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ABSTRACT

Model-fitting occurs when samples are overly adjusted to satisfy with the guidance
model rather than the true conditions, often leading to poor outcomes. The root
cause of this problem is the consecutiveness of guidance timesteps throughout the
diffusion sampling process. In this work, We quantify this effect and show that
breaking the consecutiveness of standard guidance alleviates the problem. Based
on this insight, our method, Compress Guidance, distributes a small number of
guidance steps across the full sampling process, yielding substantial improvements
in image quality and diversity while cutting guidance cost by over 80%. Experi-
ments on both label-conditional image generation and text-to-image generation,
across multiple datasets and models, confirm that Compress Guidance consis-
tently surpasses baselines in image quality with significantly lower computational
overhead.

1 INTRODUCTION

Guidance is mainly divided into classifier-free guidance in |Ho & Salimans| (2022) and classifier
guidance in|Dhariwal & Nichol| (2021). Although both of these methods significantly improve the
performance of the diffusion samples Dhariwal & Nichol (2021); Ho & Salimans|(2022); |Bansal
et al.[(2023)); |Liu et al.| (2023)); |[Epstein et al.|(2023)), they both suffer from high computation cost.
For classifier guidance, the act of gradients calculation backwards through a classifier is costly. On
the other hand, forwarding through a diffusion model twice at every timestep also costs significant
computation in classifier-free guidance.

This work challenges the necessity of the current complex process based on several key observations.
First, we find that the guidance loss is predominantly active during the early stages of the sampling
process, when the image lacks a well-defined structure. As the model progresses and shifts its focus
to refining image details, the guidance loss tends to approach zero. Additionally, when evaluating
intermediate samples with an additional classifier not used for guidance, we observe that the loss
from this external classifier does not decrease in the same way as it does for the guidance-specific
classifier. This suggests that the generated samples are tailored to fit the features of the guiding
classifier rather than producing generalized features applicable to different classifiers. We define
this issue as model-fitting, where the generated image pixels are optimized to satisfy the guiding
classifier’s criteria rather than generalizing to the intended conditions. The problem is validated by
three pieces of evidence in section[d.T]

These observations prompt us to question whether guidance is necessary at every timestep and how
reducing the frequency of guidance could enhance generative quality. In Section [4.2] we further
explore the properties of guidance in ensuring sample quality. Based on this analysis, we propose
a simple yet effective method called Compress Guidance (CompG), which mitigates the issue by
reducing the number of time steps that invoke gradient calculation. This approach not only improves
sample quality but also significantly accelerates the overall process as shown in Fig[I] In most parts
of the works, we utilize classifier guidance as the main object for observations due to the explicit loss
given by the classifier. However, the methods can be applied to classifier-free guidance as well.

Concurrent works have explored relevant ideas. |Wang et al.| (2024)) shows that early guidance can
cause conflicts and degrade outputs, while IntervalGuidance Kynkadnniemi et al.[(2025) reports the
best results at mid-range noise timesteps. However, as demonstrated in Section @], these insights
are not always correct. Moreover, the cost reduction in IntervalGuidance arises only as a byproduct
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Figure 1: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free guidance
with application on all 50 timesteps. Our proposed Compress Guidance method is the right figure, where we
only apply guidance on 8 out of 50 steps. Our methods are superior to classifier-free guidance regarding image
quality, quantitative performance, and efficiency. The efficiency is calculated by sampling 30000 images with 1

GPU. More comparison is in Appendix[H| (Figure([I3][T4| [[3][T6)

of avoiding low/high noise conflicts; it lacks an explicit mechanism for controlling guidance cost.
In contrast, our method directly regulates guidance steps through a defined equation, improving
efficiency without sacrificing performance. To the best of our knowledge, we are the first to explicitly
reduce guidance cost without relying on additional distillation training, and we do so by principled
analysis of model-fitting challenges. Furthermore, our plug-and-play approach is compatible with
any model. Throughout most of our study, we observe on classifier guidance because the classifier
provides explicit loss signals (unlike classifier-free guidance). Nevertheless, our observations extend
naturally to classifier-free guidance, as discussed in Section [d.4]

Overall, the contributions of our works are three-fold: (1) Explore and quantify the model-fitting
problem in guidance and the redundant computation resulting from current guidance methods. (2)
Propose a simple but effective method to contain the model-fitting problem and improve computational
time. (3) Extensive analysis and experimental results for different datasets and generative tasks on
both classifier and classifier-free guidance perspectives.

2 RELATED WORK

Diffusion Generative Models (DGMs) [Ho et al.| (2020); [Song et al| (2020b); [Vahdat et al.| (202T));
Song & Ermon| (2020); Lipman et al.| (2022) have recently become one of the most popular generative
models in many tasks such as image editingKawar et al.| (2023); [Huang et al| (2024), text-to-

image sampling [Rombach et al.| (2022)); [Podell et al.| (2023)); Ramesh et al.| (2022) or image/videos
generation [Ho et al| (2022); Blattmann et al.| (2023). Guidance is often utilized to improve the

performance of DGMs Dhariwal & Nichol| (2021); Ho & Salimans| (2022); Bansal et al.| (2023);
et all| (2023)); [Epstein et al.| (2023); Wang et al.| (2024); [Karras et al.| (2023;[2022). Besides improving
the performance, the guidance also offers a trade-off between image quality and diversity
Nichol| (2021)); [Ho & Salimans| (2022)); Ma et al.|(2023)), which helps users tune their sampling process
up to their expectations. Gradient views of guidance are also well explored in the literature.
explores the gradient vanishing problem in classifier guidance, while Dinh et al.| (2023al)
examines conflicts in guidance sampling, and [Dinh et al.| (2023b)) investigates guidance uncertainty
during sampling. Our work introduces a new perspective on guidance—model-fitting—drawing an
analogy to the overfitting problem in neural network training.

Although guidance is beneficial in many forms, it faces severe serious drawbacks in running time. For
classifier guidance, the running time is around 80% higher compared to the original diffusion model
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sampling time due to the evaluation of gradients at every sampling step. In contrast, classifier-free
guidance requires the process to forward to the expensive diffusion model twice at every timestep.
Previous works on improving the running time of DGMs involve the reduction of sampling steps
Song et al|(2020a)); [Zhang & Chen| (2022); |Song et al.| (2023) and latent-based diffusion models
Rombach et al.| (2022)); [Peebles & Xie| (2023)). Recently, the research community has focused on
distilling from a large number of timesteps to a smaller number of timesteps |Salimans & Ho|(2022);
Sauer et al.|(2023); ILi et al.| (2024); Yin et al.|(2024bja)); [Song & Dhariwall (2023); [Wang et al.| (2025));
Meng et al.| (2023); Heek et al.| (2024); [Yan et al.| (2024)); Luhman & Luhman| (2021)); Ren et al.
(2025); Zhou et al.| (2024) or reducing the architectures of diffusion models Li et al.| (2024); [Tang
et al.| (2023)); Zhang et al.| (2024). However, most of these works mainly solve the problem of the
expensive diffusion samplings, not the cost resulted by guidance.

Prior work Wang et al.| (2024)); [ Kynkaanniemi et al.| (2025) shows that early guidance can harm
generation in conditional diffusion models due to conflicts with conditional inputs. However, this
does not apply to unconditional models, where early guidance is essential for quality. These studies
also overlook the high computational cost of guidance. In contrast, our work addresses both quality
and efficiency, generalizing model-fitting issues to all guided diffusion and proposing a plug-and-play
solution to reduce guidance overhead without sacrificing performance.

3 BACKGROUND

Diffusion Models Ho et al.| (2020) have the form of: py := p(xr) Hthl po(x¢—1|xt) where
po(xt—1|xt) = N (x¢—1; o (x4, 1), Lo (T, t)) supporting the reverse process from x to xo. This
process is denoising process where starting from the x7 ~ N(x7;0,I) to gradually move
to xo ~ ¢(xg). This process is trained to be matched with the forward diffusion process

q(x1:7[x0) = Hthl q(x¢[x¢—1) given q(x¢[x;—1) as q(x¢[xi—1) = N (x4 V1 — Bx¢—1, BI) or
we can write the conditional distribution of x; given x as below:

q(xe|x0) := N (x¢; vVauxo, (1 — ap)I) (1)
B is the fixed variance scheduled before the process starts, [Ho et al.|(2020) denotes oy := 1 — 3;
and oy = szl g used in Eq We have the x;_; conditioned on x( and x; as:

q(x¢—1%¢,%0) = N (x¢—1; fie (Xe, X0), BeT) 2
where fi4(X¢,%0) 1= ¥ f‘falﬁ txo + @fi;f*‘l )x; and B = 11_:1;,;1 B¢. To train the diffusion
model, the lower bound loss is utilized as below:

Do(Xp—1|X
E[~ log po (x0)] < E[~ logp(xr) — Sz log 2=1Xt) @
q Q(Xt|Xt—1)

Rewrite Eq. (3| as Eq[Drr(g(xr|xo)llp(xr)) + >isy Drr(a(xe—1]xt; %o)[po(xi-1%:)) —
log pg(xo|x1)] The training process actually optimize the  °, , Dxr.(q(x:—1|X¢, Xo)|[po(Xt—1(x¢))
where the diffusion model try to match the distribution of x;_; by using only x;. There are several
implementations for optimising the However, the  as parameters of the noise predictor €y (x¢, t) is
the most popular choice. After the 6 are trained using Eq. |3} we have the sampling equation:

X¢_1 = (x¢,1)) + 02 @

1 ( 1— (673
X¢ — €
va V=a,
Guidance in the Diffusion model offers conditional information and image quality enhancement.
Given a classifier py(y|x;) that match with the labels distribution conditioned on images x;, we have
the sampling equation with guidance as:
Xi—1 ~ N (e + 507 Vi, log o (ylxe), 0v) 5)

with s is the guidance scale. Besides the classifier guidance as Eq[5] [Ho & Salimans| (2022) proposes
another version named classifier-free guidance. This guidance method does not base the information
on a classifier. Instead, the guidance depends on the conditional information from a conditional
diffusion model. The sampling equation has the form:

Xt — vV 1-— dgt
e

given € = (1 + w)eg(x¢, c) — wep(x¢) with w is the guidance scale.

X¢—1 NN(ﬂt(Xh )7Ut) (6)
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4 MODEL-FITTING IN GUIDANCE

We begin by modelling the sampling equation as two distinct optimization objectives, illustrating
that the sampling process functions as a form of “training", where parameters x; are optimized
over 7" timesteps. We then analyze the “training" of x; in light of these objectives, highlighting the
model-fitting problem that arises in the current guidance-driven sampling process. From EqH}

1 —ay)y/ar—1 x¢ — /1 — apep(xe, t 1—ay—1)/a
Xt—1=( V1 Xt —/ o (Xt )+( t i)\/ b, + 0y2 7

1— Qi V ay 1— (673
Distribution matching objective' Assuming that €y (x¢,t) is learned perfectly to match random

noise € at timestep ¢, we have Xt—Y-—to1Xt,t) ”1\/@46"(’('0 = Xy is the exact prediction of x; at timestep ¢

according to Eq[T] Denoting X is the prediction of x, at timestep ¢, we can re-write the equation as

bellow: )
Xt—1 = (1~ o) - at_lfio + u at_})\/OTtXt + o1z (3)
1-— Qg 1-— Qi
This equationcan be derived from q(x;_1|x¢, X0 ) in Eq. with parameterized trick for Gaussian Dis-
tribution. Thus, the first aim of the sampling process is to match the distribution ¢(x;—_1|x¢,Xo). Nev-
ertheless, the Eq[8]is based on the assumption that X ~ X, which often does not hold when ¢ — 7.
x¢—vT—ayeq(x¢,

Given Xg = T’s) this formulation is rooted from % ~ N'(— TEXt; ;11) with assump-

tion that €y(x¢,t) ~ €. However, eg(xy, t) is trained to minimize D 1 [q(X¢—1|X¢, X0)||po (x¢—1|%¢)]
as in[Ho et al.|(2020) which actually causes a significantly distorted information if €5 (x;, t) is utilized
to sample x( from x; if ¢ — T'. A smaller ¢ would result in a better prediction of xg and with £ = 0,
we have & = 1 resulting in Xy = X;.

Theorem 1. Assuming €g is trained to converge with noise prediction error magnitude at a timestep
t is approximate A, the sampling process xX;—1 ~ q(X¢—1|X¢,Xo) from T to 0 is equivalent to the
minimization of ||xg — Xol| .wrt. x.

Full proof is shown in Appendix[F If we consider x; of the Eq. as the set of optimization parameters,
the sampling process will have the objective miny, ||xo — Xo[]. The Eq[g|turns into:

Ol LY xnt) — o)
Var O Ty

71 Vi, |[%0—%o0]]

Xt—1 = Xt —

©))

Eq[9 turns the sampling process into a stochastic gradient descent process where the x; is the
parameter of the model at the timestep ¢, the updated direction into x; aims to satisfy miny, ||xo—Xo]|-
We denote gradient Vy, ||Xo — Xo|| as denoising gradient Vy, d.

Classification objective: From Eq we have the term so?V, log pe(y|x:) is added to the sam-
pling equation for guidance. This term can be written in full form as so?Vy, (q(y)log q(y) —
q(y)log pe(y|x¢)) which is equivalent to —so?V D 1,[q(y)||ps(9|x¢)]. Combine Eq{9| with guid-
ance information in Eq[5] we have:
Qp — 1 1-— Qi
=% — (— —_— 1) — 2Vy, | 10
X1 =% — ( Nl + m\/@@(){t ) — 012) — (=507 Vx, logps (y|x;)) ~ (10)

Y2V, D [a(y)||pe (9]%¢)]

Y1V, d

As a result, the process of updating x; to x;_1 is a “training" step to optimize to objective functions
|Ixo — %o|| and Dgr[q(y)||pe(f]x¢)] with two gradients respecting to x; as Eq[I0l Since this
is similar to the training process, it is expected to face some problems in training deep neural
networks. In this work, the problem of model fitting is detected by observing the losses given by the
classification objective during the sampling process. For convenience, from later on, V is denoted for
Vx, . Although classifier-free guidance does not have explicit loss function like classifier guidance,
the observation on classifier guidance still can be applied to classifier-free guidance.

4.1 MODEL-FITTING

Based on the optimization problem from the sampling process in the previous section, we first define
on-sampling loss and off-sampling loss for observation.
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Figure 2: ImageNer256x256. The top row is the vanilla guidance (obtained by ADM-G thariwal & Nichol|
), where all the timesteps got the guidance information. The second and third rows are our proposed
method, which only applies 35 time steps. The second row distributes the timesteps uniformly, while the third
row distributes the timesteps toward the early stage of the sampling process. The Compress Guidance performs
significantly better than the original guidance method. One blue stick means one guidance step.

Definition 1. On-sampling loss/accuracy refers to the loss or accuracy evaluated on the generated
samples x; at timestep t during the diffusion sampling process, which consists of T' timesteps. This
loss is defined as —1og py(4|x.) by the classifier parameters ¢ that provide guidance throughout the
sampling process.

Definition 2. Off-sampling loss/accuracy refers to the loss or accuracy evaluated on the generated
samples x; at timestep t during the diffusion sampling process, which consists of T' timesteps. This
loss is defined as —log py (4|x¢) by the classifier parameters ¢' that do not provides guidance
throughout the sampling process.

We set up the off-sampling classifier ¢’ with the same architecture and performance as the on-sampling
classifier ¢ used for guidance. The only difference between the two models is the parameters. Off-
sampling classifier is initialized as the parameters of the on-sampling classifier. We fine-tune the
off-sampling model with 10000 timesteps with the same loss for training the on-sampling classifier.
The testing accuracy between the off-sampling classifier and the on-sampling classifier is shown in

Table [T0]in Appendix

We visualize the on-sampling loss obtained from the noise-aware ADM classifier from
(2021) on ImageNet256x256, as shown in Figure[d Our results indicate that classification in-
formation is predominantly active during the early stages and converges within the first 120 timesteps.
In contrast, the off-sampling loss follows a different trend, converging only after the denoising
process is nearly ended. This observation suggests that generated samples behave inconsistently
when evaluated with classifiers of similar performance but different parameters, highlighting an
over-adjustment to the model’s parameters rather than to the true characteristics or conditions of the
generated images.

Definition 3. Model-fitting occurs when sampled images x; at timestep t is updated to maximize
pe(y|x¢) or to satisfy the parameters of the ¢ only instead of the real distribution q(y|x;).

In practice, a pretrained py(y|x;) is only able to capture part of the ¢(y|x;). Fitting solely with
Py (y|x:) limits the sample’s generalisation ability, leading to incorrect features or overemphasising
certain details due to misclassification or overfocusing of the guidance classifier. Three pieces of
evidence support that the vanilla guidance suffers from model-fitting problem.

Evidence 1: From Figl] we see that while the on-sampling loss converges around the
120" timestep, the off-sampling loss remains high until the diffusion model converges later.
This indicates that samples x; at timestep ¢ satisfy only the on-sampling classifier but not
the off-sampling classifier, despite their identical performance and architecture. Although
the off-sampling loss decreases by the end, a significant gap between the off-sampling and
on-sampling losses persists. This supports our hypothesis that the guidance sampling pro-
cess produces features that fit only the guidance classifier, not the conditional information.
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Figure 3: Left: G, UG, ES, DG represent vanilla guid- Figure 4: (left) OADM-C, (right) Resnet152 off-
ance, uniform skipping, early stopping, and delayed sampling loss. The On-sampling loss converges very
guidance. UG suffers from non-convergence; ES from early while leaving the off-sampling loss converges at
forgetting; DG is dominated by early signal. Right: the end of the process after the conclusion of the de-
Solid = on-sampling loss, dashed = off-sampling. De- noising process.

laying guidance amplifies negative effects.

Evidence 2: Tableillustrates the model-fitting Table 1: A significant gap exists between the on-
problem through accuracy metrics. With vanilla  sampling and the off-sampling classifier in terms of ac-
guidance, the accuracy is about 90.80% for the curacy, indicating model-fitting.
on-sampling classifier. However, the same sam- Evaluation Model Accuracy
ples evaluated by the off-sampling classifier - -
or Resnet152 achieve only around 62.5% and 8”‘”’"’7 ling classifier 20.8%
34.2% accuracy, respectively. This indicates if-sampling classifier 62.5%

Y p ¥y Off-sampling Resnetl52 34.2%
that many features generated by the model are
specific to the guidance classifier and do not generalize to other models.

Evidence 3: Figure 2| (first row) shows samples from vanilla guidance, where every sampling step
receives guidance information. Applying guidance at all timesteps forces the model to fit the on-
sampling classifier’s perception. Often, this makes the model colour-sensitive, focusing only on
generating the "orange" feature for Goldfish and ignoring other details such as the shape, position and
texture. From the three pieces of evidence we can observe, we can conclude that the vanilla guidance
scheme has suffered from the model-fitting problem.

Analogy to overfitting: In neural network training, we have a dataset x and a classifier fy(x) to
approximate the posterior distribution p(y|x). Let X, be the training data and X the testing data.
Overfitting occurs when fy is tailored to fit X, but fails to generalize to the entire dataset x. This
is observed by the gap between training loss/accuracy and testing loss/accuracy on Xpin and Xeg.
Table 3: Overfitting vs. Model-Fitting yn the diffusion model’s sampling process, the classifier fy
is pretrained or fixed. The aim is to adjust the samples x

Aspect Overfitting  Model-fitting N A .

Tram Data X To. to match the trained posterior py(y|x). This process also
Test Data Xiest Foo uses Stochastic Gradient Descent with different roles: fy4
Parameters fo x acts as the fixed data, and x are the trainable parameters.

The model-fitting problem arises when x is adjusted to fit
only the specific fy instead of generalizing conditional information. Here, fg4 is the on-sampling
"data", and off-sampling "data" f, is used to observe the model-fitting, analogous to using training
and testing data for overfitting observation.

Note: Similar model-fitting analysis for classifier-free guidance is in Appendix [C]

4.2 ANALYSIS

Gradient over-calculation is the main reason for model-fitting. Thus, gradient balance, which is not
to call too many times of gradient calculation, is required. A straightforward solution is to eliminate
the gradient calculations for the later timesteps, which have been found to be less active, as shown
in Figure[d] This approach is referred to as Early Stopping (ES), where guidance is halted from the
200%" timestep onwards, continuing until the 0** timestep.

Early Stopping: Figure [3| demonstrates that ES suffers from the forgerting problem, where on-
sampling classification loss increases during the remaining sampling process, negatively impacting
the generative outputs. This suggests that the guidance requires the property of continuity, meaning
the gap between consecutive guidance steps must not be too large to prevent the forgetting problem.

Uniform skipping guidance: We tried an alternative approach named Uniform Skipping Guidance
(UG). In UG, 50 guidance steps are evenly distributed across 250 sampling steps, with guidance
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applied every five steps. This ensures continuity throughout the sampling process, mitigating the
forgetting problem. However, as shown in Figure [ UG encounters the issue of non-convergence,
where the classification magnitude is too weak and becomes overshadowed by the denoising signals
from the diffusion models, leading to poor conditional information. Thus, guidance must require
another property, which is magnitude sufficiency.

Delayed Guidance (DG): Prior work Kynk&danniemi et al. (2025)); Wang et al| (2024) suggests
delaying guidance to avoid conflicts with the diffusion model. However, as shown in Figure [3 (right),
longer delays worsen performance. Why does this contradict\Wang et al.|(2024)? That study assumes
a conditional diffusion model, where applying guidance too early causes conflicts between guidance
and conditional information of diffusion model. But in an unconditional model, there’s no such
conflict—so delaying guidance only harms performance.

In summary, vanilla guidance faces the issue of model-fitting, while ES and UG fail due to the
forgetting and non-convergence problems, respectively. Therefore, the primary goal of our proposed
method is to meet three key conditions which are gradient balance, guidance continuity and
magnitude sufficiency.

4.3 COMPRESS GUIDANCE

To avoid calculating gradient too frequently, we propose to utilize the gradient from the previous
guidance step at several next sampling steps, given that the gradient magnitude difference between two
consecutive sampling steps is not too significant. By doing this, we can satisfy magnitude sufficiency
without re-calculating the gradient at every sampling step. Note that the gradient directions have not
been updated since the last guidance step, resulting in the gradient balance. Since all the sampling
step receives a guidance signal, the continuity is guaranteed.

The hypothesis for utilizing the gradient from the previous timestep is three-fold. First of all, the
avoidance of re-calculation of gradients frequently through the classifier prevents the generated
samples from capturing the classification pattern of the classifier and helps to avoid model-fitting.
Second, in the early stage, the avoidance of frequent gradient updates helps to avoid the noisy updated
direction given by noisy samples. Finally, when the image is clear in the later timesteps, it is safe to
skip the gradient calculation since the value of the gradient is less active during this stage as in Fig[4]

o {Xt —1Vd = VDgrlgglxe)lla(y)], ift G

11
Xy — 1 Vd — vy, otherwise an

The set G is the set of time-steps for which the gradient will be calculated. T' is a vari-
able used to store the calculated gradient from the previous sampling step, I'; is updated by
oo {VDKL[q(th) lq(y)], ifteG
=1 = .
ts otherwise.
gradients as in Eq. [TT] we can slightly improve the performance by compressing the duplicated
gradients into one guidance step instead of providing guidance to all sampling as in Eq[T2] We name
this method as Compress Guidance.We modify the sampling equation as below:

Gi .
oy = %t NnVd =2y l5 Ty, ift =a; (12)
- x; — 11 Vd, otherwise

. In practice, we find out that instead of duplicating

One of the algorithm’s assumptions is that the magnitude is mostly the same for two consecutive
sampling steps. From Appendix |Gl we observe that the classification gradient magnitude difference
between two consecutive sampling steps is often larger in the early stage of the sampling process.
Thus, we propose a method that distributes more guidance toward the early sampling stage and
sparely at the end of the process. This will help to avoid the significant accumulation of magnitude
differences in the early stage and help to deliver better performance as well as reduce the number of
guidance steps. The scheme is defined as Eq.[I3]

T . .
Gi:TfLWsz V0 <i <1,k € [0;400] (13)

From the eq. we have two main properties. First, when & — 400, guidance timesteps are
distributed toward the early stage of the sampling process. Second, when k£ < 1 and k& — 0, guidance
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Figure 5: ImageNet256x256. Left: Vanilla guidance applied at all timesteps. Right: Compress Guidance
applied at 50 out of 250 timesteps. Compress Guidance reduces over-emphasized features, correcting weird and
incorrect details. Further results are in Appendix@

timesteps are distributed toward the late stage of the process. The proposed solution to select the
timesteps for guidance as Eq[T3]allows us to choose the number of timesteps we will do guidance and
how to distribute these timesteps along the sampling process by adjusting the k values. The full proof
of these properties is written in the Appendix [F} The full algorithm is in Algorithm [I] (Appendix).

4.4 COMPRESS GUIDANCE ON CLASSIFIER-FREE GUIDANCE

We start from the noise sampling equation of the classifier-free guidance as: € = (1+w)eq(x¢, ¢, t) —
weg(Xe,t) = €g(xt, ¢, t) + wleg(xy, ¢, t) — ea(x4,t)) = eg(xy,¢,t) +wC. C could stand for
classification information as mentioned in[Dinh et al| (2023c). Replace the € to Eq[9] we have:

\/Oét_l 1— o ar — 1
Xt—1 = Xt — (——F—X¢t + ———=¢€¢(X¢, ¢, t) — 012) — wC (14)
( Var V1= a/ar (xe, 1) ) VI—a
v1Vd (match with Eq. ﬁ classification information

From this perspective, we can further apply the technique from Compress Guidance to the classifica-
tion term in classifier-free guidance with the compression of classification information \‘/"%C’ .
— Qg

5 EXPERIMENTAL RESULTS

Setup Experiments are conducted on pretrained Diffusion models on ImageNet 64x64, ImageNet
128x128, ImageNet 256x256, ImageNet 512x512 (2009) and MSCOCO |Lin et al| (2014).
The base Diffusion models utilized for label condition sampling task are ADM Dhariwal & Nichol|

2021) and CADM Dhariwal & Nichol| (2021) for classifier guidance, EDM2 [Karras et al, (2023)
DiTPeebles & Xie| (2023) for classifier-free guidance (CFG)Ho & Salimans (2022), GLIDENichol|
let al.| (2021)) for CLIP text-to-image guidance and Stable Diffusion Rombach et al.|(2022) for text-to-
image classifier-free guidance. Other baselines we also do comparison is BigGAN |Brock et al.| (2018
VAQ-VAE-2 [Zhao et al| (2020), LOGAN (2019), DCTransformers [Nash et al.| (2021).
FID/sFID, Precision and Recall are utilized to evaluate image quality and diversity measurements.
We denote Compress Guidance as “-CompG" and “-G" as vanilla guidance, “-CFG" is the CFG, and
“-CompCFG" is our proposed Compress Guidance applying on CFG. Full results with details of the
experimental set-up are discussed in Appendix [D]and [E]

5.1 CLASSIFIER & CLASSIFIER-FREE GUIDANCE

Guidance in unconditional diffusion models enhances both image quality and diversity by providing
conditional information during sampling, as shown in Table[d CompressGuidance (CG) significantly
improves FID, sFID, and Recall metrics, supported by qualitative evidence in Figures [5]and[TT] and
reduces guidance steps by 5%, leading to a 42% and 23% decrease in runtime on ImageNet 64x64
and 256x256, respectively (trade-off IS/FID can be observed in Fig.[8]and[9). In contrast, guidance in
conditional diffusion models mainly boosts diversity, with smaller overall impact due to the model’s
inherent conditional structure. As shown in Table [I3] CompG still improves Recall and reduces
guidance steps by 5x, with notable runtime savings of 39.79%, 29.63%, and 22% on ImageNet
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64x64, 128x128, and 256x256 resolutions, respectively. From section[d.4] we also apply the CompG
technique on classifier-free guidance (CompCFG) and demonstrate the results in Table 5]

Table 5: Conditional diffusion: CompCFG yield
lower FID and runtime with fewer guidance steps.

Table 4: Unconditional guidance: CompG reduces
guidance by 5x and improves performance.

Model |G| (1) GPUhours(}) FID(}) sFID(}]) Prec(f) Rec() Model G|(}) GPUhours () FID(}) sFID(}) Prec() Rec (1)

ImageNet 64x64 ImageNet 256x256

ADM (No guidance) 0 26.33 9.95 6.58 0.60 0.65 DiT (No guidance) 0 36.33 10.94 6.02 0.69 0.63
TADM-GT T T T T T T T 2500 T T T 5486 6407 T T 967 T 073 T 054 TDITCFG ~ ~ T T T T 7 25077 T 77504 7T T 72257 T 74560 0 082 T 058

ADM-CompG 50 31.80 591 8.26 0.71 0.56 DiT-CompCFG 22 42.20 2.19 4.74 0.82 0.60

ImageNet 256x256 ImageNet 512x512

ADM (No guidance) 0 245.37 26.21 6.35 0.61 0.63 EDM2 (No guidance) 0 4.22 2.23 5.21 0.75 0.62
TADM-GT T T T T T T T 507 T T 7334250 T T 1196 T 1028 T T 075 T 045 TEDM2-CFG ~~ " T T 3277 T T BE3 T T 84~ 774067 083 059

ADM-CompG 50 25833 11.65 8.52 0.75 0.48 EDM2-CompCFG 6 5.06 1.63 391 0.80 0.61

5.2 TEXT-TO-IMAGE GUIDANCE

We apply the CompG on this task with two
types of guidances, which are CLIP-based guid-
ance (GLIDE)|Nichol et al.| (2021) and classifier-

Table 6: Stable Diffusion on MSCOCO 256x256.
CompG improves quality (Fig. [Z]) and all metrics.

Model |G (h _GPURs() FID) Is(h CLIP(M Genbwalh  free guidance (Stable Diffusion) Rombach et al.
SD-CFG 50 54 16.04 3234 30 0.42 H
- CompCFG 8 o V- oS o (2022)). The results are shown in Table[I2]and

[6] and Figure[T]

5.3 ABLATION STUDY

Distribution guidance timesteps toward the early stage of the 6/ o onsamping o
process: According to the eq. by adjusting k, we can distribute 5| % e e oss
the timesteps toward the early stage or the late stage of the sampling 4 T oS ofsamping loss
process. Table [/ shows the comparison between k values. With &5 W\ ESoffsameling oss
k = 1.0, guidance steps are distributed uniformly. Larger & results &, ~
in comparable performance but more fruitful running time and the | Tl
number of guidance steps. =

140 120 100 80 60 40 20 O

Trade-off between computation and image quality Compact rate
is the total number of sampling steps over the number of guidance
steps % The larger the compact rate, the lower the model’s guid-

ance, hence the lower running time. Figure[I2]shows the effect of
fewer timesteps on IS, FID and Recall as in Figure and

Timestep ¢
Figure 6: From 150 to 250 sam-
pling steps. CompG narrows the
loss gap, mitigating overfitting.
ES halts at 50 steps, leading to for-
getting problem and loss increase.

Table 7: ImageNet64x64. Varying k shows improved
efficiency and quality with fewer guidance steps and
lower compute.

Table 8: ImageNet512x512. Interval guidance with
CompCFG improves performance and diversity while
reducing steps.

Model k  |Gl()) GPUhours(}) FID(}) sFID(}) Prec(t) Rec(f)  Model |G| (1) Guidance Interval  FID (1) sFID(}) Prec(f) Rec(})
_ CADM (No guidance) - 0 2664 207 429 073 063  EDM2-IntG 6 [17,22] 1.44 3.91 0.81 0.61
CADM-CompG 1.0 50 3222 1.91 438 0.77 0.6 EDM2-CompCFG 6 [17, 400] 1.44 3.88 0.81 0.62
CADM-CompG 50 32 29.81 1.82 4.31 0.76 0.62 EDM2-CompCFG 5 [17, 400] 1.44 3.86 0.81 0.63
CADM-CompG 60 28 29.12 1.93 435 0.75 0.62 EDM2-CompCFG 4 [17, 400] 1.45 3.87 0.80 0.63

Comparison with other guidance variants: Table[8|compares our proposed CompCFG with Interval
Guidance methods from [Kynkdanniemi et al.[(2025); Wang et al.|(2024)). CompCFG achieves results
comparable to IntG in Kynkadnniemi et al.| (2025), but with broader applicability. Unlike IntG, which
is limited to conditional diffusion models or classifier-free guidance, CompCFG can be integrated
into any diffusion model, delivering improved image quality and computational cost, as demonstrated
in Tables ] and[5] Comparision withDinh et al.|(2023a:b); Zheng et al.|(2022) is in Appendix [E.T]

6 CONCLUSION

This paper quantifies model-fitting in diffusion model sampling, analogous to overfitting phenomenon,
by analyzing on- and off-sampling loss. To address this, we propose Compress Guidance, which
enhances generative performance while reducing guidance steps by at least fivefold and cutting
runtime by approximately 40%. Broader impacts and safeguards are discussed in Appendix [A]
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Algorithm 1 Compress Guidance

Input: class labels y, classification scale s
X7 ~ N(O, I)
I'20
G + Using Eq[T3)]
fort="T,...,1do
z ~N(0,1I)
if t € G then
g < sVx, logpg(y|x¢)
G, + the next guidance step
IF'—gx|t—Gy
Xt—1 < \/%(Xt — \}%Eg(xht)) + 0',52].—‘ + oz

else
Xy & \/%Tt(xt — \}%69(Xt,t)) + 042
end if
end for

A BROADER IMPACT AND SAFEGUARD

The work does not have concerns about safeguarding since it does not utilize the training data. The
paper only utilizes the pre-trained models from DiT [Peebles & Xie|(2023)), ADMDhariwal & Nichol
(2021), GLIDE Nichol et al.|(2021) and Stable Diffusion Rombach et al. (2022). The work fastens
the sampling process of the diffusion model and contributes to the population of the diffusion model
in reality. However, the negative impact might be on the research on a generative model where bad
people use that to fake videos or images.

B FULL ALGORITHMS

Algorithm|[I]shows full algorithm. The full source code will be released beyond acceptance.

C MODEL-FITTING ANALYSIS FOR CLASSIFIER-FREE GUIDANCE

Different from classifier guidance, classifier-free guidance does not have an explicit classifer loss.
However, that does not mean that classifier-free guidance does not suffer from model-fitting. We
expand the analysis to CFG using the following steps:

1. Define the classifier in CFG
2. Define the observable loss

3. Observe on/off sampling

Define the classifier in CFG Alexander et al. [Li et al.| (2023) proved that a conditional diffusion
model is itself a classifier with the classification objective:

arg mcin Ev e [lleo(ze, c) — e(z)]l], (15)
where z; is a noisy version of xy with random noise €(x;).

Given this objective, we similarly define the objective function to “optimize” the parameter xy, as

xy = argmin A () (16)
st Ad(wy) < Au(zy), Ve #¢ d el (17)

with
Aur(@r) = Beleo(wn, @) — e@)llf], ¢ €c, (18)

as the logit for each class ¢’.
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When denoising from z;, we normally do not have €(z;). We replace this with the predicted eg(z;),
giving

Acr (@) = B[ lleo(ae, ) = eo(@)|13]- (19)
Thus, the diffusion model itself acts as a classifier.

Define observable loss: We convert the objective into the observable cross-entropy loss as follows:

p(c | x) = exp(=Ac (1)) = p(c| x) = softmax(—A(z¢))e. (20)

- Ywec exp(—Ax(21))

Leg(xt,¢) = —logp(c | z¢) = Ac(x) + logZexp(—Ak(xt)). 2D
kec

On/Off sampling observation We observe On/Off sampling loss using Lcg. We use two public
models from EDMZE] which share the same architecture but differ in training hyperparameters:
EDM-S-0.025 and EDM-S-0.085. Their performance is reported below:

Model FID  Accuracy
EDM-S-0.025 2.29 61%
EDM-S-0.085 2.40 63%

Table 9: General performance of diffusion models on generative task (FID) and classification task
(Accuracy).

The two models share similar performance. EDM-S-0.025 is used for on-sampling loss observation
(joined in the guidance process), and EDM-S-0.085 is used for off-sampling observation (not used
for guidance).

[
12 On-sampling loss =
- Off-sampling loss
’% 101 —— Off-sampling loss (CompG) |
=)
£ sf f
_
2
g 6| f
=
=
2 4r |
=
@)
2 —n
O | 1 1 L | |
2 7 13 19 25 31

Timesteps (%)

Figure 7: On-sampling and off-sampling loss across timesteps for EDM-S-0.025 and EDM-S-0.085
models. The On-sampling loss has a significant gap to the off-sampling loss. However, using our
proposed CompressGuidance (CompG) helps to close the gap between On/Off sampling loss.

The results show that model-fitting also occurs for CFG. Given the same diffusion models with similar
performance, the diffusion model used for guidance achieves much lower loss during sampling. The
use of CompG narrows the gap between off-sampling and on-sampling loss, indicating reduced
model-fitting. Furthermore, as shown in Section 5.3, our method significantly improves both runtime
and sampling quality.

'https://shorturl.at/uJxeV
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Figure 8: FID curve given different guidance weight. This shows that the original vanilla guidance trades the
quality with the diversity very significantly, while CompG helps to achieve the stability of the output.

D EXPERIMENTAL SETUP

Off-sampling classifier: Off-sampling classifier is initialized as the parameters of the on-sampling
classifier. We fine-tune the model with 10000 timesteps with the same loss for training the on-
sampling classifier. The testing accuracy between the off-sampling classifier and the on-sampling
classifier is shown in Table 0]

Evaluation Model Accuracy

On-sampling classifier 64.5%
Off-sampling classifier 63.5%

Table 10: Evaluation of On-sampling classifier and Off-sampling classifier on ground-truth images.

Figure|l I|shows all the hyperparameters used for all experiments in the paper. Normally, since we
skip a lot of timesteps that do guidance, the process will fall into the case of forgetting. To avoid this
situation, we would increase the guidance scale significantly. The value of the guidance scale is often
based on the compact rate % A larger compact rate also indicates a larger guidance scale. In Table
and Figure[6] to achieve a fair comparison, we tune the guidance scale of CompG to achieve a
similar Recall value with vanilla guidance. The reason is that the higher the level of diversity, the
harder features can be recognized, resulting in higher loss and lower accuracy. If we don’t configure
similar diversity between the two schemes, the one with higher diversity will always achieve lower
accuracy and higher loss value. We want to avoid the case that the model only samples one good
image for all.

For all the tables, the models which are in bold are the proposed.

GPU hours: All the GPU hours are calculated based on the time for sampling 50000 samples in
ImageNet or 30000 samples in MSCoco.

All experiments are run on a cluster with 4 V100 GPUs.

E FULL COMPARISON

Table [T3]shows the full comparison with different famous baselines.
The stability of the CompG is visualized in Figure[§]
E.1 ADDITIONAL ABLATION

In addition to [Kynkaédnniemi et al.|(2025), one of the most recent studies on guidance, we compare
our proposed method with |Dinh et al.| (2023a3b)); Zheng et al.| (2022)). |Dinh et al.[(2023a) addresses
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MODEL DATASET k s |G|  TIME-STEPS
TABLE 4

ADM IMAGENET 64x64 - 0.0 0 250
ADM-G IMAGENET 64x64 - 4.0 250 250
ADM-ComprPG IMAGENET 64x64 1.0 4.0 50 250
ADM IMAGENET 256X256 - 0.0 0 250
ADM-G IMAGENET 256X256 - 4.0 250 250
ADM-ComprG IMAGENET 256X256 1.0 4.0 50 250
TABLE S5 & 13

CADM IMAGENET 64x64 - 0.0 0 250
CADM-G IMAGENET 64X64 - 0.5 250 250
CADM-ComprG IMAGENET 64x64 1.0 2.0 50 250
CADM-CFG IMAGENET 64x64 - 0.1 250 250
CADM-CoMPCFG IMAGENET 64X64 5.0 0.1 25 250
CADM IMAGENET 128x128 0.9 0.0 0 250
CADM-G IMAGENET 128x128 - 0.5 250 250
CADM-CFG IMAGENET 128x128 - 0.5 250 250
CADM IMAGENET 256X256 - 0.0 0 250
CADM-G IMAGENET 256X256 - 0.5 250 250
CADM-ComprPG IMAGENET 256X256 1.5 0.5 50 250
DIT-CFG IMAGENET 256X256 - 1.5 250 250
DIT-CoMPCFG IMAGENET 256X256 1.2 1.5 22 250
EDM2-CFG IMAGENET 256X256 - 1.2 32 32
EDM2-ComMPCFG IMAGENET 512X512 2.5 0.3 6 32
TABLE 6 &12

GLIDE-G MSCoco 64Xx64 - 0.0 250 250
GLIDE-CoMpPG MSCoco 64Xx64 2.0 8.0 25 250
GLIDE-G MSCoco0 256x256 - 0.0 250 250
GLIDE-CompPG MSCocCO0 256x256 2.0 5. 35 250
SDIFr-CFG MSCoco0 256x256 - 2.0 (FID, 1S),7.5 (CLIP, GENEVAL) 50 50
SDIFF-COMPCFG MSCocCo0 256x256 1.0 2.0(FID, IS), 7.5(CLIP, GENEVAL) 8 50
TABLE 7

CADM IMAGENET 64X64 - 0.0 0 250
CADM-G IMAGENET 64x64 - 4.0 250 250
CADM-CompPG IMAGENET 64X64 5.0,6.0 4.0 50 250
TABLE 8

EDM2-INTG IMAGENET 256X256 - 2.0 6 32
EDM2-CoMPCFG | IMAGENET 512x512 2.5 1.6 6 32
EDM2-CoMPCFG | IMAGENET 512x512 2.5 1.7 5 32
EDM2-CoMPCFG | IMAGENET 512Xx512 2.5 1.7 4 32

Table 11: All hyper-parameters required for reproducing the results.

IS-FID Trade-off Curve

IS (higher is better)

-e- G
CompG

122
FID (lower is better)

126

Figure 9: IS-FID curve of ImageNet256x256. The performance shows that CompG comes with high and stable
1S with improves in FID more significantly than vanilla G given IS increases..
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Model |G| (}) GPUhrs(}) ZFID ()
MSCOCO 64x64

GLIDE-G 250 34.04 24.78
GLIDE-CompG 25 20.93 24.5
MSCOCO 256x256

GLIDE-G 250 66.84 34.78
GLIDE-CompG 35 37.55 33.12

Table 12: Applying CompG on text-to-image GLIDE classifier-based guidance on MSCoco datasets.

Model |G| () GPUhours(}) FID({) SsFID(}) Prec(?) Rec(?)
ImageNet 64x64
BigGAN - - 4.06 3.96 0.79 0.48
IDDPM 0 28.32 2.90 3.78 0.73 0.62
CADM (No guidance) 0 26.64 2.07 4.29 0.73 0.63
"CADM-G =~~~ 250 5352 T 247 48 080 057
CADM-CompG 50 32.22 191 4.57 0.77 0.61
"CADM-CFG =~~~ 250 = 5497 189 445 077 060
CADM-CompCFG 25 29.29 1.84 4.38 0.77 0.61
ImageNet 128x128
BigGAN - - 6.02 7.18 0.86 0.35
LOGAN - - 3.36 - - -
CADM (No guidance) 0 61.60 6.14 4.96 0.69 0.65
"CADM-G 250 9406 295 545 T 0.81 054
CADM-CompG 50 66.19 2.86 5.29 0.79 0.58
ImageNet 256x256
BigGAN - - 7.03 7.29 0.87 0.27
DCTrans - - 36.51 8.24 0.36 0.67
VQ-VAE-2 - - 31.11 17.38 0.36 0.57
IDDPM - - 12.26 5.42 0.70 0.62
_CADM (Noguidance) _ 0 24033 1094 602 069 063
CADM-G 250 336.05 4.58 5.21 0.81 0.51
_ CADM-CompG _ 50 2925 452 529 082 051
DiT-CFG 250 75.04 2.25 4.56 0.82 0.58
DiT-CompCFG 22 42.20 2.19 4.74 0.82 0.60

Table 13: We show full results of the model compared to other models not related to guidance.

the conflict between denoising signals and guidance signals, similar to Wang et al.|(2024); |[Dinh et al.
(2023b)) identifies adversarial features and mitigates them by reducing uncertainty; and |Zheng et al.
(2022)) tackles the gradient vanishing issue in classifier guidance by adapting the guidance weight.
While all of these methods are training-free, our proposed CompG is the first to focus on reducing
guidance-related computational costs by identifying and eliminating redundant guidance steps during
sampling. Our results demonstrate that CompG achieves the best FID while maintaining the lowest
running time. The comparative results are presented in Figure [T4]

Model |GI(}) GPUhours(}) FID(}) sFID({) Prec() Rec()
ImageNet 64x64
_ CADM (No guidance) | 0o ____ 2064 207 429 073 063

CADM-G 250 5352 2.47 488 0.80 0.57
CADM-ProG|Dinh et al.|(2023b} 250 53.60 1.87 433 0.77 0.60
CADM-PxP|Dinh et al.|(2023a] 250 54.32 1.84 397 0.76 0.60
CADM-EDS[Zheng et al.[(2022] 250 53.23 1.85 4.36 0.76 0.61
CADM-CompG 50 32.22 1.82 431 0.76 0.61
CADM-CompCFG 25 29.29 1.84 438 0.77 0.61

Table 14: Comparing CompG and CompCFG with other variants|Dinh et al.|(2023akb); Zheng et al.|(2022) of
classifier guidance on conditional diffusion model ADM |Dhariwal & Nichol|(2021))
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Guidance On-samp. Off-samp. Resnet FID
Vanilla 90.8 62.5 34.17 247
Early Stopping 63.05 55.22 3355 221
CompG (ours) 91.2 64.2 34.93 1.82

Table 15: Model-fitting on ImageNet64x64 samples. ES suffers from the forgetting problem and has low
performance. CompG achieves higher both on on-sampling and off-sampling acc.

F MATHEMATICAL DETAILS

Proof of Theorem 1]

Proof. Given real data x, at timestep ¢ we have x;, = 1/a;Xo + /1 — &ye. On the other hand, the

prediction of real data has the form iét) = MoV Rty W, replace x; with xy and € we have

5

1—0u|le—ep (x¢,t)]| O

£ :Xo_i_w.’fhus, %™ — xo]] = %

If we further assume that ¢(xg) has a form of Normal Distribution, we would have the final objective
as Dg1.(q(x0)||pe(Xolx¢)). Since ¢(xg) has the form of Gaussian, we can have the minimization of

%0 — x0|| would result in the minimization of ||¢(Xo) — ¢(x0)|| = \|% — q(x0)]| since
Xo ~ pp(Xo|x¢) with a deterministic forward of x; to €y, we have ¢(X¢) ~ % = po(Xo|x¢).
Assume we have two density functions: p(x) and ¢(x). The KL divergence between these two has

the form:

/O p(x) 1og§g3: / p(3) log(p(x)) — p(x) log(g(x))dx @)
= | po) oo - (23)
| o0 10806 + p(x) 1og<<§§§§ 1)+ 1)dx
! q(x)
= /0 —p(x) log((p<x) — 1)+ 1)dx (24)
! 5, 1 1
- / ~(alo) = pl09) + (alx) = () — <) (25)
1
< / (a(x) —p<x>>2<$ - @)dx (26)
< [ a0 = 0)?(; = )z = = lp =l @)

Thus D1, (p(x)|]q(x)) < Z2(lp — q|

Base on this bound we would have the minimization of ||pg(Xo|x:) — q(X¢)]|| is equivalent to the
minimization of D1, (q(X0)]||pe(Xo|xt))-

Proof of first property of eq.[13]
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Figure 10: Gradient magnitude difference measured at two consecutive steps

Proof. Letk; < kg and kq, ko € [1;400], with (ZiF = T(ﬁ)k and ﬁ < 1, we have:

IG[*

(ﬁ)’“ > (l%;l)“ (28)
@T(ﬁ)’“ > T(|—(§|>’” (29)
ST (g 2 1T (g™ (30)
ST = [T < T = Tl 31

As a result, ngl) < ngZ)Vkl, ko > 1and k; < k. With ky — +00, ngz) is bounded by T. This
means that larger £ values would result in the distribution of the timesteps toward the early stage of
the sampling process. O

Proof of first property of eq.[13]

Proof. Similar to previous proof we have ngl) < ngz)Vkl, ko > 1 and k1 < ko. This also mean
that G¥) > GV, W0 < ky < Landif k; — 0 then G** — 0, hence all the g; € G+ is bounded
by 0. As a result, by adjusting & toward 0, we would have the distribution of guidance steps toward
the later stage of the sampling process O

G GRADIENT MAGNITUDE DIFFERENCE BETWEEN TWO CONSECUTIVE
SAMPLING STEPS

In this section, we analyze the variation in the classification gradient throughout the sampling
process, particularly its significant fluctuations during the early stages. To investigate this, we
generate 32 images from the ImageNet64 dataset using ADM-G (Dhariwal & Nichol|(2021)). The
guidance classifier employed in this process is the noise-aware classifier trained within ADM-G. Our
observations, illustrated in Figure[T0] highlight how the classification gradient behaves over time,
providing insights into its impact on the sampling process and model performance.

H ADDITIONAL QUALITATIVE RESULTS

Due to space limitations in the main paper, we present qualitative results in this supplementary
material. Figures[TT] [I3] [T4] [T3] and [I6] provide additional comparisons with the vanilla baseline,
while Figures [I7) and [I8] showcase high-quality images generated by DiT models combined with
CompG.
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Vanilla Guidance Compact Guidance (ours)

Goldfish

Pembroke {
Corgi

Figure 11: Qualitative results on ImageNet256x256. Left: Vanilla guidance applied at all timesteps. Right:
Compress Guidance applied at 50 of 250 timesteps. Compress Guidance corrects misclassification by the
on-sampling classifier, preventing out-of-class image generation and restoring accurate class information. More
qualitative results are shown in Appendi)@
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Figure 12: Trade-off: Running time versus performance. We measure the compact rate as % In (a),
IS decreases with increasing compact rate, while FID and Recall improve. However, when the rate
exceeds 10, FID begins to rise. This suggests that increased diversity from more features initially
enhances Recall and FID, but excessive diversity degrades image quality.
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Figure 13: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the right
figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’ superiority
over classifier-free guidance regarding image quality, quantitative performance and efficiency.
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Figure 14: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the right
figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’ superiority
over classifier-free guidance regarding image quality, quantitative performance and efficiency.
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Figure 15: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the right
figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’ superiority
over classifier-free guidance regarding image quality, quantitative performance and efficiency.
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Figure 16: Qualitative comparison between ADM-G and ADM-CompG.The images generated by
ADM-G and ADM-CompG are put side by side. On the left side is ADM-G and on the right side is
ADM-CompG.

12



Under review as a conference paper at ICLR 2026

o R

Figure 17: Images generated by DiT-CompCFG. From top to bottom classes goldfish, Welsh springer
spaniel, Pembroke Welsh corgi, Cardigan Welsh corgi.
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Figure 18: Images generated by DiT-CompCFG. From top to bottom classes redfox, kitfox, Arctic fox,
tabby cat.
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