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Abstract

We introduce a deep neural operator framework aimed at object detection in remotely sensed
Synthetic Aperture Radar (SAR) images. Recent research highlights the impressive perfor-
mance of the End-to-End Object Detection Transformer (DETR). Nonetheless, in domains
like SAR imaging, managing challenges such as speckle noise and the detection of small
objects continues to be problematic. To address SAR object detection issues, we present the
Deformable Neural Operator-Based Object Detection (DNOD) framework, tailored for SAR
tasks. We develop two neural operators: Multi-Scale Fourier Mixing (MSFM) for the encoder
and Multi-scale, multi-input Adaptive Deformable Fourier Neural Operator (MADFNO) for
the decoder. Detailed evaluations and ablation studies show that DNOD exceeds existing
methods, delivering significantly better results with an improvement of +2.23 mAP on the
SARDet-100k dataset, the largest SAR object detection compilation.

1 Introduction

Neural operators, emerging from computational physics, have demonstrated significant success in solving
Partial Differential Equations (Kovachki et al., 2023). Rooted in operator theory, these neural operators learn
mappings between function spaces of infinite dimensions, achieving notable success in numerous applications
while inherently maintaining discretization invariance. Neural operators comprise three fundamental parts:
(1) a lifting module, (2) an iterative kernel integral module, and (3) a projection module. Kernel integrals
are operations within the spatial domain that ascertain global interdependencies crucial for learning a PDE’s
solution function. Based on different forms of kernel integral computation, different neural operators such as
Fourier Neural Operator (Li et al., 2020c), Graph Neural Operator (Li et al., 2020d), and Adaptive Fourier
Neural Operator (Guibas et al., 2021) have been proposed. In a specific context, the attention mechanism
utilized within transformers can be seen as a special case of kernel integral operations (Kovachki et al.,
2023). Recently, neural operators have demonstrated superior performance in computer vision applications
such as super-resolution (Wei & Zhang, 2023; Liu & Tang, 2025), Inpainting (Guibas et al., 2021). However,
neural operators have not been employed for the task of object detection in Synthetic Aperture Radar (SAR)
imagery, a gap this paper addresses.

SAR is an advanced active microwave sensing technology capable of acquiring high-resolution images regard-
less of weather conditions, illumination, or time of day (Tirandaz et al., 2020; Brown, 1967; Moreira et al.,
2013). SAR images can provide much more useful information and be effective in military reconnaissance,
marine surveillance, port management, and disaster response applications (Guan et al., 2023; Zhang et al.,
2022a; Chen et al., 2020; Zhang et al., 2022b). As modern satellites provide increasingly accessible high-
resolution, large-scale SAR images, the demand for sophisticated methods to effectively process large data
volumes has increased. Consequently, the precise detection of targets from complex terrestrial environments
using SAR images is of great practical importance (Sharifzadeh et al., 2019).

Numerous SAR object detection methods have been proposed, from traditional methods (Nitzberg, 2007;
Migliaccio et al., 2012) to CNN-based methods (Gao et al., 2021). In recent developments, transformers have
been introduced for object detection, explicitly known as DETR (Detection Transformers; (Carion et al.,
2020)), and have shown superior performance compared to traditional hand-crafted feature engineering
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Figure 1: SAR images from the SARDET100k dataset illustrating six object classes: tank, aircraft, bridge,
ship, harbor, and car. Each image highlights instances of a specific class using bounding boxes.

methods. Various iterations and modifications of DETR, such as Deformable DETR and DAB DETR,
have exhibited outstanding results in the field of object detection, further enhancing their effectiveness and
application (Zhu et al., 2021; Liu et al., 2022a; Zhao et al., 2024; Zhang et al., 2023a; Lin et al., 2023b;
Meng et al., 2021). Even with the advent and introduction of multiple variants of the DETR model, its
effectiveness in SAR images has been less than satisfactory (Dai et al., 2024). There have been different
challenges associated with SAR images, specifically (i) speckle noise interference (Yue et al., 2020); and
(ii) small target challenges (Wan et al., 2021). Given the DETR framework’s notable success in object
detection, attributed to its foundation on the transformer architecture, it is feasible to integrate neural
operator architecture into the DETR framework specifically for executing SAR object detection tasks.

This paper presents the Deformable Neural Operator for object Detection (DNOD) in SAR images. DNOD
is trained and evaluated on the COCO-level large-scale multi-class SAR object detection dataset, SARDet-
100k (Li et al., 2024b). For an illustrative example of the diversity of the dataset, refer to Figure 1. Our
methodology employs neural operator architecture within the framework of End-to-End Object Detection
using transformers (DETR). We introduce two architectural components drawn from neural operator con-
cepts: (i) The Multi-Scale Fourier Mixing (MSFM) Encoder and (ii) The Multi-Scale Adaptive Deformable
Fourier Neural Operator (MADFNO) Decoder. There are two main advantages of using neural operators for
SAR object detection: (i) Fourier component in the neural operator will reduce the effect of speckle noise
in SAR images; and (ii) the discretization invariance property of the neural operator will reduce challenges
related to small targets.

In summary, our main contributions are as follows.

1. To the best of our knowledge, this is the first work to introduce neural operators for object detection
applications.
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2. We develop two novel architectural components, MSFM and MADFNO, specifically designed to
enhance object detection performance in SAR imagery.

3. We integrate our proposed neural operators within the DETR framework to achieve effective SAR
object detection.

4. Through comprehensive empirical evaluation, we demonstrate that our method achieves SoTA per-
formance for SAR object detection compared to existing object detection techniques.

2 Related Work

CNN-based methods: Convolutional Neural Networks (CNNs) have become particularly successful in
computer vision tasks. R-CNN is the breakthrough method that effectively integrated CNNs with region
proposals for object detection (Girshick et al., 2014). Advancements include Fast R-CNN (Girshick, 2015),
which employs single-stage training with a multi-task loss, and Faster R-CNN (Ren et al., 2015), which
integrates the region proposal network for a streamlined end-to-end approach. RetinaNet (Lin et al., 2017)
introduced focal loss for effective dense object detection, while (Tian et al., 2019) advanced these approaches
using anchor- and proposal-free strategies within a per-pixel framework. Further studies have suggested
new training techniques and objectives to improve object detection (Li et al., 2020a; Zhang et al., 2020b;
2021a; Zhu et al., 2020; Zhang et al., 2020b). An alternative line of investigation, as demonstrated by YOLO
(Redmon et al., 2016), approaches object detection through a one-step process for the prediction of bounding
boxes. Its popularity was driven by its efficiency in real-time applications. Various developments, such as
(Chen et al., 2021a) and (Ge et al., 2021), have been built on the YOLO framework.

DETRs: With the recent success of transformers (Vaswani et al., 2017) in language modeling, a new
paradigm has emerged in object detection, namely DETRs (Carion et al., 2020), which opened new possi-
bilities for integrating encoder-decoder frameworks into object detection tasks. Although this work was not
state-of-the-art at the time and suffered from slower convergence problems, it established a new pathway
for the field. Subsequently, several works have improved the DETR framework for improved performance
and efficiency. Conditional DETR (Meng et al., 2021) introduced a conditional spatial query technique
for the decoder, which addressed the convergence problem in DETR. Inspired by deformable convolutions
(Dai et al., 2017) in computer vision, Deformable DETR introduced multi-scale deformable attention-based
encoders and decoders for improved convergence and spatial resolution. DAB-DETR (Liu et al., 2022a)
employed a different query formulation using dynamic anchor boxes. DINO (Zhang et al., 2023a) combined
approaches from Zhu et al. (2021) and Liu et al. (2022a), further incorporating denoising queries with a con-
trastive denoising strategy, achieving superior performance compared to previous models. Various research
initiatives, such as Zhao et al. (2024); Lin et al. (2023b); Zang et al. (2022); Li et al. (2023a); Chen et al.
(2023); Dai et al. (2021), among others, have proposed several modifications to the initial DETR model.

SAR Object detection: In the literature, SAR object detectors are predominantly developed by adapting
current state-of-the-art object detection frameworks. Specifically, two-stage approaches, such as Kang et al.
(2017), implement modified R-CNN architectures for object detection in SAR imagery. A variety of faster
R-CNN adaptations have been presented (Li et al., 2017; 2020b), alongside methodologies derived from
RetinaNet (Miao et al., 2022). The Dense Attention Pyramid Networks utilized by DAPN (Cui et al.,
2019) facilitated the detection of objects at multiple scales. The LMSD-YOLO framework (Guo et al.,
2022) was enhanced with depthwise separable convolutions, batch normalization, and ACON activation
functions. YOLO-FA (Zhang et al., 2023b) introduced frequency-adaptive learning components into the
YOLO architecture. In line with the advances of DETR in general computer vision, numerous variants of
DETR tailored for object detection have emerged in SAR images (Zhang et al., 2024; Feng et al., 2023).

Another direction of research has introduced novel methodologies specifically tailored for object detection
in SAR images. Li et al. (2024a) proposed space-frequency selection convolution layers specifically designed
for SAR object detection. Li et al. (2024b) developed a Multi-Stage with Filter Augmentation (MSFA)
pretraining framework for SAR object detection that adapted existing state-of-the-art methods for SAR
applications. DenoDet (Dai et al., 2024) employed a dynamic frequency domain attention module that
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performs soft thresholding operations in a transformed domain to enhance object detection performance
under high speckle noise conditions.

Neural Operators: Neural operators (Kovachki et al., 2023) differ from conventional neural networks by
learning mappings from functions to functions. Initially proposed for PDE solutions, they have subsequently
been applied in computer vision tasks. Super Resolution Neural Operator (SRNO) (Wei & Zhang, 2023)
introduces a neural operator for computer vision tasks. Later, (Guibas et al., 2021) proposed efficient token
mixing for transformers to improve vision transformers. Very recently DiffFNO (Liu & Tang, 2025) integrated
diffusion models with neural operators and achieved SoTA results in super resolution.

Inspired by recent success of neural operators in computer vision, we introduce a new methodology for object
detection in the DETR framework, utilizing a neural operator approach for SAR object detection with SoTA
performance, as well as promising future prospects and potential.

3 Preliminaries

In this section, we discuss the background of End-to-End Object Detection Transformers (DETRs) and
Neural Operators necessary to understand the development of our new DNOD model for SAR images.

3.1 DETRs

transformer
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Figure 2: Overview of the DETR framework: DETR integrates a CNN backbone with a transformer
encoder-decoder to perform object detection. The decoder’s attention is directed by position-encoded features
from encoder and object queries toward relevant image regions. The final class labels and bounding boxes
are obtained through feed-forward networks.

DETRs, as initially introduced in (Carion et al., 2020), comprise a CNN backbone for feature extraction,
followed by a transformer encoder and decoder (Figure 2). The backbone is typically ResNet-50 (He et al.,
2016) pre-trained on ImageNet (Deng et al., 2009). The backbone takes an image I as input and outputs
feature representations F = backbone(I). Positional embeddings are added to these backbone features,
and a 1×1 convolution layer reduces the channel dimension d before feeding into the encoder. The spatial
dimensions H and W are flattened to create a d×HW feature map, where HW serves as the sequence length
and d as the feature dimension for token mixing in the encoder layer. The encoder outputs refined features
X = encoder(F+positional embedding), which serve as keys and values for the cross-attention mechanism
in the decoder.

The decoder receives two inputs: (1) object queries Qinit that serve as queries, and (2) content from the
encoder X that provides keys and values. Each decoder layer queries objects within the encoder content to
produce final object queries Qfinal = decoder(X, Qinit). These object queries are then passed to prediction
heads—two fully connected networks (FFNs)—that output class probabilities C and bounding boxes B,
respectively. The entire framework is trained end-to-end using a bipartite matching loss.
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3.2 Neural Operator

Consider an operator G : A → U that acts between the function spaces A and U . Neural operators are the
parametric map Gϕ : A → U that approximates G and is learned from empirical data or physical principles.
Formally, the parametrized neural operator can be expressed as

Gϕ := Q ◦ σ(WT + KT + bT ) ◦ · · · ◦ σ(W1 + K1 + b1) ◦ P , (1)

where, P and Q serve as the lifting and projection operators. The lifting operator raises the codomain
to a higher-dimensional representation space, while the projection operator reduces the codomain to the
output dimension. These operators are typically parameterized as multilayer perceptrons and act point-wise
on functions. The function σ represents pointwise nonlinearity. Each layer t = 1, ..., T includes a local
operator Wt (usually parameterized by a point-wise neural network), a kernel integral operator Kt, and a
bias function bt. Given an intermediate functional representation vt with domain D in the t-th hidden layer,
a kernel integral operator Kϕ is defined as

(Kϕvt)(x) :=
∫

D

κϕ(x, y, vt(x), vt(y))vt(y) dy , (2)

where the kernel κϕ is a learnable neural network with parameter ϕ. Different neural operators (Equation
1) are defined on the basis of their kernel integrals (Equation 2). Each of these operator layers is expressed
as {vt : Dt → Rdvt } 7→ {vt+1 : Dt+1 → Rdvt+1 } using

vt+1(x) = σt+1

(
Wtvt(x) +

∫
Dt

(
κ(t)(x, y)vt(y)

)
dvt(y) + bt(x)

)
∀ x ∈ Dt+1 . (3)

4 Methodology

Building on top of the DETR framework (Figure 2), we develop our DNOD model (Figure 3) by introducing
two new neural operator architectural components: (i) The Multi-Scale Fourier Mixing (MSFM) Encoder
(Sect. 4.1) and (ii) The Multi-Scale Adaptive Deformable Fourier Neural Operator (MADFNO) Decoder
(Sect. 4.2). Our proposed neural operator modules are specifically designed to learn multi-scale feature
maps that have been shown to benefit modern object detection frameworks (Liu et al., 2020; Zhu et al.,
2021).

4.1 Multi-Scale Fourier Mixing (MSFM Encoder)

Within the DETR framework, multiple encoders such as Vision Transformer (Carion et al., 2020) and
Deformable Transformer (Zhu et al., 2021) are utilized. However, the coherent speckle noise in SAR images
intermixed with features is difficult to segregate in the original image domain (Dai et al., 2024). Removal
of noise before detection can result in missing crucial details for subsequent tasks, rendering it an ill-posed
problem (Sun et al., 2022), thus necessitating an architecture adept at handling noisy features. We introduce
a neural operator framework, named Multi-Scale Fourier Mixing (MSFM), adept at effectively handling
multi-scale features and speckle denoising in the frequency domain (Figure 4). Our MSFM is motivated
by the success of the spectral convolutions used in the Fourier Neural Operator (FNO) (Li et al., 2020c)
and the efficient token mixer introduced in the Adaptive Fourier Neural Operator (AFNO) (Guibas et al.,
2021). These operators employ the convolution theorem to transform convolutions in the spatial realm to
element-wise multiplications with block diagonal structure in the Fourier domain. The main distinction
between AFNO and our MSFM is that MSFM is specifically designed to manage multi-scale features in the
Fourier domain, essential for tasks like denoising and object detection.

The MSFM kernel integral for a continuous multi-scale variable X ∈ D with a kernel function κ at a specific
token s can be expressed as

K(X)(s) = F−1 (F(κ) · F(X)) (s) ∀s ∈ D, (4)

where · denotes matrix multiplication, and F , F−1 denotes the continuous Fourier transform and its inverse.
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Figure 3: Overview of the DNOD framework: DNOD architecture processes input SAR images using
a backbone and MSFM encoder to extract multi-scale, Fourier-enhanced embeddings. These features are
passed to the MADFNO decoder along with initial proposals and learnable queries. The decoder outputs
are supervised by three loss functions (i) classification (ii) one to one matching loss and (iii) one to many
matching, to guide robust SAR image detection.
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Figure 4: MSFM Encoder: Multi-scale features combined with positional embedding are fed into the
encoder. Initially, a Fourier transform is executed across scale, height, and width. This is succeeded by
spatial mixing and then an inverse transform. Subsequently, channel mixing is applied, and the resulting
output is passed on to the succeeding encoder layer. This entire sequence is repeated for the specified number
of encoder layers, ultimately yielding Fourier-enhanced embeddings.

In practice, each MSFM encoder block begins with spatial mixing across multiple scales via the Fourier
transform (zm,n where (m,n) is the index per token), which is followed by channel mixing (z̃(l)

m,n) with a
block diagonal structure and the inverse Fourier transform (ym,n). The final Fourier-enhanced embeddings
(Figure 3) are obtained after multiple encoder blocks. Mathematically, each encoder block can be expressed
as

zm,n = [FFT (X)]m,n, z̃(l)
m,n = W (l)

m,nz(l)
m,n, l = 1, . . . , p, ym,n = [IFFT (SoftShrink(z̃m,n)] . (5)

The above formulation improves efficiency, generalization, and speckle noise removal through block-diagonal
channel mixing, shared MLP weights, and soft-thresholding. The pseudo code for the MSFM encoder is
provided in Appendix A.2.
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4.2 Multi-Scale Adaptive Deformable Fourier Neural Operator (MADFNO Decoder)

Figure 5: MADFNO Decoder: Object queries along with Fourier-enhanced encoder embeddings serve
as input to the decoder. The deformable operator extracts features from the encoder embeddings through
sampling locations determined by the object queries. These extracted features are subsequently subjected
to Fourier mixing, resulting in the final object queries for the subsequent decoder layer.

DETRs face challenges in settings with limited feature resolution, resulting in below-average performance in
detecting objects across varying scales. This constraint impairs the model’s ability to detect smaller objects
prevalent in SAR imagery. Furthermore, employing a transformer decoder hinders the convergence speed.
To mitigate these issues, deformable attention modules (Zhu et al., 2021) have been implemented in generic
object detection. However, as mentioned earlier (Section 4.1), successful SAR object detection demands
addressing both speckle noise and multi-scale features, calling for a neural operator. Moreover, in DETRs,
the decoder’s task is to query objects based on the features produced by the encoder. This requires a neural
operator that can handle multiple inputs. Recent studies (Jiang et al., 2024; Lehmann et al., 2025) have
explored multi-input neural operators; however, none incorporate deformable methods that are essential for
multi-scale feature extraction.

Thus, we introduce the MADFNO (Figure 5), a novel neural operator designed for handling multiple inputs,
multi-scale scenarios, and incorporating deformable technique with Fourier mixing.
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MADFNO takes object queries (Q) as input along with features of the encoder (Eo). First, object queries
undergo self-Fourier mixing (M), defined as

M(Q)(s) = F−1 (F(m) · F(Q)) (s) ∀s ∈ D . (6)

Subsequently, these object queries are combined with encoder embeddings (Eo) through the deformable
operator (D) to obtain the refined object queries, D(M(Q), Eo), evaluated as

D(Z, Eo)(s) = [B(Tk, Eok), · · · B(T1, Eo1)]; where Z = M(Q) . (7)

Deformable operator (D): Rather than selecting features directly from the encoder output, we partition
the encoder embeddings (Eo) into k different slices such that Eo = ∪k

i=1Eoi and ∩k
i=1 Eoi = ϕ, which

implies that Eo = [Eo1, Eo2, · · · , Eok], where [,] denotes the concatenation operator. This sliced sampling
facilitates feature selection by concentrating each slice on distinct relations within Eo, similar to the multi-
head attention mechanism in traditional transformer models. Note that each slice contains multi-scale
features as encoder embeddings.

The sampling locations (T ) necessary for the deformable operator are obtained from the initial reference
points (Rp), which are in turn obtained from encoder embeddings (Eo) and sampling residuals (r), such that
T = Rp + r where r is learnable and Rp is estimated from Eo. The sampling residuals are learned via the
sampling location layer (SL), that is,

r1, r2, · · · rk(s) = SL(Z)(s) where Z = M(Q) , (8)

where rj represents the sampling residuals for the jth slice. To sample features from each slice, a sampling
location layer takes object queries M(Q) as input and outputs sampling residuals per slice, which are further
added to reference points per slice Rpj to obtain final sampling locations per slice Tj , i.e., Tj = Rpj + rj .

The final sampling locations derived are continuous; consequently, bilinear interpolation is used to extract
features from the encoder embeddings, denoted as B(Tj , Eoj) for the jth slice. All these slices are then
concatenated into a single slice of sampled encoder embeddings with dimensions (np, hdim), where np =
npoints ∗ nscale, with npoints as a hyperparameter denoting the required number of sampling points per
feature scale. These embeddings are then concatenated with object queries to form combined embeddings
per object query with dimensions (nq, np, hdim). Next, a Fourier transform is performed across these sampled
features (np), followed by spatial mixing and an inverse Fourier transform leading to Fourier mixing of queries
with sampled encoder embeddings. This process is followed by a mean pooling operation along the selected
features and subsequent channel mixing to produce the final refined object queries. Overall, the kernel
integral of the multi-input neural operator MADFNO can be expressed as

K(Q, Eo)(s) = M ◦ F −1 (F (κ) · F ([Z, D(Z, Eo)])) (s) ∀s ∈ D , Z = M(Q) . (9)

5 Experiments

We first present the datasets used for our experimental analysis and the implementation procedure. We then
proceed to evaluate the performance of DNOD in comparison to baseline models. Finally, we performed an
ablation study to illustrate the significance of each component and its impact on overall effectiveness.

5.1 Experimental Setup

5.1.1 Datasets

The SARDet-100k dataset is used in our experiments focused on object detection. This dataset comprises
116,598 images and 245,653 instances classified into six categories: Aircraft, Ship, Car, Bridge, Tank and
Harbor. As the first extensive SAR object detection dataset, SARDet-100K is similar in scale to the widely
recognized COCO dataset (118K images) (Lin et al., 2014), a benchmark for general object detection.
SARDet-100k is constructed by integrating nine different datasets focused on SAR object detection. These
data sets exhibit varied polarities and encompass a wide range of resolutions, ranging from 0.1 to 25 meters.
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The data is collected by utilizing six different satellites, each operating within four diverse frequency bands.
The extensive scope and diversity of the SARDet-100K dataset, as outlined in Table 1, accurately represent
the real-world obstacles encountered in deploying SAR object detection models across different data sources.

Table 1: Source datasets in SARDet-100K (Li et al., 2024b). Target categories S: ship, A: aircraft, C: car,
B: bridge, H: harbour, T: tank.

Datasets Target Res. (m) Band Polarization Satellites License
AIR_SARShip (Xian et al., 2019) S 1.3m C VV GF-3 -
HRSID (Wei et al., 2020) S 0.5∼3m C/X HH, HV, VH, VV S-1B, TerraSAR-X, TanDEM-X GNU General Public
MSAR (Xia et al., 2022) A, T, B, S ≤ 1m C HH, HV, VH, VV HISEA-1 CC BY-NC 4.0
SADD (Zhang et al., 2022c) S 0.5∼3m X HH TerraSAR-X -
SAR-AIRcraft (Zhirui et al., 2023) A 1m C Uni-polar GF-3 CC BY-NC 4.0
ShipDataset (Wang et al., 2019) S 3∼25m C HH, VV, VH, HV S-1, GF-3 -
SSDD (Zhang et al., 2021b) S 1∼15m C/X HH, VV, VH, HV S-1, RadarSat-2, TerraSAR-X Apache 2.0
OGSOD (Wang et al., 2023) B, H, T 3m C VV/VH GF-3 -
SIVED (Lin et al., 2023a) C 0.1, 0.3m Ka, Ku, X VV/HH Airborne SAR synthetic slice -

5.1.2 Implementation Details

In our experiments and all our baselines are employed with ResNet-50 backbone for fair comparison of object
detection models, all of which have been pre-trained on the ImageNet-1K dataset. DNOD contains MSFM
encoder and MADFNO decoder each having 3 layers, utilizing a hidden feature dimension of 256. With
1200 decoder object queries, training is accomplished through both one-to-one (Zhang et al., 2023a) and
one-to-many matching (Zhao et al., 2024) losses. Based on (Zhang et al., 2023a), we use L1 and GIoU losses
for the regression of the bounding box and adopt focal loss with α = 0.25 and γ = 2 for classification.
Additionally, techniques like Look Forward Twice and Mixed Query Selection are integrated, as inspired by
the same source. Following the DETR framework, auxiliary losses are introduced after each decoder layer.
The model underwent 56 epochs of training on 2 Nvidia RTX A6000 GPUs, with a cumulative batch size
of 16. Initially, the learning rate was configured at 1 × 10−4, which was reduced by a factor of 0.1 after 52
epochs. We utilized the AdamW optimizer, with a weight decay rate of 1 × 10−4. For more information on
the implementation details, refer to Appendix A.3.

5.2 Results

To assess the effectiveness of our model, we conducted a comparative analysis with 28 baseline methods (more
details are given in Appendix A.1), encompassing a variety of categories, including one-stage, two-stage and
end-to-end approaches. This selection includes convolution-based models, transformer-based models, and
single-shot detectors such as YOLO. We believe that this comparison ensures a robust evaluation of our
proposed model. The baseline results were obtained from DenoDet (Dai et al., 2024). We report the
evaluation metric average precision (AP) calculated using standard COCO (Lin et al., 2014) evaluation
metrics. We report AP at different IOU thresholds and on different object scales, small (APS), medium
(APM ) and large (APL). We report our primary metric, COCO mAP, which calculates the mean of AP
scores on 10 IoU thresholds from 0.50 to 0.95 with a step size of 0.05.

5.2.1 Quantitative Results

Table 2 shows the comparison of our model DNOD with 28 diverse baselines. Our DNOD achieved SoTA
performance across all metrics at different IoU thresholds and on all object scales: small, medium, and
large. DNOD uses 3 scales with 32 x 32 resolution scale derived from backbone as the primary feature
map. Compared to the previous SoTA model (DenoDet 4 Scale (Dai et al., 2024)) on SARDet-100k, our
model demonstrated a +1.08 mAP improvement, with a 45.7% reduction in parameters and 23.4% fewer
GFLOPs. This computational efficiency is only due to the neural operator based encoder and decoder we
introduced. We also developed a larger version of our model called ‘DNOD Large’ to further enhance the
performance on SAR object detection. In this design, we utilized four scales with a 64 x 64 resolution scale
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derived from the backbone as primary feature maps. This enhancement led to an increase in mAP to 58.11,
marking an improvement of +2.23 over the previous SoTA.

Table 2: Comparison of SAR Object detection methods on the SARDET-100k dataset. Bold indicates it
is better than all models, and an underline is the second best. All the models used a Resnet-50 backbone
pretrained (Pre.) on ImageNet.

Method Pre. FLOPs #Params mAP AP@50 AP@75 APS APM APL

One-stage
FCOS IN 51.57G 32.13M 52.52 85.82 54.93 47.01 66.13 57.82
GFL IN 52.36G 32.27M 55.01 85.16 58.87 49.44 67.29 60.45
RepPoints IN 48.49G 36.82M 51.66 86.43 53.99 46.66 63.26 53.78
ATSS IN 51.57G 32.13M 54.95 87.60 58.25 49.89 67.94 58.97
CenterNet IN 51.55G 32.12M 53.91 86.17 57.31 48.88 66.22 57.74
PAA IN 51.57G 32.13M 52.20 85.71 54.80 46.00 63.90 57.61
PVT-T IN 42.19G 21.43M 46.10 77.55 49.00 38.01 59.53 53.35
RetinaNet IN 52.77G 36.43M 46.48 77.74 48.94 40.25 59.35 50.26
TOOD IN 50.52G 30.03M 54.65 86.88 58.41 50.20 66.72 58.60
DDOD IN 45.58G 32.21M 54.02 86.64 57.23 49.33 64.70 58.02
VFNet IN 48.38G 32.72M 53.01 84.32 56.32 47.37 65.39 57.99
AutoAssign IN 51.83G 36.26M 53.95 89.58 55.96 50.14 63.40 54.73
YOLOF IN 26.32G 42.46M 42.83 74.95 43.18 33.73 56.19 53.57
YOLOX IN 8.53G 8.94M 34.08 66.77 31.31 28.49 43.06 28.95
Two-stage
Faster R-CNN IN 63.2G 41.37M 39.22 70.04 39.87 32.55 47.23 42.02
Cascade R-CNN IN 90.99G 69.17M 53.55 87.33 56.81 49.09 62.89 48.68
Dynamic R-CNN IN 63.2G 41.37M 49.75 80.96 53.91 43.12 59.72 54.77
Grid R-CNN IN 0.18T 64.47M 50.05 80.58 53.49 42.43 62.01 52.70
Libra R-CNN IN 64.02G 41.64M 52.09 83.54 55.81 45.85 63.52 55.40
ConvNeXt IN 63.84G 45.07M 53.15 85.52 57.28 45.67 64.55 58.61
ConvNeXtV2 IN 0.12T 0.11G 53.91 86.01 58.90 47.63 64.67 59.57
LSKNet IN 53.73G 30.99M 52.39 85.07 56.96 45.15 63.59 59.16
End2End
DETR IN 24.94G 41.56M 45.73 78.57 46.87 37.01 58.16 55.58
Deformable DETR IN 51.78G 40.10M 52.00 88.77 54.03 46.99 63.58 58.55
DAB-DETR IN 28.94G 43.70M 43.31 78.14 43.10 34.82 56.34 52.62
Conditional DETR IN 28.09G 43.45M 44.04 77.88 44.40 35.25 56.47 52.86
DINO IN 81.41G 46.67M 53.40 87.82 56.15 47.05 66.19 61.98
DenoDet IN 52.69G 65.78M 55.88 85.81 60.16 50.63 68.47 60.96
DNOD (ours) IN 40.36G 35.67M 56.96 90.36 59.69 52.94 71.22 65.43
Promotion - - - +1.08 +0.78 - +2.31 +2.75 +4.47
DNOD large (ours) IN 78.01G 43.10M 58.11 91.44 61.31 55.31 70.30 64.36
Promotion - - - +2.23 +1.86 +1.15 +4.68 +1.83 +3.40

5.2.2 Qualitative Results

We present the qualitative analysis of DNOD compared with two leading object detection models, (1)
DenoDet, which is a leading model in the SAR domain, and (2) DINO, a leading model for generic object
detection. This ensures a diverse evaluation of our model against both SAR object detection and generic
object detection models. Figure 6 presents 4 different scenarios, (1) Partially occluded: DNOD successfully
identified a partially occluded image, a feat not accomplished by the other models. (2) Similar objects in
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close proximity: DNOD precisely detected two different aircrafts that the other leading models had missed.
(3) Smaller objects & (4) Crowded scenario of smaller objects: In both the third and fourth rows, DNOD
was able to identify almost all of the ships which are much smaller objects compared to the image size, in
contrast to the other leading counterparts. This qualitative assessment underscores the superiority of DNOD
in SAR object detection compared to other leading models, attributed to the discrete invariance property of
neural operators (Kovachki et al., 2023).

(a) DenoDet (b) DINO (c) DNOD (ours) (d) Ground Truth

Figure 6: Qualitative assessment of DNOD predictions in comparison with leading object detection models,
specifically DenoDet (Dai et al., 2024) and DINO (Zhang et al., 2023a). Each row presents a distinct sample,
showcasing results from DenoDet, DINO, DNOD, and ground truth, sequentially from left to right. In the
first row, DNOD effectively identified a partially visible image, which was not achieved by the other models.
In the second row, DNOD accurately detected an aircraft, which the other leading models failed to recognize.
In the third and fourth rows, DNOD succeeded in detecting all ships, unlike other models. This qualitative
evaluation highlights DNOD’s effectiveness in SAR object detection when compared to other leading models.
All predictions were assessed with a classification confidence greater than 0.5.
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5.3 Ablation study

Effect of MSFM and MADFNO: To evaluate the effectiveness of the proposed architecture, we perform
an ablation study comparing various encoder-decoder configurations. As shown in Table 3, replacing the
conventional deformable encoder with our MSFM encoder consistently improves performance across all AP
metrics. Especially mean average precession (mAP) improved by +2.47 with our encoder on SAR imagery.
Furthermore, incorporating the MADFNO decoder in place of traditional deformable decoding significantly
improves detection accuracy and has shown +3.80 improvement in mAP. The combination of the MSFM
encoder and the MADFNO decoder achieves the best performance, achieving an AP of 56.96 promotion of
+4.96, with notable improvements in APS(52.94) (+5.95) and APM (71.22) (+7.64), demonstrating the
effectiveness of the two neural operators.

Table 3: Ablation comparison of (MSFM) encoder and (MADFNO) decoder

Encoder Decoder mAP AP50 AP75 APS APM APL

Deformable Deformable 52.00 88.77 54.03 46.99 63.58 58.55
MSFM Deformable 54.47 88.58 57.47 50.73 68.94 62.04
Promotion - +2.47 - +3.44 +3.74 +5.36 +3.49
MHSA MADFNO 55.80 89.67 58.51 51.78 69.86 63.42
Promotion - +3.80 +0.90 +4.48 +4.79 +6.28 +4.87
MSFM MADFNO 56.96 90.36 59.69 52.94 71.22 65.43
Promotion - +4.96 +1.59 +5.66 +5.95 +7.64 +6.88

Effect of Different Scales: We examine the effect of varying the number of feature scales in our architec-
ture, adjusting it from 2 to 4. Table 4 reveals that increasing the feature scales consistently improves the
overall detection performance. Transitioning to three scales significantly boosts the average precision (AP )
to 56.97 from 55.56 at two scales, and also improves AP75 to 61.31 and APS of 55.31, highlighting the
effectiveness of rich comprehensive multi-scale representations for detecting objects of differing sizes. These
findings confirm the crucial role of integrating more scales in our framework.

Table 4: Ablation comparison of number of feature scales

# Feature Scales mAP AP50 AP75 APS APM APL

DenoDet 4 Scale
(Previous SoTA) 55.88 85.81 60.16 50.63 68.47 60.96
DNOD 2 Scale 55.56 89.75 57.66 51.36 70.63 63.49

Promotion wrt SoTA - +3.94 - +0.73 +2.16 +2.53
DNOD 3 Scale 56.96 90.36 59.69 52.94 71.22 65.43

Promotion wrt SoTA +1.08 +4.55 - +2.31 +2.75 +4.47
DNOD 4 Scale 58.11 91.44 61.31 55.31 70.30 64.36

Promotion wrt SoTA +2.23 +5.63 +1.15 +4.68 +1.83 +3.40

6 Conclusion and Future work

We developed DNOD, the first-of-its-kind neural operator-based encoder called MSFM and a decoder called
MADFNO within the DETR framework for object detection, showcasing its implementation on SAR datasets.
These are new multi-input, multi-scale deformable neural operators. Experimental results and ablation stud-
ies show that DNOD offers notable advances over the current leading methods in achieving SoTA perfor-
mance. Although SAR object detection was the focus here, the utility of our novel architecture will have a
broader implication for generic object detection and other computer vision tasks using neural operators.
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A Appendix

A.1 Baselines:

To evaluate the effectiveness of our model performance, we have conducted a comparative analysis against
three distinct categories of object detection models.
(i) One-Stage Methods : These methods perform localization and classification in a single pass, i.e directly
predict bounding boxes and class probabilities from image pixels. Such as, FCOS (Tian et al., 2019), GFL
(Li et al., 2020a), RepPoints (Yang et al., 2019), ATSS (Zhang et al., 2020b), CenterNet (Zhou et al., 2019),
PAA (Kim & Lee, 2020), PVT-T Zhou et al., 2022, RetinaNet (Lin et al., 2017), TOOD (Feng et al., 2021),
DOOD (Chen et al., 2021b), VFNet (Zhang et al., 2021a), AutoAssign (Zhu et al., 2020), YOLOF (Chen
et al., 2021a), YOLOX (Ge et al., 2021).
(ii) Two-Stage methods: A sequential pipeline is used in these methods, initially candidate object regions
are generates using selective search or Region proposal networks. Subsequently, each region is classified
and its bounding box refined for accurate object localization. While this approach typically achieves high
detection accuracy, it is generally slower than single-stage methods. Such as, Faster R-CNN (Ren et al.,
2015), Cascade R-CNN (Cai & Vasconcelos, 2019), Dynamic R-CNN (Zhang et al., 2020a), Grid R-CNN
(Lu et al., 2019), Libra R-CNN (Pang et al., 2019), ConvNeXt (Liu et al., 2022b), ConvNeXtV2 (Woo et al.,
2023), LSKNet (Li et al., 2023b),
(iii) End2End methods: These methods eliminate hand crafted components and uses direct set prediction.
Such as, DETR (Carion et al., 2020), Deformable DETR(Zhu et al., 2021), DAB-DETR (Liu et al., 2022a),
Conditional DETR (Meng et al., 2021), DenoDet(Dai et al., 2024). This will guarantee a fair, robust, and
diverse comparison of our DNOD model for the context of SAR object detection.

A.2 Pseudocodes:

This section provides a detailed overview of the proposed operators, MSFM (as depicted in Figure 7) and
MADFNO (as illustrated in Figure 8), by presenting high-level pseudocode. The pseudocode methodically
describes each step involved, fundamental logic, the various inputs, and the specific computations that are
carried out throughout the process.

A.2.1 MSFM

x = Tensor [b, d, h, w, c]
W_1 , W_2 = ComplexTensor [k, c/k, c/k]
b_1 , b_2 = ComplexTensor [k, c/k]

def BlockMLP (x):
x = MatMul (x, W_1) + b_1
x = ReLU(x)
return MatMul (x, W_2) + b_2

def MSFM(x):
bias = x
x = rfftn(x, dim =(1 ,2 ,3))
x. reshape (b, d, h, w//2 + 1, k, c/k)
x = BlockMLP (x)
x. reshape (b, d, h, w//2 + 1, c)
x = SoftShrink (x)
x = irfftn (x, dim (1 ,2 ,3))
return x + bias

Figure 7: Pseudocode for MSFM with multi scale features, adaptive weight sharing and adaptive masking
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def MADFNO (Eo , Q, Rp):
# input -> Eo = Tensor [b, n_l , H, W, c]
# Q = Tensor [b, n_q , c]
# Rp = Tensor [b, n_q , n_l , 4]
# output ->Q_final = Tensor [b, n_q , c]

bias = Q
Q = M(Q)
r = SL(Q)
r = r. reshape (b, n_q , n_s , n_l , n_p , 2)
Rp = Rp[:, :, None , :, None , :2]
T = Rp + r
Eo = Eo. reshape (b, n_l , H, W, n_s , c// n_s)
EoS = GridSample (Eo , T) # Bilinear interpolation
EoS = EoS. reshape (b, n_l*n_p , c)
z_inp = Concat [EoS , Q, (dim =2)]
# Shape of z_inp -> (b, n_q , n_l*n_p , c)
z = rfftn(z_inp , dim =(2))
z = z. reshape (b, n_q , n_l*n_p //2 + 1, k, c/k)
z = BlockMLP (z)
z = z. reshape (b, n_q , n_l*n_p //2 + 1, c)
z = SoftShrink (z)
z = irfftn (z, dim (2))
z = z + z_inp
Qfinal = z.mean(dim =2)
return Qfinal + bias

W_1 , W_2 = ComplexTensor [k, c/k, c/k]
b_1 , b_2 = ComplexTensor [k, c/k]

def BlockMLP (x):
x = MatMul (x, W_1) + b_1
x = ReLU(x)
return MatMul (x, W_2) + b_2

def M(x):
# input -> x = Tensor [b, n_q , c]
# output -> x = Tensor [b, n_q , c]
bias = x
x = rfftn(x, dim =(1))
x. reshape (b, n_q //2 + 1, k, c/k)
x = BlockMLP (x)
x. reshape (b, n_q //2 + 1, c)
x = SoftShrink (x)
x = irfftn (x, dim (1))
return x + bias

Eo -> Encoder
embeddings

Q -> Object queries
Rp -> Reference points
b -> batch size
n_q -> Number of

queries
n_l -> Number of levels
n_s -> Number of slices
H -> Height
W -> Width
c -> hidden feature

dimension
EoS -> Encoder

embeddings Sampled
Qfinal -> Final Object

queries

Figure 8: Pseudocode for MADFNO with multi-scale features and deformable attention

A.2.2 MADFNO
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A.3 Hyperaparameters:

In Table 5, we present an extensive and thorough compilation of the hyperparameters alongside the training
specifications utilized within the construction and application of the DNOD model, providing a comprehen-
sive overview for reference.

Table 5: DNOD Hyperparameter

Parameter Value
Matcher HungarianMatcher

One to Many matcher threshold 0.4
One to Many classification loss coefficient 2
One to Many bounding box loss coefficient 5

One to Many GIoU loss coefficient 2
One to One classification loss coefficient 1
One to One bounding box loss coefficient 5

One to One GIoU loss coefficient 2
Positional Embedding type sine

Positional embedding temperature 20
Number of blocks in Fourier mixing 8

Focal Alpha 0.25
Number of classes 7

Weight Decay 0.0001
Learning rate 0.0001

Learning rate drop 0.1
Hidden dimension 256

No of deformable decoder points 6
Non Max Suppression IOU Threshold 0.8

No of Queries 1200
Channel Mixing Dimension 2048

Optimizer AdamW

A.4 Additional Results:

A.4.1 Quantitative

We present an evaluation of our model for each of the six distinct categories that comprise the SARDet-100k
dataset, as detailed in Table 6. To determine the model that performs most proficiently across all categories,
we implemented a ranking methodology. Specifically, models were individually ranked for each category, and
subsequently, the mean rank for every model was calculated. Notably, our model attained the lowest mean
rank when compared with all other models, highlighting its superior performance across all classes.

A.4.2 Qualitative

In order to further enhance the qualitative analysis, we incorporated additional comparative studies. Figures
9 and 10 illustrate a particular scenario involving multiple classes within a low-quality image context. These
figures demonstrate that our DNOD effectively predicted both classes effectively.
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Table 6: Per-class average precision comparison with SoTA methods on the SARDet-100K dataset.

Method Pre. Ship Aircraft Car Tank Bridge Harbor Avg Rank
One-stage
FCOS IN 59.79(21) 55.44(19) 60.75(21) 41.78(11) 34.17(20) 63.44(10) 17
GFL IN 63.92(6) 57.63(1) 62.29(9) 44.80(7) 36.41(9) 65.04(6) 6.3
RepPoints IN 60.85(17) 55.50(18) 61.13(19) 40.69(14) 35.12(16) 56.71(22) 17.6
ATSS IN 61.53(11) 55.94(12) 61.77(14) 46.20(3) 37.22(5) 67.48(3) 8.0
CenterNet IN 61.24(15) 56.35(9) 61.74(15) 45.31(6) 35.91(15) 63.29(11) 11.8
PAA IN 60.16(20) 56.17(10) 60.09(22) 41.07(12) 35.96(14) 60.12(17) 15.8
PVT-T IN 53.30(25) 52.91(24) 59.03(24) 30.20(24) 22.51(28) 59.11(19) 24.0
RetinaNet IN 55.36(23) 54.00(22) 60.88(20) 32.72(23) 24.81(26) 51.12(28) 23.6
TOOD IN 62.28(8) 55.61(16) 62.53(7) 45.96(4) 36.64(8) 65.24(5) 8.0
DDOD IN 62.39(7) 56.08(11) 62.48(8) 43.98(9) 36.34(11) 62.87(12) 9.6
VFNet IN 62.14(9) 55.84(13) 61.97(12) 42.08(10) 34.11(21) 62.28(13) 13.0
AutoAssign IN 62.03(10) 55.70(15) 61.69(16) 48.55(1) 38.25(4) 57.45(21) 11.6
YOLOF IN 52.62(28) 52.64(25) 52.71(27) 22.86(29) 23.74(27) 52.42(27) 27.1
YOLOX IN 46.08(30) 46.83(30) 53.43(26) 26.26(25) 13.14(30) 18.95(30) 28.5
Two-stage
Faster R-CNN IN 50.45(29) 50.36(27) 57.82(25) 24.90(27) 18.69(29) 33.11(29) 27.6
Cascade R-CNN IN 66.99(1) 56.43(8) 63.25(2) 44.35(8) 36.89(6) 53.81(26) 8.5
Dynamic R-CNN IN 61.32(13) 53.86(23) 60.00(23) 33.68(22) 34.40(19) 55.25(23) 20.5
Grid R-CNN IN 60.43(19) 55.61(16) 61.94(13) 36.03(21) 31.16(23) 55.13(24) 19.3
Libra R-CNN IN 61.32(13) 54.03(21) 61.56(17) 38.12(18) 35.97(12) 61.50(14) 15.8
ConvNeXt IN 60.55(18) 57.35(3) 62.13(11) 38.12(18) 36.81(7) 63.95(9) 11.0
ConvNeXtV2 IN 61.48(12) 55.83(14) 63.23(3) 39.65(16) 39.16(3) 64.09(8) 9.3
LSKNet IN 59.33(22) 56.76(6) 62.74(4) 36.09(20) 35.01(17) 64.38(7) 12.6
End-to-End
DETR IN 54.94(24) 51.17(26) 50.11(29) 26.06(26) 32.80(22) 59.31(18) 24.1
Deformable DETR IN 60.94(16) 54.16(20) 61.22(18) 39.14(17) 36.09(12) 60.46(16) 16.5
DAB-DETR IN 53.16(26) 50.32(28) 49.47(30) 24.06(28) 28.47(25) 55.07(25) 27.0
Conditional DETR IN 52.77(27) 49.58(29) 51.00(28) 22.73(30) 29.98(24) 58.16(20) 26.3
DINO 4-Scale IN 64.87(4) 56.78(5) 62.72(5) 39.80(15) 34.97(18) 61.26(15) 10.3
DenoDet IN 64.91(3) 57.36(2) 63.66(1) 45.79(5) 36.39(10) 67.17(4) 4.1
⋆ DNOD (Ours) IN 64.65(5) 56.48(7) 62.60(6) 40.73(13) 43.27(1) 74.05(1) 5.5
⋆ DNOD large (Ours) IN 66.31(2) 57.18(4) 62.28(10) 48.40(2) 43.12(2) 71.38(2) 3.6
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(a) DenoDet (b) DINO

(c) DNOD (ours) (d) Ground Truth

Figure 9: Qualitative comparison of DNOD predictions with those of DenoDet (Dai et al., 2024) and DINO
(Zhang et al., 2023a) shows that while DenoDet successfully identified only the harbor, and DINO managed
to detect only the bridge, our model demonstrated superior performance by accurately identifying both the
harbor and the bridge.
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(a) DenoDet (b) DINO

(c) DNOD (ours) (d) Ground Truth

Figure 10: Qualitative comparison of DNOD predictions with DenoDet (Dai et al., 2024), and DINO (Zhang
et al., 2023a). Both of the baselines only detected a single harbor, but our model detected both the harbors.
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