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Abstract

Temporal data are increasingly prevalent in modern data science. A fundamental question
is whether two time series are related or not. Existing approaches often have limitations,
such as relying on parametric assumptions, detecting only linear associations, and requiring
multiple tests and corrections. While many non-parametric and universally consistent de-
pendence measures have recently been proposed, directly applying them to temporal data
can inflate the p-value and result in an invalid test. To address these challenges, this
paper introduces the temporal dependence statistic with block permutation to test inde-
pendence between temporal data. Under proper assumptions, the proposed procedure is
asymptotically valid and universally consistent for testing independence between station-
ary time series, and capable of estimating the optimal dependence lag that maximizes the
dependence. Moreover, it is compatible with a rich family of distance and kernel based de-
pendence measures, eliminates the need for multiple testing, and exhibits excellent testing
power in various simulation settings.

1 Introduction

Temporal data, often referred to as time series, finds wide applications across diverse domains, such as func-
tional magnetic resonance imaging (fMRI) in neuroscience, dynamic social networks in sociology, financial
indices, etc. In a broader context, temporal data can be seen as a type of structural data characterized by
inherent underlying patterns. When dealing with temporal data, a fundamental problem is to determine the
presence of a relationship between two jointly observed time series.

In the context of standard independent and identically distributed (i.i.d.) data, where observations
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) are drawn independently and identically from the joint distribution FXY , the
question simplifies to whether the underlying random variables X and Y are independent, i.e., FXY = FXFY .
Many recent dependence measures have been proposed to tackle this problem, aiming to achieve valid and
universally consistent independence testing. These methods include distance correlation (Szekely et al.,
2007; Szekely & Rizzo, 2009; 2014), Hilbert-Schmidt independence criterion (Gretton et al., 2005; Gretton
& Gyorfi, 2010; Gretton et al., 2012), multiscale graph correlation (Vogelstein et al., 2019; Shen et al., 2020;
Lee et al., 2019), and many others (Heller et al., 2013; Zhu et al., 2017; Pan et al., 2020).

However, the standard testing framework is not applicable to structured data such as time series, because
the i.i.d. assumption often does not hold. As a result, standard testing procedures like the permutation
test are known to produce inflated p-values and are thus unsuitable for testing structured data (Guillot &
Rousset, 2013; DiCiccio & Romano, 2017). Existing research on testing independence for temporal data is
limited, often relying on linear measures such as autocorrelation and cross-correlation, which may overlook
potential nonlinear relationships (Guochang et al., 2021). A commonly made assumption is to consider the
sample data as stationary, meaning that the joint distribution of (Xt, Yt−l) depends only on the lag l and
not on any specific time index t. Approaches for addressing the instantaneous time problem, where the goal
is to detect whether Xt and Yt are independent, have been explored in Chwialkowski & Gretton (2014).
Moreover, Chwialkowski et al. (2014) investigates the problem of testing between Xt and Yt−l for each lag l
separately, employing multiple testing techniques.

In this paper, we propose an aggregated temporal statistic and utilize a block permutation procedure to ex-
tend the scope of independence testing beyond the i.i.d. assumption. Given a standard dependence measure
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such as distance correlation, our method first calculates a set of cross dependence statistics. These statistics
not only facilitate the estimation of the optimal dependence lag, but also enable the computation of the
temporal dependence statistic as a weighted aggregation of all cross dependence statistics. Subsequently,
we employ a block permutation procedure to derive a p-value for hypothesis testing. Under proper assump-
tions regarding the choice of the dependence measure, the joint distribution of the temporal data, and the
parameters of the block permutation, we establish the asymptotic properties of the temporal dependence,
and prove the asymptotic validity and universal consistency of our method. Notably, the proposed temporal
dependence method is non-parametric and does not require multiple testing.

Numerically, we show that the proposed approach yields satisfactory testing power when applied to simu-
lated time series with small sample sizes. It is compatible with various dependence measure choices, and
numerically superior and more versatile than previously proposed time series testing procedures. Addition-
ally, we present the results of a real-data experiment that utilizes the proposed method to analyze neural
connectivity based on fMRI data.

2 Method

2.1 Hypothesis for Testing Temporal Dependence

Given the joint sample data {(X1, Y1), ..., (Xn, Yn)}, let X⃗ = {X1, . . . , Xn} ∈ Rp×n and Y⃗ = {Y1, . . . , Yn} ∈
Rq×n represent each individual sample data. Here, p and q denote the dimensions and are positive integers,
and n is the sample size.

Suppose (X⃗, Y⃗ ) is strictly stationary, meaning the distribution at any set of indices remains the same. We
can represent the distributions of Xt and Yt at any point t as FX and FY , and represent the distribution of
(Xt, Yt−l) as FXY−l

for each lag l ≥ 0.

We aim to test the following independence hypothesis between X⃗ and Y⃗ :

H0 : FXY−l
= FXFY for each l ∈ {0, 1, ..., L}

HA : FXY−l
̸= FXFY for some l ∈ {0, 1, ..., L},

Here, L is a non-negative integer denoting the maximum lag under consideration. Essentially, the null
hypothesis states that Xt is independent of present and past values of Yt−l for all of l = 0, . . . , L. In
contrast, the alternative hypothesis suggests (X⃗, Y⃗−l) are dependent for at least one l in the range of [0, L].

This setting is, in fact, a generalization of the standard i.i.d. setting, where it was assumed that
(X1, Y1), (X2, Y2), . . . , (Xn, Yn) i.i.d.∼ FXY , and the null hypothesis simplifies to FXY = FXFY because there
is no possible dependence other than l = 0. Hence, our subsequent method and theory for testing two
time series are also applicable when only one of them is time series or when both are standard i.i.d. data.
Moreover, they are applicable to any general structured data that can be assumed stationary.

2.2 Main Algorithm

The proposed method consists of four steps: computation of the cross-lag dependence statistics, estimation of
the optimal dependence lag, computation of temporal dependence statistic, and block permutation to obtain
the p-value for testing purposes. Details regarding the choice of the dependence measure, block permutation,
and computational complexity are discussed in the following subsections.

Input: Two jointly-sampled datasets represented as X⃗ ∈ Rp×n and Y⃗ ∈ Rq×n, a given choice of sample
dependence measure τn(·, ·) : Rp×n × Rq×n → R, and three positive integers: the lag limit L, the
number of blocks B, and the number of random permutations R.

Step 1: Compute the set of cross dependence sample statistics {τn(X⃗, Y⃗−l), l = 0, . . . , L}. Here, (X⃗, Y⃗−l)
denotes the sample data with l lags apart, which consists of (n − l) pairs of observations:

(X⃗, Y⃗−l) = {(X1+l, Y1), (X2+l, Y2), . . . , (Xn, Yn−l)}.
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Step 2: Estimate the optimal dependence lag:

L̂∗ = arg max
l∈[0,L]

(
n − l

n

)
· τn(X⃗, Y⃗−l).

Here, the weight
(

n−l
n

)
simply weights each cross dependence statistic based on the number of

observations it uses.

Step 3: Compute the temporal dependence sample statistic:

Tn(X⃗, Y⃗ ) =
L∑

l=0

(
n − l

n

)
· τn(X⃗, Y⃗−l).

Step 4: Compute the p-value using block permutation:

p-val =
R∑

r=1
I(Tn(X⃗, Y⃗ ) > Tn(X⃗, Y⃗πB

))/R,

where I(·) is the 0-1 indicator function, and πB is a randomly generated block permutation for each
r.

Output: The temporal dependence statistic T, the corresponding p-value, and the estimated optimal depen-
dence lag L̂∗.

The null hypothesis is rejected if the p-value is less than a pre-specified Type 1 error level, such as 0.05.

2.3 Choice of Dependence Measure

While the algorithm can accommodate any dependence measure as the choice of τn(·, ·), it is essential for the
chosen measure to be well-behaved and satisfy the required assumptions outlined in Section 3.1. This ensures
consistency in detecting dependence between temporal data, both in terms of performance and subsequent
theory. In our experiments, we employed distance correlation, Hilbert-Schmidt independence criterion, and
multiscale graph correlation. All of these measures meet the necessary assumptions, and the resulting tests
appear valid and consistent in our numerical experiments.

As the proposed temporal statistic is essentially an aggregation of the underlying dependence measure, its
effectiveness in capturing dependence is contingent upon the choice of dependence measure. It is well known
that each dependence measure has its own unique strengths. Therefore, our usage of distance and kernel
based statistics in this paper should be viewed as an illustration of the validity and consistency properties
of the proposed temporal test.

Some examples of other dependence measures include correlation coefficients (Fukumizu et al., 2007; Bieß-
mann et al., 2010), Chatterjee’s rank correlation (Chatterjee, 2021; Shi et al., 2021; 2022), the HHG method
(Heller et al., 2013; 2016), projection correlation (Zhu et al., 2017), ball covariance (Pan et al., 2020), as
well as recent high-dimensional dependence statistics (Zhu et al., 2020; Huang & Huo, 2022; Shen & Dong,
2024; Xu et al., 2024; Zhou et al., 2024). All of these dependence measures can be directly incorporated
into our temporal testing framework by simply modifying the cross-dependence statistics in Step 1. Such
adaptations may offer better testing power for certain dependence structures.

For instance, using the correlation coefficient with block permutation will only detect linear associations in
temporal data, while a universally consistent dependence measure can detect all possible dependencies with a
sufficiently large sample size; dependence measures that are better at detecting nonlinear or high-dimensional
dependencies in standard i.i.d. data will also perform better under such dependencies in the case of temporal
data, requiring a smaller sample size to achieve perfect testing power; rank-based dependence measures can
be more robust against data noise.
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2.4 The Block Permutation Test

The standard permutation test is widely used for independence testing (Good, 2005). In a standard permu-
tation, π(·) randomly permutes the indices 1, 2, . . . , n, resulting in Y⃗π and X⃗ that are mostly independent
(except for a few indices that do not change position, which are asymptotically negligible as n increases).
Given sufficiently many random permutations, this process allows the permuted test statistics to estimate
the true null distribution.

However, the above is only true under the standard i.i.d. setting, and it no longer holds when there exists
structural dependence within the sample sequence, such as when (Xt, Yt) are dependent with (Xt−1, Yt−1).
Specifically, the permuted statistics would under-estimate the true null distribution, leading to an inflation
of the testing power. This issue has been noted in Guillot & Rousset (2013); DiCiccio & Romano (2017),
which can affect any dependence measure that relies on the standard permutation test.

To ensure validity of the test, we employ a block permutation procedure (Politis, 2003) denoted as πB(·),
where B denotes the number of blocks. The construction of πB(·) proceeds as follows:

We partition the index list into B consecutive blocks. For j = 1, . . . , B, block j consists of indices

Bj = (⌈ n

B
⌉ ∗ (j − 1) + 1, ⌈ n

B
⌉ ∗ (j − 1) + 2, . . . , ⌈ n

B
⌉ ∗ j − 1).

Note that for the last block, the last few indices may exceed n, in which case the indices wrap around and
restart from 1.

As an example, consider a sample size of n = 100 and B = 20 blocks, with each block containing 5 indices.
Then the first block would be (Y1, Y2, ..., Y5), the second block would be (Y6, Y7, ..., Y10), etc. During the
block permutation process, each block is shifted to another position. For instance, the first block might be
permuted to the fourth block, resulting in πB(1) = 16, πB(2) = 17, πB(3) = 18, πB(1) = 19, πB(1) = 20.
This shuffling of blocks ensures a randomized distribution of data while maintaining the block structure.

2.5 Parameter Choice and Computational Complexity

The choice of the maximum lag, denoted as L, is typically determined based on subject matter considerations.
For example, if the signal from one region of the brain can only influence another region within a range of
20 time steps, then setting L = 20 would be appropriate. Similarly, when collecting daily stock trading data
for two stocks, choosing L = 30 indicates that we are examining the dependence structure within the past
month.

As for the number of blocks, we used B = 20 in our experiments, which is sufficient for our purposes. For
the number of permutation, we used R = 1000 replicates. Assuming that the dependence measure can be
computed in O(n2) time complexity (which is the case for distance correlation), the temporal independence
test has a time complexity of O(n2RL).

3 Supporting Theory

In this section, we establish the asymptotic properties of the test statistics and the resulting tests, which
include asymptotic convergence, validity, and consistency. All the proofs can be found in the appendix. We
begin by outlining the necessary assumptions for the theoretical results, followed by detailed elaborations on
each assumption.

3.1 Assumptions

• The observed data {(Xt, Yt)}n
t=1 is strictly stationary, non-constant, and the underlying distribution

FXY−l
has finite moments for any lag l ≥ 0.
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• There exists a maximum dependence lag M such that for all l ≥ M , the two time series are almost
independent for large n, so are each time series within itself:

sup |FXY−l
− FXFY | = O( 1

n
),

sup |FXX−l
− FXFX | = O( 1

n
),

sup |FY Y−l
− FY FY | = O( 1

n
).

• The maximum dependence lag M and the maximum lag under consideration L are non-negative
integers that satisfies L ≥ M and L = o(n), i.e., they may increase together with n but at a slower
pace.

• As the sample size n increases, both the number of blocks B and the number of observations per
block n

B increase to infinity. Moreover, n
B ≥ M for sufficiently large n.

• The sample dependence measure has the following form:

τn(X⃗, Y⃗ ) =
∑n

i=1
∑n

j=1 γn(i, j)
n2 ,

where each γn(i, j) is a function of (Xi, Xj , Yi, Yj), and remaining sample pairs may also be used
but with a weight of O(1/n).

• In the standard i.i.d. setting where (X1, Y1), (X2, Y2), . . . , (Xn, Yn) i.i.d.∼ FXY , there exists a popula-
tion statistic τ(X, Y ) defined solely based on the joint distribution FXY . When i ̸= j, each term in
the sample statistic satisfies:

E(γn(i, j)) = τ(X, Y ) + o(1).

Moreover, the population statistic τ(X, Y ) is non-negative and equals 0 if and only if X and Y are
independent, i.e., FXY = FXFY .

The first assumption is a common one in time series research. The key distinction from the standard
i.i.d. setting is that the samples are no longer independent, but remain identically distributed. For non-
stationary data, there exist many common techniques to remove trends and process them into approximately
stationary processes (Cleveland et al., 1990; Hastie et al., 2009; Enders, 2010; Shumway & Stoffer, 2010; Box
et al., 2015). Some examples include differencing, where one computes the difference between consecutive
observations; detrending via linear regression or polynomial fitting and subtracting the trend component
from the original series; seasonal adjustment by decomposition; log / square root / Box-Cox transformation
to stabilize variance; smoothing via moving averages to reduce noise and short-term fluctuations; filtering to
remove specific frequencies from the data.

The second and third assumptions require that the time series exhibit independence for sufficiently large lags
beyond M , and that the maximum lag to be examined, L, must be no less than M . Such an assumption
shares similarity with the mixing property, where a stochastic process is mixing if its values at widely-
separated times are asymptotically independent (Pham & Tran, 1985; McDonald et al., 2011; Ziemann &
Tu, 2022). Hence, our results can also be considered approximately true for mixing time series.

The fourth assumption imposes a regularity condition on block permutation. In theory, choices for B can be
log(n) or

√
n, while a practical choice like B = 20 is sufficient for our simulations. This resembles the Bayes

optimal condition for K-nearest-neighbor, where K is required to increase to infinity but slower than n.

The remaining assumptions regarding the dependence measure are satisfied by a variety of distance and kernel
measures that have been recently proposed. For example, distance covariance satisfies the two assumptions,
with

γn(i, j) = {d(Xi, Xj) − µXi
− µXj

+ µX}{d(Yi, Yj) − µYi
− µYj

+ µY }.
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Here, d(·, ·) is the Euclidean distance, µXi
denotes the mean of all distance pairs relative to Xi within X⃗,

and µX is the mean of the whole pairwise distance matrices of X⃗. Furthermore, the population distance
covariance is defined in terms of characteristic functions and equals 0 if and only if FXY = FXFY in the
standard i.i.d. settings. Indeed, many dependence measures that are universal consistent in the standard
i.i.d. setting satisfy this assumption. For example, the Hilbert-Schmidt independence criterion utilizes the
same formulation (Shen & Vogelstein, 2021; Sejdinovic et al., 2013) on the Gaussian kernel. Additionally,
the unbiased distance covariance and distance correlation, as well as the multiscale graph correlation –
a truncated version of distance correlation where large distance pairs may be unused – also satisfy this
assumption.

3.2 Convergence of the Sample Statistics

We begin by proving the convergence of the sample cross dependence to the population cross dependence:
Theorem 1. The cross dependence sample statistic satisfies:

E(τn(X⃗, Y⃗−l)) − τ(X, Y−l) = o(1),

Var(τn(X⃗, Y⃗−l))) = O( 1
n − l

).

Therefore, for each l ∈ {0, ..., L}, we have

τn(X⃗, Y⃗−l)
n→∞→ τ(X, Y−l)

in probability.

Theorem 1 shows that both the bias and variance of the cross dependence statistic diminish to 0 as the
sample size n increases. Consequently, this guarantees that the aggregated temporal dependence statistic
and the estimated optimal lag also converge to their corresponding population forms in probability.
Theorem 2. The temporal dependence sample statistic satisfies:

Tn(X⃗, Y⃗ ) n→∞→
L∑

l=0
τ(X, Y−l).

The estimated optimal dependence lag satisfies:

L̂∗ n→∞→ arg max
l∈[0,L]

τ(X, Y−l).

3.3 Validity and Consistency for Testing Temporal Independence

In this subsection we establish the validity and consistency of the method. Specifically, if X⃗ and Y⃗ are
independent, the power of the test equals the Type 1 error level α. Conversely, if X⃗ and Y⃗ are dependent,
the power of the test converges to 1, and the method can consistently detect any dependence.

Given Tn(X⃗, Y⃗ ) as the observed test statistic, let FT B
n

(z) be the empirical distribution of the block-permuted
statistics {Tn(X⃗, Y⃗πB

)}, and denote zn,α as the critical value where:

FT B
n

(z)(zn,α) = 1 − α.

The following theorem establishes the asymptotic validity of our block permutation test:
Theorem 3 (Asymptotic Validity). Under the null hypothesis that X⃗ and Y⃗ are independent for all lags
l ∈ [0, L], the test statistic satisfies:

Tn(X⃗, Y⃗ ) n→∞→ 0.

Moreover, the block-permutation test is asymptotically valid, i.e.,

Prob(Tn(X⃗, Y⃗ ) ≥ zn,α) n→∞→ α.
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The next theorem proves that the method is universally consistent against any alternative.
Theorem 4 (Testing Consistency). Under the alternative hypothesis that X⃗ and Y⃗ are dependent for some
lag l ∈ [0, L], the test statistic satisfies

Tn(X⃗, Y⃗ ) n→∞→ c > 0.

Moreover, the block-permutation test is asymptotically consistent, i.e.,

Prob(Tn(X⃗, Y⃗ ) ≥ zn,α) n→∞→ 1.

4 Simulations

We estimated the testing power of the proposed approach through simulations on various temporal de-
pendence structures. Specifically, we considered three different implementations of the proposed temporal
dependence statistic, which utilized distance correlation (DCorr), Hilbert-Schmidt independence criterion
(HSIC), and multiscale graph correlation (MGC). For comparison, we included ShiftHSIC (Chwialkowski &
Gretton, 2014), WildHSIC (Chwialkowski et al., 2014), and the widely recognized Ljung-Box test (Ljung &
Box, 1978) using traditional cross-correlations. Each simulation was repeated 300 times, with 1000 permu-
tations and a Type 1 error level of α = 0.05 used to compute the p-values. The testing power is measured
by how often the p-value is lower than 0.05 out of the 300 Monte-Carlo simulations. Analysis of ShiftHSIC
and WildHSIC was performed using MATLAB code1 and wildBootstrap2.

4.1 Testing Power Evaluation

Independence First, we check the validity of the tests by generating two independent, stationary autore-
gressive time series with a lag of one: [

Xt

Yt

]
=

[
ϕ 0
0 ϕ

] [
Xt−1
Yt−1

]
+

[
ϵt

ηt

]
.

Here, (ϵt, ηt) are standard normal noise terms. As shown in Figure 1, the proposed methods maintain a
testing power close to α = 0.05 across varying n and ϕ, regardless of the statistic used.

Linear Dependence Next, we assess our methods’ ability to capture linear relationships in the following
simulation: [

Xt

Yt

]
=

[
0 ϕ
ϕ 0

] [
Xt−1
Yt−1

]
+

[
ϵt

ηt

]
.

As this represents a straightforward linear relationship, the Ljung-Box test, based on auto-correlation, is
expected to perform best. This is indeed the case in the left panel of Figure 2. Our proposed methods using
DCorr, MGC, and HSIC follow closely, quickly converging to perfect power around n = 100. In contrast, the
other competitors do not perform well in this scenario. This is not surprising, as the ShiftHSIC method
is designed to detect whether Xt and Yt are dependent at lag 0, whereas the linear dependence here is of
lag 1. The WildHSIC method used a wild bootstrap method to estimate the null distribution, which can be
inaccurate at small sample size.

Nonlinear Dependence The next simulation considers a nonlinear dependent model:[
Xt

Yt

]
=

[
ϵtYt−1

ηt

]
.

In the right panel of Figure 2, our proposed methods utilizing DCorr, MGC, and HSIC demonstrate superior
performance compared to other competing methods. Notably, the HSIC and MGC implementations exhibit
better finite-sample power, as these two dependence measures are better at identifying nonlinear relationships
than DCorr. In contrast, all other tests fail to detect dependence in this scenario.

1https://github.com/kacperChwialkowski/HSIC/
2https://github.com/kacperChwialkowski/wildBootstrap
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Figure 1: This figure illustrates the validity of the tests using two independent time series. In the left panel,
the testing power is computed as the sample size increases, with an AR coefficient of ϕ = 0.5. The right panel
keeps the sample size at n = 1200 while varying the AR coefficient ϕ, with the noise variance appropriately
adjusted by (1 − ϕ2), based on the same simulation as in Chwialkowski & Gretton (2014). The dashed black
line represents the significance level α = 0.05.
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Figure 2: The testing power for linear (left panel) and nonlinear (right panel) simulations based on 300
replicates.

Extinct Gaussian This simulation uses the same extinct Gaussian process from Chwialkowski & Gretton
(2014), where [

Xt

Yt

]
=

[
ϕ 0
0 ϕ

] [
Xt−1
Yt−1

]
+

[
ϵt

ηt

]
,

and we set n = 1200. Here, the (ϵt, ηt) pair are dependent and drawn from an Extinct Gaussian distribution
with two additional parameters: e (extinction rate) and r (radius). Both variables are initially drawn from
independent standard normal, and U is sampled from standard uniform. If either ϵ2

t +η2
t > r or U > e holds,

then (ϵt, ηt) are returned; otherwise, they are discarded and the process is repeated. In this process, the
dependence between ϵt and ηt increases with extinction rate e. Therefore, we expect power to increase with
the extinction rate, which is indeed the case as shown in Figure 3. While all methods, except Ljung-Box,
are consistent and eventually achieve perfect power, our proposed method using MGC stands out as the best
performer.
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Figure 3: The testing power for the extinct gaussian simulation based on 300 replicates.

4.2 Optimal Dependence Lag Estimation

In this subsection, we evaluate the method’s performance in estimating the optimal dependence lag in both
linear and nonlinear settings. The linear setting is[

Xt

Yt

]
=

[
0 ϕ1
ϕ1 0

] [
Xt−1
Yt−1

]
+

[
0 ϕ3
ϕ3 0

] [
Xt−3
Yt−3

]
+

[
ϵt

ηt

]
,

where we set ϕ3 = 0.8 > ϕ1 = 0.1 such that the true optimal dependence lag equals 3. The nonlinear
simulation is [

Xt

Yt

]
=

[
ϵtYt−3

ηt

]
.

In both simulations, the true optimal dependence lag equals 3. Figure 4 shows that the proposed method
using either DCorr or MGC consistently estimates the optimal dependence lag as the sample size increases,
and MGC outperforms DCorr in the nonlinear setting.

4.3 Multivariate Simulations

In this subsection, we revisit the testing power and dependence lag estimation in both linear and nonlin-
ear settings, maintaining a fixed sample size of n = 100 and increasing the dimensionality p, to evaluate
performance for multivariate data.

For testing power evaluation, we use the following multivariate linear setting:[
Xt

Yt

]
=

[
0 ϕD

ϕD 0

] [
Xt−1
Yt−1

]
+

[
ϵt

ηt

]
,

where ϕ = 0.65, D ∈ Rp×p is a diagonal matrix where the elements are Dii = 1/i, and ϵt, ηt are standard
normal of dimension p. In a similar manner, we use the following multivariate nonlinear setting:[

Xt

Yt

]
=

[
D(ϵt ⊙ Yt−1)

ηt

]
,

where ⊙ denotes element-wise multiplication. We intentionally design the matrix D as a decaying weight,
reflecting a meaningful multivariate simulation where additional dimensions contain weaker dependence
signals.
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Figure 4: This figure displays the performance of our proposed method using both MGC and DCorr for
estimating the optimal dependence lag L̂∗ in linear and nonlinear relationships. The colored bar above lag
l shows the empirical frequency of L̂∗ = j, with red representing MGC and purple representing DCorr. The
probability is estimated based on 100 trials. The first row shows DCorr estimation performance at sample
sizes n = 15, 30, 60 for linear relationships, while the second row shows the MGC performance on the same
data. The third row displays DCorr estimation for nonlinear relationships, and the last row presents the
same for MGC.

10



Under review as submission to TMLR

1 20 40 60 80 100
Dimensions

0.0

0.2

0.4

0.6

0.8

1.0
Re

je
ct

io
n 

Pr
ob

ab
ilit

y
Correlated VAR(1)

1 5 10 15 20
Dimensions

Nonlinear Lag(1)
A)

MGC DCorr HSIC Wild HSIC Shift HSIC

Figure 5: This figure shows the testing power for multivariate simulations, with a constant sample size of
n = 100 while increasing the dimensionality.

Figure 5 illustrates the testing power as dimensionality increases. At a fixed sample size, all testing powers
gradually decrease as p increases. The proposed method using any of MGC, DCorr, or HSIC maintains relatively
stable power with slow degradation in the case of linear dependence. The same trend is observed for nonlinear
dependence, although the degradation is faster, with the MGC statistic performing the best. It is worth
emphasizing that due to the consistent property, if we fix p and let n increase, the testing power for our
method shall increase to 1.

Similarly, we extend the optimal lag estimation into the following two multivariate settings:[
Xt

Yt

]
=

[
0 ϕ1D

ϕ1D 0

] [
Xt−1
Yt−1

]
+

[
0 ϕ3D

ϕ3D 0

] [
Xt−3
Yt−3

]
+

[
ϵt

ηt

]
.[

Xt

Yt

]
=

[
DϵtYt−3

ηt

]
,

where ϕ1 = 0.1 and ϕ3 = 0.65. These settings are similar to those in Section 4.2, with the addition
of increasing dimension and D. The true optimal lag remains 3. The estimation accuracy, as shown in
Figure 6, demonstrates successful detection at small p, with accuracy gradually degrading as p increases.

5 Analyzing Connectivity in the Human Brain

This study is based on data from an individual (Subject ID: 100307) of the Human Connectome Project
(HCP), which can be downloaded online3. The human cortex is parcellated into 180 parcels per hemisphere
using the HCP multi-modal parcellation atlas (Glasser et al., 2016). For this study, 22 parcels were selected
as regions of interest (ROIs), representing various locations across the cortex. These parcels are denoted as
X(1), . . . , X(22). Each parcel consists of a contiguous set of vertices whose fMRI signal is projected on the
cortical surface. Averaging the vertices within a parcel yields a univariate time series X(u) = (X(u)

1 , . . . , X
(u)
n ),

where n = 1200 in this particular case. The selected ROIs, their parcel number in the HCP multi-modal
parcellation (Glasser et al., 2016), and assigned network are listed in Table 1.

As the temporal dependence method using MGC performed well in our simulations, we simply use the MGC im-
plementation in this analysis. In the left panel of Figure 7, we present the optimal dependence lag for each
interdependency, ranging up to L = 10. Meanwhile, the right panel of Figure 7 displays the log-scale p-values
of temporal dependence for each pair of parcels. Generally, we observe strong relationships with small lags
within the same region, such as an optimal lag of usually 0 within the "DMN" region with significant p-values.
In contrast, inter-region dependencies are less significant and typically exist at longer lags.

3https://www.humanconnectome.org/study/hcp-young-adult/data-releases

11

https://www.humanconnectome.org/study/hcp-young-adult/data-releases


Under review as submission to TMLR

1 20 40 60 80 100
Dimensions

0.0

0.2

0.4

0.6

0.8

1.0

La
g 

Es
tim

at
io

n 
Ac

cu
ra

cy

Correlated VAR(3)

1 5 10 15 20
Dimensions

Nonlinear Lag(3)
B)

MGC DCorr HSIC

Figure 6: This figure shows the accuracy of estimating the true optimal lag in multivariate simulations,
maintaining a constant sample size of n = 100 while increasing the dimensionality. Note that in the left
panel, the lines representing DCorr and HSIC overlap due to their almost identical performance.
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Figure 7: This displays the results of applying the temporal dependence method using MGC to resting-state
fMRI data.
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ROI ID Network Shorthand Parcel Key Parcel Name
1 Visual Network Visual 1 V1
2 Visual Network Visual 23 MT
3 Visual Network Visual 18 FFC
4 Somatomotor Network SM 53 3a
5 Somatomotor Network SM 24 A1
6 Dorsal Attention Network dAtt 96 6a
7 Dorsal Attention Network dAtt 117 API
8 Dorsal Attention Network dAtt 50 MIP
9 Dorsal Attention Network dAtt 143 PGp
10 Ventral Attention Network vAtt 109 MI
11 Ventral Attention Network vAtt 148 PF
12 Ventral Attention Network vAtt 60 p32pr
13 Ventral Attention Network vAtt 38 23c
14 Limbic Network Limbic 135 TF
15 Limbic Network Limbic 93 OFC
16 FrontoParietal Network FP 83 p9-46v
17 FrontoParietal Network FP 149 PFm
18 Default Mode Network DMN 150 PGi
19 Default Mode Network DMN 65 p32pr
20 Default Mode Network DMN 161 32pd
21 Default Mode Network DMN 132 TE1a
22 Default Mode Network DMN 71 9p

Table 1: This table displays the parcellation information for the parcels used in our analysis. The first
column shows the numeric order of the parcels as they appear in the following figures. The second and third
columns show the shorthand and full names, respectively, of the network to which each parcel belongs. The
last two columns display the parcel number and name according to the Glasser et al. (2016) parcellation.

6 Conclusion

This paper introduces a new independence testing procedure for temporal data. The method combined the
strengths of nonparametric dependence measures, the specialized cross-lag statistic for time series, and the
block permutation procedure. As a result, it provides an asymptotically valid and universally consistent
approach with outstanding numerical performance. While the exposition of this manuscript is focused on
time series data, this work marks an important step in extending independence testing to structural data
beyond the realm of standard i.i.d. data, making them more attractive and broadly applicable.

There are several avenues for future research that warrant exploration. Firstly, although we have demon-
strated the asymptotic validity of the block permutation test, its computational efficiency remains a challenge
when dealing with large sample sizes. Recent studies (Zhang et al., 2018; Shen et al., 2022) have investi-
gated faster testing procedures by approximating the null distribution of distance and kernel correlations
under the standard i.i.d. setting. Extending such approaches to structural data could significantly enhance
computational scalability.

Secondly, dependence measures are commonly employed in dimension reduction techniques, such as screening
(Fan & Lv, 2008; Li et al., 2012), especially in high-dimensional data settings. However, little attention has
been given to the temporal domain. While it is straightforward to utilize dependence measures for dimension
reduction in multivariate time series, delving into their theoretical properties and their relationships with
other standard tools, such as independence component analysis, could provide valuable insights.

Thirdly, causal inference in time series data is an important task (Haufe et al., 2010; Winkler et al., 2016).
While it is widely recognized that correlation does not imply causality, recent research has demonstrated the
utility of dependence and conditional dependence tests in causal inference (Cai et al., 2022; Laumann et al.,
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2023). Therefore, extending this framework to encompass conditional independence and causal inference
may significantly advance the understanding of causal inference in time series data.
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