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ABSTRACT

Model-fitting occurs when samples are overly adjusted to satisfy with the guidance
model rather than the true conditions, often leading to poor outcomes. The root
cause of this problem is the consecutiveness of guidance timesteps throughout the
diffusion sampling process. In this work, We quantify this effect and show that
breaking the consecutiveness of standard guidance alleviates the problem. Based
on this insight, our method, Compress Guidance, distributes a small number of
guidance steps across the full sampling process, yielding substantial improvements
in image quality and diversity while cutting guidance cost by over 80%. Experi-
ments on both label-conditional image generation and text-to-image generation,
across multiple datasets and models, confirm that Compress Guidance consis-
tently surpasses baselines in image quality with significantly lower computational
overhead.

1 INTRODUCTION

Guidance is mainly divided into classifier-free guidance in Ho & Salimans (2022) and classifier
guidance in Dhariwal & Nichol (2021). Although both of these methods significantly improve the
performance of the diffusion samples Dhariwal & Nichol (2021); Ho & Salimans (2022); Bansal
et al. (2023); Liu et al. (2023); Epstein et al. (2023), they both suffer from high computation cost.
For classifier guidance, the act of gradients calculation backwards through a classifier is costly. On
the other hand, forwarding through a diffusion model twice at every timestep also costs significant
computation in classifier-free guidance.

This work challenges the necessity of the current complex process based on several key observations.
First, we find that the guidance loss is predominantly active during the early stages of the sampling
process, when the image lacks a well-defined structure. As the model progresses and shifts its focus
to refining image details, the guidance loss tends to approach zero. Additionally, when evaluating
intermediate samples with an additional classifier not used for guidance, we observe that the loss
from this external classifier does not decrease in the same way as it does for the guidance-specific
classifier. This suggests that the generated samples are tailored to fit the features of the guiding
classifier rather than producing generalized features applicable to different classifiers. We define
this issue as model-fitting, where the generated image pixels are optimized to satisfy the guiding
classifier’s criteria rather than generalizing to the intended conditions. The problem is validated by
three pieces of evidence in section 4.1.

These observations prompt us to question whether guidance is necessary at every timestep and how
reducing the frequency of guidance could enhance generative quality. In Section 4.2, we further
explore the properties of guidance in ensuring sample quality. Based on this analysis, we propose
a simple yet effective method called Compress Guidance (CompG), which mitigates the issue by
reducing the number of time steps that invoke gradient calculation. This approach not only improves
sample quality but also significantly accelerates the overall process as shown in Fig.1. In most parts
of the works, we utilize classifier guidance as the main object for observations due to the explicit loss
given by the classifier. However, the methods can be applied to classifier-free guidance as well.

Concurrent works have explored relevant ideas. Wang et al. (2024) shows that early guidance can
cause conflicts and degrade outputs, while IntervalGuidance Kynkäänniemi et al. (2025) reports the
best results at mid-range noise timesteps. However, as demonstrated in Section 4.2, these insights
are not always correct. Moreover, the cost reduction in IntervalGuidance arises only as a byproduct
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Figure 1: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free guidance
with application on all 50 timesteps. Our proposed Compress Guidance method is the right figure, where we
only apply guidance on 8 out of 50 steps. Our methods are superior to classifier-free guidance regarding image
quality, quantitative performance, and efficiency. The efficiency is calculated by sampling 30000 images with 1
GPU. More comparison is in Appendix H (Figure 13, 14, 15, 16)

of avoiding low/high noise conflicts; it lacks an explicit mechanism for controlling guidance cost.
In contrast, our method directly regulates guidance steps through a defined equation, improving
efficiency without sacrificing performance. To the best of our knowledge, we are the first to explicitly
reduce guidance cost without relying on additional distillation training, and we do so by principled
analysis of model-fitting challenges. Furthermore, our plug-and-play approach is compatible with
any model. Throughout most of our study, we observe on classifier guidance because the classifier
provides explicit loss signals (unlike classifier-free guidance). Nevertheless, our observations extend
naturally to classifier-free guidance, as discussed in Section 4.4.

Overall, the contributions of our works are three-fold: (1) Explore and quantify the model-fitting
problem in guidance and the redundant computation resulting from current guidance methods. (2)
Propose a simple but effective method to contain the model-fitting problem and improve computational
time. (3) Extensive analysis and experimental results for different datasets and generative tasks on
both classifier and classifier-free guidance perspectives.

2 RELATED WORK

Diffusion Generative Models (DGMs) Ho et al. (2020); Song et al. (2020b); Vahdat et al. (2021);
Song & Ermon (2020); Lipman et al. (2022) have recently become one of the most popular generative
models in many tasks such as image editingKawar et al. (2023); Huang et al. (2024), text-to-
image sampling Rombach et al. (2022); Podell et al. (2023); Ramesh et al. (2022) or image/videos
generation Ho et al. (2022); Blattmann et al. (2023). Guidance is often utilized to improve the
performance of DGMs Dhariwal & Nichol (2021); Ho & Salimans (2022); Bansal et al. (2023); Liu
et al. (2023); Epstein et al. (2023); Wang et al. (2024); Karras et al. (2023; 2022). Besides improving
the performance, the guidance also offers a trade-off between image quality and diversity Dhariwal &
Nichol (2021); Ho & Salimans (2022); Ma et al. (2023), which helps users tune their sampling process
up to their expectations. Gradient views of guidance are also well explored in the literature. Zheng
et al. (2022) explores the gradient vanishing problem in classifier guidance, while Dinh et al. (2023a)
examines conflicts in guidance sampling, and Dinh et al. (2023b) investigates guidance uncertainty
during sampling. Our work introduces a new perspective on guidance—model-fitting—drawing an
analogy to the overfitting problem in neural network training.

Although guidance is beneficial in many forms, it faces severe serious drawbacks in running time. For
classifier guidance, the running time is around 80% higher compared to the original diffusion model

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

sampling time due to the evaluation of gradients at every sampling step. In contrast, classifier-free
guidance requires the process to forward to the expensive diffusion model twice at every timestep.
Previous works on improving the running time of DGMs involve the reduction of sampling steps
Song et al. (2020a); Zhang & Chen (2022); Song et al. (2023) and latent-based diffusion models
Rombach et al. (2022); Peebles & Xie (2023). Recently, the research community has focused on
distilling from a large number of timesteps to a smaller number of timesteps Salimans & Ho (2022);
Sauer et al. (2023); Li et al. (2024); Yin et al. (2024b;a); Song & Dhariwal (2023); Wang et al. (2025);
Meng et al. (2023); Heek et al. (2024); Yan et al. (2024); Luhman & Luhman (2021); Ren et al.
(2025); Zhou et al. (2024) or reducing the architectures of diffusion models Li et al. (2024); Tang
et al. (2023); Zhang et al. (2024). However, most of these works mainly solve the problem of the
expensive diffusion samplings, not the cost resulted by guidance.

Prior work Wang et al. (2024); Kynkäänniemi et al. (2025) shows that early guidance can harm
generation in conditional diffusion models due to conflicts with conditional inputs. However, this
does not apply to unconditional models, where early guidance is essential for quality. These studies
also overlook the high computational cost of guidance. In contrast, our work addresses both quality
and efficiency, generalizing model-fitting issues to all guided diffusion and proposing a plug-and-play
solution to reduce guidance overhead without sacrificing performance.

3 BACKGROUND

Diffusion Models Ho et al. (2020) have the form of: pθ := p(xT )
∏T

t=1 pθ(xt−1|xt) where
pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)) supporting the reverse process from xT to x0. This
process is denoising process where starting from the xT ∼ N (xT ; 0, I) to gradually move
to x0 ∼ q(x0). This process is trained to be matched with the forward diffusion process
q(x1:T |x0) :=

∏T
t=1 q(xt|xt−1) given q(xt|xt−1) as q(xt|xt−1) := N (xt;

√
1− βtxt−1, βI) or

we can write the conditional distribution of xt given x0 as below:
q(xt|x0) := N (xt;

√
ᾱtx0, (1− ᾱt)I) (1)

βt is the fixed variance scheduled before the process starts, Ho et al. (2020) denotes αt := 1− βt

and ᾱt :=
∏t

s=1 αs used in Eq.1. We have the xt−1 conditioned on x0 and xt as:

q(xt−1|xt,x0) = N (xt−1; µ̃t(xt,x0), β̃tI) (2)

where µ̃t(xt,x0) :=
√
ᾱt−1βt

1−ᾱt
x0 +

√
αt(1−ᾱt−1

1−ᾱt
)xt and B̃t := 1−ᾱt−1

1−ᾱt
βt. To train the diffusion

model, the lower bound loss is utilized as below:

E[− log pθ(x0)] ≤ E
q
[− log p(xT )− Σt≥1 log

pθ(xt−1|xt)

q(xt|xt−1)
] (3)

Rewrite Eq. 3 as Eq[DKL(q(xT |x0)||p(xT )) +
∑

t>1 DKL(q(xt−1|xt,x0)||pθ(xt−1|xt)) −
log pθ(x0|x1)] The training process actually optimize the

∑
t>1 DKL(q(xt−1|xt,x0)||pθ(xt−1|xt))

where the diffusion model try to match the distribution of xt−1 by using only xt. There are several
implementations for optimising the 3. However, the θ as parameters of the noise predictor ϵθ(xt, t) is
the most popular choice. After the θ are trained using Eq. 3, we have the sampling equation:

xt−1 =
1
√
αt

(xt −
1− αt√
1− ᾱt

ϵθ(xt, t)) + σtz (4)

Guidance in the Diffusion model offers conditional information and image quality enhancement.
Given a classifier pϕ(y|xt) that match with the labels distribution conditioned on images xt, we have
the sampling equation with guidance as:

xt−1 ∼ N (µt + sσ2
t∇xt

log pϕ(y|xt), σt) (5)
with s is the guidance scale. Besides the classifier guidance as Eq.5, Ho & Salimans (2022) proposes
another version named classifier-free guidance. This guidance method does not base the information
on a classifier. Instead, the guidance depends on the conditional information from a conditional
diffusion model. The sampling equation has the form:

xt−1 ∼ N (µ̃t(xt,
xt −

√
1− ᾱϵ̃t√
ᾱt

), σt) (6)

given ϵ̃ = (1 + w)ϵθ(xt, c)− wϵθ(xt) with w is the guidance scale.
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4 MODEL-FITTING IN GUIDANCE

We begin by modelling the sampling equation as two distinct optimization objectives, illustrating
that the sampling process functions as a form of “training", where parameters xt are optimized
over T timesteps. We then analyze the “training" of xt in light of these objectives, highlighting the
model-fitting problem that arises in the current guidance-driven sampling process. From Eq.4:

xt−1 =
(1− αt)

√
ᾱt−1

1− ᾱt

xt −
√
1− ᾱtϵθ(xt, t)√

ᾱt
+

(1− ᾱt−1)
√
αt

1− ᾱt
xt + σtz (7)

Distribution matching objective: Assuming that ϵθ(xt, t) is learned perfectly to match random
noise ϵ at timestep t, we have xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt
= x0 is the exact prediction of x0 at timestep t

according to Eq.1. Denoting x̃0 is the prediction of x0 at timestep t, we can re-write the equation as
bellow:

xt−1 =
(1− αt)

√
ᾱt−1

1− ᾱt
x̃0 +

(1− ᾱt−1)
√
αt

1− ᾱt
xt + σtz (8)

This equation 8 can be derived from q(xt−1|xt,x0) in Eq. 2 with parameterized trick for Gaussian Dis-
tribution. Thus, the first aim of the sampling process is to match the distribution q(xt−1|xt,x0). Nev-
ertheless, the Eq.8 is based on the assumption that x̃0 ∼ x0, which often does not hold when t→ T .
Given x̃0 = xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt
, this formulation is rooted from x̃0 ∼ N ( 1√

ᾱ
xt;

ᾱ−1
ᾱ I) with assump-

tion that ϵθ(xt, t) ∼ ϵ. However, ϵθ(xt, t) is trained to minimize DKL[q(xt−1|xt,x0)||pθ(xt−1|xt)]
as in Ho et al. (2020) which actually causes a significantly distorted information if ϵθ(xt, t) is utilized
to sample x̃0 from xt if t→ T . A smaller t would result in a better prediction of x0 and with t = 0,
we have ᾱ = 1 resulting in x̃0 = xt.
Theorem 1. Assuming ϵθ is trained to converge with noise prediction error magnitude at a timestep
t is approximate ∆, the sampling process xt−1 ∼ q(xt−1|xt, x̃0) from T to 0 is equivalent to the
minimization of ||x0 − x̃0|| .wrt. xt.

Full proof is shown in Appendix F. If we consider xt of the Eq.8 as the set of optimization parameters,
the sampling process will have the objective minxt ||x0 − x̃0||. The Eq.8 turns into:

xt−1 = xt − (

√
αt − 1
√
αt

xt +
1− αt√
1− ᾱt

√
αt

ϵθ(xt, t)− σtz)︸ ︷︷ ︸
γ1∇xt ||x0−x̃0||

(9)

Eq.9 turns the sampling process into a stochastic gradient descent process where the xt is the
parameter of the model at the timestep t, the updated direction into xt aims to satisfy minxt ||x0−x̃0||.
We denote gradient ∇xt ||x0 − x̃0|| as denoising gradient ∇xtd.

Classification objective: From Eq.5, we have the term sσ2
t∇xt

log pϕ(y|xt) is added to the sam-
pling equation for guidance. This term can be written in full form as sσ2

t∇xt
(q(y) log q(y) −

q(y) log pϕ(y|xt)) which is equivalent to −sσ2
t∇DKL[q(y)||pϕ(ŷ|xt)]. Combine Eq.9 with guid-

ance information in Eq.5, we have:

xt−1 = xt − (

√
αt − 1
√
αt

xt +
1− αt√
1− ᾱt

√
αt

ϵθ(xt, t)− σtz)︸ ︷︷ ︸
γ1∇xtd

− (−sσ2
t∇xt log pϕ(y|xt))︸ ︷︷ ︸

γ2∇xtDKL[q(y)||pϕ(ŷ|xt)]

(10)

As a result, the process of updating xt to xt−1 is a “training" step to optimize to objective functions
||x0 − x̃0|| and DKL[q(y)||pϕ(ŷ|xt)] with two gradients respecting to xt as Eq.10. Since this
is similar to the training process, it is expected to face some problems in training deep neural
networks. In this work, the problem of model fitting is detected by observing the losses given by the
classification objective during the sampling process. For convenience, from later on,∇ is denoted for
∇xt . Although classifier-free guidance does not have explicit loss function like classifier guidance,
the observation on classifier guidance still can be applied to classifier-free guidance.

4.1 MODEL-FITTING

Based on the optimization problem from the sampling process in the previous section, we first define
on-sampling loss and off-sampling loss for observation.
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250 guidance 
steps

35 guidance 
steps, 
distributed 
uniformly
(ours)

31 guidance 
steps, 
distributed to 
early-stage
(ours)

Figure 2: ImageNet256x256. The top row is the vanilla guidance (obtained by ADM-G Dhariwal & Nichol
(2021)), where all the timesteps got the guidance information. The second and third rows are our proposed
method, which only applies 35 time steps. The second row distributes the timesteps uniformly, while the third
row distributes the timesteps toward the early stage of the sampling process. The Compress Guidance performs
significantly better than the original guidance method. One blue stick means one guidance step.

Definition 1. On-sampling loss/accuracy refers to the loss or accuracy evaluated on the generated
samples xt at timestep t during the diffusion sampling process, which consists of T timesteps. This
loss is defined as − log pϕ(ŷ|xt) by the classifier parameters ϕ that provide guidance throughout the
sampling process.

Definition 2. Off-sampling loss/accuracy refers to the loss or accuracy evaluated on the generated
samples xt at timestep t during the diffusion sampling process, which consists of T timesteps. This
loss is defined as − log pϕ′(ŷ|xt) by the classifier parameters ϕ′ that do not provides guidance
throughout the sampling process.

We set up the off-sampling classifier ϕ′ with the same architecture and performance as the on-sampling
classifier ϕ used for guidance. The only difference between the two models is the parameters. Off-
sampling classifier is initialized as the parameters of the on-sampling classifier. We fine-tune the
off-sampling model with 10000 timesteps with the same loss for training the on-sampling classifier.
The testing accuracy between the off-sampling classifier and the on-sampling classifier is shown in
Table 10 in Appendix D.

We visualize the on-sampling loss obtained from the noise-aware ADM classifier from Dhariwal &
Nichol (2021) on ImageNet256x256, as shown in Figure 4. Our results indicate that classification in-
formation is predominantly active during the early stages and converges within the first 120 timesteps.
In contrast, the off-sampling loss follows a different trend, converging only after the denoising
process is nearly ended. This observation suggests that generated samples behave inconsistently
when evaluated with classifiers of similar performance but different parameters, highlighting an
over-adjustment to the model’s parameters rather than to the true characteristics or conditions of the
generated images.

Definition 3. Model-fitting occurs when sampled images xt at timestep t is updated to maximize
pϕ(y|xt) or to satisfy the parameters of the ϕ only instead of the real distribution q(y|xt).

In practice, a pretrained pϕ(y|xt) is only able to capture part of the q(y|xt). Fitting solely with
pϕ(y|xt) limits the sample’s generalisation ability, leading to incorrect features or overemphasising
certain details due to misclassification or overfocusing of the guidance classifier. Three pieces of
evidence support that the vanilla guidance suffers from model-fitting problem.

Evidence 1: From Fig.4, we see that while the on-sampling loss converges around the
120th timestep, the off-sampling loss remains high until the diffusion model converges later.
This indicates that samples xt at timestep t satisfy only the on-sampling classifier but not
the off-sampling classifier, despite their identical performance and architecture. Although
the off-sampling loss decreases by the end, a significant gap between the off-sampling and
on-sampling losses persists. This supports our hypothesis that the guidance sampling pro-
cess produces features that fit only the guidance classifier, not the conditional information.

5
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ES on-sampling
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DG (100)

Figure 3: Left: G, UG, ES, DG represent vanilla guid-
ance, uniform skipping, early stopping, and delayed
guidance. UG suffers from non-convergence; ES from
forgetting; DG is dominated by early signal. Right:
Solid = on-sampling loss, dashed = off-sampling. De-
laying guidance amplifies negative effects.

0100200
Timestep t

0

2
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On-sampling loss
Off-sampling loss

0100200
Timestep t

0

5

10

On-sampling loss
Off-sampling ResNet152 loss

Figure 4: (left) OADM-C, (right) Resnet152 off-
sampling loss. The On-sampling loss converges very
early while leaving the off-sampling loss converges at
the end of the process after the conclusion of the de-
noising process.

Table 1: A significant gap exists between the on-
sampling and the off-sampling classifier in terms of ac-
curacy, indicating model-fitting.

Evaluation Model Accuracy

On-sampling classifier 90.8%
Off-sampling classifier 62.5%
Off-sampling Resnet152 34.2%

Evidence 2: Table 1 illustrates the model-fitting
problem through accuracy metrics. With vanilla
guidance, the accuracy is about 90.80% for the
on-sampling classifier. However, the same sam-
ples evaluated by the off-sampling classifier
or Resnet152 achieve only around 62.5% and
34.2% accuracy, respectively. This indicates
that many features generated by the model are
specific to the guidance classifier and do not generalize to other models.

Evidence 3: Figure 2 (first row) shows samples from vanilla guidance, where every sampling step
receives guidance information. Applying guidance at all timesteps forces the model to fit the on-
sampling classifier’s perception. Often, this makes the model colour-sensitive, focusing only on
generating the "orange" feature for Goldfish and ignoring other details such as the shape, position and
texture. From the three pieces of evidence we can observe, we can conclude that the vanilla guidance
scheme has suffered from the model-fitting problem.

Analogy to overfitting: In neural network training, we have a dataset x and a classifier fθ(x) to
approximate the posterior distribution p(y|x). Let xtrain be the training data and xtest the testing data.
Overfitting occurs when fθ is tailored to fit xtrain but fails to generalize to the entire dataset x. This
is observed by the gap between training loss/accuracy and testing loss/accuracy on xtrain and xtest.

Table 3: Overfitting vs. Model-Fitting
Aspect Overfitting Model-fitting
Train Data xtrain fϕg

Test Data xtest fϕo

Parameters fϕ x

In the diffusion model’s sampling process, the classifier fϕ
is pretrained or fixed. The aim is to adjust the samples x
to match the trained posterior pϕ(y|x). This process also
uses Stochastic Gradient Descent with different roles: fϕ
acts as the fixed data, and x are the trainable parameters.
The model-fitting problem arises when x is adjusted to fit

only the specific fϕ instead of generalizing conditional information. Here, fϕ is the on-sampling
"data", and off-sampling "data" fϕ′ is used to observe the model-fitting, analogous to using training
and testing data for overfitting observation.

Note: Similar model-fitting analysis for classifier-free guidance is in Appendix C.

4.2 ANALYSIS

Gradient over-calculation is the main reason for model-fitting. Thus, gradient balance, which is not
to call too many times of gradient calculation, is required. A straightforward solution is to eliminate
the gradient calculations for the later timesteps, which have been found to be less active, as shown
in Figure 4. This approach is referred to as Early Stopping (ES), where guidance is halted from the
200th timestep onwards, continuing until the 0th timestep.

Early Stopping: Figure 3 demonstrates that ES suffers from the forgetting problem, where on-
sampling classification loss increases during the remaining sampling process, negatively impacting
the generative outputs. This suggests that the guidance requires the property of continuity, meaning
the gap between consecutive guidance steps must not be too large to prevent the forgetting problem.

Uniform skipping guidance: We tried an alternative approach named Uniform Skipping Guidance
(UG). In UG, 50 guidance steps are evenly distributed across 250 sampling steps, with guidance

6
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applied every five steps. This ensures continuity throughout the sampling process, mitigating the
forgetting problem. However, as shown in Figure 4, UG encounters the issue of non-convergence,
where the classification magnitude is too weak and becomes overshadowed by the denoising signals
from the diffusion models, leading to poor conditional information. Thus, guidance must require
another property, which is magnitude sufficiency.

Delayed Guidance (DG): Prior work Kynkäänniemi et al. (2025); Wang et al. (2024) suggests
delaying guidance to avoid conflicts with the diffusion model. However, as shown in Figure 3 (right),
longer delays worsen performance. Why does this contradict Wang et al. (2024)? That study assumes
a conditional diffusion model, where applying guidance too early causes conflicts between guidance
and conditional information of diffusion model. But in an unconditional model, there’s no such
conflict—so delaying guidance only harms performance.

In summary, vanilla guidance faces the issue of model-fitting, while ES and UG fail due to the
forgetting and non-convergence problems, respectively. Therefore, the primary goal of our proposed
method is to meet three key conditions which are gradient balance, guidance continuity and
magnitude sufficiency.

4.3 COMPRESS GUIDANCE

To avoid calculating gradient too frequently, we propose to utilize the gradient from the previous
guidance step at several next sampling steps, given that the gradient magnitude difference between two
consecutive sampling steps is not too significant. By doing this, we can satisfy magnitude sufficiency
without re-calculating the gradient at every sampling step. Note that the gradient directions have not
been updated since the last guidance step, resulting in the gradient balance. Since all the sampling
step receives a guidance signal, the continuity is guaranteed.

The hypothesis for utilizing the gradient from the previous timestep is three-fold. First of all, the
avoidance of re-calculation of gradients frequently through the classifier prevents the generated
samples from capturing the classification pattern of the classifier and helps to avoid model-fitting.
Second, in the early stage, the avoidance of frequent gradient updates helps to avoid the noisy updated
direction given by noisy samples. Finally, when the image is clear in the later timesteps, it is safe to
skip the gradient calculation since the value of the gradient is less active during this stage as in Fig.4.

xt−1 =

{
xt − γ1∇d− γ2∇DKL[q(ŷ|xt)||q(y)], if t ∈ G

xt − γ1∇d− γ2Γt, otherwise
(11)

The set G is the set of time-steps for which the gradient will be calculated. Γ is a vari-
able used to store the calculated gradient from the previous sampling step, Γt is updated by

Γt−1 =

{∇DKL[q(ŷ|xt) ∥ q(y)] , if t ∈ G

Γt, otherwise.
. In practice, we find out that instead of duplicating

gradients as in Eq. 11, we can slightly improve the performance by compressing the duplicated
gradients into one guidance step instead of providing guidance to all sampling as in Eq.12. We name
this method as Compress Guidance.We modify the sampling equation as below:

xt−1 =

{
xt − γ1∇d− γ2

∑Gi+1

t=Gi
Γt, if t = ai

xt − γ1∇d, otherwise
(12)

One of the algorithm’s assumptions is that the magnitude is mostly the same for two consecutive
sampling steps. From Appendix G, we observe that the classification gradient magnitude difference
between two consecutive sampling steps is often larger in the early stage of the sampling process.
Thus, we propose a method that distributes more guidance toward the early sampling stage and
sparely at the end of the process. This will help to avoid the significant accumulation of magnitude
differences in the early stage and help to deliver better performance as well as reduce the number of
guidance steps. The scheme is defined as Eq. 13.

Gi = T − ⌊ T

|G|k
ik⌋ ∀0 ≤ i ≤ l, k ∈ [0; +∞] (13)

From the eq. 13, we have two main properties. First, when k → +∞, guidance timesteps are
distributed toward the early stage of the sampling process. Second, when k < 1 and k → 0, guidance
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Vanilla Guidance Compact Guidance (ours)

Welsh 

spaniel

Tiger cat

Pembroke 

Corgi

Figure 5: ImageNet256x256. Left: Vanilla guidance applied at all timesteps. Right: Compress Guidance
applied at 50 out of 250 timesteps. Compress Guidance reduces over-emphasized features, correcting weird and
incorrect details. Further results are in AppendixH

timesteps are distributed toward the late stage of the process. The proposed solution to select the
timesteps for guidance as Eq.13 allows us to choose the number of timesteps we will do guidance and
how to distribute these timesteps along the sampling process by adjusting the k values. The full proof
of these properties is written in the Appendix F. The full algorithm is in Algorithm 1 (Appendix).

4.4 COMPRESS GUIDANCE ON CLASSIFIER-FREE GUIDANCE

We start from the noise sampling equation of the classifier-free guidance as: ϵ̃ = (1+w)ϵθ(xt, c, t)−
wϵθ(xt, t) = ϵθ(xt, c, t) + w(ϵθ(xt, c, t) − ϵθ(xt, t)) = ϵθ(xt, c, t) + wC. C could stand for
classification information as mentioned in Dinh et al. (2023c). Replace the ϵ̃ to Eq.9, we have:

xt−1 = xt − (

√
αt − 1
√
αt

xt +
1− αt√

1− ᾱt
√
αt

ϵθ(xt, c, t)− σtz)︸ ︷︷ ︸
γ1∇d (match with Eq. 9)

− αt − 1√
1− ᾱt

wC︸ ︷︷ ︸
classification information

(14)

From this perspective, we can further apply the technique from Compress Guidance to the classifica-
tion term in classifier-free guidance with the compression of classification information αt−1√

1−ᾱt
C.

5 EXPERIMENTAL RESULTS

Setup Experiments are conducted on pretrained Diffusion models on ImageNet 64x64, ImageNet
128x128, ImageNet 256x256, ImageNet 512x512 Deng et al. (2009) and MSCOCO Lin et al. (2014).
The base Diffusion models utilized for label condition sampling task are ADM Dhariwal & Nichol
(2021) and CADM Dhariwal & Nichol (2021) for classifier guidance, EDM2 Karras et al. (2023)
DiTPeebles & Xie (2023) for classifier-free guidance (CFG) Ho & Salimans (2022), GLIDENichol
et al. (2021) for CLIP text-to-image guidance and Stable Diffusion Rombach et al. (2022) for text-to-
image classifier-free guidance. Other baselines we also do comparison is BigGAN Brock et al. (2018),
VAQ-VAE-2 Zhao et al. (2020), LOGAN Wu et al. (2019), DCTransformers Nash et al. (2021).
FID/sFID, Precision and Recall are utilized to evaluate image quality and diversity measurements.
We denote Compress Guidance as “-CompG" and “-G" as vanilla guidance, “-CFG" is the CFG, and
“-CompCFG" is our proposed Compress Guidance applying on CFG. Full results with details of the
experimental set-up are discussed in Appendix D and E.

5.1 CLASSIFIER & CLASSIFIER-FREE GUIDANCE

Guidance in unconditional diffusion models enhances both image quality and diversity by providing
conditional information during sampling, as shown in Table 4. CompressGuidance (CG) significantly
improves FID, sFID, and Recall metrics, supported by qualitative evidence in Figures 5 and 11, and
reduces guidance steps by 5×, leading to a 42% and 23% decrease in runtime on ImageNet 64x64
and 256x256, respectively (trade-off IS/FID can be observed in Fig. 8 and 9). In contrast, guidance in
conditional diffusion models mainly boosts diversity, with smaller overall impact due to the model’s
inherent conditional structure. As shown in Table 13, CompG still improves Recall and reduces
guidance steps by 5×, with notable runtime savings of 39.79%, 29.63%, and 22% on ImageNet
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64x64, 128x128, and 256x256 resolutions, respectively. From section 4.4, we also apply the CompG
technique on classifier-free guidance (CompCFG) and demonstrate the results in Table 5.

Table 4: Unconditional guidance: CompG reduces
guidance by 5× and improves performance.

Model |G| (↓) GPU hours (↓) FID (↓) sFID (↓) Prec (↑) Rec (↑)

ImageNet 64x64

ADM (No guidance) 0 26.33 9.95 6.58 0.60 0.65
ADM-G 250 54.86 6.40 9.67 0.73 0.54
ADM-CompG 50 31.80 5.91 8.26 0.71 0.56

ImageNet 256x256

ADM (No guidance) 0 245.37 26.21 6.35 0.61 0.63
ADM-G 250 334.25 11.96 10.28 0.75 0.45
ADM-CompG 50 258.33 11.65 8.52 0.75 0.48

Table 5: Conditional diffusion: CompCFG yield
lower FID and runtime with fewer guidance steps.

Model |G| (↓) GPU hours (↓) FID (↓) sFID (↓) Prec (↑) Rec (↑)

ImageNet 256x256

DiT (No guidance) 0 36.33 10.94 6.02 0.69 0.63
DiT-CFG 250 75.04 2.25 4.56 0.82 0.58
DiT-CompCFG 22 42.20 2.19 4.74 0.82 0.60

ImageNet 512x512

EDM2 (No guidance) 0 4.22 2.23 5.21 0.75 0.62
EDM2-CFG 32 8.63 1.84 4.06 0.83 0.59
EDM2-CompCFG 6 5.06 1.63 3.91 0.80 0.61

5.2 TEXT-TO-IMAGE GUIDANCE

Table 6: Stable Diffusion on MSCOCO 256x256.
CompG improves quality (Fig. 1) and all metrics.

Model |G| (↓) GPU hrs (↓) FID (↓) IS (↑) CLIP (↑) GenEval (↑)
SD-CFG 50 54 16.04 32.34 30 0.42
SD-CompCFG 8 35 14.04 35.90 31 0.43

We apply the CompG on this task with two
types of guidances, which are CLIP-based guid-
ance (GLIDE) Nichol et al. (2021) and classifier-
free guidance (Stable Diffusion) Rombach et al.
(2022). The results are shown in Table 12 and
6 and Figure 1.

5.3 ABLATION STUDY

020406080100120140
Timestep t

0

1

2

3

4

5

6

CE
 lo

ss

G on-sampling loss
G off-sampling loss
CompG on-sampling loss
CompG off-sampling loss
ES on-sampling loss
ES off-sampling loss

Figure 6: From 150 to 250 sam-
pling steps. CompG narrows the
loss gap, mitigating overfitting.
ES halts at 50 steps, leading to for-
getting problem and loss increase.

Distribution guidance timesteps toward the early stage of the
process: According to the eq. 13, by adjusting k, we can distribute
the timesteps toward the early stage or the late stage of the sampling
process. Table 7 shows the comparison between k values. With
k = 1.0, guidance steps are distributed uniformly. Larger k results
in comparable performance but more fruitful running time and the
number of guidance steps.

Trade-off between computation and image quality Compact rate
is the total number of sampling steps over the number of guidance
steps T

|G| . The larger the compact rate, the lower the model’s guid-
ance, hence the lower running time. Figure 12 shows the effect of
fewer timesteps on IS, FID and Recall as in Figure 12a, 12b and 12c.

Table 7: ImageNet64x64. Varying k shows improved
efficiency and quality with fewer guidance steps and
lower compute.

Model k |G| (↓) GPU hours (↓) FID (↓) sFID (↓) Prec (↑) Rec (↑)

CADM (No guidance) - 0 26.64 2.07 4.29 0.73 0.63
CADM-CompG 1.0 50 32.22 1.91 4.38 0.77 0.61
CADM-CompG 5.0 32 29.81 1.82 4.31 0.76 0.62
CADM-CompG 6.0 28 29.12 1.93 4.35 0.75 0.62

Table 8: ImageNet512x512. Interval guidance with
CompCFG improves performance and diversity while
reducing steps.

Model |G| (↓) Guidance Interval FID (↓) sFID (↓) Prec (↑) Rec (↑)

EDM2-IntG 6 [17, 22] 1.44 3.91 0.81 0.61
EDM2-CompCFG 6 [17,+∞] 1.44 3.88 0.81 0.62
EDM2-CompCFG 5 [17,+∞] 1.44 3.86 0.81 0.63
EDM2-CompCFG 4 [17,+∞] 1.45 3.87 0.80 0.63

Comparison with other guidance variants: Table 8 compares our proposed CompCFG with Interval
Guidance methods from Kynkäänniemi et al. (2025); Wang et al. (2024). CompCFG achieves results
comparable to IntG in Kynkäänniemi et al. (2025), but with broader applicability. Unlike IntG, which
is limited to conditional diffusion models or classifier-free guidance, CompCFG can be integrated
into any diffusion model, delivering improved image quality and computational cost, as demonstrated
in Tables 4 and 5. Comparision with Dinh et al. (2023a;b); Zheng et al. (2022) is in Appendix E.1.

6 CONCLUSION

This paper quantifies model-fitting in diffusion model sampling, analogous to overfitting phenomenon,
by analyzing on- and off-sampling loss. To address this, we propose Compress Guidance, which
enhances generative performance while reducing guidance steps by at least fivefold and cutting
runtime by approximately 40%. Broader impacts and safeguards are discussed in Appendix A.
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Algorithm 1 Compress Guidance

Input: class labels y, classification scale s
xT ∼ N (0, I)
Γ← 0
G← Using Eq.13
for t = T, ..., 1 do
z ∼ N (0, I)
if t ∈ G then

g ← s∇xt
log pϕ(y|xt)

G′
t ← the next guidance step

Γ← g × |t−G′
t|

xt−1 ← 1√
αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) + σ2

tΓ + σtz

else
xt−1 ← 1√

αt
(xt − 1−αt√

1−ᾱt
ϵθ(xt, t)) + σtz

end if
end for

A BROADER IMPACT AND SAFEGUARD

The work does not have concerns about safeguarding since it does not utilize the training data. The
paper only utilizes the pre-trained models from DiT Peebles & Xie (2023), ADMDhariwal & Nichol
(2021), GLIDE Nichol et al. (2021) and Stable Diffusion Rombach et al. (2022). The work fastens
the sampling process of the diffusion model and contributes to the population of the diffusion model
in reality. However, the negative impact might be on the research on a generative model where bad
people use that to fake videos or images.

B FULL ALGORITHMS

Algorithm 1 shows full algorithm. The full source code will be released beyond acceptance.

C MODEL-FITTING ANALYSIS FOR CLASSIFIER-FREE GUIDANCE

Different from classifier guidance, classifier-free guidance does not have an explicit classifer loss.
However, that does not mean that classifier-free guidance does not suffer from model-fitting. We
expand the analysis to CFG using the following steps:

1. Define the classifier in CFG
2. Define the observable loss
3. Observe on/off sampling

Define the classifier in CFG Alexander et al. Li et al. (2023) proved that a conditional diffusion
model is itself a classifier with the classification objective:

argmin
c

Et,ϵ

[
∥ϵθ(xt, c)− ϵ(xt)∥

]
, (15)

where xt is a noisy version of x0 with random noise ϵ(xt).

Given this objective, we similarly define the objective function to “optimize” the parameter xt, as

x⋆
t = argmin

xt

∆c(xt) (16)

s.t. ∆c(xt) ≤ ∆c′(xt), ∀ c′ ̸= c, c′ ∈ C, (17)

with
∆c′(xt) = Eϵ

[
∥ϵθ(xt, c

′)− ϵ(xt)∥22
]
, c′ ∈ C, (18)

as the logit for each class c′.
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When denoising from xt, we normally do not have ϵ(xt). We replace this with the predicted ϵθ(xt),
giving

∆c′(xt) = Eϵ

[
∥ϵθ(xt, c

′)− ϵθ(xt)∥22
]
. (19)

Thus, the diffusion model itself acts as a classifier.

Define observable loss: We convert the objective into the observable cross-entropy loss as follows:

p(c′ | xt) =
exp(−∆c′(xt))∑
k∈C exp(−∆k(xt))

=⇒ p(c | xt) = softmax(−∆(xt))c. (20)

LCE(xt, c) = − log p(c | xt) = ∆c(xt) + log
∑
k∈C

exp
(
−∆k(xt)

)
. (21)

On/Off sampling observation We observe On/Off sampling loss using LCE. We use two public
models from EDM21 which share the same architecture but differ in training hyperparameters:
EDM-S-0.025 and EDM-S-0.085. Their performance is reported below:

Model FID Accuracy
EDM-S-0.025 2.29 61%
EDM-S-0.085 2.40 63%

Table 9: General performance of diffusion models on generative task (FID) and classification task
(Accuracy).

The two models share similar performance. EDM-S-0.025 is used for on-sampling loss observation
(joined in the guidance process), and EDM-S-0.085 is used for off-sampling observation (not used
for guidance).
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Figure 7: On-sampling and off-sampling loss across timesteps for EDM-S-0.025 and EDM-S-0.085
models. The On-sampling loss has a significant gap to the off-sampling loss. However, using our
proposed CompressGuidance (CompG) helps to close the gap between On/Off sampling loss.

The results show that model-fitting also occurs for CFG. Given the same diffusion models with similar
performance, the diffusion model used for guidance achieves much lower loss during sampling. The
use of CompG narrows the gap between off-sampling and on-sampling loss, indicating reduced
model-fitting. Furthermore, as shown in Section 5.3, our method significantly improves both runtime
and sampling quality.

1https://shorturl.at/uJxeV
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Figure 8: FID curve given different guidance weight. This shows that the original vanilla guidance trades the
quality with the diversity very significantly, while CompG helps to achieve the stability of the output.

D EXPERIMENTAL SETUP

Off-sampling classifier: Off-sampling classifier is initialized as the parameters of the on-sampling
classifier. We fine-tune the model with 10000 timesteps with the same loss for training the on-
sampling classifier. The testing accuracy between the off-sampling classifier and the on-sampling
classifier is shown in Table 10

Evaluation Model Accuracy

On-sampling classifier 64.5%
Off-sampling classifier 63.5%

Table 10: Evaluation of On-sampling classifier and Off-sampling classifier on ground-truth images.

Figure 11 shows all the hyperparameters used for all experiments in the paper. Normally, since we
skip a lot of timesteps that do guidance, the process will fall into the case of forgetting. To avoid this
situation, we would increase the guidance scale significantly. The value of the guidance scale is often
based on the compact rate T

|G| . A larger compact rate also indicates a larger guidance scale. In Table
15 and Figure 6, to achieve a fair comparison, we tune the guidance scale of CompG to achieve a
similar Recall value with vanilla guidance. The reason is that the higher the level of diversity, the
harder features can be recognized, resulting in higher loss and lower accuracy. If we don’t configure
similar diversity between the two schemes, the one with higher diversity will always achieve lower
accuracy and higher loss value. We want to avoid the case that the model only samples one good
image for all.

For all the tables, the models which are in bold are the proposed.

GPU hours: All the GPU hours are calculated based on the time for sampling 50000 samples in
ImageNet or 30000 samples in MSCoco.

All experiments are run on a cluster with 4 V100 GPUs.

E FULL COMPARISON

Table 13 shows the full comparison with different famous baselines.

The stability of the CompG is visualized in Figure 8.

E.1 ADDITIONAL ABLATION

In addition to Kynkäänniemi et al. (2025), one of the most recent studies on guidance, we compare
our proposed method with Dinh et al. (2023a;b); Zheng et al. (2022). Dinh et al. (2023a) addresses
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MODEL DATASET k s |G| TIME-STEPS

TABLE 4

ADM IMAGENET 64X64 - 0.0 0 250
ADM-G IMAGENET 64X64 - 4.0 250 250
ADM-COMPG IMAGENET 64X64 1.0 4.0 50 250
ADM IMAGENET 256X256 - 0.0 0 250
ADM-G IMAGENET 256X256 - 4.0 250 250
ADM-COMPG IMAGENET 256X256 1.0 4.0 50 250

TABLE 5 & 13

CADM IMAGENET 64X64 - 0.0 0 250
CADM-G IMAGENET 64X64 - 0.5 250 250
CADM-COMPG IMAGENET 64X64 1.0 2.0 50 250
CADM-CFG IMAGENET 64X64 - 0.1 250 250
CADM-COMPCFG IMAGENET 64X64 5.0 0.1 25 250
CADM IMAGENET 128X128 0.9 0.0 0 250
CADM-G IMAGENET 128X128 - 0.5 250 250
CADM-CFG IMAGENET 128X128 - 0.5 250 250
CADM IMAGENET 256X256 - 0.0 0 250
CADM-G IMAGENET 256X256 - 0.5 250 250
CADM-COMPG IMAGENET 256X256 1.5 0.5 50 250
DIT-CFG IMAGENET 256X256 - 1.5 250 250
DIT-COMPCFG IMAGENET 256X256 1.2 1.5 22 250
EDM2-CFG IMAGENET 256X256 - 1.2 32 32
EDM2-COMPCFG IMAGENET 512X512 2.5 0.3 6 32

TABLE 6 &12

GLIDE-G MSCOCO 64X64 - 0.0 250 250
GLIDE-COMPG MSCOCO 64X64 2.0 8.0 25 250
GLIDE-G MSCOCO 256X256 - 0.0 250 250
GLIDE-COMPG MSCOCO 256X256 2.0 5.5 35 250
SDIFF-CFG MSCOCO 256X256 - 2.0 (FID, IS),7.5 (CLIP, GENEVAL) 50 50
SDIFF-COMPCFG MSCOCO 256X256 1.0 2.0(FID, IS), 7.5(CLIP, GENEVAL) 8 50

TABLE 7

CADM IMAGENET 64X64 - 0.0 0 250
CADM-G IMAGENET 64X64 - 4.0 250 250
CADM-COMPG IMAGENET 64X64 5.0, 6.0 4.0 50 250

TABLE 8

EDM2-INTG IMAGENET 256X256 - 2.0 6 32
EDM2-COMPCFG |G| = 6 IMAGENET 512X512 2.5 1.6 6 32
EDM2-COMPCFG |G| = 5 IMAGENET 512X512 2.5 1.7 5 32
EDM2-COMPCFG |G| = 4 IMAGENET 512X512 2.5 1.7 4 32

Table 11: All hyper-parameters required for reproducing the results.
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Figure 9: IS-FID curve of ImageNet256x256. The performance shows that CompG comes with high and stable
IS with improves in FID more significantly than vanilla G given IS increases..
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Model |G| (↓) GPU hrs (↓) ZFID (↓)

MSCOCO 64x64

GLIDE-G 250 34.04 24.78
GLIDE-CompG 25 20.93 24.5

MSCOCO 256x256

GLIDE-G 250 66.84 34.78
GLIDE-CompG 35 37.55 33.12

Table 12: Applying CompG on text-to-image GLIDE classifier-based guidance on MSCoco datasets.

Model |G| (↓) GPU hours (↓) FID (↓) sFID (↓) Prec (↑) Rec (↑)

ImageNet 64x64

BigGAN - - 4.06 3.96 0.79 0.48
IDDPM 0 28.32 2.90 3.78 0.73 0.62
CADM (No guidance) 0 26.64 2.07 4.29 0.73 0.63
CADM-G 250 53.52 2.47 4.88 0.80 0.57
CADM-CompG 50 32.22 1.91 4.57 0.77 0.61
CADM-CFG 250 54.97 1.89 4.45 0.77 0.60
CADM-CompCFG 25 29.29 1.84 4.38 0.77 0.61

ImageNet 128x128

BigGAN - - 6.02 7.18 0.86 0.35
LOGAN - - 3.36 - - -
CADM (No guidance) 0 61.60 6.14 4.96 0.69 0.65
CADM-G 250 94.06 2.95 5.45 0.81 0.54
CADM-CompG 50 66.19 2.86 5.29 0.79 0.58

ImageNet 256x256

BigGAN - - 7.03 7.29 0.87 0.27
DCTrans - - 36.51 8.24 0.36 0.67
VQ-VAE-2 - - 31.11 17.38 0.36 0.57
IDDPM - - 12.26 5.42 0.70 0.62
CADM (No guidance) 0 240.33 10.94 6.02 0.69 0.63
CADM-G 250 336.05 4.58 5.21 0.81 0.51
CADM-CompG 50 259.25 4.52 5.29 0.82 0.51
DiT-CFG 250 75.04 2.25 4.56 0.82 0.58
DiT-CompCFG 22 42.20 2.19 4.74 0.82 0.60

Table 13: We show full results of the model compared to other models not related to guidance.

the conflict between denoising signals and guidance signals, similar to Wang et al. (2024); Dinh et al.
(2023b) identifies adversarial features and mitigates them by reducing uncertainty; and Zheng et al.
(2022) tackles the gradient vanishing issue in classifier guidance by adapting the guidance weight.
While all of these methods are training-free, our proposed CompG is the first to focus on reducing
guidance-related computational costs by identifying and eliminating redundant guidance steps during
sampling. Our results demonstrate that CompG achieves the best FID while maintaining the lowest
running time. The comparative results are presented in Figure 14.

Model |G| (↓) GPU hours (↓) FID (↓) sFID (↓) Prec (↑) Rec (↑)

ImageNet 64x64

CADM (No guidance) 0 26.64 2.07 4.29 0.73 0.63
CADM-G 250 53.52 2.47 4.88 0.80 0.57
CADM-ProG Dinh et al. (2023b) 250 53.60 1.87 4.33 0.77 0.60
CADM-PxP Dinh et al. (2023a) 250 54.32 1.84 3.97 0.76 0.60
CADM-EDS Zheng et al. (2022) 250 53.23 1.85 4.36 0.76 0.61
CADM-CompG 50 32.22 1.82 4.31 0.76 0.61
CADM-CompCFG 25 29.29 1.84 4.38 0.77 0.61

Table 14: Comparing CompG and CompCFG with other variants Dinh et al. (2023a;b); Zheng et al. (2022) of
classifier guidance on conditional diffusion model ADM Dhariwal & Nichol (2021)
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Guidance On-samp. Off-samp. Resnet FID

Vanilla 90.8 62.5 34.17 2.47
Early Stopping 63.05 55.22 33.55 2.21
CompG (ours) 91.2 64.2 34.93 1.82

Table 15: Model-fitting on ImageNet64x64 samples. ES suffers from the forgetting problem and has low
performance. CompG achieves higher both on on-sampling and off-sampling acc.

F MATHEMATICAL DETAILS

Proof of Theorem 1

Proof. Given real data x0, at timestep t we have xt =
√
ᾱtx0 +

√
1− ᾱtϵ. On the other hand, the

prediction of real data has the form x̃
(t)
0 = xt−

√
1−ᾱtϵθ(xt,t)√

ᾱt
, replace xt with x0 and ϵ we have

x̃
(t)
0 = x0 +

√
1−ᾱt(ϵ−ϵθ(xt,t))√

ᾱt
. Thus, ||x̃0

(t) − x0|| = 1−ᾱt||ϵ−ϵθ(xt,t)||
ᾱt

If we further assume that q(x0) has a form of Normal Distribution, we would have the final objective
as DKL(q(x0)||pθ(x̃0|xt)). Since q(x0) has the form of Gaussian, we can have the minimization of
||x̃0

(t) − x0|| would result in the minimization of ||q(x̃0)− q(x0)|| = || q(x̃0)q(xt|x̃0)
q(xt)

− q(x0)|| since

x̃0 ∼ pθ(x̃0|xt) with a deterministic forward of xt to ϵθ, we have q(x̃0) ≈ q(x̃0)q(xt|x̃0)
q(xt)

= pθ(x̃0|xt).
Assume we have two density functions: p(x) and q(x). The KL divergence between these two has
the form:

∫ 1

0

p(x) log
p(x)

q(x)
=

∫ 1

0

p(x) log(p(x))− p(x) log(q(x))dx (22)

=

∫ 1

0

p(x) log(p(x))dx− (23)∫ 1

0

p(x) log(p(x)) + p(x) log((
p(x)

q(x)
− 1) + 1)dx

=

∫ 1

0

−p(x) log((q(x)
p(x)

− 1) + 1)dx (24)

=

∫ 1

0

−(q(x)− p(x)) + (q(x)− p(x))2(
1

p(x)
− 1

q(x)
)dx (25)

≤
∫ 1

0

(q(x)− p(x))2(
1

p(x)
− 1

q(x)
)dx (26)

≤
∫ 1

0

(q(x)− p(x))2(
1

a
− 1

b
)dx =

b− a

ab
||p− q|| (27)

Thus DKL(p(x)||q(x)) ≤ b−a
ab ||p− q||

Base on this bound we would have the minimization of ||pθ(x̃0|xt) − q(x0)|| is equivalent to the
minimization of DKL(q(x0)||pθ(x̃0|xt)).

Proof of first property of eq. 13

6
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Figure 10: Gradient magnitude difference measured at two consecutive steps

Proof. Let k1 < k2 and k1, k2 ∈ [1;+∞], with T
|G|k i

k = T ( i
|G| )

k and i
|G| < 1, we have:

(
i

|G|
)k1 ≥ (

i

|G|
)k2 (28)

⇔T (
i

|G|
)k1 ≥ T (

i

|G|
)k2 (29)

⇔⌊T ( i

|G|
)k1⌋ ≥ ⌊T ( i

|G|
)k2⌋ (30)

⇔T − ⌊T ( i

|G|
)k1⌋ ≤ T − ⌊T ( i

|G|
)k2⌋ (31)

As a result, G(k1)
i ≤ G

(k2)
i ∀k1, k2 ≥ 1 and k1 < k2. With k2 → +∞, G(k2)

i is bounded by T. This
means that larger k values would result in the distribution of the timesteps toward the early stage of
the sampling process.

Proof of first property of eq. 13

Proof. Similar to previous proof we have G
(k1)
i ≤ G

(k2)
i ∀k1, k2 ≥ 1 and k1 < k2. This also mean

that G(k1)
i > G

(1)
i , ∀0 ≤ k1 < 1 and if k1 → 0 then G

(k1

i → 0, hence all the gi ∈ G(k1)i is bounded
by 0. As a result, by adjusting k toward 0, we would have the distribution of guidance steps toward
the later stage of the sampling process

G GRADIENT MAGNITUDE DIFFERENCE BETWEEN TWO CONSECUTIVE
SAMPLING STEPS

In this section, we analyze the variation in the classification gradient throughout the sampling
process, particularly its significant fluctuations during the early stages. To investigate this, we
generate 32 images from the ImageNet64 dataset using ADM-G (Dhariwal & Nichol (2021)). The
guidance classifier employed in this process is the noise-aware classifier trained within ADM-G. Our
observations, illustrated in Figure 10, highlight how the classification gradient behaves over time,
providing insights into its impact on the sampling process and model performance.

H ADDITIONAL QUALITATIVE RESULTS

Due to space limitations in the main paper, we present qualitative results in this supplementary
material. Figures 11, 13, 14, 15, and 16 provide additional comparisons with the vanilla baseline,
while Figures 17 and 18 showcase high-quality images generated by DiT models combined with
CompG.
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Vanilla Guidance Compact Guidance (ours)

Goldfish

Pembroke 
Corgi

Figure 11: Qualitative results on ImageNet256x256. Left: Vanilla guidance applied at all timesteps. Right:
Compress Guidance applied at 50 of 250 timesteps. Compress Guidance corrects misclassification by the
on-sampling classifier, preventing out-of-class image generation and restoring accurate class information. More
qualitative results are shown in AppendixH
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Figure 12: Trade-off: Running time versus performance. We measure the compact rate as T
|G| . In (a),

IS decreases with increasing compact rate, while FID and Recall improve. However, when the rate
exceeds 10, FID begins to rise. This suggests that increased diversity from more features initially
enhances Recall and FID, but excessive diversity degrades image quality.
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Quiet forest 
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by tall trees.
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with waves 
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(ours)StableDiffusion

Figure 13: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the right
figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’ superiority
over classifier-free guidance regarding image quality, quantitative performance and efficiency.
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Figure 14: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the right
figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’ superiority
over classifier-free guidance regarding image quality, quantitative performance and efficiency.
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(ours)StableDiffusion
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Figure 15: Stable Diffusion with classifier-free guidance. The left figure is the vanilla classifier-free
guidance with application on all 50 timesteps. Our proposed Compress Guidance method is the right
figure, where we only apply guidance on 10 over 50 steps. The output shows our methods’ superiority
over classifier-free guidance regarding image quality, quantitative performance and efficiency.
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Figure 16: Qualitative comparison between ADM-G and ADM-CompG.The images generated by
ADM-G and ADM-CompG are put side by side. On the left side is ADM-G and on the right side is
ADM-CompG.
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Figure 17: Images generated by DiT-CompCFG. From top to bottom classes goldfish, Welsh springer
spaniel, Pembroke Welsh corgi, Cardigan Welsh corgi.
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Figure 18: Images generated by DiT-CompCFG. From top to bottom classes redfox, kitfox, Arctic fox,
tabby cat.
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