 358

5


