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Abstract
Generating accurate 3D conformations of small
molecules from their 2D representations is a cen-
tral task in computational drug discovery, im-
pacting molecular docking, virtual screening, and
property prediction. While most recent advances
rely on diffusion-based generative models, these
methods come with limitations such as slow sam-
pling and architectural rigidity. In this work, we
demonstrate that autoregressive language models
can effectively learn to generate 3D molecular
conformations from text-only data. We propose
a simple yet expressive representation that com-
bines canonical SMILES with raw 3D atomic co-
ordinates in a unified tokenized format. Using
this approach, we train language models ranging
from 100 million to 1 billion parameters on a
dataset curated from GEOM-Drugs. While our
models currently perform slightly behind the best
diffusion-based methods, they achieve competi-
tive results and show consistent improvements
with scale. We derive empirical scaling laws
demonstrating that generation quality improves
predictably with model size and data, suggesting
a clear path toward closing the performance gap.
These findings indicate that language models are
a scalable and flexible alternative for 3D molecu-
lar generation, with potential for further improve-
ment through recent advancements in large lan-
guage models, such as in-context learning and
post-training adaptation.

1. Introduction
The three-dimensional (3D) structure of a molecule plays a
pivotal role in determining its physicochemical properties

1YerevaNN Research Lab, Yerevan, Armenia 2Yerevan State
University, Yerevan, Armenia. Correspondence to: Menua
Bedrosian <{menua.bedrosian}@ysu.am>.

Proceedings of the ICML 2025 Workshop on Multi-modal Foun-
dation Models and Large Language Models for Life Sciences,
Vancouver, Canada. 2025. Copyright 2025 by the author(s).

and biological activity. Accurate conformer generation is
critical in many downstream applications, including molecu-
lar docking and rational drug design. Traditional approaches
such as X-ray crystallography, and density functional theory
(DFT) can yield highly accurate structures (Hawkins, 2017;
Pracht et al., 2020), but they are expensive and impractical
at scale.

To address this, deep learning-based generative methods
have emerged, with diffusion models representing the cur-
rent state-of-the-art (Ganea et al., 2021; Jing et al., 2022).
These models have shown strong performance on bench-
mark datasets, but they suffer from several limitations: ex-
pensive multi-step sampling, restricted flexibility at infer-
ence, and strong architectural coupling to the training frame-
work.

Recent works have begun exploring large language models
(LLMs) as an alternative approach (Zhang et al., 2023; Zho-
lus et al., 2024), but thus far, they have not demonstrated
clear competitiveness with diffusion models on key bench-
marks. In this work, we investigate the potential of LLMs
for direct 3D conformer generation from molecular 2D rep-
resentations. We find that while LLMs do not yet surpass the
most recent diffusion-based models, their performance con-
sistently improves with scale and training data. This trend
suggests a promising path forward. Our key contributions
are:

1. We introduce a token-based representation that merges
2D molecular topology and 3D conformation into a
text-only format suitable for LLM training.

2. We train LangMol - foundation models from scratch
(100M–1B parameters) on a curated dataset from
GEOM-Drugs and show competitive performance on
standard metrics.

3. We derive empirical scaling laws showing that model
performance improves as the model size and the num-
ber of tokens increase, highlighting the scalability of
this approach.
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LangMol

SMILES
COc1cc(C)c2occ(/C(C)=N\\O)c2c1

3D Coordinates
-3.0913 -2.8743 -0.0118 C 

 -3.3589 -1.4947 -0.0085 O 
... 

Training:
[[SMILES]COc1...[/SMILES][CONFORMER]C<-3.0913,-2.8742,-0.0117>...[/CONFORMER],
[SMILES]COc1...[/SMILES][CONFORMER]C<-4.4248,-1.6320,-0.0025>...[/CONFORMER],

...]

Embedded SMILES 
C<-3.0913,-2.8742,-0.0117>O<-3.3589,-1.4947,-0.0085>c....

Inference:
[SMILES]COc1cc(C)c2occ(/C(C)=N\\O)c2c1[/SMILES][CONFORMER]

Figure 1. Overview of LangMol. The 2D SMILES and 3D conformer data get combined in the embedded SMILES format (left). The
model is trained on pairs of SMILES and embedded SMILES. Inference is done by prompting the SMILES (right).

2. Related work
Molecular Conformation Generation The generation
and optimization of molecular conformers have been stud-
ied in the cheminformatics field extensively by (Hawkins,
2017; Lagorce et al., 2009; Bolton et al., 2011; Cole et al.,
2018; Miteva et al., 2010). For example, Axelrod & Gomez-
Bombarelli (2022) report that generating conformers for a
single drug-like molecule can require up to 90 core-hours,
making these methods impractical for large-scale applica-
tions.

Diffusion-Based Models. Recent diffusion models like Ge-
oMol (Ganea et al., 2021), Torsional Diffusion (Jing et al.,
2022), Symphony (Daigavane et al., 2023), and ET-Flow
(Hassan et al., 2024) achieve state-of-the-art accuracy by
modeling torsional degrees of freedom and leveraging equiv-
ariant architectures. However, they require expensive itera-
tive sampling and often rely on handcrafted features, which
hinder scalability. Fast inference variants (Zhang & Chen,
2022) mitigate this to some extent, but do not fully eliminate
the bottlenecks.

Language Models for Molecular Modeling. Large lan-
guage models (LLMs) like GPT-3 (Brown et al., 2020) and
LLaMA (Dubey et al., 2024) have shown strong generaliza-
tion through in-context learning and prompt conditioning.
In chemistry, models like ChemLactica (Guevorguian et al.,
2024) and MolT5 (Edwards et al., 2022) have demonstrated
the utility of language models in learning molecular syntax
and semantics. Initial efforts to apply LLMs to 3D tasks,
such as Tora3D (Zhang et al., 2023) and BindGPT (Zholus
et al., 2024), are promising, but have yet to match the per-
formance of diffusion-based models on standard conformer
generation benchmarks.

3. Methods
Data Preparation We construct our training dataset
from the GEOM-Drugs collection (Axelrod & Gomez-

Bombarelli, 2022), which provides high-quality 3D con-
formers for drug-like molecules. Each training instance
consists of two paired representations: a canonical SMILES
string describing the 2D molecular graph, and an embedded
SMILES string that extends this sequence by appending
Cartesian 3D coordinates to each atomic symbol.

For molecules with multiple conformers, we generate
one example per conformer, keeping the same canonical
SMILES while varying the embedded conformer representa-
tion. We format each sequence using explicit textual delim-
iters—[SMILES], [/SMILES], [CONFORMER], [/CON-
FORMER]—as introduced in Guevorguian et al. (2024),
which helps the model distinguish between structural and
geometric content. A summarized example is shown in
Figure 1; tokenization details are provided in Appendix A.

This format provides several advantages:

(1) It allows the model to learn directly from raw 3D coor-
dinates bypassing the need for torsion angle preprocessing
or engineered without the need for additional preprocessing
or engineered features, as supported by (Wang et al., 2024;
Zholus et al., 2024);

(2) It merges two distinct modalities—2D molecular topol-
ogy and 3D spatial conformation—into a unified, text-only
format that supports end-to-end training;

Model Training We pretrain decoder-only autoregressive
language models with sizes ranging from 100 million to 1
billion parameters. These models follow the LLaMA 3.2
architecture (Dubey et al., 2024), with a reduced context
length of 2048 tokens to improve training efficiency. The
models are trained starting from a random initialization.
Model configuration details and training hyperparameters
are listed in Appendix B. We train each model for 4 epochs
on the full dataset. Learning rate schedules follow warmup-
stable-decay technique described by Wen et al. (2024), and
checkpoint-specific decay phases are applied post hoc to
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Table 1. Molecule conformer generation results on GEOM-DRUGS (δ = 0.75Å).

Recall Precision
Coverage ↑ AMR ↓ Coverage ↑ AMR ↓

Method Mean Median Mean Median Mean Median Mean Median

GeoDiff 42.10 37.80 0.835 0.809 24.90 14.50 1.136 1.090
GeoMol 44.60 41.40 0.875 0.834 43.00 36.40 0.928 0.841
Torsional Diff. 72.70 80.00 0.582 0.565 55.20 56.90 0.778 0.729
ET-Flow 79.53 84.57 0.452 0.419 74.38 81.04 0.541 0.470
MCF - L 84.70 92.20 0.390 0.247 66.80 71.30 0.618 0.530

LangMol-1B 59.38 58.33 0.710 0.610 57.08 57.14 0.888 0.712

stabilize final performance.

Inference At inference time, the model is prompted with
a canonical SMILES string and tasked with autoregressively
generating a corresponding 3D conformation. Our approach
supports efficient batched prompting, enabling scalable and
parallelizable generation. We use temperature sampling to
balance diversity and fidelity. Appendix D explores the
effects of different sampling temperatures, as well as alter-
native sampling strategies and their failure cases.

4. Experiments
Evaluation Setup We follow the dataset splits and pre-
processing setup from Ganea et al. (2021), and process our
dataset into training, validation, and test splits (243,473 /
30,433 / 1,000 molecules, respectively). Each molecule in
the training set is limited to a maximum of 30 conformers
to prevent class imbalance. After tokenizing the curated
dataset with LlaMA 3 (including special tokens), we obtain
roughly 2.5 billion tokens.

To evaluate our model, we generate 2k conformers per
molecule in the test set. We then compute Coverage and
Average Minimum RMSD (AMR) using RMSD-based met-
rics from prior literature (Axelrod & Gomez-Bombarelli,
2022; Ganea et al., 2021), applying a threshold of 0.75Å
for coverage. Precision and recall are reported separately,
reflecting how well the generated ensemble matches the
diversity and accuracy of ground-truth conformers. Exact
metric definitions are provided in Appendix E.

Performance Results Table 1 compares our largest model,
LangMol (1B parameters, trained for 4 epochs), against
leading diffusion-based models. Although LangMol still
lags behind the best-performing methods such as MCF
and ET-Flow, it achieves surprisingly competitive re-
sults—particularly in recall coverage and precision—despite
requiring only a single-pass generation, without iterative
sampling or equivariant feature design. Note that the trade-
off between precision and recall can be controlled after

pretraining, at the generation phase. See Appendix D for
more details.

Does it Scale? Transformer-based language models are
known to be scalable with respect to number of parameters
and number of tokens with no signs of saturation (Kaplan
et al., 2020; Hoffmann et al., 2022). To verify whether
scaling effects hold for molecular conformation generation
we train models of four sizes (100M, 170M, 380M, 1B) for
1, 2, 3 and 4 epochs of the same data. Fig. 2 shows the
training losses for all 16 combinations. Furthermore, we
fit L(N,D) = A · N b ·Dc formula on these points using
L-BFGS in the log-log space, and obtain L = 11.6436 ·
N−0.0641 ·D−0.0499. Clearly, the loss gets better on both
axes.

Next, we validate that lower loss corresponds to better per-
formance metrics. Fig. 2 (right) shows that both coverage
metrics (precision and recall) increase with lower values of
training loss. By combining this with the scaling law de-
rived above we can hypothesize that larger parameter count
and larger dataset size should continue to improve the per-
formance of our approach. The experiments for validating
this with larger N and D is left for future work.

5. Conclusion and Future Work
In this work we showed that autoregressive language models
are a viable solution for molecular conformation generation.
While our LangMol was not able to beat state-of-the-art met-
rics obtained with diffusion models, we have demonstrated
a viable path forward.

We have shown that larger language models with larger
data generate better conformers. One obvious direction for
future work is to verify the scaling properties with larger
experiments. We believe this will require significantly larger
datasets, as repeating the same data for more than four
epochs will bring diminishing improvements (Muennighoff
et al., 2023).

In parallel, we encourage future research on improving the
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Figure 2. The dependence of training loss on model size and number of the tokens seen during training (left), scaling law derived from
these values (center), and the dependence of coverage metrics on training loss (right).

scaling parameters demonstrated in this paper. Such im-
provements might come from better tokenizers, better fil-
tered datasets, post-training, and in-context learning.

Next, we noticed that the conformers generated by both
diffusion and autoregressive approaches suffer from physi-
cal inaccuracies. We strongly believe that tools similar to
PoseBusters (Buttenschoen et al., 2024) should become an
integral part of the evaluation process to identify critical
errors of these generative models.

Finally, practical applications of conformer generation meth-
ods might require very high speed of execution. We believe
the recipe should be the following: training the largest and
most powerful models, then distilling them into smaller,
high performance models. We hope this work motivates
more research on scalable and accurate conformer genera-
tion.
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A. Tokenization Format
Our novel approach to molecular data embedding integrates 3D conformational information directly into the SMILES string.
For each atom in a given SMILES sequence, its corresponding 3D Cartesian coordinates are appended immediately to the
right of the atom symbol, enclosed within angle brackets (e.g., C<-4.4248,-1.6320,-0.0025>). This process is applied
sequentially across the entire SMILES string, creating a comprehensive, conformer-aware representation. To delineate
the distinct data types within this combined string, we employ specific tags: the entire SMILES string is enclosed by
[SMILES] and [/SMILES] tags, while the full embedded string, including the coordinates, is wrapped by [CONFORMER]
and [/CONFORMER] tags. This structured format constitutes a single data sample. To encourage the model’s ability to
learn conformational diversity, we generate multiple such samples for a single SMILES string by repeating the SMILES
but embedding the coordinates from different conformers. For clarity in presentation, atom symbols are color-coded blue,
their associated coordinates are green, and all structural tags (including ring closure numbers and the aforementioned [ ]
delimiters) are rendered in red.

SMILES

COc1cc(C)c2occ(/C(C)=N\\O)c2c1

Coordinates

• C -4.4249 -1.632 -0.0026

• O -3.0393 -1.8671 0.0027

• C -2.1872 -0.7982 0.0015

• C -0.8374 -1.1251 0.0027

• C 0.1 -0.0993 0.0013

• C -0.355 1.2338 -0.0001

• C -1.7003 1.5809 -0.0016

• C -2.6081 0.5364 -0.0008

• C -2.1212 3.0164 0.0008

• O 0.694 2.0969 -0.0016

• C 1.8047 1.3443 -0.001

• C 1.5442 0.0001 0.0002

• C 2.5375 -1.06 -0.0008

• N 3.8049 -0.9288 -0.0001

• O 4.3565 0.3554 0.0018

• C 2.0797 -2.4855 -0.0025

Coordinates Embedded SMILES

C<-4.4248,-1.6320,-0.0025>O<-3.0392,-1.8670,0.0026>c<-2.1872,-0.7981,0.0015>1c<-2.6081,0.5364,-
0.0008>c<-1.7003,1.5809,-0.0015>(C<-2.1212,3.0163,0.0007>)c<-0.3550,1.2337,-0.0001>2o<0.6940,2.0969,-
0.0016>c<1.8046,1.3442,-0.0009>c<1.5441,0.0001,0.0001>(/C<2.5374,-1.0599,-0.0007>(C<2.0797,-2.4855,-
0.0025>)=N<3.8049,-0.9288,-0.0001>\\O<4.3564,0.3554,0.0017>)c<0.1000,-0.0992,0.0012>2c<-0.8373,-
1.1250,0.0026>1

6
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Sample in Dataset

[SMILES]COc1cc(C)c2occ(/C(C)=N\O)c2c1[/SMILES][CONFORMER]C<-4.4248,-1.6320,-0.0025>O<-3.0392,-
1.8670,0.0026>c<-2.1872,-0.7981,0.0015>1c<-2.6081,0.5364,-0.0008>c<-1.7003,1.5809,-0.0015>(C<-
2.1212,3.0163,0.0007>)c<-0.3550,1.2337,-0.0001>2o<0.6940,2.0969,-0.0016>c<1.8046,1.3442,-
0.0009>c<1.5441,0.0001,0.0001>(/C<2.5374,-1.0599,-0.0007>(C<2.0797,-2.4855,-0.0025>)=N<3.8049,-0.9288,-
0.0001>\\O<4.3564,0.3554,0.0017>)c<0.1000,-0.0992,0.0012>2c<-0.8373,-1.1250,0.0026>1[/CONFORMER]

B. Architecture and Hyperparameters
We trained four autoregressive language models based on the LLaMA 3.2 architecture, ranging from 100 million to 1
billion parameters. The architectural configurations for each model, including the number of layers, hidden dimensions, and
attention heads, are detailed in table B. All models were trained using a context length of 2048. The training hyperparameters
used for all models are summarized in table B. Training was performed on 6 NVIDIA H100 80GB GPUs using the
Torch-Titan infrastructure (Liang et al., 2025). The models were trained for four epochs on a dataset consisting of 2.5 billion
tokens per epoch, totaling 10 billion tokens seen by each model. Inputs were packed and tokenization was done using the
LLaMA 3 tokenizer.

A warmup-stable-decay (Edwards et al., 2022) learning rate schedule was used: a linear warmup over the first 200 steps,
followed by a stable phase, and finally a linear decay over the last 10 percent of the total training steps. For each epoch,
we saved a primary checkpoint and then applied an additional linear learning rate decay over 1000 steps to generate finer
checkpoints used in scaling law analysis. This setup was chosen to isolate model behavior in the stable training regime and
observe smooth transitions during the decay phase. In addition to the quantitative tables, Figure shows the training loss
curves of the 1B model across the full training trajectory, including the decayed checkpoints, to illustrate training dynamics
and convergence behavior.

Model Dim Layers Heads KV Heads Params (M)

100M 512 8 8 4 103
170M 768 8 16 8 169
380M 1024 16 16 8 375
1B 2048 16 32 8 1002

Table 2. Architecture and parameter counts of models.

Figure 3. 1B model train loss curve (left) and learning rate schedules (right).

C. Evaluations and Failure Modes
We evaluated our models—380M and 1B parameters—across different numbers of training epochs using top-p sampling
with a temperature of 1.0 and top-p value of 0.8. As shown in Table 4, we observe a clear trend: both coverage and matching
metrics steadily improve with increased model size and training data. At the same time, various failure modes become less
frequent.
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Model Batch Size Ctx Len LR Betas WD Warmup

100M 96 2048 0.001 (0.9, 0.95) 0.1 200
170M 128 2048 0.001 (0.9, 0.95) 0.1 200
380M 168 2048 0.001 (0.9, 0.95) 0.1 200
1B 120 2048 0.0005 (0.9, 0.95) 0.1 200

Table 3. Training hyperparameters for each model. All models were trained for 4 epochs (10B tokens total) using AdamW and a
warmup-stable-decay schedule.

We define four types of failure. A mismatch occurs when the generated SMILES string does not match the reference
SMILES provided in the prompt. No EOS refers to generations that did not terminate within the maximum allowed length
of 2000 tokens. Parse fail corresponds to outputs that RDKit could not parse into valid molecules. Finally, a missing mol
indicates that none of the generated sequences for a given molecule were valid, leading us to omit that molecule from
evaluation. This consistent improvement across metrics and failure modes motivated us to study the underlying scaling laws
governing model behavior.

Model COV-R COV-P MAT-R MAT-P Miss Mols Mismatch No EOS Parse Fail

380m 1e 51 47 0.78 0.87 6 5361 6 0
380m 2e 53 51 0.77 0.82 3 5099 1 0
380m 3e 54 53 0.76 0.80 2 5921 6 1
380m 4e 54 54 0.76 0.78 2 4672 2 2
1b 1e 53 52 0.78 0.81 2 2518 8 0
1b 2e 55 56 0.77 0.76 2 3076 12 0
1b 3e 56 57 0.75 0.78 1 1781 2 1
1b 4e 55 58 0.75 0.78 2 2292 4 0

Table 4. Model evaluation metrics for various training configurations.
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D. Sampling Hyperparameter Search
We experiment with different sampling strategies for our 1B parameter LangMol model to understand their effect on
conformer generation quality. Specifically, we vary the top-p nucleus sampling threshold and observe a consistent inverse
relationship between recall and precision: increasing the p value tends to improve recall by generating a more diverse set of
conformers, but this comes at the cost of lower precision due to reduced structural accuracy. Conversely, lower p values yield
more precise but less diverse outputs. We also explore minimum-p sampling (Nguyen et al., 2024), a recently introduced
decoding technique designed to promote creativity in generation. However, in our setting, it did not lead to significant
improvements in either recall or precision, suggesting that standard top-p sampling remains a more reliable choice for
balancing diversity and accuracy in molecular conformer generation. These trends are illustrated in Figure 4, where the
trade-offs between different sampling configurations are clearly visible.

Figure 4. Coverage recall and precision vs. top p sampling values.
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E. Metrics Definition
Following (Ganea et al., 2021) we utilize the following metrics to evaluate our work. Here, Cg represents the set of generated
conformations, while Cr denotes the set of reference conformations. For both AMR and COV, we compute and report
Recall (R) and Precision (P ). Recall quantifies how well the generated conformers capture the ground-truth conformations,
whereas Precision measures the proportion of generated conformers that are accurate. The precise definitions of these
metrics are provided in the following equations:

AMR-R(Cg, Cr) =
1

|Cr|
∑

R∈Cr

min
R̂∈Cg

RMSD(R, R̂) (1)

COV-R(Cg, Cr) =
1

|Cr|

∣∣∣{R ∈ Cr | RMSD(R, R̂) < δ, R̂ ∈ Cg}
∣∣∣ (2)

AMR-P(Cr, Cg) =
1

|Cg|
∑

R̂∈Cg

min
R∈Cr

RMSD(R̂,R) (3)

COV-P(Cr, Cg) =
1

|Cg|

∣∣∣{R̂ ∈ Cg | RMSD(R̂,R) < δ,R ∈ Cr}
∣∣∣ (4)
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F. Generation Visualizations
Figure 5 shows randomly selected molecules from GEOM-drugs test set. The reference molecule is depicted on the left
while five of the molecules generated by LangMol-1B are randomly selected on the right.

Reference Gen 1 Gen 2 Gen 3 Gen 4 Gen 5

Figure 5. Reference vs. generated conformations of LangMol
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