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Abstract— Scaling data and models has played a pivotal role
in the remarkable progress of computer vision and language.
Inspired by these domains, recent efforts in robotics have
similarly focused on scaling both data and model size to
develop more generalizable and robust policies. However, unlike
vision and language, robotics lacks access to internet-scale
demonstrations across diverse robotic tasks and environments.
As a result, the scale of existing datasets typically suffers
from the need for manual data collection and curation. To
address this problem, here we propose BLAZER, a framework
that learns manipulation policies from automatically generated
training data. We build on the zero-shot capabilities of LLM
planners and automatically generate demonstrations for diverse
manipulation tasks in simulation. Successful examples are then
used to finetune an LLM and to improve its planning capa-
bilities without human supervision. Notably, while BLAZER
training requires access to the simulator’s state, we demonstrate
direct transfer of acquired skills to sensor-based manipula-
tion. Through extensive experiments, we show BLAZER to
significantly improve zero-shot manipulation in both simulated
and real environments. Moreover, BLAZER improves on tasks
outside of its training pool and enables downscaling of LLM
models. Our code and data will be made publicly available on
the project page [1].

I. INTRODUCTION

”A teacher is one who makes
himself progressively unnecessary.”

— Thomas Carruthers

Learning-based methods are attracting increasingly growing
attention in robotics. In particular, extending large language
models (LLMs) and vision-language models (VLMs) to
robotic tasks promise to empower resulting policies with
strong reasoning capabilities and generalization to diverse
tasks and environments [2], [3], [4], [5]. However, train-
ing generic robotic policies requires large-scale data in
the form of paired actions and observations. To address
this challenge, recent efforts attempt to collect real-robot
demonstrations [6], adopt human videos [7], and leverage
simulated environments [8], [9], [10]. Manual collection of
robot demonstrations, however, is slow and expensive, while
human videos are missing low-level control data and face an
embodiment gap between robots and humans. Hence, scaling
robotic demonstrations remains a major bottleneck.

Recent work on language models brought significant
progress improving reasoning capabilities of LLMs [12],
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Fig. 1: BLAZER overview. Previous approaches such as
Code As Policies (CAP) [11] (left) use LLMs to produce
interaction plans and to solve manipulation tasks in a zero-
shot manner. Such methods rely on careful prompt engineer-
ing and often lead to suboptimal performance. In contrast,
BLAZER (right) uses a fully automatic pipeline, where
successful LLM-generated demonstrations are used to train
improved LLM-based manipulation agents with no manual
supervision.

[13], [14]. One successful line of work in this direction
is based on bootstrapping [13], where pretrained LLMs
are first used to generate high-quality rationales and are
then finetuned to yield improved performance while using
generated rationales as training examples. Bootstrapping
and self-improvement have been shown to be particularly
effective for problems that require non-trivial solutions and
offer simple verification, as for the case of many problems in
mathematics and common sense reasoning [15]. We note that
robotic manipulation tasks frequently belong to such class of
problems since their success can often be certified by merely
verifying the end states of manipulated objects.

Inspired by the idea of bootstrapping, we propose
BLAZER, a framework that bootstraps LLM-based ma-
nipulation agents using automatically generated and ver-
ified demonstrations. Given language-defined tasks, such
as “stack blocks” or “open wine bottle”, we follow previous
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work [11], [16] and use general-purpose LLM with strong
reasoning and coding capabilities to generate executable ma-
nipulation plans. Next, we execute such plans in a simulator
and evaluate their success. Successful plans for diverse tasks
form a training set for supervised finetuning (SFT) of a
smaller-scale LLM, which learns to improve manipulation
abilities using no human supervision, see Fig. 1.

The BLAZER training uses privileged information in
the form of object locations, orientations, and dimensions
provided by the simulator. To deploy BLAZER in the real
world, we design a vision pipeline using Molmo [17] and
M2T2 [18] for object state estimation. Notably, our LLaMA-
8B model trained with BLAZER significantly outperforms
its initial and larger teacher model LLaMA-70B used to
generate training demonstrations. Moreover, despite being
trained in simulation, we demonstrate off-the-shelf transfer of
BLAZER to real-world manipulation tasks where LLaMA-
8B (47.8%) significantly outperforms the success rate of
LLaMA-70B (33.3%). We perform extensive experimen-
tal evaluation and demonstrate consistent improvements of
BLAZER in both the real world and in simulation for a
variety of tasks. BLAZER outperforms state-of-the-art zero-
shot MALMM [16], it generalizes to tasks unseen during
training and requires no manual demonstrations at any stage
of the learning process.

In summary, our work makes the following contributions:
• We introduce BLAZER, the framework that bootstraps

a generic LLM and enables self-improvement of zero-
shot manipulation agents using automatically generated
training demonstrations.

• Through extensive experiments and ablations, we
demonstrate BLAZER to result in significant improve-
ments for a range of manipulation tasks.

• We further demonstrate off-the-shelf transfer of
simulator-trained BLAZER to real-world manipulation
tasks while using no manual demonstrations in any part
of the training process.

II. RELATED WORK

We discus related work on policy learning, self-improving
models and scaling training data for robotics below.

A. Language and Vision Foundational Models for Robotics

Visumotor policies [19], [20], [21] trained on manually
collected demonstrations have shown great success in robotic
manipulation. However, such models trained from scratch
lack generalization to new tasks and environments. The in-
corporation of vision-language models (VLMs) into end-to-
end robotic control, in the form of Vision-Language Action
Models [22], [2], [3], [4], has enhanced generalization and
enabled emergent semantic reasoning. The success of these
methods, however, still relies on the collection of large-scale
human demonstrations, which is expensive. ManipLLM [23]
explores VLM finetuning with chain-of-thought reasoning
for robotic manipulation tasks. This approach, however,
requires test-time adaptation to overcome sim-to-real gap. In
contrast, our framework enables self-improvement using no

human supervision. Moreover, our LLM agents, combined
with our vision pipeline, directly transfer to real-world tasks
without additional training.

To overcome the need of large-scale training data and to
facilitate generalization to new tasks, recent work explores
LLMs and VLMs for zero-shot robotic manipulation. Code
as Policies [11] and MALMM [16] deploy LLM for writing
robot policy code, while Voxposer [24] and GenSim [8], [9]
couple code generation capabiltities of LLM with multimodal
reasoning capabilities of VLM to generate 3D value map for
trajectory estimation and to automatically create simulator
tasks, respectively. AHA [25] demonstrates that VLMs can
be used for detecting and adapting to failures. Our approach
is closely related to MALMM [16] and Code as Policies [11].
While these methods remain dependent on careful prompt
engineering and require much computation at test time,
our approach enables self-improvement using automatically
generated training data and can run using relatively small
and efficient LLMs at inference time.

B. Self-improving models

Recent work improves the reasoning capabilities of LLMs
by generating few-shot rationales [26], [12], [27], boot-
strapping [13], and reinforcement learning [28], [29], [15].
Among these approaches, self-training [13] stands out as a
particularly scalable and successful strategy. In this approach,
general-purpose LLMs are first used to generate high-quality
rationales that are later deployed to train either improved
versions of original models or smaller models [30].

The idea of self-improvement has also been explored in
robotics e.g., to learn low-level visuomotor policies from
a large dataset of grasping attempts [31] or from hours-
long object poking interactions [32]. More recent methods
focus on correcting manipulation failures at test time by
reasoning about past experience [33] or detecting misalign-
ment between planned and executed actions [34]. Another
work, ReFineVLA [35], augments manipulation datasets
with action rationales using Gemini [36], thereby enabling
VLAs to reason about their actions. Related to our approach,
SC-VLA [37] enables self-correction of VLA models from
successful task executions. This parallel work, however, is
mostly focused on low-level pushing and pulling actions, and
requires explicit failure detection. In contrast, our bootstrap-
ping approach only relies on success verification at the task
level and addresses a variety of complex tasks that require
high-level reasoning.

C. Data Generation for Manipulation

Many efforts have been dedicated to scale up training
data for manipulation tasks. Some works collect real-world
grasping data [31], [6] by deploying random trials followed
by verification as well as collection of human demonstra-
tions. KALIE [38] curated human-annotated affordance data
as an alternative to robot demonstrations, whereas PhysOb-
jects [39] collected an object-centric dataset to train a VLM
with the physical concepts of common household objects.
Another approach, LLaRA [40], adopted behavior cloning
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Fig. 2: Overview of BLAZER. Given a set of manipulation tasks τ ∈ T , we use LLM to automatically generate executable
commands Cτ for solving τ . The resulting solutions are automatically verified by executing Cτ in a simulator and successful
solutions are added to the task database Dτ . Task databases for all training tasks T are merged into DBLAZER and are used
for supervised finetuning of BLAZER LLM.

datasets for instruction tuning tailored for manipulation
tasks. This approach relies of external demonstrations and
uses manually curated templates to generate question-answer
pairs.

Another popular direction is to collect demonstrations in
simulation. Nevertheless, this approach is still challenging
as it requires significant human efforts to create diverse
simulation tasks and scenes to allow generalization of the
learned policies. To address this issue, recent work [8],
[9] has leveraged coding LLMs with multimodal reasoning
capabilities to generate complex and realistic simulation
tasks without human supervision. DemoGen [41] adapted a
single human trajectory to novel object configurations using
3D point cloud editing, yielding synthetic demonstrations
that improve manipulation policies. Unlike prior work, our
work focuses on scaling up demonstrations for a given set of
tasks, while preserving generalization capabilities of LLMs.
We propose a framework where we can generate an arbitrary
number of data in simulation, benefiting from the reasoning
and coding capabilities of LLMs to synthesize verification
data with no human intervention. We subsequently use the
generated data for the training of our agent tailored for
manipulation.

III. METHOD

Here, we introduce the BLAZER methodology for train-
ing specialized LLM agents for robotic manipulation. In
short, we aim to finetune an existing lightweight LLM on
synthetically-generated data, tuning it for the generation of
manipulation-oriented robotics policies. An overview of our
method is shown in Fig. 2. This section first introduces the
formalization and the problem setup (Section III-A), and
we further describe how the BLAZER training works in
Section III-B. Since our training procedure only exploits
automatic annotations generated by a simulator, we also
introduce a vision-based pipeline for the deployment in the
real world of the trained LLM agent (Section III-C).

A. Formalization and background

We assume a manipulation environment E , where a robotic
gripper G interacts with objects to solve a task τ that we can
automatically verify in simulation. To achieve this, G needs
to manipulate a set of K objects {o1, o2, ..., oK} in E , using
a sequence of I control functions sampled from a primitives
set F = {open gripper, close gripper,move gripper}. Prim-
itives in F are combined to define a policy composed of
control commands Cτ . Formally, this is written as follows:

Cτ = {fi}Ii=1, ∀fi ∈ Cτ , fi ∈ F . (1)

The primitives open gripper and close gripper can be exe-
cuted without additional knowledge of the environment. In
contrast, move gripper requires as input the final desired
gripper position and orientation. During execution, the grip-
per joints’ positions are computed with inverse kinematics.

Following the open-loop single-agent setup introduced in
MALMM [16], Cτ can be obtained by prompting large-
scale LLMs such as GPT-4 [42]. Logically, in this case
the LLM must also generate all the code necessary for a
correct execution. To achieve this, we define the current
state of the environment as ΣE = {oi}Ki=1, where each
oi = [ξi, ϕi, li, wi, hi], ∀i ∈ [1,K] encodes the 3D center
position ξi of the object oi, the orientation on the z-axis
ϕi, and the metric dimensions l (length), w (width) and h
(height). We also define ρτ as a textual description of τ , to
enable LLM prompting. We then derive Cτ by prompting
the LLM with ρτ and a textual representation of ΣE . For
more details, refer to [16]. In short, the control commands
generation is expressed as follows:

Cτ = LLM(ρτ ,ΣE). (2)

B. Bootstrapping manipulation agents with simulation

In many scenarios, naively prompting an LLM for Cτ as
in Eq. 2 results in planning or coding errors [16]. While
MALMM mitigates the problem with an expensive multi-
agent pipeline, our goal is instead to train a single LLM



agent LLMBLAZER, with specific capabilities tuned ad hoc
on manipulation tasks.

Our idea is to obtain LLMBLAZER by finetuning a pre-
trained lightweight language model without requiring hu-
man supervision, as we show in Figure 2. To do so, we
use synthetic examples tailored for Cτ generation, obtained
within the interactions of an LLM with a manipulation-
oriented simulator such as CoppeliaSim. We first define a
set of T representative tasks T = {τ1, τ2, ..., τT } that we
use for data generation. Each task is processed by a language
model LLMboot to generate Cτ as described in Section III-A.
Importantly, since we operate in a simulated environment, we
can automatically verify if Cτ successfully solves τ , thanks
to the automatic verification criteria in manipulation-oriented
simulators. Hence, for given commands Cτ and a task τ , we
associate a verification operator V defined as follows:

V (Cτ , τ) =

{
✓ if Cτ is an acceptable solution for τ ,
× otherwise.

(3)
Now, for each task τ we automatically collect a dataset Dτ

of N successful solutions provided by LLMboot. While this
would be extremely challenging with real demonstrations,
in a simulated environment, we can easily randomize the
initial state ΣE to obtain an arbitrary number of object
configurations for each task in T , and automatically verify
the correctness of proposed commands. We illustrate this
process in Fig. 2. For any τ ∈ T ,

Dτ = {LLMboot(ρτ ,Σ
i
E)}Ni=1,

if V (LLMboot(ρτ ,Σ
i
E), τ) = ✓.

(4)

In Eq. (4), we call Σi
E a random state configuration sampled

in the simulated environment. Note that it is impossible to
only generate Σi

E such that Cτ is successful; hence, part of
the generated commands resulting in unacceptable Cτ will be
discarded by our simulator-in-the-loop verification strategy.
Finally, we train LLMBLAZER using Supervised Finetuning
(SFT) on a dataset DBLAZER resulting from the aggregation
of all Dτ :

LLMBLAZER ←−SFT(LLM,DBLAZER),

where DBLAZER = {Di
τ}Ti=1

(5)

Note that our training uses a generic target LLM, and
hence we do not impose the finetuning of LLMboot as in
self-refinement strategies [13]. This allows to benefit from
larger LLMs for data generation, easing the generation of
successful commands. Ultimately, our simulated training
with verification allows filtering of any wrong solution,
automatically curating a dataset for SFT with no human
intervention.

C. Vision pipeline

While in simulation we can extract the ground truth space
ΣE , in a real-world deployment, we must instead estimate
its approximation Σ̃E purely from visual data. Hence, to
enable the deployment of LLMBLAZER outside the simulator,
we introduce a vision pipeline, based on existing foundation

models and no training. This allows us to mitigate the
distribution shift that would occur if we trained perception
components directly on a simulated environment [43].

We assume a multi-view setup that can use any number of
calibrated RGB-D cameras. As a preliminary step, we prompt
GPT-4o for a list of elements present in the scene, condi-
tioned on a given task τ . Then, in all views, we first prompt
Molmo [17] to extract the 2D coordinates of the center of
each object oi in a task τ . Employing Molmo for prompt
interpretation enables contextual and spatial reasoning, going
beyond simple semantics [17]. Next, we use the 2D center
coordinates as a prompt for Segment Anything [44], obtain-
ing a segmentation mask of the object in 2D for that view. By
combining the segmentation mask with the RGB-D data, we
derive a 3D bounding box for the object, which provides its
estimated dimensions. Finally, we use M2T2 [18] to predict
the object’s 3D center position and grasping orientation. We
aggregate the outputs from multiple views with a simple
median filter to remove outliers, obtaining the final (l̃, w̃, h̃)
from the bounding box and ξ̃i, ϕ̃i from M2T2. We then
construct õ = {ξ̃i, ϕ̃i, l̃, w̃, h̃}. Repeating this for each object
in the space gives Σ̃E = {õi}Ki=1. We use Σ̃E as input to
LLMBLAZER in real-world deployment.

IV. EXPERIMENTS

Our experiments are designed to assess the LLM agent
trained using our BLAZER framework against existing vision
and language foundation model-based baselines.

A. Experimental details

Tasks and environment. For comparison with baselines, we
follow the MALMM setup and evaluate on nine simulated
tasks from RLBench [45], illustrated in Fig. 3: Basketball in
Hoop (BH), Close Jar (CJ), Empty Container (EC), Insert
in Peg (IP), Meat off the Grill (MG), Open Bottle (OB),
Put Block (PB), Rubbish in Bin (RB), and Stack Blocks
(SB). Detailed task descriptions and success conditions are
provided in Appendix-B. We train BLAZER by setting
these tasks as T . During testing, we randomize each test
episode configuration, preventing overlaps with those used in
training. We use CoppeliaSim and interface it with PyRep.
In the real-world setup, we test generalization on 12 tasks on
a tabletop using a 7-DOF Franka Emika Panda Research 3
robot equipped with a parallel jaw gripper. We use three Intel
RealSense D435i RGB-D cameras to capture the frontal,
right, and left views and the panda-py [46] library to control
the robot arm.

Implementation Details. For our experiments, we choose
LLaMA-3.1-8B (LLaMA-8B) as LLMBLAZER, and LLaMA-
3.3-70B (LLaMA-70B) as LLMboot. The prompt for data
bootstrapping is adopted from Single Agent (SA) setup of
MALMM [16], and is included in Appendix-A. Both the
LLMs, LLMBLAZER and LLMboot generate 3D waypoints for
the gripper, while trajectories are computed and executed
using a motion planner, which is a common approach in
RLBench [45]. During SFT, the models are trained with a
prompt completion loss, using N = 2000 examples per task.
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Fig. 3: Tasks in simulation. We consider 9 pick-and-place tasks from RLBench simulator [45]. For each task we display a
starting condition (top) and the desired final state (bottom).

Method Basketball Close Empty Insert Meat Open Put Rubbish Stack Averagein Hoop Jar Container in Peg off Grill Bottle Block in Bin Blocks

CAP [11] 0.0 0.0 0.0 8.0 0.0 0.0 76.0 0.0 0.0 9.3
VoxPoser [24] 20.0 0.0 0.0 0.0 0.0 0.0 36.0 64.0 32.0 16.9
MALMM [16] 88.0 84.0 64.0 68.0 92.0 96.0 100 80.0 56.0 80.9
LLaMA-70B 70.0 99.0 40.0 86.0 66.0 93.0 93.0 97.0 49.0 77.0

LLaMA-8B 53.0 16.0 1.0 15.0 16.0 57.0 60.0 10.0 0.0 25.3
w/ BLAZER 95.0 88.0 39.0 97.0 76.0 98.0 98.0 95.0 63.0 83.2

TABLE I: Comparison with zero-shot baselines. We report the task success rate (%) for different methods applied to
the nine manipulation tasks from RLBench [45]. With a small LLaMA-8B model finetuned with BLAZER, we are able to
achieve the best performance. Note how LLaMA-8B with BLAZER outperforms considerably LLaMA-70B, that was used
as LLMboot. This implies that BLAZER can yields LLMs that outperform their teacher models on manipulation tasks. The
table highlights the best-performing method for each task in bold and the second-best method is underlined.

We train for 5 epochs with an effective batch size of 24.
We adopted parameter-efficient finetuning via LoRA with a
rank of 64 and a scaling factor (α) of 16. The learning rate
is 2e-5, with a cosine learning rate scheduler applied during
training.
Baselines. We compare BLAZER to other methods us-
ing no manual supervision: CAP [11], VoxPoser [24] and
MALMM [16]. All baseline results are reported following
MALMM [16] and use GPT-4 Turbo [42] as the underlying
LLM model. Furthermore, we also test two zero-shot LLM
baselines, which include LLaMA-70B and LLaMA-8B. To
do so, we query each LLM with the prompt used for DBLAZER
generation, and directly apply the obtained Cτ as policy.
Note that in BLAZER we use LLaMA-70B as LLMboot
and LLaMA-8B as LLMBLAZER, so those baselines serve as
comparison with respect to the base version of the LLMs
used in our framework.

B. Performance analysis
Comparison to baselines In Table I, we present the per-
formance of our LLMBLAZER model on 100 episodes for
each task in T , along with results of baselines introduced in
Sec. IV-A. Here we test all models assuming the knowledge
of ground truth states ΣE provided by the simulator.

Our LLaMA-8B model trained with BLAZER outperforms
all baselines on average (83.2% success). This shows that
the bootstrapping of reasoning data for manipulation tasks
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Fig. 4: Tasks in simulation using visual observations.
We evaluate task success rate for LLaMA-70B, LLaMA-8B
and LLaMA-8B w/ BLAZER in simulation using our vision
pipeline that assuming no ground truth knowledge about
object states. Consistently with results in Table I, BLAZER
outperform other methods.

and the training of LLMs leads to stronger agents for
robotic manipulation, proving the effectiveness of BLAZER.
Importantly, our LLaMA-8B model with BLAZER surpasses
considerably (+6.2% on average) LLaMA-70B, which we
used as LLMboot, using only a fraction of the parameters.
Moreover, it substantially increases the capabilities of the
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(a) Real world tasks visualization
In-distribution tasks Out-of-distribution tasks

Stack Put Rubbish Block in SW/SO Fruit in Cup on Jar Case Average
Blocks Block in Bin R/L Basket Fruit in B. Cl. Basket C. Object in Bin on Target

LLaMA-70B 0.3 (3/10) 0.4 (4/10) 0.2 (2/10) 0.6 (6/10) 0.4 (4/10) 0.5 (5/10) 0.3 (3/10) 0.3 (3/10) 0.1 (1/10) 0.333
LLaMA-8B w/ BLAZER 0.4 (4/10) 0.6 (6/10) 0.4 (4/10) 0.5 (5/10) 0.4 (4/10) 0.7 (7/10) 0.5 (5/10) 0.4 (4/10) 0.4 (4/10) 0.478

(b) Quantitative evaluation.

Fig. 5: Real world results. We compare LLaMA-8B with BLAZER against LLaMA-70B on real-world tasks depicted in
(a). From quantitative results in (b), we outperform the baseline, both on In-distribution tasks (similar to T ) and Out-of-
distribution tasks, showcasing the generalization capability of BLAZER.

base LLaMA-8B (+58.4%). Even in long-term tasks such
as Stack Blocks and Empty Container, LLaMA-8B trained
with BLAZER outperforms LLaMA-70B in Stack Blocks by
14% and is almost on par with it on the Empty Container
task. We notice that LLaMA-70B shows remarkable results
with our detailed prompt, outperforming Code-as-Policy and
VoxPoser, and proving the strength of our baseline. The
MALMM multi-agent framework still surpasses LLaMA-
70B due to its multistep failure detection and correction
approach, although it still falls short of our agent.

Interestingly, we also note that zero-shot usage of LLaMA-
8B results in unsatisfactory performance (avg. 25.3% suc-
cess). In particular, for Stack Blocks and Empty Container,
LLaMA-8B often fails to generate valid control commands,
even for a single episode in Stack Blocks. In contrast,
LLaMA-70B successfully handles most tasks. This result
is consistent with recent studies on long-context generation
in large language models [47], [48]. Ultimately, the ability
of LLaMA-70B to provide more successful examples for
DBLAZER justifies its usage as LLMboot.

Perception impact. We now evaluate the robustness of
BLAZER to a more realistic setup with visual observations
replacing ground truth object states. We employ our vision-
based pipeline (Section III-C) to process input views for
simulated tasks in Table I, and obtain Σ̃E , which we use as
input for LLMs. For fair comparison, we equip LLaMA-70B
and the base LLaMA-8B as well as BLAZER with the same
vision pipeline and report results in Figure 4. We observe that
even with the noisy state estimation of our vision pipeline,
LLaMA-8B trained with BLAZER still outperforms alter-
natives. In particular, the gain with respect to LLaMA-70B
(+15%) is even higher than when providing the ground truth

ΣE (+6.2%, see Table I). This shows the robustness to noise
in the policies generated with LLMs trained with BLAZER.

C. Robot experiments

We next deploy BLAZER in the real robot setup and
compare its performance to LLaMA-70B baseline while
using the same vision pipeline for both methods.

Generalization capabilities. We use 9 additional tasks,
shown in Figure 5a, to assess the transferability of BLAZER
to real manipulation scenarios. We first consider In-
distribution tasks that resemble the Stack Blocks, Put Block,
and Rubbish in Bin tasks in Figure 3. We use these tasks to
quantify the transfer of tasks in T in real-world deployment.
We also propose 6 new Out-of-distribution tasks, different
from those in T : Block in Right/Left Basket, Sweet/Sour Fruit
in Bowl, Fruit in Closest Basket, Cup on Colored Object,
Jar in Bin, and Case on Target. By testing these tasks, we
aim to demonstrate the ability of BLAZER to solve tasks
beyond those in T . We average results over 10 episodes for
each task, replacing generic attributes in the task description
(e.g. “colored”, ”sweet/sour”) with precise values (e.g. “red”,
“sour”), randomized for each episode. From the results in
Table 5b, we show that our LLM agent trained with BLAZER
still outperforms the baseline, proving that the capabilities
of tasks in T transfer successfully to the real world. In
particular, for in-distribution tasks, we notice a higher Stack
Blocks performance, that was suboptimal in Figure 4. We
speculate that the performance in simulation could have been
influenced mainly by the presence of distractor elements (see
Figure 3). For out-of-distribution tasks, we beat LLaMA-70B
on 5 tasks out of 6, ultimately proving that the benefits of
BLAZER training transfer to new task in real world settings.
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Fig. 6: Real-world results on reasoning tasks. We show examples of four tasks that illustrate high-level reasoning and
planning capabilities of BLAZER and demonstrate its generalization to new tasks. We also provide the prompt to BLAZER
in the blue box.

Qualitative examples. To further evaluate the generalization
abilities of BLAZER, we present it with four tasks that
require high-level reasoning. As in previous experiments in
Fig. 5b, we use BLAZER trained in simulation on T tasks
together with the vision pipeline described in Section III-C.
Specifically, we employ numbered blocks to test math
capabilities in the Count Animals and Solve Equation tasks,
game strategic planning in Win Tic-tac-toe, and contextual
awareness in Animal Race. We provide qualitative results
of BLAZER for these tasks in Figure 6. As can be seen,
BLAZER can successfully solve tasks that require high-
level reasoning while being substantially different from the
training tasks T . Videos illustrating execution of these tasks
can be found on the project website [1].

D. Ablation studies

In this section, we propose ablation studies. First, we
study the impact of changing the number of per-task training
samples N that we use for training LLMBLAZER. Second, we
analyze if smaller models are compatible with BLAZER.

Training dataset size. In BLAZER, we can generate ar-
bitrarily large datasets of training samples. To understand
the impact of the data scale, we train LLaMA-8B with
BLAZER on 4 different datasets generated automatically,
containing 500, 1000, 2000, and 4000 samples per task (N ).
We report in Figure 7 (left) the average results across the 9
tasks in simulation that we use in Table I. From our results,
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Fig. 7: Ablation studies. On the left, we study the impact of
the number of samples N . We notice diminishing returns for
our trained model and stop at 4K generated samples. On the
right, we study the impact of the parameters of the model,
proving that also smaller models can benefit from BLAZER.

it is evident that the size of N significantly impacts the
efficacy of the trained LLMBLAZER, with a substantial loss of
performance when N = 500 (success rate 72.2%). However,
we also noticed diminishing returns at the increase of N . In
particular, we noticed that the performance doubling N from
2000 to 4000 is only +0.5%, so we have chosen N = 2000
in the paper to shorten training times. In conclusion, we
advocate that although BLAZER is effective in exploiting the
synthetically generated data, more strategies may be needed
to increase accuracy beyond saturation.



Model size. Within BLAZER, we finetune a small model
(LLaMA-8B) and use a larger one for data generation
(LLaMA-70B). We aim to understand whether even smaller
models can be trained with BLAZER, to enable applications
on edge devices with low computational resources. To do so,
we trained LLaMA-3.2 1B and LLaMA-3.2 3B [49] with
BLAZER and compared it with our finetuned LLaMA-8B
used for all other experiments. All models use data generated
by LLaMA-70B as LLMboot. We present results in Figure 7
(right). The usage of the 3B and 1B models still results
in remarkable performance. Interestingly, LLaMA-3.2 3B
achieves 84.9% as average success rate, even marginally
higher than LLaMA-8B (83.2%). Please note that LLaMA-
3.2 is a different release from LLaMA-8B (3.1), therefore, we
attribute the higher performance to the superior data quality
used for the 3.2 LLaMA release [49]. This shows that even
a compact model used as LLMBLAZER can result in competi-
tive performance with state-of-the-art zero-shot manipulation
methods based on LLMs. Conversely, the 1B model yields
lower successes (63.5%), but still beats some baselines in
Table I with a very limited number of parameters. This shows
further flexibility of BLAZER in model size for applications
with significant computational constraints.

V. CONCLUSIONS

In this paper, we introduced BLAZER, a method for fine-
tuning standard LLMs to obtain specialized agents for robotic
manipulation. We demonstrated the efficacy of BLAZER
in both simulated and real environments and evaluated its
generalization performance on different tasks beyond those
used for training. We believe that our work will encour-
age further research on the usage of pretrained LLMs for
robotics-oriented tasks. While BLAZER currently exploits
only positive demonstrations for supervised finetuning, future
work can benefit from both positive and negative samples to
learn more accurate manipulation models. Indeed, unsuccess-
ful episodes generated by our method in simulation could
be used for more advanced post-training techniques such as
Direct Preference Optimization (DPO) [50], that are able to
exploit preference pairs including negative examples.
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APPENDIX

This appendix provides additional details about our BLAZER framework, including LLM Agent Prompt in Appendix-A,
and RLBench tasks in Appendix-B.

A. Prompts

The prompt used by the LLM Agent is illustrated in Figure 8. It contains four placeholders: [INSERT TASK] representing
the task instruction, [INSERT EE POSITION] denoting the initial position of the end effector, [INSERT EE ORIENTATION]
specifying its initial orientation, and [INSERT CURRENT STATE ENVIRONMENT] indicating the current state or observation
of the environment.

LLM Agent Prompt
You are a sentient AI specialized in generating a sequence of steps and Python code for the robot arm end-effector to complete a given task. The end 
effector is in a enviroment and informations about the objects in the environment including the end-effector are provided in terms of their positions and 
orientations. You must remember that this conversation is a monologue, and that you are in control. I am not able to assist you with any questions, and 
you must output the plan and code yourself by making use of the common sense, general knowledge, and available information.

PLANNER:
ENVIRONMENT SET-UP:
The 3D coordinate system of the environment is as follows:

1. The x-axis is in the horizontal direction, increasing to the right.
2. The y-axis is in the depth direction, increasing away from you.
3. The z-axis is in the vertical direction, increasing upwards.
4. Workspace is in the table positioned at a z-level of 0.75199986. The workspace ranges from x: -0.075 to 0.575 and y: -0.455 to 0.455.

CONSTRAINTS:
1. **Orientation of the end effector** will always be **z orientation of object to grasp or destination to place**. 
2. Negative rotation values represent clockwise rotation, and positive rotation values represent anticlockwise rotation. The rotation values 

should be in radians.
3. The <safe distance> in the z direction is 0.1 units.
4. The <release distance> in the z direction is 0.02 units above the top surface of the destination area or object, please estimate this 

distance. 
5. **Remember you can only grasp the object from its *CENTER*. Not from any other position. So to grasp the object, end effector has to be 

lowered down to center of object**

COLLISION AVOIDANCE:
If there are multiple objects in the environment:

1. Make sure to consider the widths, lengths, and heights of other objects so that robot arm end effector does not collide with other objects or 
table.

2. This information may help to generate additional trajectories and add specific waypoints (calculated from the given objects' information) to 
avoid collision with other objects and the table.

COLLISION FREE OBJECT INTERACTION RULES:, 
1. Position the gripper <safe distance> above the target object.
2. Move to the **CENTER** of the target object. If *CENTER* position is (x,y,z) then grasping posiotion will also be (x,y,z) Do not add any 

height margin.
3. Grasp the target object.
4. Raise the gripper <safe distance> above the target object.
5. Move to <safe distance>  above the destination area.
6. Lower the gripper to the destination area.
7. Release the object (drop) at <release distance>  (**(0.02 units)**) above the top surface of destination area.
8. Raise the gripper <safe distance> above the destination area.

PLANNING:
1. Describe the relative positions of all objects in the environment, including their spatial relationships, alignments, and groupings.
2. Provide a detailed, step-by-step plan for the given task.
3. Generate the all code corresponding to each high level plan.

CODE GENERATOR:
AVAILABLE FUNCTIONS:
You are able to call any of the following Python functions, if required, as often as you want:

1. execute_trajectory(position: list[float], orientation: float) -> None: This function will execute the trajectory on the robot arm end-effector 
based on position and orientation, and will also not return anything. It takes list position of 3 elements and one float orientation value as input.

2. open_gripper() -> None: This function will open the gripper on the robot arm, and will also not return anything.
3. close_gripper(object_name: str) -> None: This function will close the gripper on the robot arm, and will also not return anything. It takes 

the name of the object as input. 
4. task_completed() -> None: Call this function only when the task has been completed. This function will also not return anything. 

CODE GENERATION:
When generating the code for the trajectory, do the following:

1. Mark code clearly with the ```python and ``` tags.
2. When mentioning the functions, specify the required parameters and clearly define them in the same code block before passing it to code 

executor. For execute_trajectory, define the position and orientation lists prior to it and mention object name in close_gripper(object_name) from 
<CURRENT ENVIRONMENT STATE>.

3. Orientation parameter will always be z orientation of object to grasp or destination to be place. 
4. *Generate the code all in one go for all the steps;*. 

Use the robot arm end effector to "[INSERT TASK]" in the environment.
The robot arm end-effector is currently positioned at [INSERT EE POSITION], with the orientation [INSERT EE ORIENTATION], and the gripper is open.
**Remember you can only grasp the objects from its *CENTER*. Not from any other position. So to grasp the object, end effector has to be lowered down to 
center of object**
The positions and orientations  of all objects in the environment as follows:
<CURRENT ENVIRONMENT STATE>:
"[INSERT CURRENT STATE ENVIRONMENT]"

Fig. 8: Prompt for the LLM Agent.



B. RLBench Tasks

We experimented with nine tasks from RLBench, which are listed in Table II along with the task instructions and success
criteria.

TABLE II: Details of the RLBench tasks used for evaluation.

Task Instruction Details

Basketball In Hoop Task Description: Put basketball in hoop.
Success Criteria: Basketball passes through hoop.

Close Jar Task Description: Close the colored jar with a lid.
Success Criteria: Lid is on top of the colored jar.

Empty Container Task Description: Pick all the objects from the large container and put them into the colored
container.
Success Criteria: All objects from the large container are now in the colored container.

Insert In Peg Task Description: Insert the square ring into the colored peg.
Success Criteria: The square ring is in the colored peg.

Meat Off Grill Task Description: Pick the meat (chicken or steak) from the grill and place it into the
designated area.
Success Criteria: Meat is on the designated area.

Open Bottle Task Description: Remove the cap of the wine bottle.
Success Criteria: Cap of the wine bottle is removed.

Put Block Task Description: Put the block in the target area.
Success Criteria: The block is in the target area.

Rubbish In Bin Task Description: Put the rubbish in the bin.
Success Criteria: Rubbish is in the bin.

Stack Blocks Task Description: Stack a specified number of colored blocks on the target block.
Success Criteria: Specified number of blocks are stacked on top of the target block.
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