
Gaussian Process Upper Confidence Bound Achieves
Nearly-Optimal Regret

in Noise-Free Gaussian Process Bandits

Shogo Iwazaki
LY Corporation

Tokyo, Japan
siwazaki@lycorp.co.jp

Abstract

We study the noise-free Gaussian Process (GP) bandit problem, in which a learner
seeks to minimize regret through noise-free observations of a black-box objec-
tive function that lies in a known reproducing kernel Hilbert space (RKHS). The
Gaussian Process Upper Confidence Bound (GP-UCB) algorithm is a well-known
approach for GP bandits, where query points are adaptively selected based on
the GP-based upper confidence bound score. While several existing works have
reported the practical success of GP-UCB, its theoretical performance remains sub-
optimal. However, GP-UCB often empirically outperforms other nearly-optimal
noise-free algorithms that use non-adaptive sampling schemes. This paper re-
solves the gap between theoretical and empirical performance by establishing a
nearly-optimal regret upper bound for noise-free GP-UCB. Specifically, our anal-
ysis provides the first constant cumulative regret bounds in the noise-free setting
for both the squared exponential kernel and the Matérn kernel with some degree
of smoothness.

1 Introduction

This paper studies the noise-free Gaussian Process (GP) bandit problem, where the learner seeks
to minimize regret through noise-free observations of the black-box objective function. Several
existing works tackle this problem, and some of them [Iwazaki and Takeno, 2025a, Salgia et al.,
2024] propose algorithms whose regret nearly matches the lower bound of [Li and Scarlett, 2024]. For
ease of theoretical analysis, these algorithms rely on the non-adaptive sampling scheme, whose query
points are chosen independently of the observed function values, such as the uniform sampling [Salgia
et al., 2024] or maximum variance reduction [Iwazaki and Takeno, 2025a]. Although the theoretical
superiority of such non-adaptive algorithms is shown, in existing noisy setting literature [Bogunovic
et al., 2022, Iwazaki and Takeno, 2025b, Li and Scarlett, 2022], their empirical performance has
been reported to be worse than that of fully adaptive strategies such as GP upper confidence bound
(GP-UCB) [Srinivas et al., 2010]. Unsurprisingly, we also observe such empirical and practical gaps
in a noise-free setting, as shown in Figure 1. These observations suggest the possibility of further
theoretical improvement in the practical fully adaptive algorithm. From this motivation, our work
aims to establish the nearly-optimal regret for GP-UCB, which is one of the well-known adaptive GP
bandit algorithms, and its existing guarantees only show strictly sub-optimal regret in a noise-free
setting [Kim and Sanz-Alonso, 2024, Lyu et al., 2019].

Contributions. Our contributions are summarized below:

• We give a refined regret analysis of GP-UCB (Theorems 1 and 2), which matches both the
cumulative regret lower bounds of [Li and Scarlett, 2024] and the simple regret lower bound
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Figure 1: Empirical performance comparison of GP-UCB and two existing nearly-optimal algo-
rithms: random exploration with domain shrinking (REDS) [Salgia et al., 2024] and phased elimi-
nation (PE) [Iwazaki and Takeno, 2025a]. From left to right, the plots show the average cumulative
regret over 3000 independent runs under the squared exponential kernel, Matérn kernel (𝜈 = 5/2),
and Matérn kernel (𝜈 = 3/2) with 𝑑 = 2, respectively. Here, 𝑑 and 𝜈 represent the dimension of
the input and the smoothness parameter, respectively. Detailed experimental settings are provided in
Appendix B.

of [Bull, 2011] up to polylogarithmic factors in the Matérn kernel. Regarding cumulative
regret, our analysis shows that GP-UCB achieves the constant𝑂 (1) regret under the squared
exponential and Matérn kernel with 𝑑 > 𝜈. The results are summarized in Tables 1 and 2.

• Our key theoretical contribution is the new algorithm-independent upper bounds for the
observed posterior standard deviations (Lemmas 3–5) by bridging the information gain-
based analysis in the noisy regime to the noise-free setting. Furthermore, as discussed
in Section 3, these results have the potential to translate existing confidence bound-based
algorithms for noisy settings into nearly-optimal noise-free variants beyond the analysis of
GP-UCB.

Related works. Various existing works study the theory for the noisy GP bandits [Chowdhury
and Gopalan, 2017, Li and Scarlett, 2022, Scarlett et al., 2017, Srinivas et al., 2010, Valko et al.,
2013]. Regarding noise-free settings, to our knowledge, [Bull, 2011] is the first work that shows
both the upper bound and the lower bound for simple regret via the expected improvement (EI)
strategy. After that, the analysis of the cumulative regret is shown in [Lyu et al., 2019] with GP-
UCB. Recently, Vakili [2022] conjectures the lower bound of the cumulative regret in the noise-free
setting, suggesting a superior algorithm exists in the noise-free setting. Later, the following work [Li
and Scarlett, 2024] formally validates the conjectured lower bound of [Vakili, 2022] 1. Motivated by
the lower bounds, several works [Flynn and Reeb, 2024, Kim and Sanz-Alonso, 2024, Iwazaki and
Takeno, 2025a, Salgia et al., 2024] studied the improved algorithm to achieve superior regret to the
result of [Lyu et al., 2019]. Although some of them propose the nearly-optimal algorithms [Iwazaki
and Takeno, 2025a, Salgia et al., 2024], their algorithms are based on a non-adaptive sampling
scheme, whose inferior performance has been reported in the existing work [Bogunovic et al., 2022,
Iwazaki and Takeno, 2025b, Li and Scarlett, 2022]. Here, our motivation is to establish the nearly-
optimal theory under the fully adaptive nature of GP-UCB; however, our proof relates to the analysis
in [Iwazaki and Takeno, 2025a] for the non-adaptive maximum variance reduction algorithm. Their
analysis includes the noise-free setting as a special case and provides nearly-optimal regret under
broader varying noise variance settings. However, its applicability is limited to the maximum
variance reduction algorithm. Our analysis can be interpreted as a refined version of that in [Iwazaki
and Takeno, 2025a] by focusing on the noise-free setting. Finally, although our paper studies the
frequentist assumption that the underlying function is fixed, our core results (Lemmas 3–5) are also
applicable to the regret analysis in the Bayesian setting, whose underlying function is drawn from a
known GP [De Freitas et al., 2012, Grünewälder et al., 2010, Russo and Van Roy, 2014a,b, Scarlett,
2018, Srinivas et al., 2010].

1Although Li and Scarlett [2024] considers the cascading structure of the observation process, the standard
noise-free setting is the special case of their setting.
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Table 1: Comparison between existing noise-free algorithms’ guarantees for cumulative regret and
our result (adapted from [Iwazaki and Takeno, 2025a]). As with the table in [Iwazaki and Takeno,
2025a], the smoothness parameter 𝜈 of the Matérn kernel and 𝛼 > 0 in PE are assumed to be 𝜈 > 1/2
and an arbitrary fixed constant, respectively. Furthermore, all the parameters (𝑑, ℓ, 𝜈, and 𝐵) except
for 𝑇 are assumed to be Θ(1). “Type” column shows that the regret guarantee is (D)eterministic or
(P)robabilistic. Here, a regret bound is labeled “deterministic” if it holds for all possible realizations
of the inputs, without relying on probabilistic assumptions. Here, 𝑂 (·) hides polylogarithmic factors
in 𝑇 .

Algorithm Regret (SE) Regret (Matérn) Type
𝜈 < 𝑑 𝜈 = 𝑑 𝜈 > 𝑑

GP-UCB
𝑂

(√︁
𝑇 ln𝑑 𝑇

)
𝑂

(
𝑇

𝜈+𝑑
2𝜈+𝑑

)
D[Lyu et al., 2019]

[Kim and Sanz-Alonso, 2024]
Explore-then-Commit N/A 𝑂

(
𝑇

𝑑
𝜈+𝑑

)
P[Vakili, 2022]

Kernel-AMM-UCB
𝑂

(
ln𝑑+1 𝑇

)
𝑂

(
𝑇

𝜈𝑑+𝑑2
2𝜈2+2𝜈𝑑+𝑑2

)
D[Flynn and Reeb, 2024]

REDS N/A 𝑂

(
𝑇

𝑑−𝜈
𝑑

)
𝑂

(
ln

5
2 𝑇

)
𝑂

(
ln

3
2 𝑇

)
P[Salgia et al., 2024]

PE
𝑂 (ln𝑇) 𝑂

(
𝑇

𝑑−𝜈
𝑑

)
𝑂

(
ln2+𝛼 𝑇

)
𝑂 (ln𝑇) D[Iwazaki and Takeno, 2025a]

GP-UCB
𝑂 (1) 𝑂

(
𝑇

𝑑−𝜈
𝑑

)
𝑂

(
ln2 𝑇

)
𝑂 (1) D(Our analysis)

Conjectured Lower Bound N/A Ω

(
𝑇

𝑑−𝜈
𝑑

)
Ω(ln𝑇) Ω(1) N/A[Vakili, 2022]

Lower Bound N/A Ω

(
𝑇

𝑑−𝜈
𝑑

)
Ω(1) Ω(1) N/A[Li and Scarlett, 2024]

2 Preliminaries

Noise-free GP bandit problem. We study the GP bandit problem under noise-free observations.
LetX ⊂ R𝑑 be a compact input domain, and consider a black-box objective function 𝑓 : X → R that
can only be evaluated point-wise. At each step 𝑡 ∈ N+, the learner selects a query point x𝑡 ∈ X and
observes its function value 𝑓 (x𝑡 ). After 𝑇 steps, the performance of the learner is measured using
either the cumulative regret 𝑅𝑇 or the simple regret 𝑟𝑇 , which are respectively defined as follows:

𝑅𝑇 =

𝑇∑︁
𝑡=1

𝑓 (x∗) − 𝑓 (x𝑡 ), (1)

𝑟𝑇 = 𝑓 (x∗) − 𝑓 (x̂𝑇 ). (2)

Here,x∗ ∈ arg maxx∈X 𝑓 (x) is a global maximizer, and x̂𝑇 denotes the estimated maximizer returned
by the algorithm at the end of the final step 𝑇 .

Gaussian process model. To construct the GP-bandit algorithm, the GP model [Rasmussen and
Williams, 2005] plays a central role in balancing the trade-off between exploration and exploitation.
First, we adopt a Gaussian process prior with zero mean and covariance (kernel) function 𝑘 : X×X →
R. Then, given a sequence of queried points X𝑡 = (x1, . . . ,x𝑡 ) and their corresponding evaluations
f (X𝑡 ) = ( 𝑓 (x1), . . . , 𝑓 (x𝑡 )), the posterior mean 𝜇(x; X𝑡 ) and variance 𝜎2 (x; X𝑡 ) of 𝑓 (x) at a new
point x ∈ X are

𝜇(x; X𝑡 ) = k(x, E(X𝑡 ))⊤K(E(X𝑡 ), E(X𝑡 ))−1f (E(X𝑡 )), (3)
𝜎2 (x; X𝑡 ) = 𝑘 (x,x) − k(x, E(X𝑡 ))⊤K(E(X𝑡 ), E(X𝑡 ))−1k(x, E(X𝑡 )), (4)

where k(x, E(X𝑡 )) = [𝑘 (x̃,x)]x̃∈E (X𝑡 ) is the kernel vector, K(E(X𝑡 ), E(X𝑡 )) is the Gram matrix,
and f (E(X𝑡 )) = [ 𝑓 (x̃)]x̃∈E (X𝑡 ) . In the above definition, E(X𝑡 ) denotes the subset of X𝑡 obtained
by removing any fully correlated inputs (i.e., with zero posterior variance) with previous ones.
Namely, we define E(X𝑡 ) inductively as E(X𝑡 ) = E(X𝑡−1) ∪ {x𝑡 } if 𝜎2 (x𝑡 ; X𝑡−1) > 0; otherwise,
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Table 2: Comparison between existing noiseless algorithms’ guarantees for simple regret and our
result (adapted from [Iwazaki and Takeno, 2025a]). In the regrets of GP-UCB+, EXPLOIT+, MVR,
and GP-UCB, 𝛼 > 0 and𝐶 > 0 are arbitrary fixed constants and some positive constants, respectively.

Algorithm Regret (SE) Regret (Matérn) Type

GP-EI N/A 𝑂

(
𝑇−

min{1,𝜈}
𝑑

)
D[Bull, 2011]

GP-EI with 𝜖-Greedy N/A 𝑂

(
𝑇−

𝜈
𝑑

)
P[Bull, 2011]

GP-UCB
𝑂

(√︃
ln𝑑 𝑇
𝑇

)
𝑂

(
𝑇−

𝜈
2𝜈+𝑑

)
D[Lyu et al., 2019]

[Kim and Sanz-Alonso, 2024]
Kernel-AMM-UCB

𝑂

(
ln𝑑+1 𝑇

𝑇

)
𝑂

(
𝑇
− 𝜈𝑑+2𝜈2

2𝜈2+2𝜈𝑑+𝑑2
)

D[Flynn and Reeb, 2024]
GP-UCB+, EXPLOIT+

𝑂

(
exp

(
−𝐶𝑇 1

𝑑
−𝛼

))
𝑂

(
𝑇−

𝜈
𝑑
+𝛼

)
P[Kim and Sanz-Alonso, 2024]

MVR
𝑂

(
exp

(
− 1

2𝑇
1

𝑑+1 ln−𝛼 𝑇
))

𝑂

(
𝑇−

𝜈
𝑑

)
D[Iwazaki and Takeno, 2025a]

GP-UCB
𝑂

(√
𝑇 exp

(
− 1

2𝐶𝑇
1

𝑑+1

))
𝑂

(
𝑇−

𝜈
𝑑

)
D(Our analysis)

Lower Bound N/A Ω

(
𝑇−

𝜈
𝑑

)
N/A[Bull, 2011]

E(X𝑡 ) = E(X𝑡−1). Here, we define E(X1) = X1. Note that if there are no duplications in
the input sequence x1, . . . ,x𝑡 , then E(X𝑡 ) = X𝑡 holds under commonly used kernel (covariance)
functions, such as squared exponential and Matérn kernels (precisely defined in the next paragraph).
Furthermore, for the ease of notation, we set 𝜇(x; X) = 0 and 𝜎2 (x; X) = 𝑘 (x,x) for X = ∅.

Kernel function and information gain. Regarding the choice of the kernel function, we focus on
the squared exponential (SE) kernel

𝑘SE (x, x̃) = exp
(
−
∥x − x̃∥22

2ℓ2

)
, (5)

and the Matérn kernel

𝑘Matérn (x, x̃) =
21−𝜈

Γ(𝜈)

(√2𝜈 ∥x − x̃∥2
ℓ

)𝜈
𝐽𝜈

(√2𝜈 ∥x − x̃∥2
ℓ

)
, (6)

where ℓ > 0 and 𝜈 > 0 are the lengthscale and smoothness parameter, respectively. Furthermore, 𝐽𝜈
and Γ are the modified Bessel and Gamma functions, respectively. These two kernels are commonly
used and analyzed in GP-bandits [Scarlett et al., 2017, Srinivas et al., 2010]. The convergence rate
of the function estimation in GP regression depends on the choice of kernel, which in turn affects
the resulting regret upper bound. Therefore, to capture the problem complexity in kernel-dependent
manner, the following kernel-dependent information theoretic quantity 𝛾𝑇 (𝜆2) is often employed in
the analysis of GP bandits:

𝛾𝑇 (𝜆2) = sup
x1 ,...,x𝑇 ∈X

1
2

ln det(I𝑇 + 𝜆−2K(X𝑇 ,X𝑇 )), (7)

where 𝜆 > 0 and I𝑇 are any positive parameter and 𝑇 × 𝑇-identity matrix, respectively. The
quantity 𝛾𝑇 (𝜆2) is called maximum information gain (MIG) [Srinivas et al., 2010] since the quantity
1
2 ln det(I𝑇 + 𝜆−2K(X𝑇 ,X𝑇 )) represents the mutual information between the underlying function 𝑓

and training outputs under the noisy-GP model with variance parameter 𝜆2. The increasing speed
of MIG is analyzed in several commonly used kernels. For example, 𝛾𝑇 (𝜆2) = 𝑂 (ln𝑑+1(𝑇/𝜆2)) and
𝛾𝑇 (𝜆2) = 𝑂 ((𝑇/𝜆2) 𝑑

2𝜈+𝑑 ) under 𝑘 = 𝑘SE and 𝑘 = 𝑘Matérn with 𝜈 > 1/2, respectively [Vakili et al.,
2021c]2.

2These orders hold as 𝑇 →∞, 𝜆→ 0.
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Algorithm 1 Gaussian process upper confidence bound (GP-UCB) for noise-free setting.
Require: Compact input domain X ⊂ R𝑑 , Kernel function 𝑘 , and RKHS norm upper bound 𝐵 ∈
(0,∞).

1: X0 ← ∅, 𝛽1/2 ← 𝐵.
2: for 𝑡 = 1, 2, . . . do
3: x𝑡 ← arg maxx∈X𝜇(x; X𝑡−1) + 𝛽1/2𝜎(x; X𝑡−1).
4: Observe 𝑓 (x𝑡 ) and update the posterior mean and variance.
5: end for

Regularity assumption. It is hopeless to derive meaningful guarantees without further assumptions
about 𝑓 . To obtain a valid estimate of 𝑓 through the GP-model, we assume that 𝑓 lies in the known
reproducing kernel Hilbert space (RKHS) [Aronszajn, 1950] corresponding to the kernel 𝑘 and has
bounded norm. The formal description is given below.
Assumption 1. The objective function 𝑓 lies in the reproducing kernel Hilbert space (RKHS)
associated with a known positive definite kernel 𝑘 : X ×X → R. We assume that 𝑘 (x,x) ≤ 1 for all
x ∈ X, and that the RKHS norm ∥ 𝑓 ∥𝑘 satisfies ∥ 𝑓 ∥𝑘 ≤ 𝐵 < ∞.

This is a standard assumption in the GP-bandit literature [Chowdhury and Gopalan, 2017, Scarlett
et al., 2017, Srinivas et al., 2010], and is leveraged to derive the confidence bound of 𝑓 [Kanagawa
et al., 2018, Lyu et al., 2019, Vakili et al., 2021a]. Here, RKHS associated with kernel 𝑘 is given as the
closure of the linear span: H (pre)

𝑘
:= {∑𝑛

𝑖=1 𝑐𝑖𝑘 (x(𝑖) , ·) | 𝑛 ∈ N+, 𝑐1, . . . , 𝑐𝑛 ∈ R,x(1) , . . . ,x(𝑛) ∈
X} [Kanagawa et al., 2018]. Therefore, intuitively, under Assumption 1, we can interpret that the
basic properties of the objective function 𝑓 , such as continuity and smoothness, are encoded through
the choice of the kernel function 𝑘 .

Gaussian process upper confidence bound. GP-UCB [Srinivas et al., 2010] is a widely used
algorithm for the noisy GP bandit setting. Its noiseless variant was proposed by Lyu et al. [2019],
and is outlined in Algorithm 1. Their analysis largely follows the framework developed for the noisy
case in [Srinivas et al., 2010], but differs in the confidence bound, which is strictly tighter than
that in the noisy setting. Although this refinement of the confidence bound leads to superior regret
compared with the noisy setting, the resulting regret is still strictly sub-optimal in the noise-free
setting. This fact suggests that we require the other fundamental modification from the proof in
[Srinivas et al., 2010].

3 Refined Regret Upper Bound for Noise-Free GP-UCB

The following theorem describes our main results, which show the nearly-optimal regret upper bound
for GP-UCB.
Theorem 1 (Refined cumulative regret upper bound for GP-UCB). Fix any compact input domain
X ⊂ R𝑑 . Suppose 𝐵, 𝑑, ℓ, and 𝜈 are fixed constants. Then, when running Algorithm 1 under
Assumption 1, the following two statements hold for any 𝑇 ∈ N+:

• If 𝑘 = 𝑘SE, the regret 𝑅𝑇 satisfies 𝑅𝑇 = 𝑂 (1).

• If 𝑘 = 𝑘Matérn with 𝜈 > 1/2, the regret 𝑅𝑇 satisfies

𝑅𝑇 =


𝑂

(
𝑇

𝑑−𝜈
𝑑

)
if 𝑑 > 𝜈,

𝑂 (ln2 𝑇) if 𝑑 = 𝜈,

𝑂 (1) if 𝑑 < 𝜈.

(8)

The implied constants may depend on 𝐵, 𝑑, ℓ, 𝜈, and the diameter of X.
Theorem 2 (Refined simple regret upper bound for GP-UCB). Fix any compact input domain
X ⊂ R𝑑 . Suppose 𝐵, 𝐿, 𝑑, ℓ, and 𝜈 are fixed constants. Then, when running Algorithm 1
under Assumption 1, the following two statements hold by setting the estimated maximizer x̂𝑇 as
x̂𝑇 ∈ argmaxx∈{x1 ,...,x𝑇 } 𝑓 (x):

5



• If 𝑘 = 𝑘SE, 𝑟𝑇 = 𝑂

(√
𝑇 exp

(
− 1

2𝐶𝑇
1

𝑑+1

))
.

• If 𝑘 = 𝑘Matérn with 𝜈 > 1/2, 𝑟𝑇 = 𝑂

(
𝑇−

𝜈
𝑑

)
.

The implied constants depend on 𝐵, 𝑑, ℓ, 𝜈, and the diameter of X. Furthermore, the constant 𝐶 > 0
depends on 𝑑, ℓ, 𝜈, and the diameter of X3 4 .

Proof sketch. Our key technical results are the new analysis of the cumulative posterior standard
deviation

∑𝑇
𝑡=1 𝜎(x𝑡 ; X𝑡−1) and its minimum min𝑡∈[𝑇 ] 𝜎(x𝑡 ; X𝑡−1), which plays an important role

in the theoretical analysis of GP bandits. Indeed, following the standard analysis of GP-UCB, we
have the following upper bounds of regrets by combining the UCB-selection rule with the existing
noise-free confidence bound (e.g., Lemma 11 in [Lyu et al., 2019] or Proposition 1 in [Vakili et al.,
2021a]):

𝑅𝑇 =

𝑇∑︁
𝑡=1

𝑓 (x∗) − 𝑓 (x𝑡 ) ≤ 2𝐵
𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1), (9)

𝑟𝑇 = min
𝑡∈[𝑇 ]

𝑓 (x∗) − 𝑓 (x𝑡 ) ≤ 2𝐵 min
𝑡∈[𝑇 ]

𝜎(x𝑡 ; X𝑡−1). (10)

From the above inequalities, we observe that the tighter upper bounds of
∑𝑇

𝑡=1 𝜎(x𝑡 ; X𝑡−1) and
min𝑡∈[𝑇 ] 𝜎(x𝑡 ; X𝑡−1) directly yield the tighter regret upper bounds of GP-UCB. Lemma 3 below
is our main technical contribution, which gives the refined upper bounds of

∑𝑇
𝑡=1 𝜎(x𝑡 ; X𝑡−1) and

min𝑡∈[𝑇 ] 𝜎(x𝑡 ; X𝑡−1).
Lemma 3 (Posterior standard deviation upper bound for SE and Matérn kernel). Fix any compact
input domain X ⊂ R𝑑 , and kernel function 𝑘 : X × X → R that satisfies 𝑘 (x,x) ≤ 1 for all x ∈ X.
Then, the following statements hold for any 𝑇 ∈ N+ and any input sequence x1, . . . ,x𝑇 ∈ X:

• For 𝑘 = 𝑘SE, we have

min
𝑡∈[𝑇 ]

𝜎(x𝑡 ; X𝑡−1) = 𝑂

(√
𝑇 exp

(
−1

2
𝐶𝑇

1
𝑑+1

))
and

𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) = 𝑂 (1). (11)

• For 𝑘 = 𝑘Matérn with 𝜈 > 1/2, we have

min
𝑡∈[𝑇 ]

𝜎(x𝑡 ; X𝑡−1) = 𝑂

(
𝑇−

𝜈
𝑑 ln

𝜈
𝑑 𝑇

)
, (12)

𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) =


𝑂

(
𝑇

𝑑−𝜈
𝑑 ln

𝜈
𝑑 𝑇

)
if 𝑑 > 𝜈,

𝑂

(
ln2 𝑇

)
if 𝑑 = 𝜈,

𝑂 (1) if 𝑑 < 𝜈.

(13)

The constant 𝐶 > 0 and the implied constants depend on 𝑑, ℓ, 𝜈, and the diameter of X.

The full proof of Lemma 3 is given in Appendix A.2. We will also provide the proof sketch in the
next section. Combining the above equations with Eqs. (9) and (10), we obtain the statements in
Theorems 1 and 2.

3As described in Section 3.1, the constant 𝐶 arises from the implied constants in the upper bound of
MIG [Vakili et al., 2021c], which depends on 𝑑, ℓ, 𝜈, and the diameter of X

4Our results (Theorems 1 and 2) heavily rely on the upper bound of the MIG provided in [Vakili et al.,
2021c], which relies on the uniform boundness assumption of the eigenfunctions of the kernel. The validity
of the uniform boundness assumption is doubted by Janz [2022] under a general compact input domain X.
Although our results are based on the upper bound of MIG in [Vakili et al., 2021c], our proof strategy is also
applicable for deriving nearly-optimal regrets based on the recent analysis of MIG [Iwazaki, 2025] without the
uniform boundness assumption. Specifically, then, the orders of the resulting regrets are the same as those in
Theorems 1 and 2 for 𝑘SE and 𝑘Matérn with 𝑑 < 𝜈. As for the case under 𝑘 = 𝑘Matérn with 𝑑 ≥ 𝜈, we can also
obtain 𝑅𝑇 = 𝑂 (𝑇 (𝑑−𝜈)/𝑑) and 𝑟𝑇 = 𝑂 (𝑇−𝜈/𝑑), while they suffer from additional polylogarithmic terms.
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Relation to the existing research in noise-free setting. Lemma 3 resolves the open problem raised
by the existing noise-free setting literature [Li and Scarlett, 2024, Vakili, 2022]. First, Vakili [2022]
conjectured that the quantity

∑𝑇
𝑡=1 𝜎(x𝑡 ; X𝑡−1) under 𝑘 = 𝑘Matérn can attain the following upper

bound:

𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) =

𝑂

(
𝑇

𝑑−𝜈
𝑑

)
if 𝑑 > 𝜈,

𝑂 (ln𝑇) if 𝑑 = 𝜈,

𝑂 (1) if 𝑑 < 𝜈.

(14)

Although the above conjecture is partially validated under a specific non-adaptive algorithm [Li and
Scarlett, 2024, Iwazaki and Takeno, 2025a, Salgia et al., 2024], the correctness of this conjecture
under a general algorithm has been an open problem [Li and Scarlett, 2024]. Lemma 3 answers this
open problem with Eq. (13), which matches conjectured upper bound up to polylogarithmic factors.

Generality of Lemma 3. We would like to highlight that Lemma 3 always holds for any input
sequence, in contrast to the existing algorithm-specific upper bounds [Iwazaki and Takeno, 2025a,
Salgia et al., 2024]. Since the existing noisy GP bandits theory often leverage the upper bound of
min𝑡∈[𝑇 ] 𝜎(x𝑡 ; X𝑡−1) or

∑𝑇
𝑡=1 𝜎(x𝑡 ; X𝑡−1) from [Srinivas et al., 2010], we expect that many existing

theoretical results in the noisy setting can be extended to the corresponding noise-free setting by
directly replacing the existing noisy upper bounds of [Srinivas et al., 2010] with Lemma 3. For
example, the analysis for GP-Thompson sampling (GP-TS) [Chowdhury and Gopalan, 2017], GP-
UCB and GP-TS under Bayesian setting [Russo and Van Roy, 2014a, Srinivas et al., 2010], contextual
setting [Krause and Ong, 2011], GP-based level-set estimation [Gotovos et al., 2013], multi-objective
setting [Zuluaga et al., 2016], robust formulation [Bogunovic et al., 2018], and so on.

Extension to other kernel functions. Lemma 3 is limited to the SE and Matérn kernels. However,
our proof strategy in Section 3.1 can be applied to any kernel function if we know the joint dependence
of 𝑇 and the noise-variance parameter 𝜆2 in MIG. For example, we can apply our proof strategy for
the neural tangent kernel (NTK) [Jacot et al., 2018] by leveraging the existing upper bound of MIG
under NTK [Iwazaki and Suzumura, 2024, Kassraie and Krause, 2022, Kassraie et al., 2022, Vakili
et al., 2021b]. We expect that such an extension will benefit the theoretical guarantees of neural
network-based bandit algorithms under a noise-free setting and will be one of the interesting research
directions.

3.1 Proof Sketch of Lemma 3

In this subsection, we describe the proof sketch of Lemma 3, while we give its full proof in
Appendix A.2. Below, to prove Lemma 3, we consider the more general lemmas, which bridge the
MIG to noise-free posterior standard deviations.
Lemma 4 (General upper bound for the minimum posterior standard deviation). Fix any input
domainX and any 𝑇 ≥ 2. Let (𝜆𝑡 )𝑡≥𝑇 be a strictly positive sequence such that 𝛾𝑡 (𝜆2

𝑡 ) ≤ (𝑡 −1)/3 for
all 𝑡 ≥ 𝑇 . Then, min𝑡∈[𝑇 ] 𝜎(x𝑡 ; X𝑡−1) ≤ 𝜆𝑇 holds for any 𝑇 ≥ 𝑇 and any sequence x1, . . . ,x𝑇 ∈ X.
Lemma 5 (General upper bound for the cumulative posterior standard deviations). Fix any input
domain X, any 𝑇 ≥ 2, and any kernel function 𝑘 : X × X → R that satisfies 𝑘 (x,x) ≤ 1 for all
x ∈ X. Let (𝜆𝑡 )𝑡≥𝑇 be a strictly positive sequence such that 𝛾𝑡 (𝜆2

𝑡 ) ≤ (𝑡 − 1)/3 for all 𝑡 ≥ 𝑇 . Then,
the following inequality holds for any 𝑇 ∈ N+ and any sequence x1, . . . ,x𝑇 ∈ X:

𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) ≤ 𝑇 − 1 +
𝑇∑︁

𝑡=𝑇

𝜆𝑡 . (15)

These lemmas hold for any kernel k satisfying 𝑘 (x,x) ≤ 1, which includes most standard kernels after
normalization. Roughly speaking, the above lemmas suggest that min𝑡∈[𝑇 ] 𝜎(x𝑡 ; X𝑡−1) ≲ 𝜆𝑇 and∑𝑇

𝑡=1 𝜎(x𝑡 ; X𝑡−1) ≲
∑𝑇

𝑡=1 𝜆𝑡 holds as far as the corresponding MIG 𝛾𝑡 (𝜆2
𝑡 ) does not increase super-

linearly. Note that the MIG 𝛾𝑡 (𝜆2
𝑡 ) monotonically increases as 𝜆2

𝑡 decreases, which implies that the
tightest upper bound is obtained by setting 𝜆2

𝑡 as 𝛾𝑡 (𝜆2
𝑡 ) = (𝑡 −1)/3. By relying on the existing upper

bound of MIG [Vakili et al., 2021c], we can confirm that the condition ∀𝑡 ≥ 𝑇, 𝛾𝑡 (𝜆2
𝑡 ) ≤ (𝑡 − 1)/3
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of the above lemmas holds with 𝜆2
𝑡 = 𝑂 (𝑡 exp(−𝐶𝑡 1

𝑑+1 )) and 𝜆2
𝑡 = 𝑂 (𝑡− 2𝜈

𝑑 (ln 𝑡) 2𝜈
𝑑 ) for 𝑘 = 𝑘SE and

𝑘 = 𝑘Matérn, respectively. Here, the constants 𝐶 and 𝑇 are determined based on the implied constant
of the upper bound of MIG. See Appendix A.2 for details. Lemma 3 follows from the aforementioned
setting of 𝜆2

𝑡 , and Lemmas 4 and 5. Below, we give the proofs for Lemmas 4 and 5.

Proof of Lemma 4. Instead of directly treating the noise-free posterior standard deviation, we
study its upper bound with the posterior standard deviation of some noisy GP model. Here, let us
denote 𝜎2

𝜆2 (x; X𝑡−1) as the posterior variance under the noisy GP-model with the strictly positive
variance parameter 𝜆2 > 0, which is defined as

𝜎2
𝜆2 (x; X𝑡−1) = 𝑘 (x,x) − k(x,X𝑡−1)⊤ [K(X𝑡−1,X𝑡−1) + 𝜆2I𝑡−1]−1k(x,X𝑡−1). (16)

Since the posterior variance is monotonic for the variance parameter, we have 𝜎2 (x𝑡 ; X𝑡−1) ≤
𝜎2
𝜆2
𝑇

(x𝑡 ; X𝑡−1) for all 𝑡 ∈ [𝑇]. Next, we obtain the upper bound of 𝜎2
𝜆2
𝑇

(x; X𝑡−1) based on the
following lemma, which is the main component of the proof of Lemmas 4 and 5.
Lemma 6 (Elliptical potential count lemma, Lemma D.9 in [Flynn and Reeb, 2024] or Lemma 3.3
in [Iwazaki and Takeno, 2025a]). Fix any 𝑇 ∈ N+, any sequence x1, . . . ,x𝑇 ∈ X, and 𝜆 > 0. Define
T as T = {𝑡 ∈ [𝑇] | 𝜆−1𝜎𝜆2 (x𝑡 ; X𝑡−1) > 1}, where X𝑡−1 = (x1, . . . ,x𝑡−1). Then, the number of
elements of T satisfies |T | ≤ 3𝛾𝑇 (𝜆2).

The above lemma implies that the set T 𝑐 := {𝑡 ∈ [𝑇] | 𝜎𝜆2
𝑇
(x𝑡 ; X𝑡−1) ≤ 𝜆𝑇 } satisfies |T 𝑐 | =

| [𝑇] \ T | ≥ 𝑇 − 3𝛾𝑇 (𝜆2
𝑇
). Therefore, for any 𝑇 ≥ 𝑇 , |T 𝑐 | ≥ 1 holds from the condition 𝛾𝑇 (𝜆2

𝑇
) ≤

(𝑇 − 1)/3. This implies there exists some 𝑡̃ ∈ [𝑇] such that 𝜎(x𝑡̃ ; X𝑡̃−1) ≤ 𝜎𝜆2
𝑇
(x𝑡̃ ; X𝑡̃−1) ≤ 𝜆𝑇 ;

therefore, min𝑡∈[𝑇 ] 𝜎(x𝑡 ; X𝑡−1) ≤ 𝜎(x𝑡̃ ; X𝑡̃−1) ≤ 𝜆𝑇 holds for all 𝑇 ≥ 𝑇 . □

Proof of Lemma 5. Overall, the proof strategy of this lemma is to repeatedly apply the proof of
Lemma 4 by leveraging the monotonicity of the posterior variance against training inputs. First, if
𝑇 < 𝑇 , Eq. (15) is clearly holds from the assumption ∀x ∈ X, 𝑘 (x,x) ≤ 1. Hereafter, we focus
on 𝑇 ≥ 𝑇 . By following the same argument of Lemma 4, we can confirm that there exists the
index 𝑡̃𝑇 ≤ 𝑇 such that 𝜎(x𝑡̃𝑇

; X𝑡̃𝑇−1) ≤ 𝜎𝜆2
𝑇
(x𝑡̃𝑇

; X𝑡̃𝑇−1) ≤ 𝜆𝑇 . Here, we define the new sequence
(x(𝑇−1)

𝑡 )𝑡∈[𝑇−1] as the sequence that x𝑡̃ is eliminated from (x𝑡 )𝑡∈[𝑇 ] ; namely, we set x(𝑇−1)
𝑡 = 1l{𝑡 <

𝑡̃𝑇 }x𝑡 + 1l{𝑡 ≥ 𝑡̃𝑇 }x𝑡+1 for any 𝑡 ∈ [𝑇 − 1]. Furthermore, we define X(𝑇−1)
𝑡 = (x(𝑇−1)

1 , . . . ,x(𝑇−1)
𝑡 ).

From this construction of X(𝑇−1)
𝑡 , we can observe the following two facts:

• For any 𝑡 < 𝑡̃𝑇 , we have 𝜎(x𝑡 ; X𝑡−1) = 𝜎

(
x(𝑇−1)
𝑡 ; X(𝑇−1)

𝑡−1

)
, since x(𝑇−1)

𝑡 = x𝑡 and

X(𝑇−1)
𝑡−1 = X𝑡−1.

• For any 𝑡 > 𝑡̃𝑇 , we have 𝜎(x𝑡 ; X𝑡−1) ≤ 𝜎

(
x(𝑇−1)
𝑡−1 ; X(𝑇−1)

𝑡−2

)
, since x(𝑇−1)

𝑡−1 = x𝑡 and

X(𝑇−1)
𝑡−2 ⊂ X𝑡−1 from the definition of X(𝑇−1)

𝑡 .

From the above two facts, we have
𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) ≤
∑︁

𝑡∈[𝑇 ]\{ 𝑡̃𝑇 }
𝜎(x𝑡 ; X𝑡−1) + 𝜆𝑇 ≤

∑︁
𝑡∈[𝑇−1]

𝜎

(
x(𝑇−1)
𝑡 ; X(𝑇−1)

𝑡−1

)
+ 𝜆𝑇 . (17)

Then, we observe that there exists the index 𝑡̃𝑇−1 ≤ 𝑇 − 1 such that 𝜎(x(𝑇−1)
𝑡̃𝑇−1

; X(𝑇−1)
𝑡̃𝑇−1−1) ≤

𝜎𝜆2
𝑇−1
(x(𝑇−1)

𝑡̃𝑇−1
; X(𝑇−1)

𝑡̃𝑇−1−1) ≤ 𝜆𝑇−1 by the application of Lemma 6 for the new sequence (x(𝑇−1)
𝑡 ). Again,

by setting x(𝑇−2)
𝑡 = 1l{𝑡 < 𝑡̃𝑇−1}x(𝑇−1)

𝑡 + 1l{𝑡 ≥ 𝑡̃𝑇−1}x(𝑇−1)
𝑡+1 and X(𝑇−2)

𝑡 = (x(𝑇−2)
1 , . . . ,x(𝑇−2)

𝑡 )
for any 𝑡 ∈ [𝑇 − 2], we have∑︁

𝑡∈[𝑇−1]
𝜎

(
x(𝑇−1)
𝑡 ; X(𝑇−1)

𝑡−1

)
≤

∑︁
𝑡∈[𝑇−1]\{ 𝑡̃𝑇−1 }

𝜎

(
x(𝑇−1)
𝑡 ; X(𝑇−1)

𝑡−1

)
+ 𝜆𝑇−1 (18)

≤
∑︁

𝑡∈[𝑇−2]
𝜎

(
x(𝑇−2)
𝑡 ; X(𝑇−2)

𝑡−1

)
+ 𝜆𝑇−1. (19)
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We can repeat the above arguments until we reach 𝑇 − 1. Then, the resulting upper bound becomes
𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) ≤
𝑇−1∑︁
𝑡=1

𝜎

(
x(𝑇−1)
𝑡 ; X(𝑇−1)

𝑡−1

)
+

𝑇∑︁
𝑡=𝑇

𝜆𝑡 ≤ 𝑇 − 1 +
𝑇∑︁

𝑡=𝑇

𝜆𝑡 , (20)

where the last inequality follows from 𝜎

(
x(𝑇−1)
𝑡 ; X(𝑇−1)

𝑡−1

)
≤ 𝑘 (x(𝑇−1)

𝑡 ,x(𝑇−1)
𝑡 ) ≤ 1. □

4 Discussion

Below, we discuss the remaining open questions in the noise-free setting.

• Lower bound for squared exponential kernel. While our results establish near-optimality
for the Matérn kernel, the optimal simple regret rate under the SE kernel remains unknown.
Since the existing upper bound 𝑂 (ln𝑑+1 𝑇) for MIG [Vakili et al., 2021c] does not matches
𝑂 (ln𝑑/2 𝑇) lower bound5, we conjecture that further room for improvement also exists
in the noise-free setting. Specifically, the exponent 𝑑 + 1 of the MIG is reflected in the
denominator of the exponential factors in our regret Eq. (2). Therefore, we conjecture that
𝑂 (
√
𝑇 exp(−𝐶𝑇2/𝑑)) regret is the best guarantee for the simple regret in the SE kernel.

• Constant cumulative regret in Bayesian setting. By using Lemma 3, we can prove the
same cumulative regret as Eq. (1) up to a logarithmic factor in noise-free GP-UCB or
GP-TS in the Bayesian setting [Srinivas et al., 2010, Russo and Van Roy, 2014a]. However,
the confidence width parameter in the Bayesian setting must scale as 𝛽1/2 = 𝑂 (

√
ln𝑇) to

construct a valid confidence bound. This leads to 𝑂 (
√

ln𝑇) regret in SE and Matérn kernel
with 𝑑 < 𝜈 under the Bayesian setting, whereas the frequentist counterpart guarantees
constant 𝑂 (1) regret (Theorem 1). This is counterintuitive, since, as shown in existing
analyses for noisy settings [Scarlett, 2018, Srinivas et al., 2010], Bayesian regret often
achieves smaller values than the worst-case regret in the frequentist setting. An interesting
direction for future work is to either design a Bayesian algorithm with constant regret or
prove an Ω(

√
ln𝑇) lower bound in the Bayesian setting.

• GP-UCB in simple regret minimization. Our analysis shows that GP-UCB achieves
nearly optimal simple and cumulative regrets under the Matérn kernel. On the other hand,
several algorithms have been proposed that focus on minimizing the simple regret. One of
the most well-known examples is EI, which greedily minimizes the simple regret under a
Bayesian modeling assumption of GP, and has demonstrated good empirical performance
in various applications [Brochu et al., 2010, Snoek et al., 2012]. Based on our theoretical
results, there exists no algorithm that can achieve strictly better simple regret than that of
GP-UCB in the worst-case sense. Nevertheless, as far as we are aware, GP-UCB tends to
exhibit inferior empirical performance compared to EI in simple regret minimization. See,
Appendix B.2. It remains unclear whether this phenomena arises from constant factors or
additional logarithmic terms in the theoretical regret upper bounds, or whether it reflects a
more fundamental gap between worst-case analysis and empirical behavior.

5 Conclusion

This paper shows that GP-UCB achieves nearly-optimal regret by proving a new regret upper bound
for noise-free GP bandits. The key theoretical component of our analysis is a tight upper bound on
the posterior standard deviations of GP tailored to a noise-free setting (Lemma 3). As remarked
in Section 3, Lemma 3 can be applicable beyond the analysis of GP-UCB. Specifically, we expect
that many existing theoretical results for noisy GP bandit settings can be translated to the noise-
free setting by replacing the existing noisy upper bound of the posterior standard deviations with
Lemma 3. For this reason, we believe that our result marks an important step toward advancing the
theory for noise-free GP bandit algorithms.

5This is derived from the best-known cumulative regret upper bound 𝑅𝑇 = 𝑂 (
√︁
𝑇𝛾𝑇 (𝜆2)) [Li and Scarlett,

2022, Salgia et al., 2021, Valko et al., 2013], and lower bound 𝑅𝑇 = Ω(
√︁
𝑇 ln𝑑/2 𝑇) in the noisy setting [Scarlett

et al., 2017].
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A Proofs for Section 3

A.1 Proof of Theorems 1 and 2

We first formally describe the existing noise-free confidence bound.
Lemma 7 (Deterministic confidence bound for noise-free setting, e.g., Corollary 3.11 in [Kanagawa
et al., 2018], Lemma 11 in [Lyu et al., 2019], or Proposition 1 in [Vakili et al., 2021a]). Suppose
Assumption 1 holds. Then, for any sequence (x𝑡 )𝑡∈N+ on X, the following statement holds:

∀𝑡 ∈ N+, ∀x ∈ X, | 𝑓 (x) − 𝜇(x; X𝑡 ) | ≤ 𝐵𝜎(x; X𝑡 ), (21)

where X𝑡 = (x1, . . . ,x𝑡 ).

Although the remaining parts of the proofs are well-known results of GP-UCB, we provide the details
for completeness. Based on the above lemma, we show Eqs. (9) and (10). Regarding 𝑅𝑇 , we have

𝑅𝑇 =

𝑇∑︁
𝑡=1

𝑓 (x∗) − 𝑓 (x𝑡 ) (22)

≤
𝑇∑︁
𝑡=1
[𝜇(x∗; X𝑡 ) + 𝐵𝜎(x∗; X𝑡 )] − [𝜇(x𝑡 ; X𝑡 ) − 𝐵𝜎(x𝑡 ; X𝑡 )] (23)

≤
𝑇∑︁
𝑡=1
[𝜇(x𝑡 ; X𝑡 ) + 𝐵𝜎(x𝑡 ; X𝑡 )] − [𝜇(x𝑡 ; X𝑡 ) − 𝐵𝜎(x𝑡 ; X𝑡 )] (24)

= 2𝐵
𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡 ), (25)

where the first inequality follows from Lemma 7, and the second inequality follows from the UCB-
selection rule for x𝑡 . Similarly to the case of cumulative regret, we have

𝑟𝑇 = 𝑓 (x∗) − 𝑓 (x̂𝑇 ) (26)
≤ min

𝑡∈[𝑇 ]
𝑓 (x∗) − 𝑓 (x𝑡 ) (27)

≤ min
𝑡∈[𝑇 ]
[𝜇(x∗; X𝑡 ) + 𝐵𝜎(x∗; X𝑡 )] − [𝜇(x𝑡 ; X𝑡 ) − 𝐵𝜎(x𝑡 ; X𝑡 )] (28)

≤ min
𝑡∈[𝑇 ]
[𝜇(x𝑡 ; X𝑡 ) + 𝐵𝜎(x𝑡 ; X𝑡 )] − [𝜇(x𝑡 ; X𝑡 ) − 𝐵𝜎(x𝑡 ; X𝑡 )] (29)

= 2𝐵 min
𝑡∈[𝑇 ]

𝜎(x𝑡 ; X𝑡 ), (30)

where the first inequality follows from the definition of x̂𝑇 . Finally, the desired results are obtained
by combining the above inequalities with Eqs. (11)–(13). □

A.2 Proof of Lemma 3

We prove the following Lemma 8, which is a detailed version of Lemma 3 including the dependence
against constant factors.
Lemma 8 (Detailed version of posterior standard deviation upper bound for SE and Matérn kernel).
Fix any compact input domainX ⊂ R𝑑 , and kernel function 𝑘 : X×X → R that satisfies 𝑘 (x,x) ≤ 1
for allx ∈ X. Furthermore, let𝐶SE,𝐶Mat, 𝜆SE, 𝜆Mat > 0,𝑇SE,𝑇Mat ≥ 2 be the constants6 that satisfies
∀𝜆 ∈ (0, 𝜆SE],∀𝑡 ≥ 𝑇SE, 𝛾𝑡 (𝜆2) ≤ 𝐶SE (ln(𝑡/𝜆2))𝑑+1 and ∀𝜆 ∈ (0, 𝜆Mat],∀𝑡 ≥ 𝑇Mat, 𝛾𝑡 (𝜆2) ≤
𝐶Mat (𝑡/𝜆2) 𝑑

2𝜈+𝑑 (ln(𝑡/𝜆2)) 2𝜈
2𝜈+𝑑 for 𝑘 = 𝑘SE and 𝑘 = 𝑘Matérn, respectively. Then, the following

statements hold for any 𝑇 ∈ N+ and any input sequence x1, . . . ,x𝑇 ∈ X:

6The existence of these constants are guaranteed by the upper bound of MIG [Vakili et al., 2021c], which
shows 𝛾𝑇 (𝜆2) = 𝑂 (ln𝑑+1 (𝑇/𝜆2)) and 𝛾𝑇 (𝜆2) = 𝑂 ((𝑇/𝜆2) 𝑑

2𝜈+𝑑 ln
2𝜈

2𝜈+𝑑 (𝑇/𝜆2)) (as 𝑇 → ∞, 𝜆 → 0) under
𝑘 = 𝑘SE and 𝑘 = 𝑘Matérn, respectively. Note that these constants do not depend on 𝑇 , but may depend on 𝑑, ℓ,
𝜈, and the diameter of X.
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• For 𝑘 = 𝑘SE,

min
𝑡∈[𝑇 ]

𝜎(x𝑡 ; X𝑡−1) ≤
{

1 if 𝑇 < 𝑇SE,√
𝑇 exp

(
− 1

2𝐶SE𝑇
1

𝑑+1

)
if 𝑇 ≥ 𝑇SE,

(31)

𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) ≤ 𝑇SE + (𝑑 + 1)
(
𝐶SE

2

)− 3𝑑+3
2

Γ

(
3𝑑 + 3

2

)
, (32)

where 𝐶SE = (6𝐶SE)−
1

𝑑+1 and 𝑇SE = max{𝑇SE, 𝑇
(𝜆)
SE , ⌈(𝑑 + 1)𝑑+1/𝐶𝑑+1

SE ⌉ + 1} with 𝑇
(𝜆)
SE =

min{𝑇 ∈ N+ | ∀𝑡 ≥ 𝑇, 𝑡 exp(−𝐶SE𝑡
1/(𝑑+1) ) ≤ 𝜆2

SE}.

• For 𝑘 = 𝑘Matérn with 𝜈 > 1/2,

min
𝑡∈[𝑇 ]

𝜎(x𝑡 ; X𝑡−1) ≤
{

1 if 𝑇 < 𝑇Mat,

𝐶
1/2
Mat𝑇

− 𝜈
𝑑 (ln𝑇) 𝜈𝑑 if 𝑇 ≥ 𝑇Mat,

(33)

𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) ≤


𝑇Mat + 𝐶1/2

Mat
𝑑

𝑑−𝜈𝑇
𝑑−𝜈
𝑑 (ln𝑇) 𝜈𝑑 if 𝑑 > 𝜈,

𝑇Mat + 𝐶1/2
Mat (ln𝑇)

2 if 𝑑 = 𝜈,

𝑇Mat + 𝐶1/2
Mat

Γ ( 𝜈
𝑑
+1)

( 𝜈𝑑 −1)
𝜈
𝑑
+1 if 𝑑 < 𝜈,

(34)

where 𝐶Mat = max
{
1,

(
2 + 2𝜈

𝑑

) 2𝜈
𝑑 (6𝐶Mat)1+

2𝜈
𝑑

}
and 𝑇Mat = max{4, 𝑇Mat, 𝑇

(𝜆)
Mat} with

𝑇
(𝜆)
Mat = min{𝑇 ∈ N+ | ∀𝑡 ≥ 𝑇, 𝐶Mat𝑡

− 2𝜈
𝑑 (ln 𝑡) 2𝜈

𝑑 ≤ 𝜆2
Mat}.

The upper bound in Lemma 8 depends on the quantities 𝐶SE, 𝑇SE, 𝐶Mat, 𝑇Mat > 0, which are related
to the implied constants in the upper bounds of the MIG. However, under the fixed 𝑑, ℓ, and 𝜈, 𝐶SE,
𝑇SE, 𝐶Mat, 𝑇Mat > 0 are also constants, which implies the conclusions of Lemma 3.

Proof of Lemma 8. When 𝑘 = 𝑘SE, we set 𝜆2
𝑡 = 𝑡 exp(−𝐶SE𝑡

1
𝑑+1 ), 𝑇 = 𝑇SE := max{𝑇SE, 𝑇

(𝜆)
SE , ⌈(𝑑 +

1)𝑑+1/𝐶𝑑+1
SE ⌉ + 1}. From the definition of 𝜆2

𝑡 and 𝑇SE, for any 𝑡 ≥ 𝑇SE, we have

𝛾𝑡 (𝜆2
𝑡 ) ≤ 𝐶SE

[
ln

(
𝑡

𝜆2
𝑡

)]𝑑+1
(35)

= 𝐶SE

[
ln exp

(
𝐶SE𝑡

1
𝑑+1

)]𝑑+1
(36)

= 𝐶SE𝐶
𝑑+1
SE 𝑡. (37)

Furthermore,

𝐶SE𝐶
𝑑+1
SE 𝑡 ≤ 𝑡 − 1

3
⇔ 𝐶𝑑+1

SE ≤
𝑡 − 1
3𝐶SE𝑡

(38)

⇐ 𝐶𝑑+1
SE ≤

1
6𝐶SE

(39)

⇔ 𝐶SE ≤
(

1
6𝐶SE

) 1
𝑑+1

, (40)

where the second line follows from the inequality 𝑡 − 1 ≥ 𝑡/2 for all 𝑡 ≥ 𝑇SE ≥ 2. By noting the
definition of 𝐶SE, we conclude that ∀𝑡 ≥ 𝑇SE, 𝛾𝑡 (𝜆2

𝑡 ) ≤ 𝐶SE𝐶
𝑑+1
SE 𝑡 ≤ 𝑡−1

3 from the above inequalities,
which implies that Lemmas 4 and 5 hold with 𝜆2

𝑡 = 𝑡 exp(−𝐶SE𝑡
1

𝑑+1 ) and 𝑇 = 𝑇SE. Eq. (31) directly
follows from Lemma 4 using the fact 𝜎(x𝑡 ; X𝑡−1) ≤ 𝑘 (x𝑡 ,x𝑡 ) ≤ 1. As for Eq. (32), Lemma 5
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implies
𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) ≤ 𝑇SE +
𝑇∑︁

𝑡=𝑇SE

𝜆𝑡 (41)

≤ 𝑇SE +
∫ 𝑇

𝑇SE−1

√
𝑡 exp

(
−1

2
𝐶SE𝑡

1
𝑑+1

)
d𝑡 (42)

≤ 𝑇SE +
∫ 𝑇

1

√
𝑡 exp

(
−1

2
𝐶SE𝑡

1
𝑑+1

)
d𝑡, (43)

where the second line follows from the fact that the function 𝑔(𝑡) := 𝑡 exp(−𝐶SE𝑡
1/(𝑑+1) ) is non-

increasing for 𝑡 ≥ 𝑇SE − 1. In fact, we have

𝑔′ (𝑡) = exp
(
−𝐶SE𝑡

1
𝑑+1

) (
1 − 𝐶SE

𝑑 + 1
𝑡

1
𝑑+1

)
, (44)

which implies 𝑔′ (𝑡) ≤ 0 for 𝑡 ≥ 𝑇SE − 1 ≥ (𝑑 + 1)𝑑+1/𝐶𝑑+1
SE . To bound the quantity∫ 𝑇

1
√
𝑡 exp

(
− 1

2𝐶SE𝑡
1

𝑑+1

)
d𝑡, we further derive the following upper bound with 𝐶 := 𝐶SE/2 > 0:∫ 𝑇

1

√
𝑡 exp

(
−𝐶𝑡 1

𝑑+1

)
d𝑡 =

∫ 𝐶𝑇1/(𝑑+1)

𝐶

( 𝑢
𝐶

) (𝑑+1)/2
𝑒−𝑢 (𝑑 + 1)

( 𝑢
𝐶

)𝑑 1
𝐶

d𝑢 (∵ 𝑢 = 𝐶𝑡1/(𝑑+1) )

(45)

= (𝑑 + 1)𝐶−(3𝑑+3)/2
∫ 𝐶𝑇1/(𝑑+1)

𝐶

𝑢 (3𝑑+1)/2𝑒−𝑢d𝑢 (46)

≤ (𝑑 + 1)𝐶−(3𝑑+3)/2
∫ ∞

0
𝑢 (3𝑑+1)/2𝑒−𝑢d𝑢 (47)

= (𝑑 + 1)𝐶−(3𝑑+3)/2Γ

(
3𝑑 + 3

2

)
. (48)

Next, when 𝑘 = 𝑘Matérn, we set 𝜆2
𝑡 = 𝐶Mat𝑡

− 2𝜈
𝑑 (ln 𝑡) 2𝜈

𝑑 and 𝑇 = max{4, 𝑇Mat, 𝑇
(𝜆)
Mat} with 𝐶Mat =(

2 + 2𝜈
𝑑

) 2𝜈
𝑑 (6𝐶Mat)1+

2𝜈
𝑑 . Then, for any 𝑡 ≥ 𝑇Mat, it holds that

𝛾𝑡 (𝜆2
𝑡 ) ≤ 𝐶Mat

(
𝑡

𝜆2
𝑡

) 𝑑
2𝜈+𝑑

[
ln

(
𝑡

𝜆2
𝑡

)] 2𝜈
2𝜈+𝑑

(49)

= 𝐶Mat𝐶
− 𝑑

2𝜈+𝑑
Mat 𝑡 (ln 𝑡)− 2𝜈

2𝜈+𝑑
[
ln

(
𝐶−1

Mat𝑡
𝑑+2𝜈
𝑑 (ln 𝑡)− 2𝜈

𝑑

)] 2𝜈
2𝜈+𝑑 (50)

= 𝐶Mat𝐶
− 𝑑

2𝜈+𝑑
Mat 𝑡 (ln 𝑡)− 2𝜈

2𝜈+𝑑

[
ln

(
𝐶−1

Mat

)
+ 𝑑 + 2𝜈

𝑑
(ln 𝑡) − 2𝜈

𝑑
(ln ln 𝑡)

] 2𝜈
2𝜈+𝑑

(51)

≤ 𝐶Mat𝐶
− 𝑑

2𝜈+𝑑
Mat 𝑡 (ln 𝑡)− 2𝜈

2𝜈+𝑑

[
2𝑑 + 2𝜈

𝑑
(ln 𝑡)

] 2𝜈
2𝜈+𝑑

(52)

= 𝐶Mat𝐶
− 𝑑

2𝜈+𝑑
Mat 𝑡

(
2𝑑 + 2𝜈

𝑑

) 2𝜈
2𝜈+𝑑

, (53)

where the fourth line follows from𝐶Mat ≥ 1⇒ 𝐶Mat ≥ 1/𝑡 ⇔ ln(𝐶−1
Mat) ≤ ln 𝑡 for 𝑡 ≥ 1. Furthermore,

𝐶Mat𝐶
− 𝑑

2𝜈+𝑑
Mat 𝑡

(
2𝑑 + 2𝜈

𝑑

) 2𝜈
2𝜈+𝑑
≤ 𝑡 − 1

3
⇔ 3𝐶Mat

𝑡

𝑡 − 1

(
2𝑑 + 2𝜈

𝑑

) 2𝜈
2𝜈+𝑑
≤ 𝐶

𝑑
2𝜈+𝑑
Mat (54)

⇔
(

3𝐶Mat𝑡

𝑡 − 1

)1+ 2𝜈
𝑑

(
2 + 2𝜈

𝑑

) 2𝜈
𝑑

≤ 𝐶Mat (55)

⇐ (6𝐶Mat)1+
2𝜈
𝑑

(
2 + 2𝜈

𝑑

) 2𝜈
𝑑

≤ 𝐶Mat. (56)
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Combining the above inequalities, we can confirm ∀𝑡 ≥ 𝑇Mat, 𝛾𝑡 (𝜆2
𝑡 ) ≤ 𝑡−1

3 . Therefore, Lemmas 4
and 5 holds with 𝜆2

𝑡 = 𝐶Mat𝑡
− 2𝜈

𝑑 (ln 𝑡) 2𝜈
𝑑 and 𝑇 = 𝑇Mat. Here, Eq. (33) is the direct consequence of

Lemmas 4. As for Eq. (34), we have
𝑇∑︁
𝑡=1

𝜎(x𝑡 ; X𝑡−1) ≤ 𝑇Mat +
𝑇∑︁

𝑡=𝑇Mat

𝜆𝑡 (57)

≤ 𝑇Mat + 𝐶1/2
Mat

∫ 𝑇

𝑇Mat−1
𝑡−

𝜈
𝑑 (ln 𝑡) 𝜈𝑑 d𝑡 (58)

≤ 𝑇Mat + 𝐶1/2
Mat

∫ 𝑇

1
𝑡−

𝜈
𝑑 (ln 𝑡) 𝜈𝑑 d𝑡, (59)

where the second line follows from the fact that the function 𝑔(𝑡) := 𝑡−
2𝜈
𝑑 (ln 𝑡) 2𝜈

𝑑 is non-increasing
for 𝑡 ≥ 𝑇Mat − 1 ≥ 3 > 𝑒. Indeed, we have

𝑔′ (𝑡) = 2𝜈
𝑑
𝑡−

2𝜈
𝑑
−1 (ln 𝑡) 2𝜈

𝑑

(
(ln 𝑡)−1 − 1

)
, (60)

which implies 𝑔′ (𝑡) ≤ 0 for 𝑡 ≥ 𝑒. The desired results are obtained by bounding the quantity∫ 𝑇

1 𝑡−
𝜈
𝑑 (ln 𝑡) 𝜈𝑑 d𝑡 from above. When 𝑑 > 𝜈, we have∫ 𝑇

1
𝑡−

𝜈
𝑑 (ln 𝑡) 𝜈𝑑 d𝑡 ≤ (ln𝑇) 𝜈𝑑

∫ 𝑇

1
𝑡−

𝜈
𝑑 d𝑡 = (ln𝑇) 𝜈𝑑

[
𝑑

𝑑 − 𝜈 𝑡
𝑑−𝜈
𝑑

]𝑇
1
≤ 𝑑

𝑑 − 𝜈𝑇
𝑑−𝜈
𝑑 (ln𝑇) 𝜈𝑑 . (61)

When 𝑑 = 𝜈, ∫ 𝑇

1
𝑡−

𝜈
𝑑 (ln 𝑡) 𝜈𝑑 d𝑡 ≤ (ln𝑇)

∫ 𝑇

1
𝑡−1d𝑡 = (ln𝑇)2. (62)

When 𝑑 < 𝜈, we have∫ 𝑇

1
𝑡−

𝜈
𝑑 (ln 𝑡) 𝜈𝑑 d𝑡 =

∫ ln𝑇

0
𝑒−( 𝜈𝑑 −1)𝑢𝑢 𝜈

𝑑 d𝑢 (∵ 𝑢 = ln 𝑡) (63)

≤
∫ ∞

0
𝑒−( 𝜈𝑑 −1)𝑢𝑢 𝜈

𝑑 d𝑢 (64)

=
Γ( 𝜈

𝑑
+ 1)(

𝜈
𝑑
− 1

) 𝜈
𝑑
+1 , (65)

where the last line follows from the standard property of Gamma function:
∫ ∞

0 𝑒−𝜆𝑢𝑢𝑏d𝑢 = Γ(𝑏 +
1)/𝜆𝑏+1 for any 𝜆 > 0 and 𝑏 > −1 (e.g., Equation 6.1.1 in [Abramowitz and Stegun, 1968]). □

B Detail of the Experiment

B.1 Experimental settings for Figure 1

We give the detailed experimental settings used to plot Figure 1.

• Objective function. We define the true underlying objective function as 𝑓 (·) =∑50
𝑚=1 𝑐𝑚𝑘 (x(𝑚) , ·), where 𝑐𝑚 ∼ Uniform( [−1, 1]) and x(𝑚) ∼ Uniform( [0, 1]2) are inde-

pendently generated random variables. Note that by the definition of the RKHS, 𝑓 ∈ H𝑘

with ∥ 𝑓 ∥𝑘 =

√︃∑50
𝑚=1

∑50
𝑚̃=1 𝑐𝑚𝑐𝑚̃𝑘 (x(𝑚) ,x(𝑚̃) ).

• Kernel. We fix the lengthscale parameter ℓ as ℓ = 0.25 in all experiments. We use the same
kernel function in the GP-model used in the algorithms as the kernel leveraged to generate
the objective function.

• Other parameters. We define the input domain X as the uniformly aligned 50 × 50 grid
points on [0, 1]2. In all algorithms, we set the confidence width parameter 𝛽1/2 to the exact
RKHS norm. Furthermore, we set the initial batch size in PE and REDS as 5. Finally, we
define the common initial point x1 for all the algorithms as the uniformly sampled point
from X.

In the above-described setting, we conduct experiments with 3000 different seeds.

16



0 10 20 30 40 50

Number of steps
10−4

10−3

10−2

10−1

100

Si
m

pl
e 

re
gr

et

Matérn (ν= 3/2)
GP-UCB
EI

0 10 20 30 40 50

Number of steps

10−5

10−4

10−3

10−2

10−1

100

Si
m

pl
e 

re
gr

et

Matérn (ν= 5/2)
GP-UCB
EI

Figure 2: Comparison between GP-UCB and EI in simple regret minimization over 100 different
seeds. We conduct experiments with Matérn kernel under 𝜈 = 3/2 (left) and 𝜈 = 5/2 (right).

B.2 Comparison between EI and GP-UCB

Under the same setting as the previous subsection, we also compare GP-UCB’s empirical performance
with that of EI in simple regret minimization. Figure B.2 shows the results. We can confirm that,
although GP-UCB achieves nearly-optimal worst-case regret, the empirical performance of GP-UCB
is consistently worse than that of EI.
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NeurIPS Paper Checklist
1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide a “contribution” paragraph in the introduction, which summarizes
our main contributions. The generality of our results is also discussed in Section 3.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: In Section 4, we discuss the remaining open questions that this paper cannot
resolve.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate ”Limitations” section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The au-
thors should reflect on how these assumptions might be violated in practice and what
the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Regarding Theorems 1, 2, ??, and Lemma 3, we describe the complete proofs
in the appendix, while proof sketches are provided in the main paper. Regarding Lemmas
4 and 5, we provide complete proofs in the main paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We provide the detailed setting to reproduce Figure 1 in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture
fully might suffice, or if the contribution is a specific model and empirical evaluation,
it may be necessary to either make it possible for others to replicate the model with
the same dataset, or provide access to the model. In general. releasing code and data
is often one good way to accomplish this, but reproducibility can also be provided via
detailed instructions for how to replicate the results, access to a hosted model (e.g., in
the case of a large language model), releasing of a model checkpoint, or other means
that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all sub-
missions to provide some reasonable avenue for reproducibility, which may depend on
the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We do not provide code since the central contribution is on the theoretical
aspect.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: All the parameters to plot Figure 1 are described in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of

detail that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: We do not provide an error bar to enhance the clarity of Figure 1. This is not
related to our contribution.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer ”Yes” if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [No]
Justification: We do not provide computer resource information since the computational
time is unrelated to our contribution.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: This paper focuses on the theoretical aspect, and does not relate to any
particular applications.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact spe-
cific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: This paper poses no such risks.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released

with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model or
implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contri-
bution of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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