Published in Transactions on Machine Learning Research (11/2025)

DNOD: Deformable Neural Operators for Object Detection
in SAR Images

GVS Mothish mothishg@iisc.ac.in
Department of Computational and Data Sciences
Indian Institute of Science, Bengaluru, India.

J Rishi rishij@iisc.ac.in
Department of Computational and Data Sciences
Indian Institute of Science, Bengaluru, India.

Shobhit Kumar Shukla shobhitshukla6535Q@gmail.com
Department of Computational and Data Sciences
Indian Institute of Science, Bengaluru, India.

Deepak N. Subramani deepakns@iisc.ac.in
Department of Computational and Data Sciences
Indian Institute of Science, Bengaluru, India.

Reviewed on OpenReview: |https: //openreview. net/ forum? id=tjBqPJdQ72

Abstract

We introduce a deep neural operator framework aimed at object detection in remotely sensed
Synthetic Aperture Radar (SAR) images. Recent research highlights the impressive perfor-
mance of the End-to-End Object Detection Transformer (DETR). Nonetheless, in domains
like SAR imaging, managing challenges such as speckle noise and the detection of small
objects continues to be problematic. To address SAR object detection issues, we present the
Deformable Neural Operator-Based Object Detection (DNOD) framework, tailored for SAR
tasks. We develop two neural operators: Multi-Scale Fourier Mixing (MSFM) for the encoder
and Multi-scale, multi-input Adaptive Deformable Fourier Neural Operator (MADFNO) for
the decoder. Detailed evaluations and ablation studies show that DNOD exceeds existing
methods, delivering significantly better results with an improvement of +2.23 mAP on the
SARDet-100k dataset, the largest SAR object detection compilation. The code is available
at https://github.com/quest-lab-iisc/DNQOD.

1 Introduction

Neural operators, emerging from computational physics, have demonstrated significant success in solving
Partial Differential Equations (Kovachki et al., 2023). Rooted in operator theory, these neural operators
learn mappings between function spaces of infinite dimensions, achieving notable success in numerous appli-
cations while inherently maintaining discretization invariance. Neural operators comprise three fundamental
parts: (1) a lifting module, (2) an iterative kernel integral module, and (3) a projection module. Kernel
integrals are operations within the spatial domain that ascertain global interdependencies crucial for learning
infinite-dimensional function maps. Based on different forms of kernel integral computation, different neural
operators such as Fourier Neural Operator (Li et al., |2020c), Graph Neural Operator (Li et al., [2020d)),
and Adaptive Fourier Neural Operator (Guibas et al., [2021) have been proposed. In a specific context, the
attention mechanism utilized within transformers can be seen as a special case of kernel integral operations
(Kovachki et al., 2023)). Recently, neural operators have demonstrated superior performance in computer
vision applications such as super-resolution (Wei & Zhang), |2023; [Liu & Tang}, [2025), and inpainting (Guibas
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2021). However, neural operators have not been employed for the task of object detection in Synthetic
Aperture Radar (SAR) imagery, a gap this paper addresses.

SAR is an advanced active microwave sensing technology capable of acquiring high-resolution images regard-
less of weather conditions, illumination, or time of day (Tirandaz et al.| [2020; Brown), [1967; Moreira et al.
. SAR images can provide much more useful information and be effective in military reconnaissance,
marine surveillance, port management, and disaster response applications (Guan et al., [2023} |Zhang et al.
[2022a; [Chen et all [2020; |Zhang et al. 2022b)). As modern satellites provide increasingly accessible high-
resolution, large-scale SAR images, the demand for sophisticated methods to effectively process large data
volumes has increased. Consequently, the precise detection of targets from complex terrestrial environments
using SAR images is of great practical importance (Sharifzadeh et all, 2019).

(a) Ground Truth (b) DenoDet (¢) DINO (d) DNOD (ours)

Figure 1: Qualitative evaluation of DNOD for SAR image object detection against recent state-
of-the-art models: (a) Top row is the input SAR image and bottom row is the ground truth of bounding
boxes. (b)-(d) The top row shows the learned representation by encoder operator, and bottom row shows
detected objects by DenoDet, DINO and our DNOD. Notably, DNOD encoder operator (MSFM) effectively
differentiates small objects and other features better than DenoDet (TransDeno) and DINO (Deformable),
underscoring the neural operator’s efficiency and superior ability to detect small objects compared to other
leading models.

Numerous SAR object detection methods have been proposed, from traditional methods
[Migliaccio et al| 2012)) to CNN-based methods (Gao et all [2021)). In recent developments, transformers
have been introduced for object detection, explicitly known as DETR (Detection Transformers; [Carion et al.|
(2020)), and have shown superior performance compared to traditional hand-crafted feature engineering
methods. Various iterations and modifications of DETR, such as Deformable DETR and DAB DETR,
have exhibited outstanding results in the field of object detection, further enhancing their effectiveness and
application (Zhu et all |2021} [Liu et al. [2022a; [Zhao et al., 2024; [Zhang et al.l [2023a; [Lin et al., [2023b}
[Meng et all 2021)). An extensive discussion of the different methodologies for object detection is available
in the Appendix [A-1] Even with the advent and introduction of multiple variants of the DETR model, its
effectiveness in SAR images has been less than satisfactory . There have been different
challenges associated with SAR images, specifically (i) speckle noise interference ; and (i)
small target challenges . Given the DETR framework’s notable success in object detection,
attributed to its foundation on the transformer architecture, it is feasible to integrate neural operators into
the DETR framework specifically for executing SAR object detection tasks.
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This paper presents the Deformable Neural Operator for object Detection (DNOD) in SAR images. DNOD
is trained and evaluated on the COCO-level large-scale multi-class SAR object detection dataset, SARDet-
100k (Li et al.|2024b). For an illustrative example of the diversity of the dataset, refer to Appendix Our
methodology employs neural operator architecture within the framework of End-to-End Object Detection
using transformers (DETR). We introduce two architectural components drawn from neural operator con-
cepts: (4) The Multi-Scale Fourier Mixing (MSFM) Encoder and (7) The Multi-Scale Adaptive Deformable
Fourier Neural Operator (MADFNO) Decoder. There are two main advantages of using neural operators
for SAR object detection: (i) Fourier component in the neural operator reduces the effect of speckle noise
in SAR images; and (7) the discretization invariance property of the neural operator reduces the challenges
related to small target detection. Section [£.4] describes comprehensive visual insights.

In summary, our main contributions are as follows.

1. To the best of our knowledge, this is the first work to introduce neural operators for object detection
applications.

2. We develop two novel architectural components, MSFM and MADFNO, specifically designed to
enhance object detection performance in SAR imagery. Visualizations of the learned representations
highlight the capability of our new operators (Figure .

3. We integrate our proposed neural operators within the DETR framework to achieve effective SAR
object detection.

4. Through comprehensive empirical evaluation, we demonstrate that our method achieves SoTA per-
formance for SAR object detection compared to existing object detection techniques.

2 Preliminaries: Neural Operator

Neural operators (Kovachki et al., [2023) are built to learn function-to-function mappings. Initially introduced
to solve PDEs, they have recently been applied to computer vision tasks. Consider an operator G: A — U
that acts between the function spaces A and Y. Neural operators are the parametric map G4: A — U that
approximates G and is learned from empirical data or physical principles. Formally, the parametrized neural
operator can be expressed as

Gp=QooWr +Kr+br)o---0oo(Wi +Ki1+b1)oP, (1)

where, P and Q serve as the lifting and projection operators. The lifting operator raises the codomain
to a higher-dimensional representation space, while the projection operator reduces the codomain to the
output dimension. These operators are typically parameterized as multilayer perceptrons and act point-wise
on functions. The function o represents pointwise nonlinearity. Each layer ¢ = 1,...,T includes a local
operator W; (usually parameterized by a point-wise neural network), a kernel integral operator K;, and a
bias function b;. Given an intermediate functional representation v; with domain D in the ¢-th hidden layer,
a kernel integral operator Ky is defined as

(Kove) () = /D o, 00 (@), ve(y)on () dy (2)

where the kernel kg is a learnable neural network with parameter ¢. Different neural operators (Equation
1)) are defined on the basis of their kernel integrals (Equation . Each of these operator layers is expressed
as {vy: Dy — R%t} s {vg41: Dyyq — Rd“t+1} using

Vi1 (2) = 04yt <tht(;p) + /D (,.g<t>(x7y)m(y)) dvy(y) +bt(az)) V€ Dyys. (3)
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3 Methodology

Building on top of the DETR framework (see Appendix |Carion et al| (2020)), we develop our DNOD
model (Figure [2)) by introducing two new neural operator architectural components: (i) The Multi-Scale
Fourier Mixing (MSFM) Encoder (Sect. 3.1) and (i) The Multi-Scale Adaptive Deformable Fourier Neural
Operator (MADFNO) Decoder (Sect. Our proposed neural operator modules are specifically designed
to learn multi-scale feature maps that have been shown to benefit modern object detection frameworks (Liu!

let al., [2020; |Zhu et al., 2021)).
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Figure 2: Overview of the DNOD framework: DNOD architecture processes input SAR images using
a backbone and MSFM encoder to extract multi-scale, Fourier-enhanced embeddings. These features are
passed to the MADFNO decoder along with initial proposals and learnable queries. The decoder outputs
are supervised by three loss functions (i) classification (ii) one to one matching loss and (iii) one to many
matching, to guide robust SAR image detection.

3.1 Multi-Scale Fourier Mixing (MSFM Encoder)
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Figure 3: MSFM Encoder: Multi-scale features combined with positional embedding are fed into the
encoder. Initially, a Fourier transform is executed across scale, height, and width. This is succeeded by
spatial mixing and then an inverse transform. Subsequently, channel mixing is applied, and the resulting
output is passed on to the succeeding encoder layer. This entire sequence is repeated for the specified number
of encoder layers, ultimately yielding Fourier-enhanced embeddings.
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Within the DETR framework, multiple encoders have been utilized, such as Vision Transformer (Carion
et al., 2020) and Deformable Transformer (Zhu et al.l [2021)). However, these encoders work in the image
domain, thereby failing to segregate coherent speckle noise in SAR images that are intermixed with features
(Dai et al.;|2024). Removal of noise before detection can result in missing crucial details for subsequent tasks,
rendering it an ill-posed problem (Sun et al., [2022)), thus necessitating an architecture adept at handling
noisy features. We introduce a neural operator framework, named Multi-Scale Fourier Mixing (MSFM),
adept at effectively handling multi-scale features and speckle denoising in the frequency domain (Figure [3)).
Our MSFM is motivated by the success of the spectral convolutions used in the Fourier Neural Operator
(FNO) (Li et al., [2020c) and the efficient token mixer introduced in the Adaptive Fourier Neural Operator
(AFNO) (Guibas et all2021)). These operators employ the convolution theorem to transform convolutions in
the spatial realm to element-wise multiplications with block diagonal structure in the Fourier domain. The
main distinction between AFNO and our MSFM is that MSFM is specifically designed to manage multi-scale
features in the Fourier domain, essential for tasks like denoising and object detection.

The MSFM kernel integral for a continuous multi-scale variable X € D with a kernel function x at a specific
token s can be expressed as

K(X)(s) = F~1 (F(k) - F(X)) (s) Vse D, (4)
where - denotes matrix multiplication, and F, F~! denotes the continuous Fourier transform and its inverse.

In practice, each MSFM encoder block begins with spatial mixing across multiple scales via the Fourier
transform (2, where (m,n) is the index per token), which is followed by channel mixing (27(,?“) with a
block diagonal structure and the inverse Fourier transform (y,,). The final Fourier-enhanced embeddings
(Figure [2]) are obtained after multiple encoder blocks. Mathematically, each encoder block can be expressed
as

Zmm = [FFT(X)|mm 20, =W0 20 1 =1,....p, ymn = [[FFT(SoftShrink(z,,)]. (5)

m,n m,n<“m,n’

The above formulation improves efficiency, generalization, and speckle noise removal through block-diagonal
channel mixing, shared MLP weights, and soft-thresholding. The pseudo code for the MSFM encoder is

provided in Appendix

3.2 Multi-Scale Adaptive Deformable Fourier Neural Operator (MADFNO Decoder)

DETRs face challenges in settings with limited feature resolution, resulting in below-average performance in
detecting objects across varying scales. This constraint impairs the model’s ability to detect smaller objects
prevalent in SAR imagery. Furthermore, employing a transformer decoder hinders the convergence speed.
To mitigate these issues, deformable attention modules (Zhu et all|2021)) have been implemented in generic
object detection. However, as mentioned earlier (Section , successful SAR object detection demands
addressing both speckle noise and multi-scale features, calling for a neural operator. Moreover, in DETRs,
the decoder’s task is to query objects based on the features produced by the encoder. This requires a neural
operator that can handle multiple inputs. Recent studies (Jiang et al., |2024; Lehmann et al.l [2025) have
explored multi-input neural operators; however, none incorporate deformable methods that are essential for
multi-scale feature extraction.

Thus, we introduce the MADFNO (Figure , a novel neural operator designed for handling multiple inputs,
multi-scale scenarios, and incorporating deformable technique with Fourier mixing.

MADFNO takes object queries (@) as input along with features of the encoder (FE,). First, object queries
undergo self-Fourier mixing (M) with a kernel function p at a specific token s, defined as

M(Q)(s) = F 1 (F(p) - F(Q)) (s) Vs€D. (6)

Subsequently, these object queries are combined with encoder embeddings (FE,) through the deformable
operator (D) to obtain the refined object queries, D(M(Q), E,), evaluated as

D(Z,E,)(s) = [B(Tk, Eok), - - - B(T1, Eo1)]; where Z = M(Q). (7)
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Figure 4: MADFNO Decoder: Object queries along with Fourier-enhanced encoder embeddings serve
as input to the decoder. The deformable operator extracts features from the encoder embeddings through
sampling locations determined by the object queries. These extracted features are subsequently subjected
to Fourier mixing, resulting in the final object queries for the subsequent decoder layer.

Deformable operator (D): Rather than selecting features directly from the encoder output we partition
the encoder embeddings (E,) into k different slices such that E, = U¥ | E,; and nNF_ | E, = ¢, which
implies that E, = [Eo1, Fo2, -+ , Eok], where [,] denotes the concatenation operator. This shced sampling
facilitates feature selection by concentrating each slice on distinct relations within F,, similar to the multi-
head attention mechanism in traditional transformer models. Note that each slice contains multi-scale
features as encoder embeddings.

The sampling locations (T') necessary for the deformable operator are obtained from the initial reference
points (R,), which are in turn obtained from encoder embeddings (E,) and sampling residuals (r), such that
T = Ry, + r where r is learnable and R, is estimated from FE,. The sampling residuals are learned via the
sampling location layer (SL), that is,

r1,72,T(s) = SL(Z)(s) where Z =M(Q), (8)

where r; represents the sampling residuals for the jth slice. To sample features from each slice, a sampling
location layer takes object queries M (Q) as input and outputs sampling residuals per slice, which are further
added to reference points per slice R,; to obtain final sampling locations per slice T}, i.e., Tj = R,; + 1.
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The final sampling locations derived are continuous; consequently, bilinear interpolation is used to extract
features from the encoder embeddings, denoted as B(Tj, E,;) for the j'* slice. All these slices are then
concatenated into a single slice of sampled encoder embeddings with dimensions (n,, ~dim ), where n, =
Npoints * Nscales With Mpeints as a hyperparameter denoting the required number of sampling points per
feature scale. These embeddings are then concatenated with object queries to form combined embeddings
per object query with dimensions (nq, np, haim ). Next, a Fourier transform is performed across these sampled
features (n,), followed by spatial mixing and an inverse Fourier transform leading to Fourier mixing of queries
with sampled encoder embeddings. This process is followed by a mean pooling operation along the selected
features and subsequent channel mixing to produce the final refined object queries. Overall, the kernel
integral of the multi-input neural operator MADFNO can be expressed as

K(Q, Eo)(s) = Mo FT1 (F(k) - F([Z,D(Z,E,)])) (5) Ys€D, Z=M@Q). (9)

4 Experiments

We first present the datasets used for our experimental analysis and the implementation procedure. We then
proceed to evaluate the performance of DNOD in comparison to baseline models. Finally, we performed an
ablation study to illustrate the significance of each component and its impact on overall effectiveness.

4.1 Experimental Setup
4.1.1 Datasets

The SARDet-100k dataset is used in our experiments focused on object detection. This dataset comprises
116,598 images and 245,653 instances classified into six categories: Aircraft, Ship, Car, Bridge, Tank and
Harbor. As the first extensive SAR object detection dataset, SARDet-100K is similar in scale to the widely
recognized COCO dataset (118K images) (Lin et al., [2014), a benchmark for general object detection.
SARDet-100k is constructed by integrating nine different datasets focused on SAR object detection. These
datasets exhibit varied polarities and encompass a wide range of resolutions, ranging from 0.1 to 25 meters.
The data is collected by utilizing six different satellites, each operating within four diverse frequency bands.
The extensive scope and diversity of the SARDet-100K dataset, as outlined in Table [I} accurately represent
the real-world obstacles encountered in deploying SAR object detection models across different data sources.
We employ intensity images in the present work.

Table 1: Source datasets in SARDet-100K (Li et al., [2024b)). Target categories S: ship, A: aircraft, C: car,
B: bridge, H: harbour, T: tank.

Datasets ‘ Target ‘ Res. (m) ‘ Band ‘ Polarization ‘ Satellites ‘ License
AIR__SARShip (Xian et al.|[2019) | S | 13m | C | vV | GF-3 | -

HRSID (Wei et al.||2020) ‘ S ‘ 0.5~3m ‘ C/X ‘ HH, HV, VH, VV ‘ S-1B, TerraSAR-X, TanDEM-X ‘ GNU General Public
MSAR (Xia et al.|[2022) | A,T,B,S| <1im | C | HH, HV, VH, VV | HISEA-1 | CC BY-NC 4.0
SADD (Zhang et al.|[2022c) | S | 05~3m | X | HH | TerraSAR-X [ -

SAR-AIRcraft (Zhirui et al.||2023) ‘ A ‘ 1m ‘ C ‘ Uni-polar ‘ GF-3 ‘ CC BY-NC 4.0
ShipDataset (Wang et al.|[2019) ‘ S ‘ 3~25m ‘ C ‘ HH, VV, VH, HV ‘ S-1, GF-3 ‘ -

SSDD (Zhang et al.||2021b) | S | 1~15m | C/X | HH, VV, VH, HV | S-1, RadarSat-2, TerraSAR-X | Apache 2.0

OGSOD (Wang et al.| [2023) | B,H, T | 3m | C | VV/VH | GF-3 | -

SIVED (Lin et al.|[2023a) ‘ C ‘ 0.1, 0.3m ‘ Ka, Ku, X ‘ VV/HH ‘ Airborne SAR synthetic slice ‘ -

4.1.2 Implementation Details

In DNOD and other baselines, the same ResNet-50 backbone (pre-trained on the ImageNet-1K dataset) is
utilized for fair comparison of object detection models. DNOD contains MSFM encoder and MADFNO
decoder each having 3 layers, utilizing a hidden feature dimension of 256. With 1200 decoder object queries,
training is accomplished through both one-to-one (Zhang et al.l [2023al) and one-to-many matching (Zhao
et al.l [2024) losses. Based on |Zhang et al.| (2023a)), we use L1 and GIoU losses for the regression of the
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bounding box and adopt focal loss with a = 0.25 and v = 2 for classification. Additionally, techniques
such as Look Forward Twice and Mixed Query Selection are integrated (Zhang et al.| |2023a)). Following the
DETR framework, auxiliary losses are introduced after each decoder layer. The model underwent 56 epochs
of training on 2 Nvidia RTX A6000 GPUs, with a cumulative batch size of 16. Initially, the learning rate
was configured at 1 x 10™4, which was reduced by a factor of 0.1 after 52 epochs. We utilized the AdamW
optimizer, with a weight decay rate of 1 x 10™%. Further implementation details are in the Appendix

4.2 Results

Table 2: Comparison of SAR Object detection methods on the SARDet-100k dataset. Bold indicates it
is better than all models, and an underline is the second best. All the models used a ResNet-50 backbone
pretrained (Pre.) on ImageNet. Baseline results are from (Dai et al. 2024)

Method ‘Pre. ‘FLOPS #Params‘ mAP APQ50 APQ75 APg APy APp

One-stage

FCOS IN |51.57G 32.13M | 52.52 85.82 54.93 47.01 66.13 57.82

GFL IN [52.36G 32.27M | 55.01 85.16 58.87 49.44 67.29 60.45

RepPoints IN [48.49G 36.82M | 51.66 86.43 53.99 46.66 63.26 53.78
ATSS IN |51.57G 32.13M | 54.95 87.60 58.25 49.89 67.94 58.97
CenterNet IN [51.55G 32.12M | 53.91 86.17 57.31 48.88 66.22 57.74
PAA IN |51.57G 32.13M | 52.20 85.71 54.80 46.00 63.90 57.61

PVT-T IN [42.19G 21.43M | 46.10 77.55 49.00 38.01 59.53 53.35

RetinaNet IN [52.77G 36.43M | 46.48 77.74 48.94 40.25 59.35 50.26
TOOD IN [50.52G 30.03M | 54.65 86.88 58.41 50.20 66.72 58.60
DDOD IN [45.58G 32.21M | 54.02 86.64 57.23 49.33 64.70 58.02

VFENet IN |48.38G 32.72M | 53.01 84.32 56.32 47.37 65.39 57.99
AutoAssign IN |51.83G 36.26M | 53.95 89.58 55.96 50.14 63.40 54.73
YOLOF IN [26.32G 42.46M | 42.83 74.95 43.18 33.73 56.19 53.57
YOLOX IN | 853G 894M | 34.08 66.77 31.31 28.49 43.06 28.95

Two-stage

Faster R-CNN IN | 63.2G 41.37M | 39.22 70.04 39.87 32.55 47.23 42.02

Cascade R-CNN IN [90.99G 69.17M | 53.55 87.33 56.81 49.09 62.89 48.68
Dynamic R-CNN IN | 63.2G 41.37TM | 49.75 80.96 53.91 43.12 59.72 54.77
Grid R-CNN IN | 0.18T 64.47M | 50.05 80.58 53.49 4243 62.01 52.70
Libra R-CNN IN |64.02G 41.64M | 52.09 83.54 55.81 45.85 63.52 55.40
ConvNeXt IN |63.84G 45.07M | 53.15 85.52 57.28 45.67 64.55 58.61

ConvNeXtV2 IN | 0.12T 0.11G | 53.91 86.01 58.90 47.63 64.67 59.57
LSKNet IN [53.73G 30.99M | 52.39 85.07 56.96 45.15 63.59 59.16
End2End

DETR IN [24.94G 41.56M | 45.73 78.57 46.87 37.01 58.16 55.58
Deformable DETR, IN |51.78G 40.10M | 52.00 88.77 54.03 46.99 63.58 58.55

DAB-DETR IN [28.94G 43.70M | 43.31 78.14 43.10 34.82 56.34 52.62

Conditional DETR IN [28.09G 43.45M | 44.04 77.88 44.40 35.25 56.47 52.86
DINO IN |81.41G 46.67M | 53.40 87.82 56.15 47.05 66.19 61.98
DenoDet IN |52.69G 65.78M | 55.88 85.81 60.16 50.63 68.47 60.96
DNOD (ours) IN [40.36G 35.67M | 56.96 90.36 59.69 52.94 71.22 65.43
Promotion - - - +1.08 +0.78 - +2.31 +2.75 +4.47
DNOD large (ours) [IN |78.01G 43.10M | 58.11 91.44 61.31 55.31 70.30 64.36
Promotion - - - +2.23 +1.86 +1.15 +4.68 +1.83 +3.40
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To assess the effectiveness of our model, we conducted a comparative analysis with 28 baseline methods
(details in Appendix , encompassing a variety of categories, including one-stage, two-stage, and end-to-
end approaches. This selection, which includes convolution-based models, transformer-based models, and
single-shot detectors such as YOLO, ensures a robust evaluation of our proposed model. The baseline results
were obtained from DenoDet (Dai et al., 2024). We report average precision (AP) calculated using standard
COCO (Lin et all [2014)) evaluation metrics. We report AP at different IOU thresholds and on different
object scales, small (APg), medium (APys) and large (APr). We report our primary metric, COCO mAP,
which calculates the mean of AP scores on 10 IoU thresholds from 0.50 to 0.95 with a step size of 0.05.

4.2.1 Quantitative Results

We have benchmarked DNOD with 28 diverse baselines (Table . Our DNOD achieved SoTA performance
across all metrics at different IoU thresholds and on all object scales: small, medium, and large. DNOD uses
3 scales with 32 x 32 resolution scale derived from the backbone as the primary feature map. Compared to
the previous SoTA model (DenoDet 4 Scale (Dai et al., [2024])) on SARDet-100k, our model demonstrated
a +1.08 mAP improvement, with a 45.7% reduction in parameters and 23.4% fewer GFLOPs. This
computational efficiency is due to the neural operator-based encoder and decoder we introduced. We also
developed a larger version of our model called ‘DNOD Large’ to further enhance the performance on SAR
object detection. In this design, we utilized four scales with a 64 x 64 resolution scale derived from the
backbone as primary feature maps. This enhancement led to an increase in mAP to 58.11, marking an
improvement of 4+2.23 over the previous SoTA.

4.2.2 Qualitative Results

(a) Ground Truth (b) DenoDet (c) DINO (d) DNOD (ours)

Figure 5: Qualitative Assessment: (Row 1): DNOD effectively identified a partially visible object, which
was not achieved by the other models. (Row 2): DNOD accurately detected an aircraft, which the other
leading models failed to recognize. (Row 3): DNOD succeeded in detecting all ships, unlike other models.
This analysis shows the superior ability of DNOD to detect objects in diverse settings.
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We present the qualitative analysis of DNOD compared with two leading object detection models, (1)
DenoDet (Dai et al) [2024]), which is a leading model in SAR object detection, and (2) DINO (Zhang et al.
2023a)), a leading model for generic object detection. This ensures a diverse evaluation of our model against
both SAR object detection and generic object detection models. Figure [5| presents 4 different scenarios, (1)
Partially occluded: DNOD successfully identified a partially occluded image, a feat not accomplished by the
other models. (2) Similar objects in close proximity: DNOD precisely detected two different aircrafts that
the other leading models had missed. (3) Smaller objects & (4) Crowded scenario of smaller objects: In both
the third and fourth rows, DNOD was able to identify almost all of the ships which are much smaller objects
compared to the image size, in contrast to the other leading counterparts. All predictions were assessed
with a classification confidence greater than 0.5. This qualitative assessment underscores the superiority
of DNOD in SAR object detection compared to other leading models, attributed to the discrete invariance
property of neural operators (Kovachki et al., [2023).

4.3 Ablation Study

Table 3: Ablation comparison of (MSFM) encoder and (MADFNO) decoder

Encoder Decoder mAP APsg AP75 APg APy AP,
Deformable | Deformable | 52.00 | 88.77  54.03  46.99  63.58  58.55
MSFM Deformable | 5447 | 88.58  57.47  50.73 6894  62.04
Promotion - —+2.47 - +3.44 +3.74 +5.36 +3.49

MHSA ‘MADFNO‘ 55.80 ‘ 89.67 58.51 51.78 69.86 63.42

Promotion +3.80 +0.90 +4.48 +4.79 +6.28 +4.87
MSFM MADFNO 56.96 90.36 59.69 52.94 71.22 65.43
Promotion - +4.96 +1.59 +5.66 +5.95 +7.64 +6.88

Effect of MSFM and MADFNO: To evaluate the effectiveness of the proposed architecture, we perform
an ablation study comparing various encoder-decoder configurations. As shown in Table [3| replacing the
conventional deformable encoder with our MSFM encoder consistently improves performance across all AP
metrics. Especially mean average precision (mAP) improved by +2.47 with our encoder on SAR imagery.
Furthermore, incorporating the MADFNO decoder in place of traditional deformable decoding significantly
improves detection accuracy and has shown +3.80 improvement in mAP. The combination of the MSFM
encoder and the MADFNO decoder achieves the best performance, achieving an AP of 56.96, a promotion
of +4.96, with notable improvements in APs(52.94) (+5.95) and APy/(71.22) (47.64), demonstrating the
effectiveness of the two neural operators.

Table 4: Ablation comparison of number of feature scales

# Feature Scales | mAP | APj AP APg APy, AP}
DenoDet 4 Scale (Previous SoTA) | 55.88 | 85.81  60.16  50.63 6847  60.96
DNOD 2 Scale 55.56 89.75 57.66 51.36 70.63 63.49
Promotion wrt SoTA - +3.94 - +0.73 +2.16 +2.53
DNOD 3 Scale 56.96 90.36 59.69 52.94 71.22 65.43
Promotion wrt SoTA +1.08 +4.55 - +2.31 +2.75 +4.47
DNOD 4 Scale 58.11 91.44 61.31 55.31 70.30 64.36
Promotion wrt SoTA +2.23 | +5.63 +1.15 +4.68 +1.83 +3.40

Effect of Different Scales: We examine the effect of varying the number of feature scales in our architec-
ture, adjusting it from 2 to 4. Table [ reveals that increasing the feature scales consistently improves the
overall detection performance. Transitioning to three scales significantly boosts the average precision (AP)
to 56.97 from 55.56 at two scales, and also improves APr; to 61.31 and APs of 55.31, highlighting the
effectiveness of rich comprehensive multi-scale representations for detecting objects of differing sizes. These
findings confirm the crucial role of integrating more scales in our framework.
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We have also benchmarked DNOD with a ResNet-18 backbone, analyzed its robustness by varying scales and
the number of queries, and provided a detailed computational analysis with varying batch sizes, including
latency and energy consumption. Furthermore, a FLOPs vs. mAP comparison is included to assess DNOD’s
effectiveness against baselines, and experiments with the DNOD encoder using Non-Neural Operator (NO)
spectral mixers are presented to justify the impact of MSFM. All these results are provided in Appendix

A7

4.4 DNOD in Action: Visual Insights

s Y v." 2 .
(a) SAR Image (b) DINO (¢) DenoDet (d) DNOD

Figure 6: Comparative Evaluation of Encoder Outputs: DNOD vs. Other leading Models. For
images impacted by speckle noise (rows 1 and 2) and those featuring small objects (row 3), we obtained the
encoder outputs at the same scales from each model. The feature maps generated by DNOD demonstrate
robustness to speckle noise (rows 1 and 2) and capability in representing small objects (row 3). This
evaluation underscores the DNOD’s representational strength in challenging scenarios.

For visual comparison purposes and to provide insight into the representations learned by our DNOD model,
we visualize the feature maps obtained from both the MSFM and DINO encoders, together with the object
queries derived from the MADFNO and DINO decoders.

Encoder Feature Maps: Two major challenges in SAR object detection are speckle noise and small object
size (compared to image resolution). We have visualized our MSFM feature maps in both cases (Figure@. It
is evident that our MSFM operator is robust in tackling both challenges. Furthermore, it ensures a distinct
separation between the object and the background, which facilitates the detection ability of the decoder.

Decoder Query Locations: We selected object queries with classification scores exceeding 50% and
projected these queries onto the feature maps (from encoder) to examine the deformable query locations,
thus assessing detection types in each instance (Figure E[) In both instances (top and bottom images),
MADFNO decoder, through its utilization of Fourier components and operator properties, is able to target
each query on individual objects, using dense representations at the boundaries and on the object’s surface
(top image). In addition, it accurately outlines boundaries with query locations, aiding in bounding-box
detection.
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In summary, while DINO’s attention is scattered, DNOD effectively concentrates its focus, resulting in
sharper boundary localization. From the foregoing discussion, it becomes clear that the integration of our
novel neural operators (MSFM and MADFNO) into the DETR framework has markedly enhanced the
detection of SAR objects. For additional examples, refer to the Appendix [A10.3]

(a) Ground Truth (b) DINO (DETR based) (d) DNOD (Ours)

Figure 7: Visualization of feature maps and object queries derived from MSFM-DINO encoders and
MADFNO-DINO decoders. MSFM exhibits effective feature extraction and clear object—background sep-
aration. MADFNO decoder utilizes Fourier components to densely position queries on object surfaces and
edges, facilitating more precise boundary detection than DINO, whose attention remains more dispersed.

5 Conclusion and Future Work

We developed DNOD, the first-of-its-kind neural operator-based encoder called MSFM and a decoder called
MADFNO within the DETR framework for object detection, showcasing its implementation on SAR datasets.
These are new multi-input, multi-scale deformable neural operators. Experimental results and ablation stud-
ies show that DNOD offers notable advances over the current leading methods in achieving SoTA perfor-
mance. Although SAR object detection was the focus here, the utility of our novel architecture with some
modifications might have a broader implication for generic object detection and other computer vision tasks
using neural operators. Further, SLC/complex phase SAR images would need modifications of both MSFM
and MADFNO, which could be attempted in the future. On the whole, the present paper opens exciting
new directions for future research.

12



Published in Transactions on Machine Learning Research (11/2025)

References

William M Brown. Synthetic aperture radar. IEEE Transactions on Aerospace and Electronic Systems, (2):
217-229, 1967.

Zhaowei Cai and Nuno Vasconcelos. Cascade r-cnn: High quality object detection and instance segmentation.
IEEF transactions on pattern analysis and machine intelligence, 43(5):1483-1498, 2019.

Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In Furopean conference on computer vision,
pp- 213-229. Springer, 2020.

Jianlai Chen, Mengdao Xing, Xiang-Gen Xia, Junchao Zhang, Buge Liang, and De-Gui Yang. Svd-based
ambiguity function analysis for nonlinear trajectory sar. IEEE Transactions on Geoscience and Remote
Sensing, 59(4):3072-3087, 2020.

Qiang Chen, Yingming Wang, Tong Yang, Xiangyu Zhang, Jian Cheng, and Jian Sun. You only look one-
level feature. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
13039-13048, 2021a.

Qiang Chen, Xiaokang Chen, Jian Wang, Shan Zhang, Kun Yao, Haocheng Feng, Junyu Han, Errui Ding,
Gang Zeng, and Jingdong Wang. Group detr: Fast detr training with group-wise one-to-many assignment.
In Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 6633—6642, 2023.

Zehui Chen, Chenhongyi Yang, Qiaofei Li, Feng Zhao, Zheng-Jun Zha, and Feng Wu. Disentangle your dense
object detector. In Proceedings of the 29th ACM international conference on multimedia, pp. 4939—-4948,
2021b.

Zongyong Cui, Qi Li, Zongjie Cao, and Nengyuan Liu. Dense attention pyramid networks for multi-scale
ship detection in sar images. IEEE Transactions on Geoscience and Remote Sensing, 57(11):8983-8997,
2019.

Jifeng Dai, Haozhi Qi, Yuwen Xiong, Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. Deformable convo-
lutional networks. In Proceedings of the IEEE international conference on computer vision, pp. 764-773,
2017.

Yimian Dai, Minrui Zou, Yuxuan Li, Xiang Li, Kang Ni, and Jian Yang. Denodet: Attention as deformable
multi-subspace feature denoising for target detection in sar images. IEFEE Transactions on Aerospace and
Electronic Systems, 2024.

Zhigang Dai, Bolun Cai, Yugeng Lin, and Junying Chen. Up-detr: Unsupervised pre-training for object
detection with transformers. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 1601-1610, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hierarchical
image database. In 2009 IEEFE conference on computer vision and pattern recognition, pp. 248-255. leee,
2009.

Chengjian Feng, Yujie Zhong, Yu Gao, Matthew R Scott, and Weilin Huang. Tood: Task-aligned one-
stage object detection. In 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp.
3490-3499. IEEE Computer Society, 2021.

Yunxiang Feng, Yanan You, Jing Tian, and Gang Meng. Oegr-detr: A novel detection transformer based on
orientation enhancement and group relations for sar object detection. Remote Sensing, 16(1):106, 2023.

S Gao, JM Liu, YH Miao, and ZJ He. A high-effective implementation of ship detector for sar images. I[EEE
Geoscience and Remote Sensing Letters, 19:1-5, 2021.

Zheng Ge, Songtao Liu, Feng Wang, Zeming Li, and Jian Sun. Yolox: Exceeding yolo series in 2021. arXiv
preprint arXiv:2107.08450, 2021.

13



Published in Transactions on Machine Learning Research (11/2025)

Ross Girshick. Fast r-cnn. In Proceedings of the IEEE international conference on computer vision, pp.
1440-1448, 2015.

Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature hierarchies for accurate
object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 580-587, 2014.

Yanan Guan, Xi Zhang, Siwei Chen, Genwang Liu, Yongjun Jia, Yi Zhang, Gui Gao, Jie Zhang, Zhongwei
Li, and Chenghui Cao. Fishing vessel classification in sar images using a novel deep learning model. IEEFE
Transactions on Geoscience and Remote Sensing, 61:1-21, 2023.

John Guibas, Morteza Mardani, Zongyi Li, Andrew Tao, Anima Anandkumar, and Bryan Catanzaro. Adap-
tive fourier neural operators: Efficient token mixers for transformers. arXiv preprint arXiv:2111.18587,
2021.

Yue Guo, Shiqi Chen, Ronghui Zhan, Wei Wang, and Jun Zhang. Lmsd-yolo: A lightweight yolo algorithm
for multi-scale sar ship detection. Remote Sensing, 14(19):4801, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEFE conference on computer vision and pattern recognition, pp. 770-778, 2016.

Zhongyi Jiang, Min Zhu, and Lu Lu. Fourier-mionet: Fourier-enhanced multiple-input neural operators for
multiphase modeling of geological carbon sequestration. Reliability Engineering € System Safety, 251:
110392, 2024.

Miao Kang, Xiangguang Leng, Zhao Lin, and Kefeng Ji. A modified faster r-cnn based on cfar algorithm
for sar ship detection. In 2017 International Workshop on Remote Sensing with Intelligent Processing
(RSIP), pp. 1-4. IEEE, 2017.

Kang Kim and Hee Seok Lee. Probabilistic anchor assignment with iou prediction for object detection. In
Computer Vision-ECCV 2020: 16th FEuropean Conference, Glasgow, UK, August 23-28, 2020, Proceed-
ings, Part XXV 16, pp. 355-371. Springer, 2020.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Neural operator: Learning maps between function spaces with applications to
pdes. Journal of Machine Learning Research, 24(89):1-97, 2023.

Fanny Lehmann, Filippo Gatti, and Didier Clouteau. Multiple-input fourier neural operator (mifno) for
source-dependent 3d elastodynamics. Journal of Computational Physics, pp. 113813, 2025.

Feng Li, Ailing Zeng, Shilong Liu, Hao Zhang, Hongyang Li, Lei Zhang, and Lionel M Ni. Lite detr: An
interleaved multi-scale encoder for efficient detr. In Proceedings of the IEEE/CVF conference on computer
viston and pattern recognition, pp. 18558-18567, 2023a.

Jianwei Li, Changwen Qu, and Jiaqi Shao. Ship detection in sar images based on an improved faster r-cnn.
In 2017 SAR in Big Data Era: Models, Methods and Applications (BIGSARDATA), pp. 1-6. IEEE, 2017.

Ke Li, Di Wang, Zhangyuan Hu, Wenxuan Zhu, Shaofeng Li, and Quan Wang. Unleashing channel potential:
Space-frequency selection convolution for sar object detection. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 17323-17332, 2024a.

Xiang Li, Wenhai Wang, Lijun Wu, Shuo Chen, Xiaolin Hu, Jun Li, Jinhui Tang, and Jian Yang. Generalized
focal loss: Learning qualified and distributed bounding boxes for dense object detection. Advances in neural
information processing systems, 33:21002—-21012, 2020a.

Yiding Li, Shunsheng Zhang, and Wen-Qin Wang. A lightweight faster r-cnn for ship detection in sar images.
IEEE Geoscience and Remote Sensing Letters, 19:1-5, 2020b.

14



Published in Transactions on Machine Learning Research (11/2025)

Yuxuan Li, Qibin Hou, Zhaohui Zheng, Ming-Ming Cheng, Jian Yang, and Xiang Li. Large selective kernel
network for remote sensing object detection. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 16794-16805, 2023b.

Yuxuan Li, Xiang Li, Weijie Li, Qibin Hou, Li Liu, Ming-Ming Cheng, and Jian Yang. Sardet-100k: Towards
open-source benchmark and toolkit for large-scale sar object detection. arXiv preprint arXiv:2403.06534,
2024b.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew Stuart,
and Anima Anandkumar. Fourier neural operator for parametric partial differential equations. arXiv
preprint arXiv:2010.08895, 2020c.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Andrew Stuart, Kaushik Bhattacharya,
and Anima Anandkumar. Multipole graph neural operator for parametric partial differential equations.
Advances in Neural Information Processing Systems, 33:6755—6766, 2020d.

Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In Computer vision—-ECCV 2014:
18th European conference, zurich, Switzerland, September 6-12, 2014, proceedings, part v 13, pp. 740-755.
Springer, 2014.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollar. Focal loss for dense object
detection. In Proceedings of the IEEE international conference on computer vision, pp. 2980-2988, 2017.

Xin Lin, Bo Zhang, Fan Wu, Chao Wang, Yali Yang, and Huiqgin Chen. Sived: A sar image dataset for
vehicle detection based on rotatable bounding box. Remote Sensing, 15(11):2825, 2023a.

Yutong Lin, Yuhui Yuan, Zheng Zhang, Chen Li, Nanning Zheng, and Han Hu. Detr does not need multi-
scale or locality design. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 6545-6554, 2023b.

Li Liu, Wanli Ouyang, Xiaogang Wang, Paul Fieguth, Jie Chen, Xinwang Liu, and Matti Pietikdinen. Deep
learning for generic object detection: A survey. International journal of computer vision, 128:261-318,
2020.

Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xianbiao Qi, Hang Su, Jun Zhu, and Lei Zhang. Dab-detr: Dy-
namic anchor boxes are better queries for detr. In International Conference on Learning Representations,
2022a.

Xiaoyi Liu and Hao Tang. Difffno: Diffusion fourier neural operator. In Proceedings of the Computer Vision
and Pattern Recognition Conference, pp. 150-160, 2025.

Zhuang Liu, Hanzi Mao, Chao-Yuan Wu, Christoph Feichtenhofer, Trevor Darrell, and Saining Xie. A
convnet for the 2020s. In Proceedings of the IEEE/CVFE conference on computer vision and pattern
recognition, pp. 11976-11986, 2022b.

Xin Lu, Buyu Li, Yuxin Yue, Quanquan Li, and Junjie Yan. Grid r-cnn. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 7363-7372, 2019.

Depu Meng, Xiaokang Chen, Zejia Fan, Gang Zeng, Houqgiang Li, Yuhui Yuan, Lei Sun, and Jingdong Wang.
Conditional detr for fast training convergence. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 3651-3660, 2021.

Tian Miao, HongCheng Zeng, Wei Yang, Boce Chu, Fei Zou, Weijia Ren, and Jie Chen. An improved
lightweight retinanet for ship detection in sar images. IEEE Journal of Selected Topics in Applied Earth
Observations and Remote Sensing, 15:4667-4679, 2022.

Maurizio Migliaccio, Ferdinando Nunziata, Antonio Montuori, and Rafael L Paes. Single-look complex
cosmo-skymed sar data to observe metallic targets at sea. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 5(3):893-901, 2012.

15



Published in Transactions on Machine Learning Research (11/2025)

Alberto Moreira, Pau Prats-Iraola, Marwan Younis, Gerhard Krieger, Irena Hajnsek, and Konstantinos P

Papathanassiou. A tutorial on synthetic aperture radar. IEFE Geoscience and remote sensing magazine,
1(1):6-43, 2013.

Ramon Nitzberg. Constant-false-alarm-rate signal processors for several types of interference. IEEE Trans-
actions on Aerospace and Electronic Systems, (1):27-34, 2007.

Jiangmiao Pang, Kai Chen, Jianping Shi, Huajun Feng, Wanli Ouyang, and Dahua Lin. Libra r-cnn: Towards
balanced learning for object detection. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 821-830, 2019.

Badri Patro and Vijay Agneeswaran. Scattering vision transformer: Spectral mixing matters. Advances in
Neural Information Processing Systems, 36:54152-54166, 2023.

Yongming Rao, Wenliang Zhao, Zheng Zhu, Jiwen Lu, and Jie Zhou. Global filter networks for image
classification. Advances in neural information processing systems, 34:980-993, 2021.

Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You only look once: Unified, real-time
object detection. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
779-788, 2016.

Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in neural information processing systems, 28, 2015.

Foroogh Sharifzadeh, Gholamreza Akbarizadeh, and Yousef Seifi Kavian. Ship classification in sar images
using a new hybrid cnn—mlp classifier. Journal of the Indian Society of Remote Sensing, 47:551-562, 2019.

Shangquan Sun, Wenqgi Ren, Tao Wang, and Xiaochun Cao. Rethinking image restoration for object detec-
tion. Advances in Neural Information Processing Systems, 35:4461-4474, 2022.

Zhi Tian, Chunhua Shen, Hao Chen, and Tong He. Fcos: Fully convolutional one-stage object detection. In
Proceedings of the IEEE/CVF international conference on computer vision, pp. 9627-9636, 2019.

Zeinab Tirandaz, Gholamreza Akbarizadeh, and Hooman Kaabi. Polsar image segmentation based on feature
extraction and data compression using weighted neighborhood filter bank and hidden markov random field-
expectation maximization. Measurement, 153:107432, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, f.ukasz Kaiser,
and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30,
2017.

Huiyao Wan, Jie Chen, Zhixiang Huang, RunFan Xia, BoCai Wu, Long Sun, Baidong Yao, Xiaoping Liu,
and Mengdao Xing. Afsar: An anchor-free sar target detection algorithm based on multiscale enhancement
representation learning. IEEFE transactions on geoscience and remote sensing, 60:1-14, 2021.

Chao Wang, Rui Ruan, Zhicheng Zhao, Chenglong Li, and Jin Tang. Category-oriented localization distil-
lation for sar object detection and a unified benchmark. IEEE Transactions on Geoscience and Remote
Sensing, 61:1-14, 2023.

Yuanyuan Wang, Chao Wang, Hong Zhang, Yingbo Dong, and Sisi Wei. A sar dataset of ship detection for
deep learning under complex backgrounds. remote sensing, 11(7):765, 2019.

Min Wei and Xuesong Zhang. Super-resolution neural operator. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 18247-18256, 2023.

Shunjun Wei, Xiangfeng Zeng, Qizhe Qu, Mou Wang, Hao Su, and Jun Shi. Hrsid: A high-resolution sar
images dataset for ship detection and instance segmentation. leee Access, 8:120234-120254, 2020.

Sanghyun Woo, Shoubhik Debnath, Ronghang Hu, Xinlei Chen, Zhuang Liu, In So Kweon, and Saining
Xie. Convnext v2: Co-designing and scaling convnets with masked autoencoders. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 16133-16142, 2023.

16



Published in Transactions on Machine Learning Research (11/2025)

Runfan Xia, Jie Chen, Zhixiang Huang, Huiyao Wan, Bocai Wu, Long Sun, Baidong Yao, Haibing Xiang,
and Mengdao Xing. Crtranssar: A visual transformer based on contextual joint representation learning
for sar ship detection. Remote Sensing, 14(6):1488, 2022.

SUN Xian, WANG Zhirui, SUN Yuanrui, DIAO Wenhui, ZHANG Yue, and FU Kun. Air-sarship-1.0:
High-resolution sar ship detection dataset. Journal of Radars, 8(6):852-863, 2019.

Ze Yang, Shaohui Liu, Han Hu, Liwei Wang, and Stephen Lin. Reppoints: Point set representation for object
detection. In Proceedings of the IEEE/CVF international conference on computer vision, pp. 9657-9666,
2019.

Dong-Xiao Yue, Feng Xu, Alejandro C Frery, and Ya-Qiu Jin. Synthetic aperture radar image statistical
modeling: Part one-single-pixel statistical models. IEEE Geoscience and Remote Sensing Magazine, 9(1):
82-114, 2020.

Yuhang Zang, Wei Li, Kaiyang Zhou, Chen Huang, and Chen Change Loy. Open-vocabulary detr with
conditional matching. In European conference on computer vision, pp. 106-122. Springer, 2022.

Chi Zhang, Xi Zhang, Jie Zhang, Gui Gao, Yongshou Dai, Genwang Liu, Yongjun Jia, Xiaochen Wang,
Yi Zhang, and Meng Bao. Evaluation and improvement of generalization performance of sar ship recog-
nition algorithms. IEEFE Journal of Selected Topics in Applied FEarth Observations and Remote Sensing,
15:9311-9326, 2022a.

Chong Zhang, Peng Zhang, and Mengke Li. Gamma distribution pca-enhanced feature learning for angle-
robust sar target recognition. In Forty-second International Conference on Machine Learning, 2025a.

Chuan Zhang, Gui Gao, Linlin Zhang, C Chen, S Gao, Libo Yao, Qilin Bai, and Shiquan Gou. A novel
full-polarization sar image ship detector based on scattering mechanisms and wave polarization anisotropy.
ISPRS Journal of Photogrammetry and Remote Sensing, 190:129-143, 2022b.

Hao Zhang, Feng Li, Shilong Liu, Lei Zhang, Hang Su, Jun Zhu, Lionel Ni, and Heung-Yeung Shum. Dino:
Detr with improved denoising anchor boxes for end-to-end object detection. In The Eleventh International
Conference on Learning Representations, 2023a.

Haoyang Zhang, Ying Wang, Feras Dayoub, and Niko Sunderhauf. Varifocalnet: An iou-aware dense object
detector. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp.
8514-8523, 2021a.

Hongkai Zhang, Hong Chang, Bingpeng Ma, Naiyan Wang, and Xilin Chen. Dynamic r-cnn: Towards
high quality object detection via dynamic training. In Computer Vision-ECCV 2020: 16th European
Conference, Glasgow, UK, August 25-28, 2020, Proceedings, Part XV 16, pp. 260-275. Springer, 2020a.

Lei Zhang, Jiachun Zheng, Chaopeng Li, Zhiping Xu, Jiawen Yang, Qiuxin Wei, and Xinyi Wu. Ccdn-detr:
A detection transformer based on constrained contrast denoising for multi-class synthetic aperture radar
object detection. Sensors, 24(6):1793, 2024.

Linping Zhang, Yu Liu, Wenda Zhao, Xueqian Wang, Gang Li, and You He. Frequency-adaptive learning
for sar ship detection in clutter scenes. IEEE Transactions on Geoscience and Remote Sensing, 61:1-14,
2023b.

Peng Zhang, Hao Xu, Tian Tian, Peng Gao, Linfeng Li, Tianming Zhao, Nan Zhang, and Jinwen Tian.
Sefepnet: Scale expansion and feature enhancement pyramid network for sar aircraft detection with small
sample dataset. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15:
3365-3375, 2022c.

Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z Li. Bridging the gap between anchor-
based and anchor-free detection via adaptive training sample selection. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9759-9768, 2020b.

17



Published in Transactions on Machine Learning Research (11/2025)

Tianwen Zhang, Xiaoling Zhang, Jianwei Li, Xiaowo Xu, Baoyou Wang, Xu Zhan, Yanqin Xu, Xiao Ke,
Tianjiao Zeng, Hao Su, et al. Sar ship detection dataset (ssdd): Official release and comprehensive data
analysis. Remote Sensing, 13(18):3690, 2021b.

Xin Zhang, Xue Yang, Yuxuan Li, Jian Yang, Ming-Ming Cheng, and Xiang Li. Rsar: Restricted state
angle resolver and rotated sar benchmark. In Proceedings of the Computer Vision and Pattern Recognition
Conference, pp. 7416-7426, 2025b.

Chuyang Zhao, Yifan Sun, Wenhao Wang, Qiang Chen, Errui Ding, Yi Yang, and Jingdong Wang. Ms-detr:
Efficient detr training with mixed supervision. In Proceedings of the IEEE/CVF conference on computer
vision and pattern recognition, pp. 17027-17036, 2024.

Wang Zhirui, Kang Yuzhuo, Zeng Xuan, WANG Yuelei, ZHANG Ting, and SUN Xian. Sar-aircraft-1.0:
High-resolution sar aircraft detection and recognition dataset. Journal of Radars, 12(4):906-922, 2023.

Xingyi Zhou, Dequan Wang, and Philipp Krahenbiihl. Objects as points. arXiv preprint arXiv:1904.07850,
2019.

Yue Zhou, Xue Jiang, Guozheng Xu, Xue Yang, Xingzhao Liu, and Zhou Li. Pvt-sar: An arbitrarily
oriented sar ship detector with pyramid vision transformer. IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing, 16:291-305, 2022.

Benjin Zhu, Jianfeng Wang, Zhengkai Jiang, Fuhang Zong, Songtao Liu, Zeming Li, and Jian Sun. Au-
toassign: Differentiable label assignment for dense object detection. arXiv preprint arXiv:2007.03496,
2020.

Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang Wang, and Jifeng Dai. Deformable detr: Deformable
transformers for end-to-end object detection. In International Conference on Learning Representations,
2021.

18



Published in Transactions on Machine Learning Research (11/2025)

A Appendix

A.1 Related Work

CNN-based methods: Convolutional Neural Networks (CNNs) have become particularly successful in
computer vision tasks. R-CNN is the breakthrough method that effectively integrated CNNs with region
proposals for object detection (Girshick et all [2014)). Advancements include Fast R-CNN (Girshick, [2015),
which employs single-stage training with a multi-task loss, and Faster R-CNN (Ren et al., 2015), which
integrates the region proposal network for a streamlined end-to-end approach. RetinaNet (Lin et al. |2017)
introduced focal loss for effective dense object detection, while (Tian et al.,[2019)) advanced these approaches
using anchor- and proposal-free strategies within a per-pixel framework. Further studies have suggested
new training techniques and objectives to improve object detection (Li et al., [2020a; Zhang et al. 2020b}
[2021a; |Zhu et al., 2020; |Zhang et al.,[2020b). An alternative line of investigation, as demonstrated by YOLO
(Redmon et al.l 2016)), approaches object detection through a one-step process for the prediction of bounding
boxes. Its popularity was driven by its efficiency in real-time applications. Various developments, such as
(Chen et all [2021a) and (Ge et all [2021)), have been built on the YOLO framework.

DETRs: With the recent success of transformers (Vaswani et al. 2017) in language modeling, a new
paradigm has emerged in object detection, namely DETRs (Carion et al., [2020), which opened new possi-
bilities for integrating encoder-decoder frameworks into object detection tasks. Although this work was not
state-of-the-art at the time and suffered from slower convergence problems, it established a new pathway
for the field. Subsequently, several works have improved the DETR framework for improved performance
and efficiency. Conditional DETR (Meng et al., 2021) introduced a conditional spatial query technique
for the decoder, which addressed the convergence problem in DETR. Inspired by deformable convolutions
in computer vision, Deformable DETR introduced multi-scale deformable attention-based
encoders and decoders for improved convergence and spatial resolution. DAB-DETR (Liu et al., 2022a))
employed a different query formulation using dynamic anchor boxes. DINO (Zhang et al., 2023a)) combined
approaches from [Zhu et al|(2021)) and [Liu et al.| (2022a)), further incorporating denoising queries with a con-
trastive denoising strategy, achieving superior performance compared to previous models. Various research
initiatives, such as Zhao et al.| (2024); [Lin et al| (2023b); |Zang et al| (2022); [Li et al.| (2023a); |Chen et al.|
(2023); Dai et al. (2021)), among others, have proposed several modifications to the initial DETR model.

SAR Object detection: In the literature, SAR object detectors are predominantly developed by adapting
current state-of-the-art object detection frameworks. Specifically, two-stage approaches, such as
, implement modified R-CNN architectures for object detection in SAR imagery. A variety of faster
R-CNN adaptations have been presented (Li et al,, [2017; |2020b), alongside methodologies derived from
RetinaNet (Miao et all 2022). The Dense Attention Pyramid Networks utilized by DAPN (Cui et al.
2019) facilitated the detection of objects at multiple scales. The LMSD-YOLO framework (Guo et al.
2022)) was enhanced with depthwise separable convolutions, batch normalization, and ACON activation
functions. YOLO-FA (Zhang et al., 2023b) introduced frequency-adaptive learning components into the
YOLO architecture. In line with the advances of DETR in general computer vision, numerous variants of
DETR tailored for object detection have emerged in SAR images (Zhang et al. [2024; [Feng et al.| [2023)).

Another direction of research has introduced novel methodologies specifically tailored for object detection
in SAR images. proposed space-frequency selection convolution layers specifically designed
for SAR object detection. (Zhang et al.| |2025b]) proposed a benchmark for rotated SAR object detection.
Very recently (Zhang et al. [2025a) have proposed Gamma Distribution PCA enhanced feature learning
for SAR target recognition. [Li et al| (2024b) developed a Multi-Stage with Filter Augmentation (MSFA)
pretraining framework for SAR object detection that adapted existing state-of-the-art methods for SAR
applications. DenoDet (Dai et al) [2024) employed a dynamic frequency domain attention module that
performs soft thresholding operations in a transformed domain to enhance object detection performance
under high speckle noise conditions.

Neural Operators: Neural operators (Kovachki et al.| [2023)) differ from conventional neural networks by
learning mappings from functions to functions. Initially proposed for PDE solutions, they have subsequently
been applied in computer vision tasks. Super Resolution Neural Operator (SRNO) (Wei & Zhang] [2023)
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introduces a neural operator for computer vision tasks. Later, (Guibas et al.l |2021)) proposed efficient token
mixing for transformers to improve vision transformers. Very recently Diff FNO (Liu & Tang} |2025)) integrated
diffusion models with neural operators and achieved SoTA results in super resolution.

A.2 DETR framework

DETRs, as initially introduced in (Carion et al. [2020), comprise a CNN backbone for feature extraction,
followed by a transformer encoder and decoder (Figure . The backbone is typically ResNet-50 (He et al.
2016) pre-trained on ImageNet (Deng et al.l 2009). The backbone takes an image I as input and outputs
feature representations F' = backbone(l). Positional embeddings are added to these backbone features,
and a 1x1 convolution layer reduces the channel dimension d before feeding into the encoder. The spatial
dimensions H and W are flattened to create a d x HW feature map, where HW serves as the sequence length
and d as the feature dimension for token mixing in the encoder layer. The encoder outputs refined features
X = encoder(F+positional embedding), which serve as keys and values for the cross-attention mechanism
in the decoder.

The decoder receives two inputs: (1) object queries Qinix that serve as queries, and (2) content from the
encoder X that provides keys and values. Each decoder layer queries objects within the encoder content
to produce final object queries Qana1 = decoder(X, Qinit). These object queries are then passed to predic-
tion heads, two fully connected networks (FFNs) that output class probabilities C' and bounding boxes B,
respectively. The entire framework is trained end-to-end using a bipartite matching loss.

backbone encoder :/ decoder % ;/ prediction

% ¥ j heads

Positional ! : :

Encoding | ! ¥ & —
E ' Mpmpmpw D A A A ;]_ ' L{ FFN class, box ‘
i i | transformer |: transformer no object
' encoder decoder j FFN class, box
',ﬁ ﬁ ﬁ ﬁ ﬁ:: ﬁ * * ﬁ] —‘—;—)|FFNH no object ‘

object queries

Figure 8: Overview of the DETR framework: DETR integrates a CNN backbone with a transformer
encoder-decoder to perform object detection. The decoder’s attention is directed by position-encoded features
from encoder and object queries toward relevant image regions. The final class labels and bounding boxes
are obtained through feed-forward networks.

A.3 Visual examples from SARDet100k dataset
A.4 Baselines

To evaluate the effectiveness of our model performance, we have conducted a comparative analysis against
three distinct categories of object detection models.

(i) One-Stage Methods : These methods perform localization and classification in a single pass, i.e directly
predict bounding boxes and class probabilities from image pixels. Such as, FCOS (Tian et all|2019), GFL
(Li et al., 2020a)), RepPoints (Yang et al., 2019), ATSS (Zhang et al., |2020b), CenterNet (Zhou et al., 2019),
PAA (Kim & Lee, [2020), PVT-T |Zhou et al., 2022 RetinaNet (Lin et al., [2017), TOOD (Feng et al. [2021)),
DOOD (Chen et al. [2021b), VFNet (Zhang et al., |2021a)), AutoAssign (Zhu et al., |2020), YOLOF (Chen
et al.l |2021al), YOLOX (Ge et al., [2021)).

(i) Two-Stage methods: A sequential pipeline is used in these methods, initially candidate object regions
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Figure 9: SAR images from the SARDet100k dataset illustrating six object classes: tank, aircraft, bridge,
ship, harbor, and car. Each image highlights instances of a specific class using bounding boxes.

are generates using selective search or Region proposal networks. Subsequently, each region is classified
and its bounding box refined for accurate object localization. While this approach typically achieves high
detection accuracy, it is generally slower than single-stage methods. Such as, Faster R-CNN (Ren et al.
2015), Cascade R-CNN (Cai & Vasconcelos, 2019), Dynamic R-CNN (Zhang et al., 2020a)), Grid R-CNN
(Lu et all[2019)), Libra R-CNN (Pang et al.| |2019), ConvNeXt (Liu et al., 2022b]), ConvNeXtV2 (Woo et al.,
2023), LSKNet (Li et al., [2023b)),

(#i¢) End2End methods: These methods eliminate hand crafted components and uses direct set prediction.
Such as, DETR (Carion et al., [2020), Deformable DETR/(Zhu et al., 2021), DAB-DETR (Liu et al.l [2022a)),
Conditional DETR (Meng et al., [2021)), DenoDet(Dai et al., [2024]). This will guarantee a fair, robust, and
diverse comparison of our DNOD model for the context of SAR object detection.

A.5 Pseudocodes for MSFM and MADFNO

This section provides a pseudocode of the proposed operators, MSFM (Figure and MADFNO (Figure
. The pseudocode methodically describes each step involved, including the fundamental logic, the various
inputs, and the specific computations.

A.6 Hyperaparameters

In Table 5] we present an extensive and thorough compilation of the hyperparameters alongside the training
specifications utilized within the construction and application of the DNOD model, providing a comprehen-
sive overview for reference.
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4 N
x = Tensor[b, d, h, w, c]
W_1, W_2 = ComplexTensor[k, c/k, c/k]
b_1, b_2 = ComplexTensor [k, c/k]
def BlockMLP (x):
x = MatMul(x, W_1) + b_1
x = ReLU(x)
return MatMul (x, W_2) + Db_2
def MSFM(x):
bias = x
x = rfftn(x, dim=(1,2,3))
x.reshape(b, d, h, w//2 + 1, k, c/k)
x = BlockMLP (x)
x.reshape(b, d, h, w//2 + 1, c)
x = SoftShrink(x)
x = irfftn(x, dim(1,2,3))
return x + bias
N\ J

Figure 10: Pseudocode for MSFM with multi scale features, adaptive weight sharing and adaptive masking

Table 5: DNOD Hyperparameter

Parameter Value
Matcher HungarianMatcher
One to Many matcher threshold 0.4
One to Many classification loss coefficient 2
One to Many bounding box loss coefficient 5
One to Many GIoU loss coefficient 2
One to One classification loss coefficient 1
One to One bounding box loss coefficient 5
One to One GIoU loss coefficient 2
Positional Embedding type sine
Positional embedding temperature 20
Number of blocks in Fourier mixing 8
Focal Alpha 0.25
Number of classes 7
Weight Decay 0.0001
Learning rate 0.0001
Learning rate drop 0.1
Hidden dimension 256
No of deformable decoder points 6
Non Max Suppression IOU Threshold 0.8
No of Queries 1200
Channel Mixing Dimension 2048
Optimizer AdamW
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def MADFNO(Eo, Q, Rp):
# input -> Eo = Temnsor[b, n_1, H, W, c]

# Q = Temsor[b, n_q, c]
# Rp = Tensor[b, n_q, n_1, 4]
# output ->Q_final = Tensor[b, n_q, c]
bias = Q
Q = M(Q)
r = SL(Q)

r = r.reshape(b, n_q, n_s, n_1, n_p, 2)

Rp = Rpl[:, :, Nome, :, Nomne, :2]

T =Rp +

Eo = Eo.reshape(b, n_1, H, W, n_s, c//n_s)

EoS = GridSample(Eo, T) # Bilinear interpolation
EoS = EoS.reshape(b, n_l*n_p, c)

->
z_inp = Concat[EoS, Q, (dim=2)] Eo Encpder
. embeddings
# Shape of z_inp -> (b, n_q, n_l*n_p, c) . .
- . Q -> 0Object queries
z = rfftn(z_inp, dim=(2)) R -> Reference points
z = z.reshape(b, n_q, n_l*n_p//2 + 1, k, c/k) P . P
b -> batch size
z = BlockMLP(z) n -> Number of
z = z.reshape(b, n_q, n_l*n_p//2 + 1, c) -4 .
- queries
z = SoftShrink(z)
2 = irfftn(z, dim(2)) n_1 -> Number of levels
s = 2 4 2 in; n_s -> Number of slices
_ - .
Qfinal = z.mean(dim=2) 3 - gizfit
. + bi
return Qfinal bias c -> hidden feature

dimension
EoS -> Encoder
embeddings Sampled
Qfinal -> Final Object
queries

ComplexTensor [k, c/k, c/k]
ComplexTensor [k, c/k]

o =

1, W_2
1, b_2

def BlockMLP (x):
x = MatMul(x, W_1) + b_1
x = RelLU(x)
return MatMul(x, W_2) + b_2

def M(x):
# input -> x = Tensor[b, n_q, c]
# output -> x = Temsor[b, n_q, c]
bias = x

= rfftn(x, dim=(1))

x.reshape(b, n_q//2 + 1, k, c/k)

x = BlockMLP (x)

x.reshape(b, n_q//2 + 1, c)

X

X

r

]

= SoftShrink (x)
= irfftn(x, dim(1))
eturn x + bias

Figure 11: Pseudocode for MADFNO with multi-scale features and deformable attention

A.7 Additional Ablations
A.7.1 DNOD with Different Backbones

To evaluate the effectiveness of DNOD with other backbones, we experimented with ResNet-18 as a backbone,
instead of the ResNet-50 backbone shown in the main paper. The results are tabulated in Table [f] Our
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DNOD surpasses DINO and DenoDet, attaining a top mAP of 55.92, with significant enhancements in AP50,
APT5, and all object sizes. These findings suggest that the enhanced performance of our DNOD architecture
is attributable to the model design, and not to the specific pretrained backbone’s architecture.

Table 6: Comparison of SAR Object detection methods on the SARDet-100k dataset with ResNet-18 back-
bone pretrained on ImageNet.

Method ‘Backbone ‘ mAP APQ50 APQ75 APgs APy APp
DINO ResNet-18| 44.76  78.61  46.41 36.40 56.27 55.03
DenoDet ResNet-18| 54.36 84.40 59.12 49.10 66.61 58.01

DNOD (ours) | ResNet-18|55.92 88.92 56.42 51.50 67.72 59.73

A.7.2 DNOD Encoder with Non-NO Spectral Modules

To demonstrate the benefits of neural operators over non-NO frequency or wavelet domain modules, we
examined two encoders that utilize frequency or wavelet components along with soft thresholding: the
Fourier mixer (Rao et al. 2021) and the wavelet mixer (Patro & Agneeswaran, [2023). These were used
in the encoder under the same training conditions and data split, incorporating our Decoder (MADFNO).
Table [7] shows the results, illustrating the importance of neural operators in SAR image object detection.
Furthermore, our decoder (MADFNO), is the first to use a frequency-based neural operator with cross
attention mechanism within the DETR framework for object detection.

Table 7: Comparison of SAR Object detection methods on the SARDet-100k dataset with fourier and
wavelet mixing modules. Bold indicates it is better than all models. All the models used a ResNet-50
backbone pretrained (Pre.) on ImageNet.

Method ‘Backbone ‘mAP APQ@50 APQ75 APgs AP, APg

DNOD with Fourier Mixers |ResNet-50| 50.83 85.68 52.82 45.98 64.93 56.57
DNOD with Wavelet Mixers | ResNet-50 | 39.96 72.35 39.50 34.51 50.92 40.31
DNOD ResNet-50(56.96 90.36 59.69 52.94 71.22 65.43

A.7.3 Sensitivity Analysis of DNOD to Scale and Number of Queries

Table @] presents sensitivity analysis of our DNOD model, evaluating the impact of number of scales (2, 3, 4)
and queries (300, 600, 1200). Performance remains largely stable when varying the number of queries from
300 to 1200, with mAP varies within a narrow band of £1.2 points. The 4-Scale model achieves the overall
best results, reaching a peak mAP of 58.11 with 1200 queries, while the 2-Scale model shows slightly lower
performance. Increasing the number of queries does not always yield improvements; for example, in the
3-Scale and 2-Scale models, higher queries sometimes lead to minimal drops in AP metrics. These results
indicate that DNOD is relatively insensitive to query count, and its detection performance is primarily
governed by the scale design rather than the query size.

A.8 Computational Cost Analysis

We have performed additional experiments for benchmarking GPU-measured latency (ms per image) in
terms of Median latency (50th Percentile Latency) and 95th Percentile Latency, Throughput (FPS), Peak
Memory (MB), Avg Power (Watt), Energy/Image (Joule) for various batch sizes as shown in Table

Figure presents the trade-off between computational complexity (FLOPs) and mean Average Precision
(mAP), with circle size representing the number of parameters. Our DNOD variants achieve balance by de-
livering higher accuracy at significantly lower computational costs than many existing detectors. DNOD and
DNOD-large are positioned at the top of the accuracy spectrum, outperforming baselines with comparable
or even higher FLOPs. A key observation is that DNOD achieves competitive accuracy while maintaining
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Table 8: Accuracy-speed-memory tradeoff for DNOD large for different number of queries and scales.

Model Num Queries mAP Throughput Peak Memory
300 56.88 11.76 937.10
DNOD large 4-Scale 600 57.85 11.87 938.27
1200 58.11 11.22 1070.30
300 57.01 14.02 870.96
DNOD large 3-Scale 600 57.70 13.84 872.13
1200 57.51 13.00 981.06
300 56.63 16.04 804.31
DNOD large 2-Scale 600 57.00 16.46 806.45
1200 56.98 16.01 889.76

Table 9: Performance metrics for DNOD large across different number of queries and scales.

Model Num Queries mAP APQ50 APQ75 APgs APy APp
300 56.88 90.54 59.94  53.51 69.63 62.22
DNOD 4-Scale 600 57.85 91.45 60.85 55.24 70.72 63.99
1200 58.11 91.44 61.31  55.31 70.30 64.36
300 57.01 90.83 60.23  53.78 69.52 64.10
DNOD 3-Scale 600 57.70 91.00 60.89  54.97 70.33 64.39
1200 57.51 91.44 60.74  55.25 70.19 64.27
300 56.63 90.27 59.21  53.34 70.02 63.76
DNOD 2-Scale 600 57.00 90.42 59.40  54.07 69.99 64.23
1200 56.98 90.82 59.95  53.57 70.57 63.13

moderate FLOPs, highlighting its efficiency. This analysis demonstrates that DNOD effectively balances per-
formance and efficiency, making it suitable for practical deployment where both accuracy and computational
cost are critical.

Table 10: Performance metrics for DINO and DNOD across different batch sizes.

Model BS Median Latency P95 Latency Throughput Peak Memory Avg. Power Energy/Image

1 28.61 29.85 34.71 332.73 192.47 5.55
2 32.85 34.02 60.54 472.15 263.91 4.36
DINO 4 42.55 43.59 93.61 749.63 349.36 3.73
8 75.67 76.16 105.49 1309.63 384.55 3.65
16 151.16 152.22 105.74 2425.25 386.17 3.65
1 25.41 25.84 39.22 413.90 128.10 3.27
2 26.25 26.47 76.03 667.86 219.55 2.89
DNOD 4 33.71 33.84 118.58 1189.54 306.99 2.59
8 60.74 60.88 131.57 2229.51 332.61 2.53
16 121.78 121.90 131.36 4315.27 338.96 2.58

A.9 Resolution Invariance

To understand the impact of resolution invariance property of neural operators, Figure [L3| visualizes repre-
sentations extracted from trained models: (a) DNOD (our approach) and (b) DINO. These representations
are derived from the same image at different scales. Bilinear interpolation was employed to modify the input
scale. Our model demonstrates effective functionality at any resolution, despite having been trained only at a
resolution of 512 x 512. In contrast, DINO, though specifically designed for multiscale input handling|Zhang
et al.| (2023a)), experiences a breakdown beyond certain resolutions. Visualizations also clearly demonstrate
that DNOD can distinguish between the background and objects more clearly.
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Figure 12: Comparison of FLOPs versus mAP, with circle size proportional to the number of parameters.
DNOD achieves high accuracy with moderate computational cost, outperforming several state-of-the-art
detectors in efficiency.

DenoDet [Dai et al.| (2024) is resolution-specific due to the “Deformable Group FC” component in its ar-
chitecture, which relies on parameters that are resolution dependent. As such, using a different resolution
requires retraining with new parameters. Thus, we did not include DenoDet in this experiment. Further-
more, although our framework employs encoder and decoder neural operators, the backbone is limited to
ResNet-50, which is not a neural operator. As such, we demonstrate the resolution invariance property solely
via visualizations. In future research, we plan to substitute our backbone with a neural operator framework,
which allows us to present metrics for various resolution inputs.

A.10 Additional Results
A.10.1 Quantitative Analysis Across Object Categories

Table [11| presents an evaluation of our model for each of the six distinct categories (ship, aircraft, car, tank,
bridge, harbor) that comprise the SARDet-100k dataset. To determine the model that performs the best in
all categories, we implemented a ranking methodology as follows. The models were individually ranked for
each category, and then the mean rank was calculated for every model. In particular, our model achieved
the lowest mean rank compared to all other models, highlighting its superior performance across all classes.

A.10.2 Qualitative Analysis in Low Quality Image Context

To augment the qualitative analysis shown in the main paper, we introduced additional comparative studies
in low-quality image contexts. Figures|14]and |L5|depict a scenario involving the detection of multiple classes
(bridge and harbor) in noisy low-resolution SAR images. These figures show that our DNOD accurately
detected the bounding boxes for both classes, including multiple instances of the same class.
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(a) DNOD (Ours) (b) DINO

Figure 13: Comparision of (a) DNOD and (b) DINO for resolution invariance by performing inference of
pretrained model at multiple scales (256, 512, 800, 1024, 2048)
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Table 11: Per-class average precision comparison with SoTA methods on the SARDet-100K dataset.

Method ‘Pre.‘ Ship  Aircraft Car Tank  Bridge Harbor ‘Avg Rank
One-stage

FCOS IN [59.79(21) 55.44(19) 60.75(21) 41.78(11) 34.17(a0y 63.44(10) |17
GFL IN | 63.926) 57.63(1) 62.29¢9) 44.80(7) 36.41() 65.04() |6.3
RepPoints IN 6085(17) 5550(18) 6113(19) 4069(14) 3512(16) 5671(22) 17.6
ATSS IN |61.53(11) 55.94(19) 61.77(14) 46.203 37.22(5) 67.4833) |8.0
CenterNet IN 61.24(15) 5635(9) 61.74(15) 4531(6) 35.91(15) 63.29(11) 11.8
PAA IN [60.16(50) 56.17(10) 60.09(22) 41.07(12) 35.96(14) 60.12(17) |15.8
PVT-T IN |53.30(25) 52.91(24) 59.03(24) 30.20(24) 22.51(28) 59.11(19)|24.0
TOOD IN | 62.285) 55.61() 62.53(7) 45.96(4 36.64(g) 65.24(5 |8.0
DDOD IN | 62.39(7) 56.08(11) 62.48g) 43.98(9) 36.34(11) 62.87(19) 9.6
VFNet IN | 62.14¢9) 55.84(13) 61.97(12) 42.08(19) 34.11(51) 62.2813)|13.0
AutoASSign IN 62.03(10) 55.70(15) 61.69(16) 48.55(1) 38.25(4) 57.45(21) 11.6
YOLOF IN | 52.62(25) 52.64(25) 52.T1(a7) 22.86(29) 23.Td(a7) 52.42(27)|27.1
YOLOX IN [46.08(30) 46.83(30) 53.43(26) 26.26(25) 13.14(30) 18.95(30) |28.5
Two-stage

Faster R-CNN IN |50.45(29) 50.36(27) 57.82(25) 24.90(27) 18.69(29) 33.11(29)|27.6
Cascade R-CNN IN 66.99(1) 56.43(8) 63.25(2) 44-35(8) 36.89(6) 53.81(26) 8.5
Grid R-CNN IN |60.43(109) 55.61(16) 61.94(13) 36.03(21) 31.16(23) 55.13(24) |19.3
Libra R-CNN IN |61.32(13) 54.03(21) 61.5617) 38.12(18) 35.97(12) 61.50(14) |15.8
ConvNeXt IN 60.55(18) 57.35(3) 62.13(11) 38.12(18) 36.81(7) 63.95(9) 11.0
ConvNeXtV2 IN 61.48(12) 55.83(14) 63.23(3) 39.65(16) 39.16(3) 64.09(8) 9.3
LSKNet IN |59.33(0) 56.76(6) 62.74(4) 36.09(20) 35.0117) 64.38(7 |12.6
End-to-End

DETR IN |54.94(24) 51.17(36) 50.11(a9) 26.06(26) 32.80(22) 59.3115)|24.1
Deformable DETR IN [60.94(16) 54.16(20) 61.22(15) 39.14(17) 36.09(12) 60.46(16) [16.5
DAB-DETR IN | 53.16(26) 50.32028) 49.47(30) 24.06(28) 28.47(25) 55.07(25)|27.0
Conditional DETR IN |52.77(27) 49.58(29) 51.00(28) 22.73(30) 29.98(24) 58.16(50) | 26.3
DINO 4-Scale IN | 64.87s) 56.78(5 62.72(5) 39.80(15 34.97(18) 61.26(15) |10.3
DenoDet IN 64.91(3) 57.36(2) 63.66(1) 45.79(5) 36.39(10) 67.17(4) 4.1
* DNOD (Ours) IN 64.65(5) 56.48(7) 62.60(6) 40.73(13) 43.27(1) 74.05(1) 5.5
* DNOD large (Ours) IN 6631(2) 5718(4) 62.28(10) 4840(2) 43.12(2) 7138(2) 3.6

A.10.3 Additional Visual Insights

Figure [16] displays additional visual representations of DNOD’s performance efficacy. Significantly, DNOD
accurately localizes bounding boxes compared to DINO, distinguishing it from DETR-based models for
object detection in SAR imagery.
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Figure 14: Qualitative comparison of DNOD predictions with those of DenoDet and DINO
(Zhang et al., 2023a)) shows that while DenoDet successfully identified only the harbor, and DINO managed
to detect only the bridge, our DNOD demonstrated superior performance by accurately identifying both the
harbor and the bridge.
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(c) DNOD (ours) (d) Ground Truth

Figure 15: Qualitative comparison of DNOD predictions with DenoDet (Dai et al., 2024), and DINO (Zhang

2023a)). Both of the baselines only detected a single harbor, but our DNOD detected both the harbors.

30



Published in Transactions on Machine Learning Research (11,/2025)

(a) Ground Truth (b) DINO (d) DNOD (Ours)

Figure 16: Exploring the Detection Models (a) DINO and (b) DNOD: This is an extension to the analysis
from main paper.
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