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Abstract

While language tasks are naturally expressed in a single, unified, modeling frame-
work, i.e., generating sequences of tokens, this has not been the case in computer
vision. As a result, there is a proliferation of distinct architectures and loss func-
tions for different vision tasks. In this work we show that a diverse set of “core”
computer vision tasks can also be unified if formulated in terms of a shared pixel-
to-sequence interface. We focus on four tasks, namely, object detection, instance
segmentation, keypoint detection, and image captioning, all with diverse types of
outputs, e.g., bounding boxes or dense masks. Despite that, by formulating the
output of each task as a sequence of discrete tokens with a unified interface, we
show that one can train a neural network with a single model architecture and loss
function on all these tasks, with no task-specific customization. To solve a specific
task, we use a short prompt as task description, and the sequence output adapts
to the prompt so it can produce task-specific output. We show that such a model
can achieve competitive performance compared to well-established task-specific
models.

1 Introduction

Training a single neural network model capable of performing myriad tasks is a major step towards
artificial general intelligence. In recent years, with the rise of big language models [34, 35, 2] using
Transformers [41], many different language and related tasks are unified under a single modeling
framework, where a language model is trained to predict the solution (in text tokens) given a prompt of
a task description (also in text tokens). This is only possible because these tasks (both task description
and solution) can be expressed in the same, rich language interface.

This can be naturally extended to some vision tasks such as image captioning or visual question
answering where the solution is given in natural language, but the majority of “core” computer
vision tasks have diverse outputs that are not readily expressed in terms of natural language. The
object detection task produces a set of bounding boxes and their corresponding class labels, often
associated with scores for ranking. The output for instance segmentation is a set of segmentation
masks corresponding to image regions. The output of keypoint detection is a set of keypoints in an
image. As such, existing methods [13, 37, 15, 28, 4, 15] have developed specialized architectures
and sophisticated loss functions for each of these complex tasks.

An ambitious goal, in the pursuit of artificial general intelligence, is a simple interface that allows
one to express seemingly disparate vision tasks in a unified framework. This would simplify the
design of architectures and loss functions for new tasks. It would enable greater degrees of fea-
ture/representation sharing across many different tasks, thereby avoiding the need for a sophisticated
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Pix2Seq
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ymin=327 xmin=370 ymax=653 xmax=444 train ......

y0=8 x0=4 y1=99 x1=97 y2=99 x2=97  ......

Nose ymin=1 xmin=57 left eye ......

[Segment] ymin=50  
xmin=51  ymax=892 ...

[detect]

[Keypoint] ymin=334  
xmin=249 ymax=638 ...

A person working in mechanical shop with two mopeds outside.

[Describe]

Figure 1: An illustration of the proposed framework. An image and a sequence of task prompt is
given, the model produce a sequence of discrete tokens corresponding to the desired output.

output head for each task. It would also facilitate adapting of existing models to new tasks, and
potentially unlock new capabilities with zero or few demonstrations.

To this end, we propose an approach to unify four seemingly different vision tasks in a single
pixel-to-sequence interface. In effect, this is an extension of Pix2Seq [7] for object detection to
a broader set of tasks. As a proof of concept, we focus on four core vision tasks, namely, object
detection, instance segmentation, human keypoint detection, and image captioning. We first show
how to unify these tasks into a single shared interface, and then train a neural network with a shared
architecture and objective function. To solve a specific task, instead of using a specific head for
that task, we use a prompt to specify the task, and the sequence output adapts to the prompt so it
can produce task-specific output given the task description. This makes multi-task learning more
efficient and scalable. We conduct experiments on the challenging COCO dataset, and show that it
can simultaneously solve all four tasks well, without specialized architectures or loss functions.

2 Approach

In our approach, we cast computer vision tasks as one of translating pixel inputs (along with some
descriptions of the task) into sequences of discrete tokens (see Figure 1). As a proof of concept, we
focus on four core vision tasks: object detection, instance segmentation, keypoint detection, and
image captioning; but we believe it is relatively straightforward to include many more tasks.

2.1 A unified interface with tokenization

The vision tasks we consider are diverse, and traditionally have been formulated quite differently.
Object detection requires the model to produce bounding boxes for all objects without duplication.
Instance segmentation requires the model to produce a dense pixel-wise mask for each identified
object instance. Human keypoint detection requires the model to generate points corresponding to
specific positions of landmarks on body parts for person instances (e.g., head, eyes). Image captioning
requires the model to produce a sequence of words corresponding to a natural language description
of the image. Given the significant differences in the form of the outputs, customized models with
specialized architectures and loss functions are designed for each task.

To solve these tasks using a single model, we advocate the transformation/tokenization of task inputs
and outputs into a unified interface. In this work, we propose a sequence interface for the purpose,
where both task descriptions and outputs are expressed as sequences of discrete tokens:
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Nose ymin=1 xmin=57 
left eye ......

y0=553  x0=599  
y1=788  y1=664  

......

ymin=327 xmin=370 
ymax=653 xmax=444 

person ......

Task output 

A person working in 
mechanical shop with 
two mopeds outside.

Input image

Output visualization

[Describe]

[Keypoint] ymin=327 
xmin=370 ymax=653 

xmax=444 person ......

[Segment] ymin=503 
xmin=518  ymax=805  
ymax=892  Motocycle

[Detect]

Task prompt

Figure 2: An illustration of sequence interface for four tasks. The model takes input image, task
prompt tokens and produce task output tokens, which can be decoded/detokenized into required task
output for visualization.

- For object detection, we follow [7] and convert bounding boxes and object descriptions into a
sequence of discrete tokens by quantizing the continuous image coordinates. Specifically, an
object is represented as a sequence of five discrete tokens, i.e. [ymin, xmin, ymax, xmax, c], and
multiple objects are randomly ordered each time a training image is sampled and serialized into a
single sequence.

- For instance segmentation, instead of per-pixel masks, we predict the polygon [5] corresponding
to the instance masks as a sequence of image coordinates conditioned on a given object instance.
Again, we quantize the coordinates into discrete tokens. And to turn polygon into a sequence, we
randomly select a starting point for the start token each time a training image is sampled. If there
are multiple polygons for the same instance, we concatenate sequences of individual polygons
with a separator token in between, so that every instance has a single corresponding sequence.

- For keypoint prediction, we predict a set of keypoints as a sequence of quantized image coordinates
conditioned on a given person instance. Specifically, the sequence of keypoints can be encoded as
[ykeypoint 1, xkeypoint 1, ykeypoint 2, xkeypoint 2, · · · ]. One may also use a keypoint label (e.g., nose, let
eye, right eye) before each (y, x)-coordinates so their ordering does not need to be fixed but we
opt for simplicity given that there are only a small fixed set of 14 person keypoints in the COCO
dataset we consider. When certain keypoints are occluded, their coordinate tokens are replaced
with a special occlusion token.

- For captioning, we directly predict text tokens given a caption is a sequence of discrete tokens.

It is worth noting that all four tasks share a single vocabulary. The specific prompts and output
sequences are illustrated in Figure 2.

2.2 Unified architecture and objective function

We need a flexible and expressive architecture that can deal with image input and sequence output
with complex semantics. Thus we follow [7] and use an encoder-decoder architecture, with an
image encoder and sequence decoder. The image encoder perceives pixels and maps them into
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Figure 3: An illustration of our architecture and training objective. Note that Yconstructed seq encapsulates
both task prompt tokens and task output tokens. Token weights are set to zero if the target token is
within the prompt so the model is only trained to predict desired output tokens.

hidden representations, which can be instantiated as a ConvNet [23, 22, 14], Transformer [41, 11], or
their combination [4]. The Transformers-based sequence decoder, widely used in modern language
modeling [41, 33, 35], generates one token at a time, conditioned on the preceding tokens and the
encoded image representation. This removes the complexity and customization in architectures of
modern neural networks for these vision tasks (such as per-task specific heads or necks [15, 19, 30]).

Unlike [7] where the decoder produces the output tokens directly for the single object detection task,
here it also conditions on a task prompt so that the model can produce outputs adapted to the task of
interest. During training, we concatenate both prompt and desired output into a single sequence, but
leverage a token weighting scheme to ensure that the decoder is only trained to predict the desired
output but not the prompt tokens. During inference, the prompt is given and fixed, so the decoder
only needs to produce the rest of the sequence. Similar to [7], the training objective is to maximize
the likelihood of tokens conditioned on an image and preceding tokens, i.e.,

maximize
L∑

j=1

wj logP (yj |x,y1:j−1) , (1)

where x is the input image, y is a length-L sequence associated with x. As mentioned, the initial part
of the sequence y is a prompt, for which we set the weight wj to zero so it is not included in the loss.

2.3 Training

Each task has its own paired image-sequence training data. There are two ways one can combine
tasks and perform the joint training.

Data mixing. We can create a dataset with mixed image-sequence pairs drawn from different tasks,
balanced to account for different dataset sizes and task difficulties. This construction is extremely
simple conceptually, but image augmentations can be difficult to incorporate as they may also require
a change to their associated sequences in non-trivial ways.

Batch mixing. For each batch, we can sample images with annotations for a single task, perform
image augmentations appropriate for this task, and convert the augmented data into image-sequence
pairs. The model computes the loss and gradient for each task separately, and we can combine
gradients from task-specific batches with an appropriate weighting.

Algorithm 1 Training based on data mixing

1: Tokenize annotation into sequences of tokens,
2: Mixing images and sequences from all tasks,
3: Sample a batch, compute the loss, and update

the model.

Algorithm 2 Training based on batch mixing

1: Sample batches of data from all tasks,
2: Tokenize annotation into sequences of tokens,
3: Compute the loss for each task, aggregate their

gradients, and update the model.

Algorithm 1 and 2 give summaries of both training strategies. We use batch mixing strategy in
this work as it simplifies handling of image augmentations, but we are hopeful that data mixing
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can be employed in the future to further simplify the pipeline and allow more tasks to be added
straightforwardly.

Both data mixing and batch mixing require that we specify the portion or weighting for each task.
This is an empirical matter, and we use a greedy strategy by adding one task at a time. Every time
when we add a task, we adjust the weighting of the new task while keeping the relative weighting
among the existing task fixed. We fix the sum of the weights across all tasks to be one.

2.4 Inference and de-tokenization

At inference time, we sample tokens from the model likelihood, given a prompt at the start of the
sequence, i.e., P (yj |x,y1:j−1). We currently use nucleus sampling [16] but other techniques such as
beam search could also be used. Once the tokens are generated, they can be decoded for each task. In
the same way that different tasks require specific tokenization schemes to generate token sequences,
the decoding (de-tokenization) process is also specific to each task. A more detailed description of
inference decoding for each task is given below.

- For bounding boxes, following [7], we split predicted sequences into tuples of 5 tokens to get
coordinate tokens and a class token, and dequantize coordinate tokens to get the bounding boxes.

- For instance segmentation, we dequantize the coordinate tokens corresponding to each polygon,
and then convert them into dense masks. The model is not trained with any geometry-specific
regularizers per se, and as such the output polygonal masks can be somewhat noisy. To reduce the
noise we find it helpful to sample multiple sequences and then average the masks, followed by a
simple threshold to obtain a single binary mask.

- For keypoint detection, we directly dequantize the image coordinate tokens of the keypoints.
- For captioning, we directly map the predicted discrete tokens into text.

3 Experiments

3.1 Experimental settings and implementation details

We evaluate the proposed method on the widely used MS-COCO 2017 dataset [26], containing 118k
training images and 5k validation images, spanning the four tasks we consider. An image in the
dataset typically has annotations for object bounding boxes, segmentation masks for object instances,
keypoint for person instances, and a few captions. Following [7], we use a Vision Transformer
(ViT-B) encoder [11, 41], and a Transformer autoregressive decoder [41]. This model has a total of
132M parameters. To initialize the model, we use a pretrained checkpoint from [7] trained on the
object detection task with the Objects365 dataset [39]; this is useful as COCO is relatively small and
our model has less task-specific prior. For training on COCO, we use a batch size of 128 images,
a learning rate of 1e−4, and we train the model for 100 epochs. We use a single vocabulary of
35K, with 32K text tokens, 1K coordinate quantization bins, and a few other class labels. We use a
maximum sequence length of 512. Our backbone model is pretrained with 640×640 image size, and
is fine-tuned in 640×640 or 1024×1024 resolutions.

Object detection. We follow [7] and use sequence augmentation during training, and use class token
probability at inference time for scoring. We also use scale jittering as in [7] (scaling images randomly
without changing aspect ratio, crop a fixed size region randomly, and then pad to the maximum size).

Instance segmentation. We set the maximum points of polygons to 128. We find that asking the
model to generate multiple samples during the inference time and average the generated masks to be
beneficial. More specifically, when multiple samples are independently drawn, we convert each of
them into a semantic mask for the prompted object. We then average the masks by setting a (50%)
threshold, and pixels with more than 50% times of being on will be selected for that instance. We find
that 8 samples are sufficient to provide good performance (∼6 AP better than using a single sample),
and beyond 12 samples we do not see performance boost. Additionally, during inference, we also
evaluate on the cropped regions of the image containing the prompted object instance, by replacing
the original input image with a new image only containing the cropped region. With smaller image
size of 640×640, this yields 1.3 AP improvement, but with larger image size of 1024×1024, this
does not seem to help much.
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Keypoint detection. We train and evaluate on cropped regions of the image containing person
instances (following the common practice in the community). During training, these regions are
provided by ground-truth annotations, and during inference these regions are provided by the object
detection model. We choose this region to be twice the size of the provided bounding box. We find
that this works better than training with a larger crop size or cropping to the exact bounding box.
Using our optimal crop we get ∼9 AP improvement over using an extremely large crop (∼20 times
the box size which can be considered a close approximation to using the entire image). We also use a
special token to represent invisible token coordinates in the quantized sequence. At training time we
use a small loss weight of 0.1 for these tokens. While using a larger weight doesn’t affect AP much
(lower by 1 at weight 1.0) using a weight of 0.0 does much worse (12 AP lower). At inference time
invisible tokens are replaced with the model’s best guess of the keypoints’ coordinates.

Four-tasks joint training. We use a mixed weighting of 0.1782, 0.7128, 0.099, 0.01 for object
detection, instance segmentation, image captioning, and keypoint detection respectively. This set
of weight is searched greedily by adding one task at a time (while keeping the weighting ratio of
existing tasks unchanged). Ablations on task weighting are shown in the quantitative results below.

Baselines. We compare with a few well-known task-specific baselines. For object detection we
compare with a strong 2-stage detector, Faster R-CNN [37], and a more recent Transformer-based
detector, DETR [4]. Both Faster R-CNN and DETR use task-specific priors in their design, such
as non-maximum suppression in Faster R-CNN and bipartite graph matching with generalized
intersection-over-union in DETR. Due to their customized architectures and loss functions, extending
them to a wider spectrum of tasks is non-trivial and may require a new model design. Mask R-
CNN [15] advocates a design to extend Faster R-CNN to incorporate segmentation masks and
keypoints. While Mask R-CNN is able to perform three out of our four tasks, it still requires the
same set of task-based customizations as in Faster R-CNN. We also consider an improved version of
Mask R-CNN with non-local architectures [43] which incorporates an attention mechanism, similar
to Transformers. The above methods cannot do image captioning, so we train a Transformer-based
caption model [40, 32] which is specialized for the task. This model is similar to the proposed method
trained for caption single task but it is using self-supervised pretrained visual encoder [6] with a high
dropout rate.

3.2 Quantitative results

Table 1: COCO results for object detection, instance segmentation and keypoint detection are
expressed in terms of AP. For Image Captioning we report BLEU score. Single task results for
instance segmentation and keypoint detection are based on detected bounding boxes from single task
detection model. - indicates the model is not able to solve the task without modifications.

Object det. Instance seg. Keypoint det. Captioning

Faster R-CNN [37] 42.0 - - -
Faster R-CNN+ [37] 44.0 - - -

DETR [4] 44.9 - - -
Mask R-CNN [15] 39.8 37.1 63.1 -

Mask R-CNN (non-local) [43] 45.0 40.3 66.5 -
Transformer-based captioner [41, 32] - - - 34.3

Pix2Seq v2 single task (640×640) 43.8 37.3 68.0 33.9
Pix2Seq v2 single task (1024×1024) 45.6 38.7 67.4 34.0
Pix2Seq v2 multi-tasks (640×640) 44.2 36.9 65.0 34.3

Pix2Seq v2 multi-tasks (1024×1024) 46.5 38.2 64.8 34.9

Our main results are summarized in Table 1, where we report baselines and two variants of our model:
(1) single task models where the model is trained on a single task (still with the same architecture and
objective function), so each task has its own network weights; and (2) a multi-task model, where a
single set of network weights is used for all four tasks. We can see that despite without task-specific
priors in architecture and loss function, our model can still achieve competitive results for each
individual task compared to strong specialized baselines (even with a smaller image size). When we
train a single model on all tasks, our model is able to address these tasks relatively well, despite the
model size being kept the same. We also observe that, with larger image sizes, the performances are
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generally improved. One exception is keypoint detection, which already uses a cropped region of
interest for detecting key points, thus scaling up the image size is not necessarily helpful and can lead
to overfitting in case of limited labeled data.
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Figure 4: Performance with different task weighting when a new task is added into an existing task
mixes.

Figure 4 shows how we select appropriate loss weighting for each task using a greedy strategy. More
specifically, we first search the weight ratio between object detection and instance segmentation and
results are shown in Figure 4a. We observe that for a relatively wide range of weighting ratios, the
performance of both tasks are near their peak, so we simply choose the 2:8 weighting ratio for these
two tasks. After that, we add image captioning task, and the performances under different weighting
of the captioning task can be found in Figure 4b, where we find that the 9:1 weighting ratio for
existing tasks and image captioning tasks to be appropriate. Finally, adding the keypoint detection
task, in Figure 4c we find its weight can be set relatively small and we choose to use 0.01.

3.3 Qualitative results

To demonstrate the capability and performance of our model in a more visual and intuitive way,
we show the outputs from our multi-task model on selected images from the COCO validation set,
for each of the four tasks, i.e., object detection, instance segmentation, keypoint detection, and
image captioning. Figure 5 shows results for the object detection task. The model successfully
detects objects of different sizes in cluttered scenes with significant occlusion. Empirical results
on instance segmentation and keypoint detection are shown in Figures 6 and 7. For both tasks,
the multi-task model produces well localized and accurate predictions. We also demonstrate some
captions generated by the model in Table 2. With these results, we note that our model has not
been pre-trained using large-scale image-text datasets, which is expected to significantly improve the
captioning performance of the model.

4 Related work

Decoding visual concepts: Image understanding involves extracting visual concepts from images.
The formats of these concepts vary according to the given task. Image captioning uses a sequence of
words to describe an image [9]. Object detection, on the other hand, represents objects with labels
and bounding boxes. Depending on the granularity of localization, visual concepts can be expressed
as boxes, pixel segmentation, or keypoints [26]. Decoding localized visual concepts often requires
tailored methods. For example, image segmentation uses per-pixel classification. Object detection
uses sliding window with non-maximum suppression to detect boxes. Person keypoint detection uses
part models to assemble detected parts into whole body [3].

Recently, DETR [4] is proposed as an end-to-end object detection approach based on a Transformer
decoding scheme (removing complexity on bounding box proposal and non-maximum suppression).
MaskFormer [10] further shows that object detection and segmentation can share the same decoding
scheme. Pix2seq [7] demonstrates that boxes and labels can be treated as a sequence of discrete
tokens, thereby sharing the same training and decoding interface as language models [33, 35]. In our
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Figure 5: Visualization of the object detection results, with predicted bounding boxes on the input
images.

work, we push the envelope further in the unification of language and different visual localization
tasks to share the same interface, architecture and training objective.

Generalist vision models: Learning a generalist model capable of performing multiple tasks is
widely assumed to be a path toward general intelligence. In visual recognition, multi-task learning
has shown great success by sharing a backbone model, followed by multiple independent heads [15,
19, 30]. Models with a shared backbone can learn general features which are transferable across
tasks when scaling up with training tasks, model capacity and data [20, 24, 12]. Nevertheless, often
the task specific backbone models are designed carefully, particularly for tasks that require accurate
localization [38, 27].

With the invention of Transformers [41], recently being adopted for image classification [11], the
research community has seized on the opportunity to unify the backbone design for vision tasks [29,
8, 25]. Perceivers [18, 17] and OFA [42] demonstrate an architecture for multi-task and multi-
modal across vision and language. Notably, OFA designs a unified sequence-to-sequence decoding
architecture for both language and object detection tasks. Flamingo [1] and related methods also
focus on an universal API that produces a natural language output for a variety of tasks given image
input. This line of work shares a common motivation to our work in this paper, however they focus
on higher level tasks for which natural language is inherently the desired output. In this paper we
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Figure 6: Visualization of the instance segmentation results, with predicted semantic masks overlaid
on the input images.

Figure 7: Visualization of the Human keypoint detection results, with predicted stick figures on the
input images.
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Table 2: Image captioning results.

A group of teddy bears sitting next to each other.

Three teddy bears sitting on a blanket.

A group of teddy bears sitting on a blanket with bowls of food.

A herd of elephants standing inside of a fenced in area.

A group of elephants standing in a fenced area.

A herd of elephants standing behind a fence.

A man riding a skateboard over a block of cement.

A man doing a trick on a skateboard in the street.

A man flying through the air while riding a skateboard.

A row of motorcycles parked on a grass covered field.

A motorcycle with a helmet on the side of it.

A motorcycle parked in a grassy area with other motorcycles.

demonstrate that one can express a variety of “core” computer vision tasks in a universal interface,
and the learned model exhibits strong grounding capability of the tokens they produce to actual visual
concepts. Concurrently to our work, Gato [36] unifies a series of vision and control tasks into a single
sequential prediction problem, and UViM [21] and Unified-IO [31] propose using learned discrete
codes for unifying a set of vision tasks.

5 Conclusion

In this work, we explore a unified sequence interface for tackling a diverse set of “core” vision tasks,
where both the task description (prompt) and task output are expressed as discrete sequences of
tokens. This is a significant departure from conventional norms of multi-task vision models in that
both architecture and loss functions are shared among the tasks. We show that such a model can
achieve competitive performance compared to well-established task-specific models.

Our work is not without limitations. Due to the significant departure from conventional approaches,
we believe both architectures and other training techniques can be further improved to challenge
the state-of-the-art of specialized systems. We also believe our model can significantly benefit
from scaling up, both in pretraining on larger datasets (e.g., image-text pairs) and/or using larger
model sizes. Another limitation is the inference speed can be potentially slower (for longer sequences
particularly) compared to the specialized systems as our approach is based on autoregressive modeling.
There are a few ways to improve the efficiency, including using non-autoregressive sequence modeling
(which we leave as future work). In this work, we exploit parallel querying for speeding up our model
inference. For example, predicting multi-person poses can be done independently by prompting the
model with independent bounding boxes (detected by the model itself or pre-given), so the only
sequential prediction is limited to a single person with a few keypoints. The same strategy can be
applied to instance segmentation as well.

While the optimal implementation of a unified interface still requires more research and the sequence
interface explored in this work is only one potential implementation, we believe the interface of how
different tasks are formulated would play an increasing important role in general-purpose intelligent
systems going forward.

10



Acknowledgements

We specially thank Wei Li for their helpful feedback on the initial draft. We also thank Xiaohua Zhai,
Alexander Kolesnikov, Lucas Beyer, Neil Houlsby, Simon Kornblith and Mohammad Norouzi for
some early discussions.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc,

Arthur Mensch, Katie Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford, Serkan Cabi, Tengda
Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick, Sebastian Borgeaud, Andrew
Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski, Ricardo Barreira, Oriol Vinyals,
Andrew Zisserman, and Karen Simonyan. Flamingo: a visual language model for few-shot learning. arXiv
preprint arXiv:2204.14198, 2022.

[2] Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
arXiv preprint arXiv:2005.14165, 2020.

[3] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person 2d pose estimation using
part affinity fields. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 7291–7299, 2017.

[4] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov, and Sergey
Zagoruyko. End-to-end object detection with transformers. In European Conference on Computer Vision,
pages 213–229. Springer, 2020.

[5] Lluis Castrejon, Kaustav Kundu, Raquel Urtasun, and Sanja Fidler. Annotating object instances with a
polygon-rnn. In Proceedings of the IEEE conference on computer vision and pattern recognition, pages
5230–5238, 2017.

[6] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
contrastive learning of visual representations. In International Conference on Machine Learning, pages
1597–1607. PMLR, 2020.

[7] Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A language modeling
framework for object detection. arXiv preprint arXiv:2109.10852, 2021.

[8] Wuyang Chen, Xianzhi Du, Fan Yang, Lucas Beyer, Xiaohua Zhai, Tsung-Yi Lin, Huizhong Chen, Jing Li,
Xiaodan Song, Zhangyang Wang, et al. A simple single-scale vision transformer for object localization
and instance segmentation. arXiv preprint arXiv:2112.09747, 2021.

[9] Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv preprint
arXiv:1504.00325, 2015.

[10] Bowen Cheng, Alex Schwing, and Alexander Kirillov. Per-pixel classification is not all you need for
semantic segmentation. Advances in Neural Information Processing Systems, 34, 2021.

[11] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on Learning
Representations, 2020.

[12] Golnaz Ghiasi, Barret Zoph, Ekin D Cubuk, Quoc V Le, and Tsung-Yi Lin. Multi-task self-training for
learning general representations. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pages 8856–8865, 2021.

[13] Ross Girshick. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision,
pages 1440–1448, 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778,
2016.

[15] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross Girshick. Mask r-cnn. In Proceedings of the IEEE
International Conference on Computer Vision, pages 2961–2969, 2017.

11



[16] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. The curious case of neural text
degeneration. arXiv preprint arXiv:1904.09751, 2019.

[17] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu, David Ding,
Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, et al. Perceiver io: A general architecture
for structured inputs & outputs. arXiv preprint arXiv:2107.14795, 2021.

[18] Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira. Perceiver:
General perception with iterative attention. In International Conference on Machine Learning, pages
4651–4664. PMLR, 2021.

[19] Iasonas Kokkinos. Ubernet: Training a universal convolutional neural network for low-, mid-, and high-
level vision using diverse datasets and limited memory. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 6129–6138, 2017.

[20] Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Joan Puigcerver, Jessica Yung, Sylvain Gelly, and Neil
Houlsby. Big transfer (bit): General visual representation learning. In European conference on computer
vision, pages 491–507. Springer, 2020.

[21] Alexander Kolesnikov, André Susano Pinto, Lucas Beyer, Xiaohua Zhai, Jeremiah Harmsen, and Neil
Houlsby. Uvim: A unified modeling approach for vision with learned guiding codes. arXiv preprint
arXiv:2205.10337, 2022.

[22] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional
neural networks. Advances in Neural Information Processing Systems, 25:1097–1105, 2012.

[23] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E Howard, Wayne Hubbard, and
Lawrence D Jackel. Backpropagation applied to handwritten zip code recognition. Neural computation, 1
(4):541–551, 1989.

[24] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollar, Kaiming He, and Ross Girshick. Benchmarking
detection transfer learning with vision transformers. arXiv preprint arXiv:2111.11429, 2021.

[25] Yanghao Li, Hanzi Mao, Ross Girshick, and Kaiming He. Exploring plain vision transformer backbones
for object detection. arXiv preprint arXiv:2203.16527, 2022.

[26] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár,
and C Lawrence Zitnick. Microsoft coco: Common objects in context. In European Conference on
Computer Vision, pages 740–755. Springer, 2014.

[27] Tsung-Yi Lin, Piotr Dollár, Ross Girshick, Kaiming He, Bharath Hariharan, and Serge Belongie. Feature
pyramid networks for object detection. In Proceedings of the IEEE Conference on Computer Vision and
pattern recognition, pages 2117–2125, 2017.

[28] Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming He, and Piotr Dollár. Focal loss for dense object
detection. In Proceedings of the IEEE International Conference on Computer Vision, pages 2980–2988,
2017.

[29] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 10012–10022, 2021.

[30] Jiasen Lu, Vedanuj Goswami, Marcus Rohrbach, Devi Parikh, and Stefan Lee. 12-in-1: Multi-task vision
and language representation learning. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 10437–10446, 2020.

[31] Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi. Unified-io: A
unified model for vision, language, and multi-modal tasks. arXiv preprint arXiv:2206.08916, 2022.

[32] Yingwei Pan, Ting Yao, Yehao Li, and Tao Mei. X-linear attention networks for image captioning. In
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 10971–
10980, 2020.

[33] Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language understanding
by generative pre-training. 2018.

[34] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

12



[35] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
arXiv preprint arXiv:1910.10683, 2019.

[36] Scott Reed, Konrad Zolna, Emilio Parisotto, Sergio Gomez Colmenarejo, Alexander Novikov, Gabriel
Barth-Maron, Mai Gimenez, Yury Sulsky, Jackie Kay, Jost Tobias Springenberg, Tom Eccles, Jake Bruce,
Ali Razavi, Ashley Edwards, Nicolas Heess, Yutian Chen, Raia Hadsell, Oriol Vinyals, Mahyar Bordbar,
and Nando de Freitas. A generalist agent. arXiv arXiv:2205.06175, 2022.

[37] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time object detection
with region proposal networks. Advances in Neural Information Processing Systems, 28:91–99, 2015.

[38] Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical
image segmentation. In International Conference on Medical image computing and computer-assisted
intervention, pages 234–241. Springer, 2015.

[39] Shuai Shao, Zeming Li, Tianyuan Zhang, Chao Peng, Gang Yu, Xiangyu Zhang, Jing Li, and Jian Sun.
Objects365: A large-scale, high-quality dataset for object detection. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 8430–8439, 2019.

[40] Piyush Sharma, Nan Ding, Sebastian Goodman, and Radu Soricut. Conceptual captions: A cleaned,
hypernymed, image alt-text dataset for automatic image captioning. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages 2556–2565,
2018.

[41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017.

[42] Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou, Jingren
Zhou, and Hongxia Yang. Unifying architectures, tasks, and modalities through a simple sequence-to-
sequence learning framework. arXiv preprint arXiv:2202.03052, 2022.

[43] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 7794–7803, 2018.

Checklist

1. For all authors...

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(b) Did you describe the limitations of your work? [Yes] See Conclusion section
(c) Did you discuss any potential negative societal impacts of your work? [No] Our work

at its current form does not increase the risk of negative social impacts of those existing
specialized systems.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]

2. If you are including theoretical results...

(a) Did you state the full set of assumptions of all theoretical results? [N/A]
(b) Did you include complete proofs of all theoretical results? [N/A]

3. If you ran experiments...

(a) Did you include the code, data, and instructions needed to reproduce the main ex-
perimental results (either in the supplemental material or as a URL)? [Yes] We will
opensource our code at https://github.com/google-research/pix2seq.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes]

(c) Did you report error bars (e.g., with respect to the random seed after running experi-
ments multiple times)? [No] Some of the experiments are expensive to run multiple
times, and the standard errors are usually pretty small.

13



(d) Did you include the total amount of compute and the type of resources used (e.g., type
of GPUs, internal cluster, or cloud provider)? [Yes] It’s trained on 32-128 Cloud TPUs.
Depending on architectures, and tasks, generally takes 4-12 hours.

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...
(a) If your work uses existing assets, did you cite the creators? [Yes]
(b) Did you mention the license of the assets? [No] It is pretty obvious from the dataset

website, and it’s a well known dataset.
(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]

(d) Did you discuss whether and how consent was obtained from people whose data you’re
using/curating? [N/A]

(e) Did you discuss whether the data you are using/curating contains personally identifiable
information or offensive content? [N/A]

5. If you used crowdsourcing or conducted research with human subjects...
(a) Did you include the full text of instructions given to participants and screenshots, if

applicable? [N/A]
(b) Did you describe any potential participant risks, with links to Institutional Review

Board (IRB) approvals, if applicable? [N/A]
(c) Did you include the estimated hourly wage paid to participants and the total amount

spent on participant compensation? [N/A]

14


	Introduction
	Approach
	A unified interface with tokenization
	Unified architecture and objective function
	Training
	Inference and de-tokenization

	Experiments
	Experimental settings and implementation details
	Quantitative results
	Qualitative results

	Related work
	Conclusion

