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Abstract
Ensembles of Deep Neural Networks, Deep En-
sembles, are widely used as a simple way to boost
predictive performance. However, their impact
on algorithmic fairness is not well understood yet.
Algorithmic fairness examines how a model’s per-
formance varies across socially relevant groups
defined by protected attributes such as age, gen-
der, or race. In this work, we explore the interplay
between the performance gains from Deep Ensem-
bles and fairness. Our analysis reveals that they
unevenly favor different groups, a phenomenon
that we term the disparate benefits effect. We
empirically investigate this effect using popular
facial analysis and medical imaging datasets with
protected group attributes and find that it affects
multiple established group fairness metrics, in-
cluding statistical parity and equal opportunity.
Furthermore, we identify that the per-group differ-
ences in predictive diversity of ensemble members
can explain this effect. Finally, we demonstrate
that the classical Hardt post-processing method is
particularly effective at mitigating the disparate
benefits effect of Deep Ensembles by leveraging
their better-calibrated predictive distributions.

1. Introduction
Deep Ensembles (Lakshminarayanan et al., 2017) have
demonstrated their efficacy as a simple and robust method
to improve the performance of individual Deep Neural Net-
works (DNNs). Their superior performance has made them
a popular choice for real-world applications (Bhusal et al.,
2021; Dolezal et al., 2022), including high-stakes scenar-
ios where the impact on people’s lives of Machine Learning
(ML) supported decisions can be profound, such as in health-
care, education, finance or the law. In such applications,
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Figure 1: Unfairness caused by the disparate benefits effect
of Deep Ensembles. Adding members to the ensemble increases
its performance (Accuracy, AUROC) but decreases its fairness
(1-SPD, 1-EOD, 1-AOD). We find evidence for this effect across
multiple standard fairness metrics (cols) and vision datasets (rows).

it is crucial to examine how these models perform across
different groups that are defined by a protected attribute
(e.g., gender, age, race, etc.) which is the focus of the field
of Algorithmic Fairness (Barocas et al., 2023). Ensuring
equitable operation of these models across protected groups
is imperative, as they can significantly impact individuals
and communities, potentially widening existing disparities
if not adequately addressed. Although the differences in
performance across protected groups (group fairness vio-
lations) of individual DNNs has been thoroughly studied
(Zhang et al., 2018; Sagawa et al., 2020; Zhang et al., 2022;
Arnaiz-Rodriguez & Oliver, 2024), the impact on fairness
due to ensembling these networks remains underexplored.

In this paper, our aim is to fill this gap by conducting an ex-
tensive empirical study of the fairness implications of Deep
Ensembles, analyzing their underlying causes, and exploring
mitigation strategies. Our empirical study is based on two
popular facial analysis datasets and a widely used medical
imaging dataset, each with multiple binary target variables
and protected group attributes. We evaluate a total of fifteen
tasks across five different DNN model architectures and
three standard group fairness metrics. Our analyses reveal
that Deep Ensembles unevenly benefit different protected
groups in what we refer to as the disparate benefits effect (cf.
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Fig.1). We further investigate the causes of this disparate
benefits effect and find evidence that differences in the pre-
dictive diversity of ensemble members across groups can
explain why ensembling benefits groups differently. Finally,
we explore potential approaches to mitigate the negative im-
pact on fairness caused by the disparate benefits effect. We
find that Deep Ensembles are more sensitive to the predic-
tion threshold than individual models due to their improved
calibration. This makes post-processing methods a suitable
approach to mitigate the fairness violations. In fact, our
results show that Hardt post-processing (Hardt et al., 2016)
is very effective, resulting in fairer predictions while pre-
serving the improved performance of Deep Ensembles. In
sum, the main contributions of this paper are threefold:

1. We empirically analyze how the performance gains of
Deep Ensembles are distributed across groups defined
by protected attributes (Sec. 5). Our findings reveal that
Deep Ensembles yield disparate benefits across groups,
often benefiting the already advantaged group.

2. We investigate the potential causes for the disparate ben-
efits effect (Sec. 6). Our analysis identifies per-group
differences in the predictive diversity of ensemble mem-
bers as a key contributing factor.

3. We evaluate approaches to mitigate unfairness due to
the disparate benefits effect (Sec. 7). We find that Deep
Ensembles are more sensitive to the prediction threshold
due to their improved calibration. Thus, Hardt post-
processing (Hardt et al., 2016) is found to be very effec-
tive, ensuring more fair predictions while preserving the
improved performance of Deep Ensembles.

2. Related Work
Algorithmic Fairness. Algorithmic fairness is defined by
means of various ethical and legal concepts (Barocas &
Selbst, 2016; Corbett-Davies et al., 2017; Binns, 2018), re-
sulting in diverse statistical and causal notions of equality
between tasks and contexts (Kusner et al., 2017; Mehrabi
et al., 2021). We focus on group fairness metrics —statisti-
cal discrimination metrics for classification (Carey & Wu,
2023)— that measure error rate differences between groups
defined by protected attributes (Hardt et al., 2016; Zafar
et al., 2017). Several metrics quantify group fairness by im-
posing independence conditions on the joint distribution of
targets, predictions, and protected attributes (Barocas et al.,
2023), capturing performance disparities due to varying in-
put and target distributions among protected groups (Garg
et al., 2020; Pombal et al., 2022). Consequently, a multitude
of ML techniques have emerged over the past decade to
promote group algorithmic fairness (Mehrabi et al., 2021)
by modifying the data (pre-processing) (Kamiran & Calders,
2012; Arnaiz-Rodriguez & Oliver, 2024), the learning pro-
cess (in-processing) (Agarwal et al., 2018; Jung et al., 2023);

or the model’s decision rule (post-processing) (Hardt et al.,
2016; Cruz & Hardt, 2024). In this paper, we focus on
group algorithmic fairness and analyze the impact of Deep
Ensembles on group fairness.

Deep Ensembles. Deep Ensembles (Lakshminarayanan
et al., 2017) are known as a simple and effective method
to boost the performance of DNNs and to estimate predic-
tive uncertainty (Ovadia et al., 2019; Ashukha et al., 2020;
Schweighofer et al., 2023). They mainly rely on the stochas-
ticity of the initialization and optimization procedure for
diversity (Fort et al., 2019). However, obtaining more di-
verse Deep Ensembles is still an active area of research
(Rame & Cord, 2021; Lee et al., 2023; Pagliardini et al.,
2023). Furthermore, the exact mechanisms that produce the
performance improvements observed in Deep Ensembles re-
main an open research question (Abe et al., 2022b; Jeffares
et al., 2023; Abe et al., 2024).

Ensemble Fairness. Prior work at the intersection of algo-
rithmic fairness and ensembling has investigated the effect
of model multiplicity (Marx et al., 2020; Coston et al., 2021;
Black et al., 2022a;b; Long et al., 2023; Cooper et al., 2024),
and has reported that ensembling decreases the multiplic-
ity of predictions, thus being less arbitrary than individual
models. Shallow model ensembles (i.e., models that are
not DNNs) have been used to improve the fairness of out-
comes (Kamiran & Calders, 2012). Kenfack et al. (2021)
considered a fairness-aware weighting of shallow model en-
sembles. Similarly, Gohar et al. (2023) investigates multiple
research questions regarding ensembles of shallow models.
Theoretical considerations on ensemble fairness have been
investigated by Grgić-Hlača et al. (2017). Based on these in-
sights, Bhaskaruni et al. (2019) proposed a fair ensembling
strategy adopting the AdaBoost framework. However, we
are not aware of any work that has investigated the impact
of Deep Ensembles on group fairness metrics.

The most closely related previous work to ours is that by Ko
et al. (2023), which investigates the effect of Deep Ensem-
bles on subgroup performance and served as an inspiration
for our work. However, their focus and methodology are dif-
ferent from ours. For most of their experiments, the group
variable of interest A is defined as a subset of the full target
space Y , i.e., of the worst and best performing targets. In
our experiments with real-world data, groups are defined
by the values of a protected attribute, such as age, gender,
or race. Furthermore, Ko et al. do not consider established
group fairness metrics as we do, focusing instead on per-
group changes in accuracy. Finally, Ko et al. conclude that
Deep Ensembles have exclusively positive impact, while
we show that they can negatively affect group fairness. In
addition, we investigate potential causes for this effect and
analyze mitigation strategies that preserve fairness while
maintaining the performance gains of the ensembles.
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3. Background
We consider the canonical setting of binary classifica-
tion with inputs x ∈ RD, targets y ∈ {0, 1}, and
group attributes a ∈ {0, 1} defined according to pro-
tected or sensitive variables, such as gender, age, or race.
We further consider DNNs as the models to map an in-
put x to the 1-dimensional probability simplex ∆1 ={
(s0, s1) ∈ R2 | s0 ≥ 0, s1 ≥ 0, s0 + s1 = 1

}
. We define

this mapping as fw : RD → ∆1 for a model with pa-
rameters w. The output of this mapping defines the dis-
tribution parameters of the predictive distribution of the
model, denoted by p(y | x,w). A training dataset D =
{(xj , yj)}Jj=1 is used to determine the model parameters
by minimizing the cross-entropy loss. The final prediction
ŷ is given by the argmax over the predictive distribution.

Deep Ensembles. Deep Ensembles (Lakshminarayanan
et al., 2017) are an ensemble method that uses DNNs as the
base learners. While shallow learners often aggregate predic-
tions in the ensemble via majority voting, Deep Ensembles
typically average the output distributions of individual mem-
bers. Furthermore, individual models are generally trained
independently on the same data using different random seeds
for initialisation and training. Deep Ensembles are widely
recognized as a way to perform approximate sampling from
the posterior distribution p(w | D) = p(D | w)p(w)/p(D)
(Wilson & Izmailov, 2020; Ashukha et al., 2020), often pro-
viding the most faithful posterior approximations (Izmailov
et al., 2021). The predictive distribution of an ensemble
with N members is given by

p(y | x,D) =

∫
W

p(y | x,w) p(w | D) dw (1)

≈ 1

N

N∑
n=1

p(y | x,wn) , wn ∼ p(w | D)

Thus, it is an approximation of the posterior predictive dis-
tribution. The prediction of the Deep Ensemble equivalent
to a single model is given by ŷ = argmax p(y | x,D).

Group Fairness. The group fairness desiderata are based on
the statistical dependencies between the random variables
of the predicted outcomes Ŷ , the observed outcomes Y
and the protected group attribute A. Following widespread
convention, we consider binary outcomes and protected
groups, with Ŷ = Y = 1 being the positive outcome and
A = 1 the advantaged group. We focus on three well-
established notions of group fairness as follows (Mehrabi
et al., 2021; Caton & Haas, 2023).

First, statistical parity (Dwork et al., 2012; Kamishima
et al., 2012), according to which fairness is achieved when
the positive outcome is predicted independently of the pro-
tected group attribute. Statistical parity is also known as

demographic parity. It is formally defined as

P (Ŷ =1 | A=1) = P (Ŷ =1 | A=0) (2)

Second, equal opportunity (Hardt et al., 2016), which de-
fines fairness as predicting the positive outcome indepen-
dently of the protected group attribute, but conditioned on
the observed outcome being positive. Equal opportunity is
therefore formally defined as

P (Ŷ =1 | A=1, Y =1) = P (Ŷ =1 | A=0, Y =1) (3)

Third, equalized odds (Hardt et al., 2016), which is a stricter
version of equal opportunity where the predictive indepen-
dence must hold conditioned on both positive and negative
observed outcomes. Equalized odds is formally defined as

P (Ŷ =1 | A=1, Y =y) = P (Ŷ =1 | A=0, Y =y) (4)

∀y ∈ {0, 1}. These measures are particularly relevant be-
cause they operationalize antidiscrimination principles, such
as disparate impact in U.S. law (Feldman et al., 2015). Sta-
tistical parity focuses on ensuring equal outcomes, while
equal opportunity and equalized odds balance error rates to
promote equity across groups. All operationalized notions
of fairness have limitations such that it is not necessarily
guaranteed that changing the model predictions to satisfy
these conditions will actually lead to perfectly fair outcomes
in the real world (Selbst et al., 2019; Liu et al., 2018). Fur-
thermore, some notions of fairness can be incompatible with
each other, such as statistical parity and equalized odds if A
and Y are not independent (Chouldechova, 2017; Kleinberg
et al., 2017). Nevertheless, these metrics are a meaningful
and widely used tool to quantify group fairness.

4. Experimental Setup
Datasets. In our experiments, we evaluated Deep Ensem-
bles on three different vision datasets. First, two facial anal-
ysis datasets, namely FairFace (Karkkainen & Joo, 2021)
and UTKFace (Zhang et al., 2017). For these datasets, all
models were trained on the training split of FairFace and
evaluated on the official test split of FairFace and the full
UTKFace dataset. Protected group attributes were binarized,
except for gender which was already binary. For the at-
tribute age, we defined young and old, where a person is
considered old from 40 years onwards to obtain a roughly
balanced age distribution. For the attribute race, we bina-
rized into white vs. non-white. We trained the models using
one of the attributes as the target variable and evaluated with
the remaining two attributes as protected group variables for
all possible combinations of the target and protected group
attributes. Second, the CheXpert medical imaging dataset
(Irvin et al., 2019) using the recommended targets provided
by Jain et al. (2021) and protected group attributes provided
by Gichoya et al. (2022). The no finding target was
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used to train and evaluate the models. Samples without all
protected group attributes have been removed. A random
subset of 1/8 was split as test dataset. Protected group at-
tributes were binarized as for the facial analysis datasets.
Additional details are given in Apx. D.1.

Models and training. We used five different DNN architec-
tures, namely ResNet18/34/50 (He et al., 2016), RegNet-Y
800MF (Radosavovic et al., 2020) and EfficientNetV2-S
(Tan & Le, 2021) for our evaluation, due to their widespread
adoption and competitive performance in vision tasks. The
models that were trained on the FairFace training dataset
were trained for 100 epochs using SGD with momentum
of 0.9 with a batch size of 256 and learning rate of 1e-2.
Furthermore, a standard combination of linear (from factor
1 to 0.1) and cosine annealing schedulers was used. The
models that were trained on the CheXpert training dataset
were trained for 30 epochs given that the training dataset
is roughly three times the size of FairFace, resulting in a
similar number of gradient steps and a similar learning rate
schedule. We independently trained 10 models for 5 archi-
tectures on 4 target variables with 5 seeds. Thus, a total
of 1,000 individual models were obtained for our evalua-
tion. The results discussed in the main paper correspond to
the use of ResNet50 as the model architecture. Additional
results for the other model architectures are provided in
Apx. F.2 and Apx. F.3.

Performance Metrics. We utilized accuracy as the perfor-
mance metric on the FairFace and UTKFace datasets. In the
case of CheXpert, we measured performance using the AU-
ROC as established in previous work on this dataset (Zhang
et al., 2022; Zong et al., 2023).

Group Fairness Metrics. We measured group fairness us-
ing empirical estimators for the fairness desiderata given
by Eq. (2) - (4). Statistical Parity Difference (SPD) esti-
mates the violation of the condition given by Eq. (2) and is
computed as

PRA=1 − PRA=0 , (5)

where PRA=a is the positive rate calculated on the partition
of the test dataset D′ = {(xk, yk, ak)}Kk=1 with the corre-
sponding protected group attribute a. Equal Opportunity
Difference (EOD) estimates the violation of the condition
given by Eq. (3) and it is computed as

TPRA=1 − TPRA=0 , (6)

where TPRA=a is the true positive rate, calculated for the
respective group partitions of the test dataset. Average Odds
Difference (AOD) (Bellamy et al., 2018) is an estimator of
a relaxation of equalized odds (cf. Eq. (4)) computed as

1

2
|TPRA=1 − TPRA=0|+

1

2
|FPRA=1 − FPRA=0| , (7)

Table 1: Disparate Benefits: Change in performance and fair-
ness violations due to ensembling. Significant differences (∆)
between the Deep Ensemble (cf. Tab 3) and the average ensem-
ble member (cf. Tab. 4) are highlighted in bold (t-test, five runs,
p < 0.05). Gray cells denote that fairness violations are > 0.05
for both the Deep Ensemble and the average ensemble member.

D′ Target / Group ∆ Accuracy (↑) ∆ SPD (↓) ∆ EOD (↓) ∆ AOD (↓)
FF age / gender .022±.001 .022±.003 .017±.004 .017±.003

FF age / race .022±.001 .009±.003 .012±.004 .007±.003

FF gender / age .014±.001 -.001±.001 -.007±.001 -.004±.002

FF gender / race .014±.001 -.001±.001 .000±.000 -.002±.002

FF race / age .015±.001 -.004±.001 .005±.002 -.001±.000

FF race / gender .015±.001 .000±.002 -.008±.006 .002±.004

UTK age / gender .015±.001 .017±.001 .015±.002 .012±.001

UTK age / race .015±.001 .010±.002 .010±.001 .004±.002

UTK gender / age .009±.001 .001±.001 -.006±.002 -.003±.001

UTKgender / race .009±.001 .000±.001 .001±.002 .001±.001

UTK race / age .021±.001 .013±.001 .007±.002 .000±.001

UTKrace / gender .021±.001 .003±.002 -.002±.003 -.002±.002

D′ Group ∆ AUROC (↑) ∆ SPD (↓) ∆ EOD (↓) ∆ AOD (↓)
CX age .005±.000 .001±.000 .008±.004 .003±.001

CX gender .005±.000 .000±.001 .001±.004 .001±.002

CX race .005±.000 -.002±.001 .000±.003 -.001±.002

where FPRA=a is the false positive rate, calculated for the
respective group partitions of the test dataset. Due to our as-
sumption that A = 1 is the advantaged group, all measures
are consequently ∈ [0, 1], where 0 is the most fair. More
details on Eq. (5) - (7) are given in Apx. A.

5. The Disparate Benefits of Deep Ensembles
In this section, we study the disparate benefits effect of
Deep Ensembles using the experimental setup described in
Sec. 4. First, we investigate the disparate benefits effect on
the FairFace (FF) test dataset. Second, we apply the same
models trained on FF to the UTKFace (UTK) dataset. UTK
contains facial images similar to those of FF but from a
different source, representing a realistic setting for facial
analysis under slight distribution shifts. Third, we inves-
tigate the disparate benefits effect on the CheXpert (CX)
medical imaging dataset to assess whether the impact on
fairness of Deep Ensembles also occurs in other domains
than facial analysis. Our analysis examines two primary
facets of the disparate benefits effect: (i) the relationship
between the number of ensemble members and the changes
in performance and fairness violations (Fig. 1); and (ii) for
which targets and protected group attributes a statistically
significant disparate benefits effect is observed (Tab. 1).

Facial analysis (FF). The top row of Fig. 1 shows results for
FF, where models were trained on target age and evaluated
under the protected group attribute gender. We find that
performance increases while fairness decreases when adding
ensemble members. In particular, the largest decrease in
fairness occurs when the first member is added to the Deep
Ensemble. Tab. 1 presents the change (∆) in performance
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and fairness violations between individual models and a
Deep Ensemble of 10 members for all tasks. While perfor-
mance always increases for the Deep Ensemble (positive ∆),
fairness does not necessarily increase after ensembling. We
observe a disparate benefits effect with significant changes
in the fairness metrics for four out of six target / protected
group combinations. This occurs primarily when individ-
ual members already exhibit substantial fairness violations
(gray cells in Tab. 1). The strongest disparate benefits effect
(largest absolute ∆) has a negative impact, thus decreas-
ing fairness, i.e. increasing fairness violations. However,
there are also cases where the Deep Ensemble is a more fair
classifier than individual models (negative ∆).

Facial analysis under a distribution shift (UTK). The
middle row of Fig. 1 depicts the results on the UTK dataset,
with the same target and protected group as for FF. Indi-
vidual ensemble members exhibit higher fairness violations
than for FF, which can be explained by the distribution shift
between FF and UTK. However, the magnitude and behav-
ior of the disparate benefits effect when adding ensemble
members are similar to those observed with the FF dataset.
The results for all target / group combinations are presented
in Tab. 1. The results for UTK are generally similar to those
reported for the FF dataset. A notable exception is that the
difference in SPD with target variable race and protected
group attribute age is of opposite sign and larger for UTK
than for FF.

Medical imaging (CX). The bottom row of Fig. 1 shows
the results on the CX dataset with age as protected group
attribute. The disparate benefits effect also occurs in this
task, but with a smaller magnitude, which is explained by
the smaller performance gains of Deep Ensembles on this
dataset. Similarly as with the facial dataset, the change in
fairness after adding the first ensemble member is the most
pronounced. The complete results for all protected groups
are presented in Tab. 1. For the protected group age, the
disparate benefits effect occurs under all fairness metrics.
Moreover, there is a significant difference in SPD for the
protected group race, although individual models do not
have substantial SPD and vice versa for EOD.

Additional results. We investigate the influence of the
model size of the individual ensemble members in Apx. F.2.
Our results show that for tasks where the disparate benefits
effect occurs, it increases with model size. Furthermore,
we also analyze the disparate benefits effect under different
model architectures. The results and more details are given
in Apx. F.3, finding that the results provided in the main
paper are consistent across architectures. Finally, we also
show the disparate benefits effect for heterogeneous Deep
Ensembles in Apx. F.4. Complementary to our main investi-
gation, we explore the notion of minimax fairness (Martinez
et al., 2020) within our experiments in Apx. F.1.
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Figure 2: Change in PR, TPR and FPR when adding mem-
bers to the ensemble. Members trained on target variable age,
evaluated on the FF test dataset with gender as protected group
attribute. The advantaged group A = 1 (male) has higher TPR and
lower FPR, resulting in a net zero change in PR. The disadvantaged
group A = 0 (female) has lower FPR and thus lower PR.

Overall, our results demonstrate that Deep Ensembles can
decrease fairness. Therefore, we next investigate the reason
for their disparate benefits and explore mitigation strategies.

6. What is the Reason for Disparate Benefits?
In this section, we investigate the potential causes of the
disparate benefits effect. The considered fairness metrics
(Eq. (5) - Eq. (7)) are based on the per-group PR, TPR and
FPR metrics. Therefore, as a first step, we analyze how
these change when adding additional ensemble members.
Although this analysis offers insight into why the disparate
benefits effect occurs, it does not directly explain its under-
lying cause. We hypothesize that the effect arises from dif-
ferences in predictive diversity among ensemble members.
Our empirical results support this hypothesis, indicating that
a gap in the average predictive diversity between groups is a
key driver of the effect. To validate this further, we designed
two synthetic experiments to investigate this hypothesis in a
controlled setting.

Changes to predictions for increasing ensemble size. We
begin by examining how the metrics PR, TPR, and FPR
for each group change when ensemble members are added,
since the considered fairness metrics (Eq. (5) - Eq. (7)) are
based on these. Fig. 2 shows these changes for the model
trained on FF with age as target variable and gender as
protected group, evaluated on the FF test dataset. The results
show that the increase in SPD results from a decrease in the
PR of the disadvantaged group when adding members to the
ensemble, while the PR of the advantaged group remains
stable (∆ ≈ 0). The TPR of the disadvantaged group stays
constant, but the TPR of the advantaged group increases, so
the Deep Ensemble improves in correctly predicting Y = 1
only for the advantaged group, resulting in a higher EOD.
The FPR of both groups decreases, more so for the disadvan-
taged group, thus the Deep Ensemble improves in correctly
predicting Y = 0 (since FPR is one minus the true negative
rate). However, this does not offset the TPR disparity, re-
sulting in higher AOD. The results for the remaining tasks
are provided in Fig. 12 - 14 in the appendix.
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Figure 3: Average predictive diversity (DIV) per group A and target Y . Exemplary results for datasets FF, UTK and CX. Arrows
indicate per-target group differences. Top row (a) – (c): Significant disparate benefits (cf. Tab. 1) occur when DIV differences between
groups are large. Bottom row (d) – (f): No significant disparate benefits (i.e. equal benefits) occur when DIV differences are small.

Predictive diversity of ensemble members. The ensem-
ble predictive distribution (Eq. (1)) is an average over the
predictive distributions of its members. Therefore, the dis-
parate benefits effect must stem from the characteristics of
the predictive distributions of individual members. Previ-
ous work investigated the predictive diversity of individual
members as the driving mechanism for the increase in the
performance of Deep Ensembles (Abe et al., 2022b; Jeffares
et al., 2023; Abe et al., 2024). Only if individual members
have different predictive distributions, combining them can
lead to an ensemble that performs better than the individual
models. While previous work investigates predictive diver-
sity for individual inputs x, we are interested in the average
predictive diversity (potentially for a given group) on the
test dataset. Following from the definition of predictive di-
versity by Jeffares et al. (2023) (Theorem 4.3), the average
predictive diversity DIV is thus given by

DIV =
1

K

K∑
k=1

log

(
1

N

N∑
n=1

p(y = yk | xk,wn)

)
︸ ︷︷ ︸

Ensemble Log-Likelihood

(8)

− 1

N

N∑
n=1

log p(y = yk | xk,wn)︸ ︷︷ ︸
Average Member Log-Likelihood

,

for a test dataset D′ = {(xk, yk, ak)}Kk=1, and a set of N
models with parameters {wn}Nn=1. In Apx. C we provide
further discussion about the average predictive diversity and
how it arises as a natural measure of interest from a Bayesian
perspective. Intuitively, the average predictive diversity DIV

is a measure of how different individual ensemble members
predict. Thus if there is higher DIV for one group, this
group has more potential to benefit from ensembling.

Consequently, we hypothesize that differences in the aver-
age predictive diversity per group cause the disparate bene-
fits effect. To investigate this hypothesis, we consider two
sets of tasks for FF, UTK and CX, respectively: those where
the disparate benefits effect occurs and those where it does
not occur (cf. Tab. 1). The results are depicted in Fig. 3,
showing the average predictive diversity DIV per combina-
tion of the target variable Y and the protected group attribute
A. In agreement with our hypothesis, tasks showing the dis-
parate benefits effect (Fig. 3a-c) have substantial differences
in average predictive diversity between groups, while tasks
without the effect (Fig. 3d-f) show only minimal differences.
Results on all tasks are shown in Fig. 15 - 17 in the appendix.

Controlled experiment. To further test our hypothesis
of the differences in average predictive diversity between
groups causing the disparate benefits effect, we conducted
a controlled experiment. We use the FashionMNIST (Xiao
et al., 2017) dataset and create a binary classification prob-
lem with two targets: “T-shirt/top” (Y = 0) vs “Shirt”
(Y = 1), and two groups, A = 0 where the same image of
the same target is concatenated twice and A = 1 where two
different images of the same target are concatenated. This
is done for both the train and test datasets. An illustration of
inputs x for both targets and groups is given in Fig. 4a. Nat-
urally, having an input consisting of two different images
(A = 1) should lead to more diverse ensemble members,
as they may learn to use the top image, the bottom image
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(a) Inputs per target and group.
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(b) Change in performance and fairness for increasing sizes of the Deep Ensemble.
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(d) Change in PR, TPR and FPR for increasing sizes of the Deep Ensemble.

Figure 4: Controlled experiment. (a) Overview of the dataset, showing examplary input for different target / group combinations. (b) The
performance (accuracy) increases whereas fairness (1-SPD, 1-EOD, 1-AOD) decreases when adding more members to the ensemble. (c,
d) The disparate benefits effect is caused by increased PR and TPR, as well as decreased FPR for the group with higher average predictive
diversity A = 1. For the group with smaller average predictive diversity A = 0, there are no significant changes in PR, TPR and FPR.

or any combination of features from both. The concate-
nation of two identical images (A = 0) does not provide
additional information and therefore should not lead to an
increase in diversity of the ensemble members. This intu-
ition is experimentally confirmed by having a higher DIV
for A = 1 (Fig. 4c). We observe the same behavior regard-
ing the change in performance, fairness (Fig. 4b) and PR,
TPR and FPR (Fig. 4d) as for the real-world datasets that
we investigate throughout the rest of the paper. In sum, the
synthetic dataset (Fig. 4a) enforces more predictive diver-
sity for one group (Fig. 4c), leading to the disparate benefits
effect (Fig. 4b, d).

Controlling for predictive diversity. Next, we want to
alter the level of predictive diversity and further investigate
its relationship with the observed changes in fairness met-
rics. We used a similar setup as in the previous controlled
experiment, i.e., the FashionMNIST dataset and the same
targets. However, we used a different methodology to define
the groups, in order to vary the level of predictive diversity
in the advantaged group A = 1. We define an input x for
the disadvantaged group A = 0 as the original image con-
catenated with uniform random noise of the same size (each
pixel is drawn independently). Furthermore, we define an
input for the advantaged group A = 1 as the original image
concatenated with a linear interpolation between a different
image of the same target and uniform random noise. The
linear interpolation coefficient is α, where α = 0 results in
solely uniform random noise (A = 0 and A = 1 are equiv-
alent then) and α = 1 results in two concatenated images
from the same label. Thus, for α = 1, A = 1 is equivalent
to how it was defined in the previous controlled experiment.
An illustration of inputs x for both targets and groups under
different values of α is given in Fig. 5.

The results are shown in Fig. 6. In order to summarize the
average predictive diversity into a single number, we cal-
culate a diversity score as |DIVY=1,A=1 − DIVY=1,A=0|+
|DIVY=0,A=1 −DIVY=0,A=0|. Intuitively speaking, this is
the sum of the lengths of the arrows in Fig. 3, 4c (also in
Fig. 15, 16, 17), shown in the rightmost plot in Fig. 6. We
observe that for increasing α, the diversity score increases.
Furthermore, we find that the changes (∆) in accuracy, SPD,
EOD and AOD due to ensembling increase as well, being
highly correlated with the average predictive diversity. We
provide the absolute accuracies, SPDs, EODs and AODs
for individual ensemble members, the Deep Ensemble and
the differences between those in Tab. 2 in the Appendix. In
sum, for this second controlled experiment, we find that the
higher the predictive diversity per group, the stronger the
disparate benefits effect.

7. Mitigating the Unfairness caused by the
Disparate Benefits Effect

In this section, we investigate strategies to mitigate the un-
fairness due to the disparate benefits effect in the cases
where fairness decreases due to ensembling. We focus on in-
terventions that can be applied to trained ensemble members,
thus operate in a post-processing manner. This allows to
leverage the existing ensemble members as opposed to pre-
and in-processing methods that would require expensive
re-training of individual members.

First, we analyze whether it would be possible to non-
uniformly weight ensemble members to attain a better trade-
off between performance and fairness violations in the Deep
Ensemble. Second, we examine the characteristics of the
predictive distribution of the Deep Ensemble. We find that
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(a) α = 0 (b) α = 0.2 (c) α = 0.4 (d) α = 1

Figure 5: Controlling for predictive diversity. Inputs per target Y and group A for different levels of linear interpolation factor α.
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Figure 6: Change (∆) in accuracy, SPD, EOD and AOD due to ensembling, as well as the diversity score for different levels of linear
interpolation factor α. The disparate benefits effect is stronger for experimental conditions with higher average predictive diversity.

Deep Ensembles are more calibrated than individual mem-
bers on our considered tasks and consequently more sensi-
tive to the selected prediction threshold. Inspired by this
finding, we investigate a group-dependent threshold opti-
mization approach (Hardt et al., 2016), often simply referred
to as Hardt post-processing (HPP) in the algorithmic fairness
literature, to mitigate the negative impact of the disparate
benefits effect of Deep Ensembles. The results show that
HPP is highly effective in ensuring fairer predictions while
maintaining the enhanced performance of Deep Ensembles.

Weighting the ensemble members. We analyze whether it
is possible to improve the performance / fairness trade-off of
Deep Ensembles by assigning different weights to each en-
semble member, as opposed to the standard uniform weights
reflected in Eq. (1). Although the results, shown in Fig. 28
in the appendix, suggest the possibility of better trade-offs,
developing a method that systematically identifies the op-
timal weights to achieve significantly improved outcomes
remains challenging. Specifically, we tried two approaches:
(i) selecting the best weighting on the validation set and (ii)
weighting the individual ensemble members proportional to
their fairness violations. Both methods lead to ensembles
that are on average in between the performance and fair-
ness violations of the Deep Ensemble with standard uniform
weighting and individual models, with high variance. A
detailed discussion is provided in Apx. F.5.

Better calibration leads to more sensitivity to the predic-
tion threshold. Next, we analyze the predictive distribution
of Deep Ensembles to identify mechanisms to mitigate the
additional unfairness caused by the disparate benefits ef-
fect. Deep Ensembles are known to be better calibrated
than individual models because they average over individ-

ual predictive distributions (Ovadia et al., 2019; Seligmann
et al., 2023). We empirically validate this finding on our
considered datasets by evaluating the Expected Calibration
Error (ECE) (Naeini et al., 2015). The results are given
in Fig. 7a, showing that Deep Ensembles are indeed more
calibrated (lower ECE) than individual members for all con-
sidered datasets with all available targets Y . Being more
calibrated means that the predicted probabilities correspond
better to the actual outcomes. Importantly, better calibration
increases the sensitivity to the prediction threshold, as even
slight changes can significantly impact predictions (Cohen
& Goldszmidt, 2004). Representative results are shown
in Fig. 7b. For Deep Ensembles (Fig. 7b, left), there are
clear optimal values for prediction thresholds for each group
(dashed lines) that are consistent across runs. For individual
members (Fig. 7b, right), there is no clear optimal value.
Any threshold between 0.2 and 0.8 leads to similar accuracy
and the optimal value has a high variance between runs. The
complete results and analysis are provided in Apx. F.6.

Hardt Post-Processing (HPP). The sensitivity of Deep
Ensembles to the selected threshold suggests that group-
specific threshold optimization could be an effective unfair-
ness mitigation strategy. A commonly used approach for this
purpose in the algorithmic fairness literature is Hardt post-
processing (HPP) (Hardt et al., 2016). As a post-processing
method, HPP can be applied to the Deep Ensembles predic-
tive distribution without changing how individual models
are trained. Moreover, HPP was shown to be Pareto domi-
nant in addressing equalized odds fairness constraints com-
pared to other fairness interventions (Cruz & Hardt, 2024),
while adding minimal computational overhead. Notably, al-
though HPP is a classical method to improve the fairness of
ML models, it hasn’t been investigated for Deep Ensembles.
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Figure 7: Calibration & prediction threshold. (a) Deep Ensembles are more calibrated than individual members, thus have lower ECE
for all considered tasks. (b) As a result, they are more sensitive to the selection of the prediction threshold.
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Figure 8: Impact of applying HPP on the individual members and the Deep Ensemble on FF. Models are trained on target variable
age, evaluated using protected attribute gender. Dotted lines indicate average fairness violation of individual members on the validation
set, dashed line indicates 0.05 fairness violation. Arrows denote applying HPP to the Deep Ensemble (red) or the individual members
(grey) with those two target fairness violations. The Deep Ensemble maintains or improves in accuracy while also improving in fairness.

We apply HPP to the Deep Ensembles considering each of
the three group fairness metrics (SPD, EOD and AOD) with
the aim of satisfying the fairness desiderata given by Eq. (2) -
Eq. (4). Representative results for the FF dataset with target
variable age and protected group attribute gender are
depicted in Fig. 8. The complete results for all tasks are
given in Tab. 5 - 19 in the appendix. As seen in Fig. 8,
after applying HPP, the Deep Ensemble (red dots) attains
the same level of fairness violation (y-axis) as individual
ensemble members (gray dots) exhibit on average, without
sacrificing any performance (x-axis). This is achieved by
setting the desired fairness violation for HPP to the aver-
age violation of the individual members on a validation set
(dotted line). Noteworthy, the Deep Ensemble’s accuracy
even increases slightly when optimizing the decision thresh-
olds through HPP to values different from 0.5, which is the
implicit threshold when using the argmax. Furthermore,
we compare the Deep Ensemble and individual ensemble
members after applying HPP with a target fairness viola-
tion of 0.05 (dashed line). Here, the performance of the
Deep Ensemble remains robust, even as the performance of
individual members declines.

8. Conclusion
In this work, we reveal the disparate benefits effect of Deep
Ensembles, analyze its underlying reason, and explore mit-

igation strategies. Specifically, we demonstrated the exis-
tence of the effect in experiments on three vision datasets,
considering 15 different tasks and five model architectures.
We investigated potential causes for this effect, our findings
suggesting differences in the predictive diversity of the en-
semble members as an explanation. Finally, we evaluated
different approaches to mitigate the additional unfairness
due to the disparate benefits effect. We find that Deep En-
sembles are better calibrated than the individual ensemble
members and thus more sensitive to the prediction thresh-
old. Consequently, the classical HPP method is particularly
suited to this setting, as it leverages the better-calibrated
predictive distribution of the Deep Ensemble. Remarkably,
HPP is thus very effective in mitigating unfairness for Deep
Ensembles while preserving their superior performance.

The main limitations of our study are that we focus on vision
tasks, and hence on ensembles of convolutional DNNs. Fur-
thermore, the three considered group fairness metrics, while
widely used, are not sufficient to guarantee fair outcomes,
as fairness can’t be reduced to satisfying any single metric
alone. In future work, we thus plan to explore other notions
of fairness, such as individual fairness, and extend our anal-
ysis to other types of models and datasets, for instance, in
the language domain. Furthermore, we intend to investigate
the disparate benefits effect of Deep Ensembles where pre-
or in-processing fairness interventions have been applied to
individual ensemble members.
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Impact Statement
Our study unveils the disparate benefits effect of Deep En-
sembles, which potentially causes socially harmful predic-
tions. Although we investigate its origin and explore a way
to mitigate it, this intervention alone can not guarantee fair
outcomes. Researchers and practitioners should keep in
mind that the fairness of predictions of any ML model ap-
plied in the real world can’t be reduced to any single metric
and must be carefully assessed depending on the application.
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Grgić-Hlača, N., Zafar, M. B., Gummadi, K. P., and Weller,
A. On fairness, diversity and randomness in algorithmic
decision making. ArXiv, 1706.10208, 2017.

Hardt, M., Price, E., Price, E., and Srebro, N. Equality of
opportunity in supervised learning. In Advances in Neu-
ral Information Processing Systems, volume 29. Curran
Associates, Inc., 2016.

He, K., Zhang, X., Ren, S., and Sun, J. Deep residual
learning for image recognition. In 2016 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp.
770–778, 2016.

Irvin, J., Rajpurkar, P., Ko, M., Yu, Y., Ciurea-Ilcus, S.,
Chute, C., Marklund, H., Haghgoo, B., Ball, R., Sh-
panskaya, K., Seekins, J., Mong, D. A., Halabi, S. S.,
Sandberg, J. K., Jones, R., Larson, D. B., Langlotz, C. P.,
Patel, B. N., Lungren, M. P., and Ng, A. Y. Chexpert: A
large chest radiograph dataset with uncertainty labels and
expert comparison. Proceedings of the AAAI Conference
on Artificial Intelligence, 33:590–597, 2019.

11



The Disparate Benefits of Deep Ensembles

Izmailov, P., Vikram, S., Hoffman, M. D., and Wilson, A.
G. G. What are bayesian neural network posteriors really
like? In Proceedings of the 38th International Conference
on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 4629–4640, 2021.

Jain, S., Smit, A., Truong, S. Q., Nguyen, C. D., Huynh,
M.-T., Jain, M., Young, V. A., Ng, A. Y., Lungren, M. P.,
and Rajpurkar, P. Visualchexbert: addressing the discrep-
ancy between radiology report labels and image labels.
In Proceedings of the Conference on Health, Inference,
and Learning, pp. 105–115. Association for Computing
Machinery, 2021.
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A. Details on Computing Group Fairness Metrics
Group fairness metrics, as previously discussed, are based on assumptions related to the independence of the prediction with
respect to the protected attribute and the target. For completeness, we present below how to estimate the metrics given in
Eq. (5) - Eq. (7) with samples. We start by defining the number of correct (TP, TN) and wrong decissions (FP, FN) of a
model:

TP :=

K∑
k=1

1[f(xk) > t] 1[yk = 1], TN :=

K∑
k=1

1[f(xk) < t] 1[yk = 0]

FP :=

K∑
k=1

1[f(xk) > t] 1[yk = 0], FN :=

K∑
k=1

1[f(xk) < t] 1[yk = 1].

Here, D′ = {(xk, yk, ak)}Kk=1 is the test dataset; a datapoint (xk, yk, ak) consists of input features, observed outcome and
protected group attribute; f(xk) is the model’s predicted value for xk; and t is the classification threshold. To compute
these metrics for a specific value a of protected group attribute A (e.g., male for gender), we add the term 1[ak = a] to
each computation, resulting in group-specific true positives TPA=a, true negatives TNA=a, false positives FPA=a, and false
negatives FNA=a.

Once all these buliding blocks are computed, the group-specific Positive Rate (PRA=a) is given by

PRA=a = P (Ŷ = 1 | A = a) ≈ TPA=a + FPA=a

TPA=a + FPA=a + TNA=a + FNA=a
.

Finally, equal opportunity and equalized odds depend on the conditional true/false negative/positive rates, depending on the
values of the protected group attribute A and are calculated as:

TPRA=a = P (Ŷ = 1 | Y = 1, A = a) ≈ TPA=a

TPA=a + FNA=a

TNRA=a = P (Ŷ = 0 | Y = 0, A = a) ≈ TNA=a

FPA=a + TNA=a

FPRA=a = P (Ŷ = 1 | Y = 0, A = a) ≈ FPA=a

FPA=a + TNA=a

FNRA=a = P (Ŷ = 0 | Y = 1, A = a) ≈ FNA=a

TPA=a + FNA=a

A.1. Group fairness metrics as a factorization of P (Y, Ŷ | A).

In order to analyze the trade-offs and connections between different statistical group fairness metrics, a common approach is
to use the factorization of P (Y, Ŷ | A), which offers a clear intuition of the incompatibilities between some of them. Then,
all the introduced metrics are related as per:

P (Ŷ | Y,A = 1) ×P (Y | A = 1) = P (Y | Ŷ , A = 1) ×P (Ŷ | A = 1)
q q q q

P (Ŷ | Y,A = 0)︸ ︷︷ ︸
Separation
Ŷ⊥A|Y

e.g. AOD, EOD

×P (Y | A = 0)︸ ︷︷ ︸
Prevalence Eq.

Y⊥A

= P (Y | Ŷ , A = 0)︸ ︷︷ ︸
Sufficiency
Y⊥A|Ŷ

×P (Ŷ | A = 0)︸ ︷︷ ︸
Independence

Ŷ⊥A
e.g. SPD

(9)

For instance, it suggests that, if the target prevalence is different across groups and the model is perfectly calibrated
(sufficiency), then separation and independence conditions cannot be satisfied simultaneously.

B. Biases and Group Unfairness
Biases induced by datasets have been studied in Pombal et al. (2022). They consider the joint distribution P (X,Y,A).
Generally there is a bias under a distribution shift with P ∗(X,Y,A) ̸= P (X,Y,A), where the distribution after the shift P ∗
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the model is applied on is different to the distribution P the training data was sampled from. Furthermore, Pombal et al.
(2022) consider biases in the training data distribution. A bias arises if

P (X,Y ) ̸= P (X,Y | A) , (10)

as well as if P (A) is not a uniform distribution. Note that P (X,Y | A) can be factorized into

P (X,Y | A) = P (X | Y,A) P (X | A) (11)
= P (Y | X,A) P (Y | A) .

Different parts of the factorization in Eq. (11) can lead to unfairness:

• P (Y ) ̸= P (Y | A) corresponds to a prevalence disparity, i.e., the class probability depends on the protected attribute.
This imbalance is not present in FairFace dataset since it has been specifically curated to avoid this problem (Karkkainen
& Joo, 2021). However, we observe it in the UTKFace and CheXpert datasets.

• P (X | Y ) ̸= P (X | Y,A) reflects a group-wise disparity of the class-conditional distribution, and indicates that the
feature space is distributed differently depending on the protected attribute, which is undesirable, since the likelihood of
p(D | w) could vary across protected groups, leading to potentially different per-group error rates and hence unfairness.
The experimental results in Fig. (3) illustrate differences in the likelihood of the dataset for different (A, Y ).

• P (Y | X) ̸= P (Y | X,A) represents noisy targets. In this case, the distribution of Y given X depends on the protected
group attribute. The classification experiments in Tab. 1, Fig. 1 and Fig. 2 analyze metrics related to P (Y | X,A) and the
resulting accuracy and fairness violations.

C. Bayesian Perspective on the Average Predictive Diversity
In this section, we motivate the average predictive diversity DIV (cf. Eq. (8)) from a Bayesian perspective. Given are a
training dataset D = {(xj , yj)}Jj=1 as well as a test dataset D′ = {(xk, yk)}Kk=1; the protected attribute is omitted for
brevity in this section. Furthermore, we are given a prior distribution p(w) on the model parameters.

Marginal Likelihood. Through Bayes’ rule, we obtain a posterior distribution over the model parameters given the training
dataset p(w | D) = p(D | w)p(w)/p(D). Recall that the marginal likelihood is given by p(D) =

∫
W

p(D | w)p(w)dw,
i.e., the expected likelihood on the dataset over all models according to their prior distribution. Intuitively, the marginal
likelihood thus measures how well possible models represent the given dataset.

The disparate benefits effect occurs on a test dataset D′. Consequently, we are interested in the marginal likelihood under
the test dataset p(D′). For the test dataset D′, the posterior distribution given the training dataset p(w | D) is the new prior
distribution p(w). The marginal likelihood under the test dataset is thus given by

p(D′) =

∫
W

K∏
k=1

p(y = yk | xk,w) p(w) dw ≈ 1

N

N∑
n=1

K∏
k=1

p(y = yk | xk,wn) , (12)

with wn drawn according to p(w) = p(w | D). In practice, the set of model parameters {wn}Nn=1 obtained from the
training of the Deep Ensemble is used to approximate the integral.

Likelihood Ratio. If the likelihood under the posterior predictive distribution

p̄(D′) =

K∏
k=1

∫
W

p(y = yk | xk,w) p(w | D) dw ≈
K∏

k=1

1

N

N∑
n=1

p(y = yk | xk,wn) , (13)

again with wn drawn according to p(w) = p(w | D), does not differ from the marginal likelihood, there is no difference
between predicting with a single model sampled according to the posterior and predicting with the ensemble of all sampled
models. Thus, we investigate the likelihood ratio p̄(D′)/p(D′) as a natural measure of diversity in the predictions of the
models that make up the ensemble.
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For practical purposes, it is more convinient to work with log-likelihoods rather than likelihoods, as the products in Eq. (13)
and Eq. (13) become sums. Therefore, we consider the logarithm of the likelihood ratio, leading to

log

(
p̄(D′)

p(D′)

)
= log p̄(D′) − log p(D′) . (14)

Inserting Eq. (12) and Eq. (13) into Eq. (14) we obtain

log

(
p̄(D′)

p(D′)

)
≈

K∑
k=1

log

(
1

N

N∑
n=1

p(y = yk | xk,wn)

)
− 1

N

N∑
n=1

log p(y = yk | xk,wn) (15)

= K DIV,

with DIV as defined in Eq. (8), which is what we wanted to show. Eq. (15) is
∑K

k=1 DIV, with the predictive diversity DIV
given by Theorem 4.3 in Jeffares et al. (2023). To mitigate the impact of different dataset sizes, it is common practice to
divide log-likelihoods by the number of datapoints in the dataset K when comparing between datasets of different sizes.
Doing so for the logarithm of the likelihood ratio, 1/K log (p̄(D′)/p(D′)) is an approximation of the Jensen gap (Eq. (5) in
Abe et al. (2022a) and Eq. (3) in Abe et al. (2024)) with K samples in the dataset D′.

D. Details of the Experimental Setup
The code to reproduce our experiments is available at https://github.com/ml-jku/disparate-benefits.

D.1. Datasets

We conducted all our experiments on facial analysis and medical imaging datasets. In the following, we provide details
about the datasets.

Facial Analysis. We used two widely used facial analysis datasets, FairFace1 (Karkkainen & Joo, 2021) (License: CC BY
4.0) and UTKFace2 (Zhang et al., 2017) (License: research only, not commercial). FairFace was created for advancing
research in fairness, accountability and transparency in computer vision as it addresses the lack of diversity in existing face
datasets used for research purposes. The FairFace dataset comprises 108,501 facial images collected from publicly available
sources, such as Flickr and Google Images, and covers a diverse range of demographics, including various ethnicities, ages,
genders, and skin tones. The dataset includes annotations for gender, age, and ethnicity. UTKFace contains over 20,000
facial images of individuals collected from the publicly available datasets UTKinect (Xia et al., 2012) and FGNET (Lanitis
et al., 2002), as well as images scraped from the internet. It includes annotations for three demographic attributes: age,
gender, and ethnicity.

Medical Imaging. We used the medical imaing dataset CheXpert 3 (Irvin et al., 2019) (License: Stanford University Dataset
Research Use Agreement). It consists of a large publicly available dataset of 224,316 chest X-rays along with associated
radiologist-labeled annotations for the presence or absence of 14 different thoracic pathologies. It is designed to address the
challenges of class imbalance and target noise commonly encountered in medical image classification tasks. CheXpert has
become a widely used benchmark dataset in the field of medical imaging and has been instrumental in advancing research on
automated chest radiograph interpretation, particularly in the context of deep learning approaches. We use the recommended
targets provided by Jain et al. (2021) (visualCheXbert targets) and group attributes provided by Gichoya et al. (2022)4.

D.2. Models and Training

We used the ResNet18/24/50, RegNet-Y 800MF and EfficientNetV2-S implementations of Pytorch (Paszke et al., 2019).
Hyperparameters as reported in the main paper were the result of an initial manual tuning on the respective validation

1Obtained from https://github.com/joojs/fairface using the [Padding=0.25] version.
2Obtained from https://www.kaggle.com/datasets/abhikjha/utk-face-cropped as the download link on the

original source https://susanqq.github.io/UTKFace does no longer work.
3Obtained from https://stanfordaimi.azurewebsites.net/datasets/8cbd9ed4-2eb9-4565-affc-111

cf4f7ebe2, user account required.
4Obtained from https://stanfordaimi.azurewebsites.net/datasets/192ada7c-4d43-466e-b8bb-b81

992bb80cf, user account required.
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Table 2: Results for controlled experiments. Performance and fairness violations of individual ensemble members, the Deep Ensemble
as well as the change in performance and fairness violation due to ensembling. Gray cells denote the results of the controlled experiment
in Sec. 6 in the main paper.

Individual Ensemble Members
Setting Accuracy (↑) SPD (↓) EOD (↓) AOD (↓)

Main Paper (Fig. 4a) 0.894±0.005 0.048±0.011 0.080±0.016 0.064±0.008

α = 0.0 (Fig. 5a) 0.844±0.005 0.029±0.005 0.015±0.009 0.016±0.006

α = 0.2 (Fig. 5b) 0.860±0.005 0.024±0.016 0.033±0.018 0.038±0.009

α = 0.4 (Fig. 5c) 0.871±0.005 0.039±0.014 0.069±0.016 0.060±0.008

α = 1.0 (Fig. 5d) 0.880±0.006 0.041±0.024 0.079±0.027 0.068±0.009

Deep Ensemble
Setting Accuracy (↑) SPD (↓) EOD (↓) AOD (↓)

Main Paper (Fig. 4a) 0.924±0.002 0.057±0.005 0.133±0.007 0.111±0.004

α = 0.0 (Fig. 5a) 0.849±0.003 0.033±0.004 0.010±0.005 0.015±0.002

α = 0.2 (Fig. 5b) 0.876±0.002 0.034±0.010 0.047±0.017 0.043±0.010

α = 0.4 (Fig. 5c) 0.896±0.002 0.054±0.008 0.105±0.013 0.084±0.006

α = 1.0 (Fig. 5d) 0.910±0.003 0.058±0.017 0.133±0.021 0.108±0.005

Difference (∆) between Deep Ensemble and individual members
Setting ∆ Accuracy (↑) ∆ SPD (↓) ∆ EOD (↓) ∆ AOD (↓)

Main Paper (Fig. 4a) 0.030±0.002 0.009±0.005 0.054±0.007 0.047±0.004

α = 0.0 (Fig. 5a) 0.005±0.001 0.004±0.005 −0.004±0.007 −0.001±0.003

α = 0.2 (Fig. 5b) 0.017±0.003 0.010±0.006 0.014±0.011 0.005±0.011

α = 0.4 (Fig. 5c) 0.025±0.002 0.015±0.009 0.037±0.011 0.024±0.006

α = 1.0 (Fig. 5d) 0.030±0.002 0.017±0.009 0.055±0.012 0.040±0.004

sets, but mostly align with commonly utilized hyperparameters for classical image datasets such as CIFAR10. The raw
performance on the task was not of extreme importance, but is comparable to previous studies on the same datasets with
similar network architectures (Karkkainen & Joo, 2021; Zhang et al., 2022; Zong et al., 2023).

D.3. Computational Cost

For training the models, we utilized a mixture of P100, RTX 3090, A40 and A100 GPUs, depending on availablility in
our cluster. Training a single model took around 3 hours on average over all considered model architectures and datasets,
resulting in 3,000 GPU-hours. Evaluating these models on the test datasets accounted for approximately 150 additional
GPU-hours.

E. Complete Experimental Results
The experimental results included in the main paper describe a subset of all the considered tasks. In this section, we provide
the results of the complete set, along with additional supporting tables and figures.

Detailed Results on Controlled Experiments. The detailed results for the controlled experiments in the main paper (Sec. 6)
are provided in Tab. 2. We report the absolute accuracies, SPDs, EODs and AODs for individual ensemble members, the
Deep Ensemble and the differences between those.

Performance and fairness violation of Deep Ensemble and individual members. Tab. 4 and Tab. 3 contain the
performance and fairness violations of individual ensemble members and the resulting Deep Ensemble, respectively.

The disparate benefits effect of Deep Ensembles. Fig. 9 - 11 depict the change in performance and fairness violations
when adding individual ensemble members for all considered tasks.
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Table 3: Performance and fairness violations of Deep Ensembles (10 members). Statistics are obtained from five independent runs.

D′ Target / Group Accuracy (↑) SPD (↓) EOD (↓) AOD (↓)
FF age / gender 0.812±0.007 0.190±0.009 0.165±0.010 0.126±0.008

FF age / race 0.812±0.007 0.112±0.008 0.063±0.011 0.075±0.008

FF gender / age 0.909±0.004 0.142±0.003 0.109±0.005 0.065±0.004

FF gender / race 0.909±0.004 0.009±0.003 0.003±0.004 0.004±0.003

FF race / age 0.885±0.004 0.035±0.003 0.038±0.014 0.025±0.006

FF race / gender 0.885±0.004 0.005±0.004 0.025±0.010 0.015±0.005

UTK age / gender 0.793±0.005 0.309±0.009 0.252±0.009 0.204±0.008

UTK age / race 0.793±0.005 0.214±0.006 0.188±0.007 0.106±0.005

UTK gender / age 0.923±0.003 0.180±0.003 0.083±0.004 0.054±0.002

UTK gender / race 0.923±0.003 0.002±0.002 0.023±0.003 0.029±0.002

UTK race / age 0.840±0.006 0.129±0.004 0.079±0.008 0.044±0.005

UTK race / gender 0.840±0.006 0.010±0.004 0.024±0.008 0.014±0.004

D′ Group AUROC (↑) SPD (↓) EOD (↓) AOD (↓)
CX age 0.943±0.001 0.139±0.002 0.181±0.006 0.104±0.003

CX gender 0.943±0.001 0.000±0.001 0.024±0.006 0.014±0.003

CX race 0.943±0.001 0.040±0.001 0.092±0.005 0.048±0.002

Changes in PR, TPR and FPR. Fig. 12 - 14 display the change in PR, TPR and FPR per group when adding individual
ensemble members for all considered tasks.

Difference in average predictive diversity. Fig. 15 - 17 depict the differences in average predictive diversity per target and
protected group.

Hardt post-processing (HPP). Tab. 5 - 19 contain the results of mitigating unfairness by means of HPP (Hardt et al., 2016)
on all considered tasks. HPP was either applied with the threshold set to the average fairness violation of the individual
ensemble members on the validation set (val) or to 0.05. Note that for some tasks, the original fairness violation of both
the Deep Ensemble and its members was already lower than 0.05, where HPP leads to an increase in unfairness up to the
desired threshold. Experiments on FairFace and CheXpert use the respective validation sets to learn the group dependent
thresholds in HPP. For experiments on UTKFace, the FairFace validation set was used to learn the thresholds, as it was
designed to emulate a real-world distribution shift scenario. Also for UTKFace, the same conclusions as for the FairFace
experiments described in the main paper hold, i.e., while HPP is very effective to mitigate unfairness in the Deep Ensembles,
the desired fairness violation (0.05) is not reached due to the distribution shift. Note that the balanced accuracy was used as
the performance metric for CheXpert, because the metric investigated in the main paper, the AUROC, does not consider
selecting a threshold.
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Figure 9: The disparate benefits effect of Deep Ensembles.The performance increases, but also the fairness changes, often decreasing,
when adding more members to the ensemble. Models are trained and evaluated on the FF dataset. Statistics are computed based on five
independent runs.
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Figure 10: The disparate benefits effect of Deep Ensembles. The performance increases, but also the fairness changes, often decreasing,
when adding more members to the ensemble. Models are trained on FF and evaluated on the UTK dataset. Statistics are computed based
on five independent runs.
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Table 4: Performance and fairness violations of individual members. Statistics are obtained from five independent runs.

D′ Target / Group Accuracy (↑) SPD (↓) EOD (↓) AOD (↓)
FF age / gender 0.794±0.001 0.173±0.001 0.153±0.002 0.113±0.001

FF age / race 0.794±0.001 0.107±0.004 0.058±0.004 0.072±0.004

FF gender / age 0.899±0.001 0.142±0.001 0.114±0.001 0.068±0.001

FF gender / race 0.899±0.001 0.010±0.001 0.003±0.001 0.006±0.001

FF race / age 0.873±0.000 0.040±0.001 0.040±0.005 0.029±0.002

FF race / gender 0.873±0.000 0.004±0.002 0.019±0.003 0.013±0.002

UTK age / gender 0.782±0.001 0.296±0.003 0.240±0.003 0.195±0.003

UTK age / race 0.782±0.001 0.207±0.002 0.182±0.003 0.104±0.002

UTK gender / age 0.916±0.001 0.180±0.002 0.087±0.003 0.056±0.001

UTK gender / race 0.916±0.001 0.002±0.001 0.023±0.002 0.028±0.001

UTK race / age 0.822±0.002 0.118±0.001 0.073±0.002 0.043±0.001

UTK race / gender 0.822±0.002 0.008±0.001 0.021±0.002 0.015±0.001

D′ Group AUROC (↑) SPD (↓) EOD (↓) AOD (↓)
CX age 0.940±0.000 0.138±0.001 0.174±0.003 0.101±0.001

CX gender 0.940±0.000 0.000±0.001 0.024±0.003 0.014±0.001

CX race 0.940±0.000 0.041±0.000 0.091±0.003 0.049±0.001
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Figure 11: The disparate benefits effect of Deep Ensembles. The performance increases, but also the fairness changes, often decreasing,
when adding more members to the ensemble. Models are trained and evaluated on the CX dataset. Statistics are computed based on five
independent runs.
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Figure 12: Changes in PR, TPR and FPR for a Deep Ensemble (10 members) on the FF dataset. Statistics are computed based on five
independent runs.
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Figure 13: Changes in PR, TPR and FPR for a Deep Ensemble (10 members) on the UTK dataset. Statistics are computed based on five
independent runs.
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Figure 14: Changes in PR, TPR and FPR for a Deep Ensemble (10 members) on the CX dataset. Statistics are computed based on five
independent runs.
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Figure 15: Average predictive diversity DIV for each value of the protected attribute A and target variable Y on the FF dataset. Statistics
are obtained from five independent runs.
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Figure 16: Average predictive diversity DIV for each value of the protected attribute A and target variable Y on the UTK dataset. Statistics
are obtained from five independent runs.
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Figure 17: Average predictive diversity DIV for each value of the protected attribute A and target variable Y on the CX dataset. Statistics
are obtained from five independent runs.
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Table 5: HPP results (accuracy and fairness violation metrics) on FF. Models are trained on target variable age, evaluated using protected
attribute gender. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.794±.003 0.173±.007 0.794±.003 0.153±.012 0.794±.003 0.113±.008

Deep Ensemble 0.816±.002 0.194±.004 0.816±.002 0.171±.004 0.816±.002 0.129±.004

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.818±.001 0.176±.011 0.818±.001 0.157±.014 0.818±.001 0.114±.012

Deep Ens. (0.05) 0.818±.001 0.057±.003 0.815±.002 0.067±.006 0.816±.002 0.062±.002

Members (0.05) 0.789±.005 0.056±.024 0.792±.005 0.055±.021 0.793±.005 0.054±.015

Table 6: HPP results results (accuracy and fairness violation metrics) on FF. Models are trained on target variable age, evaluated using
protected attribute race. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.794±.003 0.107±.007 0.794±.003 0.058±.011 0.794±.003 0.072±.007

Deep Ensemble 0.816±.001 0.116±.006 0.816±.001 0.070±.008 0.816±.001 0.079±.006

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.818±.001 0.070±.011 0.818±.001 0.041±.006 0.818±.001 0.032±.012

Deep Ens. (0.05) 0.818±.001 0.063±.007 0.818±.001 0.033±.013 0.818±.001 0.032±.011

Members (0.05) 0.795±.004 0.061±.015 0.795±.004 0.049±.028 0.795±.004 0.054±.018

Table 7: HPP results (accuracy and fairness violation metrics) on FF. Models are trained on target variable gender, evaluated using
protected attribute age. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.899±.003 0.142±.005 0.899±.003 0.114±.007 0.899±.003 0.068±.005

Deep Ensemble 0.913±.001 0.142±.002 0.913±.001 0.107±.001 0.913±.001 0.064±.001

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.913±.001 0.116±.015 0.913±.001 0.084±.015 0.913±.001 0.067±.001

Deep Ens. (0.05) 0.911±.001 0.055±.003 0.913±.001 0.054±.003 0.913±.001 0.067±.001

Members (0.05) 0.894±.004 0.048±.016 0.897±.004 0.048±.013 0.898±.003 0.072±.005

Table 8: HPP results (accuracy and fairness violation metrics) on FF. Models are trained on target variable gender, evaluated using
protected attribute race. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.899±.003 0.010±.004 0.899±.003 0.003±.005 0.899±.003 0.006±.003

Deep Ensemble 0.913±.001 0.009±.001 0.913±.001 0.003±.002 0.913±.001 0.004±.002

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.912±.001 0.037±.005 0.912±.001 0.004±.007 0.912±.001 0.007±.001

Deep Ens. (0.05) 0.912±.001 0.009±.002 0.912±.001 0.024±.007 0.912±.001 0.032±.008

Members (0.05) 0.898±.003 0.002±.013 0.898±.003 0.007±.019 0.898±.003 0.017±.012
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Table 9: HPP results (accuracy and fairness violation metrics) on FF. Models are trained on target variable race, evaluated using protected
attribute age. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.873±.002 0.040±.006 0.873±.002 0.040±.017 0.873±.002 0.029±.009

Ensemble 0.888±.001 0.036±.000 0.888±.001 0.045±.006 0.888±.001 0.028±.002

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.887±.001 0.040±.003 0.888±.001 0.030±.011 0.887±.001 0.025±.006

Deep Ens. (0.05) 0.888±.001 0.052±.004 0.888±.001 0.054±.006 0.887±.001 0.052±.011

Members (0.05) 0.873±.004 0.030±.024 0.873±.004 0.018±.050 0.874±.004 0.038±.030

Table 10: HPP results (accuracy and fairness violation metrics) on FF. Models are trained on target variable race, evaluated using
protected attribute gender. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.873±.002 0.004±.005 0.873±.002 0.019±.016 0.873±.002 0.013±.006

Ensemble 0.888±.001 0.005±.002 0.888±.001 0.027±.005 0.888±.001 0.016±.002

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.888±.001 0.012±.003 0.888±.001 0.005±.007 0.888±.001 0.016±.005

Deep Ens. (0.05) 0.888±.002 0.013±.010 0.888±.002 0.017±.022 0.888±.002 0.019±.004

Members (0.05) 0.873±.004 0.004±.025 0.873±.004 0.003±.044 0.873±.004 0.029±.027

Table 11: HPP results (accuracy and fairness violation metrics) on UTK. Models are trained on target variable age, evaluated using
protected attribute gender. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.782±.004 0.296±.008 0.782±.004 0.240±.012 0.782±.004 0.195±.008

Ensemble 0.796±.001 0.313±.003 0.796±.001 0.255±.004 0.796±.001 0.207±.003

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.796±.002 0.299±.008 0.796±.002 0.245±.011 0.795±.002 0.194±.010

Deep Ens. (0.05) 0.795±.004 0.211±.005 0.796±.003 0.175±.007 0.797±.004 0.155±.006

Members (0.05) 0.777±.004 0.202±.021 0.778±.004 0.163±.018 0.778±.004 0.145±.013

Table 12: HPP results (accuracy and fairness violation metrics) on UTK. Models are trained on target variable age, evaluated using
protected attribute race. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.782±.004 0.207±.007 0.782±.004 0.182±.009 0.782±.004 0.104±.007

Deep Ensemble 0.796±.001 0.217±.002 0.796±.001 0.191±.003 0.796±.001 0.108±.002

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.791±.001 0.188±.008 0.792±.001 0.168±.006 0.791±.001 0.085±.004

Deep Ens. (0.05) 0.791±.001 0.183±.005 0.791±.001 0.163±.010 0.791±.001 0.085±.004

Members (0.05) 0.774±.005 0.173±.011 0.777±.005 0.176±.021 0.777±.005 0.092±.011
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Table 13: HPP results (accuracy and fairness violation metrics) on UTK. Models are trained on target variable gender, evaluated using
protected attribute age. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.916±.002 0.180±.005 0.916±.002 0.087±.007 0.916±.002 0.056±.003

Deep Ensemble 0.926±.001 0.181±.001 0.926±.001 0.081±.003 0.926±.001 0.052±.001

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.925±.001 0.161±.011 0.925±.001 0.060±.013 0.925±.001 0.051±.002

Deep Ens. (0.05) 0.920±.001 0.117±.001 0.923±.001 0.037±.002 0.925±.001 0.051±.002

Members (0.05) 0.910±.001 0.111±.011 0.911±.001 0.034±.011 0.914±.001 0.057±.003

Table 14: HPP results (accuracy and fairness violation metrics) on UTK. Models are trained on target variable gender, evaluated using
protected attribute race. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.916±.002 0.002±.003 0.916±.002 0.023±.004 0.916±.002 0.028±.003

Deep Ensemble 0.926±.001 0.002±.001 0.926±.001 0.022±.002 0.926±.001 0.029±.001

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.926±.001 0.021±.003 0.924±.001 0.029±.006 0.925±.001 0.034±.003

Deep Ens. (0.05) 0.924±.001 0.012±.001 0.923±.002 0.049±.007 0.922±.002 0.053±.005

Members (0.05) 0.914±.002 0.006±.010 0.914±.002 0.035±.015 0.914±.002 0.039±.013

Table 15: HPP results (accuracy and fairness violation metrics) on UTK. Models are trained on target variable race, evaluated using
protected attribute age. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.822±.006 0.118±.009 0.822±.006 0.073±.016 0.822±.006 0.043±.007

Deep Ensemble 0.843±.002 0.132±.002 0.843±.002 0.080±.003 0.843±.002 0.043±.002

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.857±.001 0.131±.006 0.858±.002 0.066±.008 0.858±.002 0.042±.003

Deep Ens. (0.05) 0.856±.002 0.149±.007 0.858±.002 0.086±.005 0.857±.003 0.057±.006

Members (0.05) 0.816±.014 0.118±.038 0.816±.015 0.078±.047 0.817±.014 0.055±.029

Table 16: HPP results (accuracy and fairness violation metrics) on UTK. Models are trained on target variable race, evaluated using
protected attribute gender. Statistics are obtained from five independent runs, and additionally over all individual ensemble members if
applicable.

Before HPP Acc (↑) SPD (↓) Acc (↑) EOD (↓) Acc (↑) AOD (↓)
Members 0.822±.006 0.008±.010 0.822±.006 0.021±.019 0.822±.006 0.015±.010

Ensemble 0.843±.002 0.011±.002 0.843±.002 0.023±.004 0.843±.002 0.013±.002

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.858±.003 0.039±.002 0.858±.001 0.000±.006 0.859±.003 0.016±.008

Deep Ens. (0.05) 0.859±.002 0.038±.013 0.859±.002 0.019±.019 0.859±.002 0.019±.006

Members (0.05) 0.816±.014 0.009±.044 0.816±.015 0.002±.049 0.816±.014 0.030±.032
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Table 17: HPP results (balanced accuracy and fairness violation metrics) on CX. Models are evaluated using protected attribute age.
Statistics are obtained from five independent runs, and additionally over all individual ensemble members if applicable.

Before HPP BAcc (↑) SPD (↓) BAcc (↑) EOD (↓) BAcc (↑) AOD (↓)
Members 0.783±.008 0.138±.004 0.783±.008 0.174±.010 0.783±.008 0.101±.006

Deep Ensemble 0.786±.004 0.139±.001 0.786±.004 0.182±.004 0.786±.004 0.104±.002

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.801±.004 0.122±.019 0.800±.004 0.125±.048 0.800±.005 0.073±.030

Deep Ens. (0.05) 0.788±.004 0.057±.002 0.798±.005 0.052±.007 0.800±.005 0.038±.010

Members (0.05) 0.782±.010 0.060±.005 0.789±.010 0.063±.015 0.790±.011 0.049±.009

Table 18: HPP results (balanced accuracy and fairness violation metrics) on CX. Models are evaluated using protected attribute gender.
Statistics are obtained from five independent runs, and additionally over all individual ensemble members if applicable.

Before HPP BAcc (↑) SPD (↓) BAcc (↑) EOD (↓) BAcc (↑) AOD (↓)
Members 0.783±.008 0.000±.002 0.783±.008 0.024±.010 0.783±.008 0.014±.005

Deep Ensemble 0.786±.004 0.000±.000 0.786±.004 0.025±.002 0.786±.004 0.015±.001

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.801±.006 0.002±.001 0.798±.007 0.005±.020 0.798±.007 0.014±.005

Deep Ens. (0.05) 0.796±.005 0.001±.014 0.798±.006 0.009±.024 0.796±.005 0.020±.013

Members (0.05) 0.792±.012 0.001±.013 0.792±.012 0.018±.027 0.792±.012 0.022±.013

Table 19: HPP results (balanced accuracy and fairness violation metrics) on CX. Models are evaluated using protected attribute race.
Statistics are obtained from five independent runs, and additionally over all individual ensemble members if applicable.

Before HPP BAcc (↑) SPD (↓) BAcc (↑) EOD (↓) BAcc (↑) AOD (↓)
Members 0.783±.008 0.041±.002 0.783±.008 0.091±.008 0.783±.008 0.049±.004

Deep Ensemble 0.786±.004 0.040±.001 0.786±.004 0.091±.004 0.786±.004 0.047±.002

After HPP HPP-SPD (↓) HPP-EOD (↓) HPP-AOD (↓)
Deep Ens. (val) 0.801±.007 0.037±.002 0.802±.007 0.083±.010 0.802±.007 0.044±.006

Deep Ens. (0.05) 0.802±.007 0.039±.004 0.802±.008 0.078±.008 0.799±.004 0.053±.013

Members (0.05) 0.793±.011 0.038±.006 0.793±.011 0.073±.019 0.793±.011 0.047±.016
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F. Additional Investigations
This section presents additional investigations that are complementary to those presented in the main section of the manuscript.
First, we analyze the complementary notion of min-max fairness. Second, we investigate how the disparate benefits effect
behaves for different model sizes of the individual ensemble members. Third, we conduct the same investigation on different
model architectures. Fourth, we study whether the disparate benefits effect also occurs for heterogeneous Deep Ensembles
composed of members with different model architectures. Fifth, we report an alternative approach to mitigate the negative
impact on fairness due to Deep Ensembling by means of weighting individual members differently in the ensemble. Finally,
we study the calibration of the Deep Ensemble and its individual members and the resulting sensitivity of their threshold
used to make the prediction.

F.1. Minimax Fairness

The notions of group fairness discussed throughout the paper (Eq. (2) - (4)) control for the gap between group characteristics
such as their PR, TPR or FPR. Another notion often considered in recent work is minimax fairness (Martinez et al., 2020;
Diana et al., 2021; Zietlow et al., 2022), where the characteristics of the worst group are of importance. For instance (Zietlow
et al., 2022) showed, that the accuracy and TPR of both the minority and majority group decrease when using standard
in-processing interventions in facial analysis tasks similar to FF and UTK in our experiments. Therefore, we investigate the
minimax fairness impact of Deep Ensembles. Specifically, we discuss the TPR, FPR and accuracy.

The results for TPR and FPR are given in Fig. 12 - 14. We observe, that for none of the considered tasks, there as a significant
negative change of the TPR due to ensembling. Similarly, we find that for none of the considered tasks, there is a significant
positive change of the FPR due to ensembling, which is desired as a better classifier should have a lower FPR. The results
for accuracy are given in Fig. 18 - 20. We find, that the accuracies of both groups significantly increase for all considered
tasks. In sum, while we find that Deep Ensembles have a disparate benefits effect, where one group benefits more than the
other, thus increases unfairness w.r.t. disparity based group fairness metrics, the predictive performances of both groups
increase thus improve fairness under a minimax fairness perspective.
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Figure 18: Change in Accuracy for a Deep Ensemble (10 members) on the FF dataset, Statistics are computed based on five independent
runs.

F.2. Model Size

The experiments in the main paper were conducted using ResNet50 models. In this section we investigate whether the size
of the models plays a major role in determining the existence and strength of the disparate benefits effect. The results are
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Figure 19: Change in Accuracy for a Deep Ensemble (10 members) on the UTK dataset, Statistics are computed based on five independent
runs.
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Figure 20: Change in Accuracy for a Deep Ensemble (10 members) on the CX dataset, Statistics are computed based on five independent
runs.

shown in Fig. 21 - 23. As seen in the Figures, in the majority of cases the performance gains due to ensembling slightly
increase for larger model classes. The fairness violations however increase to a larger degree, see e.g. Fig. 21 (a) and (b),
Fig. 22 (a), (b) and (c) as well as Fig. 23 (a). Generally, we observe an increase in the magnitude of the change in fairness
violations with larger model classes for all tasks that exhibit significant disparate benefits (cf. Tab. 1).

F.3. Model Architecture

In this section we investigate the role of the specific model architecture on the existence and strength of the disparate benefits
effect. The results are shown in Fig. 24 - 26. In the majority of cases, disparate benefits occur throughout all considered
model architectures. Especially for EfficientNetV2-S we observe significant disparate benefits for some cases where we
do not observe them in the main investigation based on ResNet50. For example for UTK, target race, group age under
AOD (Fig. 25e) or CX, group race under EOD and AOD. Overall, we do not find a systematic difference of the results for
different model architectures.
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Figure 21: The disparate benefits effect of Deep Ensembles for different model sizes. Models are trained and evaluated on the FF dataset.
Statistics are computed based on five independent runs.
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(f) Y = race, A = gender

Figure 22: The disparate benefits effect of Deep Ensembles for different model sizes. Models are trained and evaluated on the UTK
dataset. Statistics are computed based on five independent runs.
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Figure 23: The disparate benefits effect of Deep Ensembles for different model sizes. Models are trained and evaluated on the CX dataset.
Statistics are computed based on five independent runs.

F.4. Heterogenous Ensembles

The results presented in Fig. 1 in the main paper are obtained from a homogeneous Deep Ensemble composed of ResNet50
models. The results presented in Fig. 27 consider the same target / protected group combinations for the same datasets using
a heterogeneous Deep Ensemble of ResNet18/34/50 models. We observe the disparate benefits effect for heterogeneous
ensembling to a similar extent than for homogeneous ensembling.

F.5. Deep Ensemble Weighting

In this section, we study whether there exist weightings to combine the individual models in the Deep Ensemble that perform
better than a standard uniform averaging as in Eq. (1). The approximation in Eq. (1) thus changes to

pλ(y | x,D) ≈
N∑

n=1

λn p(y | x,wn) . (16)

λ satisfies
∑N

n=1 λn = 1 and λn ≥ 0 ∀n. Note that Eq. (16) results in Eq. (1) if λn = 1/N ∀n. We consider
λ ∼ Dir(α1, ..., αN ) with αn = 1 ∀n. Weightings are thus drawn uniformly at random from a N − 1 dimensional
probability simplex. In our empirical investigation, we sampled 2,000 weightings λ and evaluated the resulting ensembles
on the three tasks. The results are given in Fig. 28, showing individual members and the different resulting ensembles,
as well as their convex hull. In the case of the FF and UTK datasets, there apprears to be a strong correlation between
fairness violations and performance, and the weights hardly provide more Pareto optimal models. However, regarding the
CX dataset, we observe that there are many weightings that would yield a more favorable outcome than uniform averaging
as generally done by Deep Ensembles. In the following, we outline two methods to choose such a weighting. However,
both methods did no lead to a significantly better outcome than uniform averaging. Nevertheless, we include a qualitative
discription of our experiments as guidance for future research.

Weight selection based on the validation set. The simplest approach to identify a more favorable set of weights consists of
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(f) Y = race, A = gender

Figure 24: The disparate benefits effect of Deep Ensembles for different model architectures. Models are trained and evaluated on the FF
dataset. Statistics are computed based on five independent runs.
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(f) Y = race, A = gender

Figure 25: The disparate benefits effect of Deep Ensembles for different model architectures. Models are trained and evaluated on the
UTK dataset. Statistics are computed based on five independent runs.

36



The Disparate Benefits of Deep Ensembles

resnet50 regnet efficientnet
Model

0.000

0.005

0.010

0.015
 S

PD
 (

) /
 

 A
UR

OC
 (

)

resnet50 regnet efficientnet
Model

0.000

0.005

0.010

0.015

 E
OD

 (
) /

 
 A

UR
OC

 (
)  

resnet50 regnet efficientnet
Model

0.000

0.005

0.010

0.015

 A
OD

 (
) /

 
 A

UR
OC

 (
)

 Fairness Violation  Performance

(a) A = age

resnet50 regnet efficientnet
Model

-0.005

0.000

0.005

 S
PD

 (
) /

 
 A

UR
OC

 (
)

resnet50 regnet efficientnet
Model

-0.005

0.000

0.005

 E
OD

 (
) /

 
 A

UR
OC

 (
)  

resnet50 regnet efficientnet
Model

-0.005

0.000

0.005

 A
OD

 (
) /

 
 A

UR
OC

 (
)

 Fairness Violation  Performance

(b) A = gender

resnet50 regnet efficientnet
Model

0.000

0.005

 S
PD

 (
) /

 
 A

UR
OC

 (
)

resnet50 regnet efficientnet
Model

0.000

0.005

 E
OD

 (
) /

 
 A

UR
OC

 (
)  

resnet50 regnet efficientnet
Model

0.000

0.005

 A
OD

 (
) /

 
 A

UR
OC

 (
)

 Fairness Violation  Performance

(c) A = race

Figure 26: The disparate benefits effect of Deep Ensembles for different model architectures. Models are trained and evaluated on the CX
dataset. Statistics are computed based on five independent runs.

selecting it as a hyperparameter. In our experiments, we sampled λ uniformly at random as described before and selected the
Pareto optimal weighting on the validation set. However, we found that the selected weights did not improve performance
on the test dataset, neither for the UTK dataset - where it could expected due to the distribution shift - nor on the FF and CX
datasets, where the validation and test datasets are drawn from the same distribution. Notably, the selected solutions were
very close to the uniform weighting that is usually used in Deep Ensembles.

Fairness-based weighting. Furthermore, we leveraged the information about the fairness violation of the individual
members to define the weights and yield a fairer ensembling. This is similar to the approach reported in Kenfack et al.
(2021), yet for neural networks as base models. Given a fairness violation measure Fn ∈ [0, 1] for each ensemble member,
we define the weighting factor

λn =
exp{−Fn/τ}∑N
j=1 exp{−Fj/τ}

, (17)

for Eq. (16), where τ ∈ R+ is a temperature hyperparameter. For high values of the temperature parameter τ → ∞,
Eq. (16) becomes equivalent to Eq. (1). For low values of the temperature parameter τ → 0, the fairness-weighted predictive
distribution given by Eq. (16) approaches the predictive distribution of the model with lowest fairness violation. We
calculated the fairness measure on an additional held out “fairness” dataset. The temperature parameter was selected on the
validation dataset. In our experiments, the proposed fairness-weighted Deep Ensemble was not significantly Pareto dominant
to the uniform weighting. Notably, the selected solutions were either close to the individual models or to uniform averaging,
thus exhibiting extremely high variance. In further analysis, we found that performance and fairness violations are extremely
dependent on the selected temperature, both being non-smooth functions of the temperature. On the considered datasets and
models, the best temperatures were usually found around 1e-2.

F.6. Calibration and Threshold Selection

As elaborated in the main part of the paper, we find that the Deep Ensemble is better calibrated than individual members
(Fig. 7a). Here we provide a more detailed analysis that looks into the decrease in ECE per protected group for each target /
protected group attribute pair (task) we consider throughout our experiments. The results are provided in Fig. 29, showing
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Figure 27: The dangers of the disparate benefits effect for heterogeneous (ResNet18/34/50) Deep Ensembles. The performance increases,
but the fairness decreases when adding members to the ensemble. The models evaluated on the FairFace test dataset and UTKFace dataset
are trained to predict age as the target variable and are evaluated using gender (male / female) as the protected attribute to define the
groups. CheXpert models are trained to predict whether there was a finding regarding a set of medical conditions or not and are evaluated
using age (young / old) as the protected attribute to define the groups. Statistics are obtained from five independent runs.

that for some tasks, the ECE significantly differs per group, but the Deep Ensemble is more calibrated than individual
members, regardless of the protected group attribute.

Finally, we report the results of analyzing the dependency of the Deep Ensemble and individual ensemble members on
selecting the threshold for prediction. When using the usual argmax , implicitly a threshold of 0.5 is used. In the post-
processing experiments we found that applying the method even under an additional fairness constraint can improve the
performance. We evaluated all trained models on their respective validation datasets. Results are depicted in Fig. 30. The
results show that the Deep Ensemble is more sensitive to the threshold on the FF dataset, especially for target variable
age. Regarding the CX dataset, the balanced accuracy exhibits roughly the same behavior under varying thresholds for the
Deep Ensemble than for individual members. However, the spread of the optimal threshold is much smaller throughout all
experiments.
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Figure 28: Convex hull of performance and fairness violations for possible weightings to aggregate members of the Deep Ensemble.
Ensemble weights are drawn uniformly at random from a N − 1 dimensional simplex. Grey points represent individual models, the black
star corresponds to their average performance and fairness violation. The red star represents the standard Deep Ensemble with uniform
weighting.
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Figure 29: Expected Calibration Error (ECE) per group (group denoted by the hatches) for individual ensemble members and the Deep
Ensemble for all considered target protected attribute combinations. Statistics are computed based on five independent runs.
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Figure 30: (Balanced) Accuracy depending on the chosen threshold for the FF and CX validation datasets. Vertical lines and shading
denote optimal threshold per protected group. Statistics are computed based on five independent runs.
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