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Abstract

Recent advances in reinforcement learning (RL) methods such as Grouped Rel-
ative Policy Optimization (GRPO) have strengthened the reasoning capabilities
of Large Vision-Language Models (LVLMs). However, due to the inherent en-
tanglement between visual and textual modalities, applying GRPO to LVLMs
often leads to reward convergence across different responses to the same sample
as training progresses, hindering effective gradient updates and causing the en-
hancement of chain-of-thought reasoning to stagnate or even collapse. To address
this issue, we propose a progressive instruction evolution framework, Evolved-
GRPO, to gradually generate more complex questions via editing instructions in
an adversarial way, progressively aligned with the model’s evolving capabilities.
Specifically, we design two instruction editing strategies across modalities, incorpo-
rating incrementally increasing editing instructions and RL-based adversarial data
augmentation to improve the effectiveness of model training. To address GRPO’s
limitations on overly difficult problems, we first train on basic subproblem versions
of complex multi-modal questions in both the visual and textual modalities, pro-
gressively increasing difficulty to enable prefix-style process rewards, effectively
combining the strengths of both process rewards and group-wise relative rewards.
Finally, EvolvedGRPO achieves state-of-the-art performance among open-source
RL models on multi-modal reasoning tasks, even approaching the closed-source
GPT-4o in reasoning capabilities, and demonstrates better performance on un-
seen LVLM general benchmarks. The Code for EvolvedGRPO is available at
https://github.com/SHENZHEBEI/EvolvedGRPO.

1 INTRODUCTION

Large Language Models (LLMs) have achieved remarkable progress in multi-step reasoning tasks,
most notably through models such as OpenAI’s GPT-4o [1]. Building on this progress, recent work
DeepSeek-R1 [2] highlights that reinforcement learning (RL) with verifiable rewards is particularly
effective in eliciting nuanced self-verification and self-correction behaviors in LLMs, substantially
enhancing the reliability of mathematical and logical reasoning chains.

Going a step further, with the emergence of advanced large vision-language models (LVLMs), there
has been a further RL exploration into LVLMs [3, 4, 5, 6, 7] to enhance their reasoning abilities.
However, general RL methods such as Grouped Relative Policy Optimization (GRPO) necessitate
assigning varying reward scores to different responses from the same prompt to generate meaningful

∗Equal contribution.
†Corresponding author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/SHENZHEBEI/EvolvedGRPO


gradients. Yet in multi-modal tasks, unlike purely textual reasoning tasks that benefit from clear
formats, making stepwise reward design feasible, the entanglement between visual and textual
modalities poses fundamental challenges for assigning such differentiated rewards.

Specifically, as the LVLM’s visual reasoning ability improves over multiple rounds of training, the
model gradually memorizes both visual and textual information from the training dataset, enabling
it to recall answers solely from the reasoning processes it has internalized during previous training,
thereby reducing the need for genuine perception and reasoning. This results in low intra-group
reward variance under the GRPO strategy, making effective gradient updates difficult and causing the
reasoning capability to stagnate or even collapse [4] As a result, the GRPO strategy in multi-modal
tasks struggles to maintain sufficient intra-group reward variance as training progresses, and two
problems are notably amplified. (a) For relatively simple samples, different model responses tend to
yield uniformly high rewards despite varying reasoning paths, due to the absence of a mechanism to
reward deeper or more faithful visual grounding. This leads to premature reward convergence and
provides limited learning signal for improving multi-modal reasoning capabilities. (b) For overly
complex samples, the model often fails to construct valid long-horizon reasoning chains that jointly
interpret visual and textual cues. Since only final outputs are evaluated, all failed attempts may
receive equally low rewards, making it difficult for the policy to learn incremental improvements.

To tackle these challenges faced by GRPO in multimodal reasoning, previous works mainly focus
on either distilling knowledge from stronger external models [3, 6, 8, 9, 10] or collecting more
challenging multi-modal perceptual datasets [11, 12, 13, 14] to adapt to the evolving capabilities of
LVLMs. However, such adaptation paradigms either depend on the performance upper bound of
external teacher models or incur substantial human labor costs for data construction. Moreover, the
inherent disconnect between external teacher models and the internal answering model limits the
potential to fully exploit the model’s reasoning capabilities, resulting in training data that fails to keep
pace with the model’s evolving abilities.

In this paper, we propose a progressive instruction evolution framework (EvolvedGRPO) that
iteratively increases the difficulty of samples through self-evolved editing instructions with low
overhead to overcome the challenges of reward saturation and adapt to the model’s continually
advancing reasoning capabilities. Based on this evolutionary framework, we observe that the
model can gradually improve its performance through adversarial interactions within the framework.
Formally, we use one model as the question generator Q, which is used to generate two types of
multi-modal data editing instructions aimed at augmenting the dataset with learnable multi-step
reasoning tasks that remain within the model’s capability range: (1) Image editing instructions
Iv, using external tools such as Diffusion Models [15] are employed to edit the training image
corresponding to the instruction Iv , thereby accurately recognizing and analyzing visual information;
(2) Text editing instructions It, which are designed to alter the original question-answer pair, forcing
a transformation of the original answer and introducing multi-step reasoning into the resulting multi-
modal question, thereby increasing the number of reasoning steps required. Meanwhile, we employ
another model as the answer model A, which is trained to solve multi-modal reasoning problems
via chain-of-thought reasoning. In each iteration, we generate an instruction pool I and randomly
sample k mixed instructions to synthesize each multi-modal question based on an original question.
Benefiting from the Markov property, the trustworthy answer is derived in a step-by-step manner
using a TTRL [16] applied to the outputs of the trained model.

Moreover, we further effectively enhance the instruction evolution to activate LVLMs’ deeper
reasoning ability with two progressive training strategies: (1) train the two models adversarially
through reinforcement learning, using the accuracy of answer model A as the critic of question
generator Q to improve the quality of each generated instruction; (2) gradually increase the
number of sampled instructions k to progressively guide the model toward longer k+1-step
reasoning chains in a curriculum learning manner. Under such a progressive promotion, extensive
experiments on challenging multimodal reasoning benchmarks and general LVLMs benchmarks show
that EvolvedGRPO effectively enables the model to explore the most suitable chain-of-thought paths,
thereby unlocking continual growth and qualitative improvements in reasoning trajectories. Overall,
our main contributions are three-fold:

• We propose EvolvedGRPO, a progressive instruction evolution framework leverages a
GRPO-trained question generator to apply multi-modal editing instructions, constructing
increasingly challenging datasets tailored to the model’s evolving reasoning capabilities.
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Question:

As shown in the figure, a rectangle 

is divided into three parts: a 

central rectangle, and two 

semicircles on either side. The 

area of the shaded part is ___.

Answer:

6

Image:

Image editing instruction

Apply a wave filter.

Text editing instruction

𝑓(𝑥) = |𝑥 − 5| (𝑖𝑡𝑒𝑟1)

Question:

As shown in the figure, a rectangle is value 

divided into three parts: a central rectangle, 

and two semicircles on either side. The 

area of the shaded part is ___. Let the 

answer obtained in ___ be 𝐴, 𝑍 = |𝐴 − 5|. 

Assume 𝐷 = 3 ∗ 𝑍/4 + 9/4, now find 𝐷:

Answer:

3

Image:

step 1

step 2

step 3

Text editing instruction

𝑓(𝑥) = 3 ∗ 𝑥/4 + 9/4 (𝑖𝑡𝑒𝑟2)
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Figure 1: Overview of our proposed EvolvedGRPO for enhancing the model’s reasoning capability
by progressively using instruction evolution during GRPO-based training in an adversarial way.

• We adversarially train the question generator and answer model with curriculum-style
instruction scaling, enabling continuous improvement of LVLMs’ reasoning capabilities.

• Our method ensures that, across diverse backbones and reasoning scenarios, LVLMs can
consistently unlock their underlying reasoning capabilities in a self-driven manner with
minimal overhead.

2 RELATED WORK

Equipping LVLMs with Reasoning Ability. With the remarkable generalizability of LLMs in a
zero-shot setting, Large Vision-Language Models (LVLMs) [17, 18, 19, 20, 21, 22, 23, 24, 25, 26,
27, 28, 29] integrating LLMs with visual modality have demonstrated impressive visual-language
understanding ability across diverse scenarios [30, 31, 32, 33]. Motivated by the significant advances
in reasoning demonstrated by LLMs, substantial efforts have been directed toward enhancing the
reasoning capabilities of LVLMs via supervised fine-tuning (SFT) [34, 35, 36, 37, 38] and chain-of-
thought (CoT) prompting [38, 39, 40, 41]. More recently, Reinforcement Learning (RL) approaches
such as GRPO [2] have emerged as an effective strategy to unlock underlying reasoning abilities
in LVLMs [3, 4, 5, 6, 7]. Despite these advancements, applying RL to multi-modal tasks remains
challenging due to the difficulty of defining fine-grained rewards across entangled modalities, which
limits the full exploitation of reasoning capabilities in LVLMs. This is essential for establishing such
granular reward signals to unlock reasoning ability in LVLMs.

Multi-model Reasoning Instruction Dataset. Although reasoning LVLMs have demonstrated
remarkable performances in various VL reasoning tasks, they still require efficient utilization of
high-quality data to enable robust and transferable reasoning capabilities. Recent methods rely heavily
on external powerful models (e.g., GPT-4o, DeepSeek-R1) to synthesize multi-step questions [10] or
long chain-of-thought reasoning instructions [3, 6, 8, 9], essentially performing pre-trained knowledge
distillation, which consequently limits the upper bound of the model’s reasoning ability. Furthermore,
several works [11, 12, 13, 42, 43] focus on collecting more challenging multi-modal perceptual
datasets via tool-invoking methods [44, 45, 46, 47, 48, 49] for reasoning instruction construction,
but require substantial human labor costs for data collection. Generally, these methods suffer from
limited generalization across modalities and tasks, failing to establish a tight coupling between visual
and textual semantics. In contrast, we propose an instruction evolution method that progressively
expands the reasoning capabilities by leveraging an adversarial instruction synthesis strategy based
solely on the LVLM itself, naturally adapting to the evolving needs of the model.
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3 PRELIMINARIES

Large Vision-Language Models (LVLMs) LVLMs represent a class of multi-modal large language
models that integrate both visual and textual information as input, generating textual outputs. The
model architecture of LVLMs commonly consists of three components: large language model, vision
encoder and MLP-based vision-language merger [23]. The LVLMs use vision encoder to transform
inputs visual information into visual embeddings, and use MLP-based vision-language merger to
align and integrate the visual embeddings and textual embeddings into a unified feature space. Finally,
the large language model autoregressively generates the output.

Supervised Fine Tuning (SFT). As the most commonly used technique for LLMs and multi-modal
LLMs, Supervised Fine Tuning (SFT) is a simple and efficient method to align pre-trained models
with downstream tasks. Formally, given a multi-modal dataset D including question q, answer a and
image v, the training loss of SFT is:

LSFT(θ) = −E(q,a,v)∼D

[ L∑
i=1

C∑
c=1

I(ai = c) log πθ(c|q, v, a<i)
]
, (1)

where θ is the parameter of model, L is the token length of the answer a, C is the number of candidate
token classes determined by sampling methods such as top-p or top-k, I(ai = c) is the indicator
function that equals 1 if the condition ai = c is true and equals 0 otherwise, and πθ(c|q, v, a<i)
represents the model’s predicted probability of the i-th token equals to c given the question q, image
v and the sequence of preceding tokens a<i.

Group Relative Policy Optimization (GRPO) As in LLMs, often the last token typically receives a
reward score, Group Relative Policy Optimization (GRPO) reduces the memory and computational
burden compared to PPO [50], which eliminates the need for an additional value function approxima-
tion. GRPO uses the average reward of multiple outputs, sampled in response to the same question as
the baseline. For each question q, GRPO samples a group of outputs {o1, o2, . . . , oG} from the old
policy πθold and optimizes the policy model by maximizing the following objective:

Âi,t = ri =
ri −mean({rj}Gj=1)

std({rj}Gj=1))
, ∀i ∈ {1, . . . , G} (2)

where Âi,t is the advantage calculated based on relative rewards of the outputs within each group.

JGRPO(θ) = E

[
q ∼ P (Q), {oi}Gi=1 ∼ πθold(O|q)

]
1

G

G∑
i=1

1

|oi|

|oi|∑
t=1

{min[ri,t(θ)Âi,t, clip
(
ri,t(θ), 1− ϵ, 1 + ϵ

)
Âi,t]− βDKL[πθ||πref]}

(3)

where

ri,t(θ) =
πθ(oi,t|q, oi,<t)

πθold(oi,t|q, oi,<t)
and DKL[πθ||πref] =

πref (oi,t|q, oi<t)

πθ(oi,t|q, oi<t)
− log

πref (oi,t|q, oi<t)

πθ(oi,t|q, oi<t)
− 1.

Here, πθ and πθold represent the current and old policy models, respectively, and q and o are the
questions and outputs sampled from the question dataset and the old policy πθold . The ϵ is a clipping-
related hyperparameter to stabilize training.

This method leverages the comparative nature of reward models, which are typically trained on
datasets containing comparisons between outputs for the same question. Instead of adding a KL
penalty directly to the reward, GRPO regularizes by adding the KL divergence between the trained
policy and the reference policy to the loss function, simplifying the calculation of Âi,t.
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4 METHOD

In this section, we first introduce a formulation for evolved editing instructions to dynamically
provide evolution intents (§4.1). Based on these, we develop a progressive instruction evolution
framework within LVLMs to generate increasingly challenging problems that require longer chains of
reasoning (§4.2). Finally, we further enhance the instruction evolution progressive training strategies,
unlocking the full reasoning in LVLMs(§4.3). The overall framework is shown in Figure 1.

4.1 Formulation for Evolved Editing Instructions

During the multi-round GRPO training with fixed data, the increase in accuracy and the training on
fixed problems cause the standard deviation to decrease to zero, leading to reward convergence and,
ultimately, training stagnation and collapse. To address this, we introduce EvolvedGRPO, which
incorporates adversarial data augmentation to introduce additional information during training.

In general, the paradigm for reasoning instruction involves generating multi-step questions in a
single step. We innovatively propose a progressive instruction evolution that incrementally refines
instructions for both visual and textual modalities. In this section, we will demonstrate that both image
editing instructions and text editing instructions are designed for Progressive Instruction Evolution in
LVLMs to unlock their reasoning ability.

Given an initial sample (q0, a0, v0) ∈ Q × A × V , where Q, A, V represent the question, answer,
and visual space, respectively. Consider a total of k steps in sample edition, the editing process is
recursively defined as:

(q0, a0, v0)
Instruction I1−−−−−−−−→ (q1, a1, v1)

Instruction I2−−−−−−−−→ · · · Instruction Ik−−−−−−−−→ (qk, ak, vk)

Image Editing Instruction We employed image editing on training dataset to enhance the difficulty
of inferring multi-modal samples. We maintain the original answer unchanged during the image
editing process. We train a question generator Q to produce precise image edition instruction Iv to
control external image editing tools(e.g., Flux.Kontext) for image editing. As we want to minimize
the hallucination introduced in the process of question generation, we use judge model [51] ensures
that the newly generated samples maintain consistency with the original ones, e.g. preserving the
correctness of the answer after bootstrapping. we should maximize sim(vk, v0) in semantics , where
sim denotes consistency in the content of the problem investigation.

Text Editing Instruction Editing the original question and answer at the same time will also
introduce a large number of hallucinations. We construct a text-editing instruction chain, where the
instructions primarily involve performing text editing operations generated using external knowledge
(e.g., mathematical concepts) on the answer from the previous step, thereby encouraging the inclusion
of additional reasoning steps required to infer the final answer. We employ connective templates to
seamlessly integrate the original multi-modal problem (q, a, v) with the instruction Sk.

For ground truth answer, we use the TTRL [16] to calculate the final answer. Specifically, for each
function fi corresponding to the text editing instruction Ii , we can get ak:

ak = arg max
y∈{y1,...,yNk}

Nk∑
i=1

I [yi = y] , yi ∼ πθ(· | fk (fk−1(. . . f1(a0) . . . ))) (4)

πθ(· | x) denotes the model’s output distribution conditioned on the input x; yi ∼ πθ(· | x) indicates
that the i-th output is sampled from the answer model’s distribution conditioned on input x. To
facilitate rapid convergence with minimal sampling while accounting for the unbounded nature of the
solution space and the Markov property of action selection, we adopt the approximate formulation:

ai = arg max
y∈{y1,...,yN}

N∑
j=1

I [yj = y] , yj ∼ πθ(· | fi(ai−1)), ∀i ∈ {1, . . . , k} (5)

Reducing time complexity from O(Nk) to O(kN), significantly accelerating large-scale sampling.
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4.2 Progressive Instruction Evolution within LVLMs

In this section, we perform reinforcement learning training in both the question generator Q and
the answer model A. The final trained model A will serve as the model for reasoning. We alternate
between training two models through Group Relative Policy Optimization [52] to achieve continuous
growth in model capabilities.

Answer Model Training For the i-th iteration(i = 1, . . . ), we first train the answer model A. We
will train on n data X = (x1, . . . , xn) ∈ D while using the question generator Q to generate the
instruction I . We use the answer model A step by step to vote and generate the new answer ak. Then
we use the answer model A to generate a list of outputs {o1, o2, . . . , oG}. We check whether answer
is correct by using the rule-based mathruler [53] to directly judge whether the answer in response o
is same as ak functionally. As we want to maximize the probability the answer model get the true
answer πθ(a|q, v), we set reward as:

R = is_equivalent(ak, oi) + format (6)

Where format refers to a reward score of format, which is designed to encourage the model to
produce structured outputs, particularly those involving chain-of-thought reasoning.

Question Generator Training We then start to train the question generator Q. In each itera-
tion, we sample training data x ∈ D from training dataset D. As the randomly sampled k
instruction (I1, . . . , Ik) ∈ I, we will use the question generator Q to generate a list of out-
puts {o1, o2, . . . , oG} which used to replace one of one identical random instruction Ireplaced ∈
{I1, . . . , Ik}. We use the external image edition tool and answer model A to get each augmented
data {(q1, a1, v1), . . . , (qG, aG, vG)}. Due to limited answer model A, we should also maximize the
confidence level of the generated answers. The total confidence of the generated sample can be:

C =
k∏

i=1

sim(vi, vi−1) ·
k∏

i=1

πθ(ai|fi(ai−1)) · format (7)

In the meantime, we want to maximize the difficulty for answer model A, which minimizes the
probability model A can acquire the true answer πθ(ak|qk, vk) relative to original πθ(a0|q0, v0).
Therefore, the total reward can be defined as:

R =

∏k
i=1 sim(vi, vi−1) ·

∏k
i=1 πθ(ai|fi(ai−1))

πθ(ak|qk, vk)/πθ(a0|q0, v0)
· format (8)

In order to better calculate the Group Relative Advantages [52] and balance the relationship between
scores of different magnitudes, we take the logarithm of all the scores and eliminate the common
terms in the same group’s outputs. To ensure a lower bound on performance, we take the maximum
of the accuracy and the reciprocal of the number of evaluations, ultimately obtaining:

R′ =

k∑
i=1

log sim(si, si−1)+

k∑
i=1

log πθ(ai|fi(ai−1))+format′−logmax(πθ(ak|qk, vk),
1

test
) (9)

Where test denotes the number of evaluation trials used to assess accuracy, aligning with the number
of responses generated in a reinforcement learning batch. The expression using max in the goal
ensures at least one correct answer post-question augmentation, preventing variance collapse. The
final question generator Q should be able to provide effective image editing without affecting
the question, and be able to diversify the connection between the original problem and different
instructions regarding the weaknesses of the answer model A.

Mixual Training During training, it is essential to perform quality control on the instructions
generated in each round. To ensure the reliability of the editing instructions, we employ a filtering
strategy that rigorously eliminates instructions that do not conform to the required format or are prone
to introducing hallucinations. In the meantime, to ensure stable training of modelA, the confidence C
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and the accuracy πθ(ak | qk, vk) of the generated questions should be maintained within a reasonable
range. Reference to the design of Generative Adversarial Networks [54], to ensure the answer model
A has enough capability, we train multiple steps with the answer model A and one step with the
question generator Q. This strategy is analogous to the way that training maintains answer model
A train using data of appropriate difficulty, the {r1, ..rG} for single sample’s outputs {o1, . . . , oG}
differ therefore model can maintain stable gradient updates during model training.

4.3 Enhanced Evolution with Progressive Training

To further promote the instructional evolution in the training process, it is essential to emphasize
progressive training strategies to activate LVLMs’ improved reasoning ability. Specifically, we
gradually increase the number of sampled instructions k, guiding the model toward longer k+1-step
reasoning chains in a curriculum learning manner. In each training round, the model learns to use
k-step multi-modal chain-of-thoughts and receives process-level rewards on edited multi-modal data
requiring larger k, thereby enhancing both the depth and accuracy of its reasoning. This step-wise
progression enables the model to perform longer reasoning while maintaining correctness at each
intermediate step, ultimately allowing it to solve complex multi-modal problems. In Algorithm 1, we
present our training procedure pseudo code.

Throughout training, as the model’s reasoning capabilities evolve, its confidence in executing editing
instructions also increases. The framework progressively acquires the ability to support and perform
a larger number of instruction edits with greater complexity. This continuous advancement forms a
positive feedback loop: improved reasoning capabilities enable the execution of more sophisticated
edits, which in turn expose the model to richer and more challenging training signals. Through
this iterative refinement, the model gradually approaches its upper bound in reasoning performance.
In Appendix D, we provide additional theoretical and experimental analyses on the stability and
robustness of the evolved instruction generation process.

Algorithm 1 EvolvedGRPO Training Procedure

Require: Initial policy πθ, training dataset D, outer iterations Round, inner answer model training
steps T , KL regularization weight β, curriculum step c, sample batch size m, GRPO iteration µ

Ensure: Answer model policy πRound
A

1: policy model π(0)
A ← πθ, π

(0)
Q ← πθ

2: for iteration t = 0, . . . ,Round− 1 do
3: policy model π(t+1)

A ← π
(t)
A , π

(t+1)
Q ← π

(t+1)
Q

4: editing instruction number k ← ⌊t/c⌋
5: for all sample (q, v, a) ∈ D do
6: Generate edited sample (qk, vk, ak) through π

(t)
A , π

(t)
Q .

7: Store (qk, vk, ak) into new dataset D(t).
8: end for
9: for step = 1, . . . ,T do

10: Sample batch of m samples {s(1), . . . , s(m)} ∼ D(t).
11: Sample G outputs {oj}Gj=1 for each sample sj and compute Al

j for the l-th token.
12: for GRPO iteration = 1, . . . , µ do
13: Update the policy model π(t+1)

A with parameters θ(t+1)
A using the GRPO gradient.

14: end for
15: end for
16: Sample bath of m samples {s(1), . . . , s(m)} ∼ D(t).
17: Replace by G editing instruction {oj}Gj=1 for the same instruction editing sample sj .
18: Compute Al

j for the l-th token through group relative advantage estimation.
19: for GRPO iteration = 1, . . . , µ do
20: Update the policy model π(t+1)

Q with parameters θ(t+1)
Q using the GRPO gradient.

21: end for
22: end for
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5 EXPERIMENTS

5.1 Experimental Setup

Datasets & Backbones. As ideal data selections should be adaptable to diverse MLLM instruction
datasets, we integrate DataTailor with one widely-used datasets to conduct experiments for its
effectiveness evaluation: MMK12 [4] dataset, a high-quality and diverse multi-modal mathematical
reasoning dataset, being composed of MAVIS [55], Geo3k [56], RCOT [57], MultiMath [58] datasets.
For the general experimental setup, we adopt Qwen2.5-VL-7B-Instruct as the base model and train it
using the GRPO strategy. More details of the experimental setup are shown in Appendix B.

Benchmarks. We evaluate model performance along two dimensions. First, we evaluate out-of-
domain generalization across three visual reasoning benchmarks: MathVerse [59], MathVision [60],
MathVista [61], and two textual reasoning benchmarks: GSM8K [62] and MATH500 [63]. Second,
we evaluate the performance of EvolvedGRPO across general benchmarks, including MMMU [30],
MMStar [31], and AI2D [64]. Additionally, we develop an evaluation suite to consistently assess our
trained checkpoints and most open-source R1-related checkpoints using vLLM [65] for accelerated
inference, while adopting reported results for other models. For parsing generated responses, we
employ greedy decoding with GPT-4o [1] as the evaluation judge. Despite adhering closely to the
system prompts from the original sources, slight deviations from reported results may persist, which
we consider acceptable due to potential variations in judge models and evaluation procedures.

Baselines. We use the following baselines: (1) distilling knowledge from stronger external mod-
els (e.g., GPT-4o, DeepSeek-R1), Mulberry [66] and Virgo [36] leverage distilled multi-modal
chain-of-thought reasoning from more capable teacher models to conduct supervised fine-tuning,
thereby enhancing the reasoning capabilities of smaller models; MindGym [10] improves reasoning
capabilities by performing curriculum learning based chain-of-thought supervised fine-tuning on
a set of multi-modal multi-hop questions synthesized by stronger teacher models; (2) collecting
more challenging multi-modal perceptual datasets, OpenVLThinker [8] manually collects a large
number of datasets with varying difficulty levels to support stage-wise reinforcement learning, thereby
enabling curriculum-style learning guidance; NoisyRollout [14] increase data difficulty by enhancing
visual perception; MM-EUREKA [4] facilitates model training by collecting large-scale data and
dynamically filtering samples based on their difficulty at each training stage, thereby enabling the
model to learn from appropriately challenging examples.

5.2 Main Results on Multi-modal Reasoning

We report the results of our EvolvedGRPO and other diverse methods shown in Table 1. Based on the
observation of experimental results, we have summarized the following conclusions:

Distillation-based methods exhibit a relatively low upper bound in enhancing reasoning ca-
pabilities. We observe that in most benchmarks, Mulberry and Virgo exhibit limited reasoning
capabilities by directly fine-tuning on distilled chain-of-thought data. Although MindGYM outper-
forms the open-sourced Qwen2.5VL-7B-Instruct by employing curriculum learning with synthesized
multi-hop questions, it exhibits a limited upper bound of reasoning performance on long-chains
benchmarks (e.g., only 68.4 in MATH500) due to its reliance on externally generated questions. In
contrast, our EvolvedGRPO achieves superior performance in all reasoning benchmarks owing to its
progressively improved instructions.

For collection-based approaches, the reasoning performances remain unsatisfactory due to the
lack of diverse and complex data. Although these baselines introduce improvements to GRPO-based
training, they still underperform EvolvedGRPO in multimodal reasoning benchmarks due to their
insufficient data-level enhancements to GRPO. OpenVLThinker and MM-EUREKA are constrained
by the limited availability of human-annotated data, which prevents continuous data updates during
the later stages of training, ultimately resulting in a significant performance gap. NoisyRollout
augments the dataset with manually designed visual noise to increase perceptual difficulty, which
forces the model to enhance its visual robustness. However, it still exhibits limited improvements in
multimodal reasoning.

Our EvolvedGRPO demonstrates strong reasoning capabilities. Furthermore, in MathVision,
the most difficult multimodal reasoning dataset, EvolvedGRPO attains the highest score (30.8),
demonstrating its superior capability to handle complex multimodal reasoning tasks. Despite a slight
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Table 1: Comparisons with our EvolvedGRPO and other baselines on multi-modal reasoning bench-
marks. For fairness, all open-source reasoning frameworks are based on Qwen2.5-VL-7B-Instruct.

Models MathVista
-mini

MathVision
-full

MathVerse
-mini GSM8K MATH500 Avg.

GPT-4o 63.8 36.8 50.2 94.2 74.6 63.9

Mulberry-7B [66] 63.1 22.8 39.6 69.1 65.2 52.0
Virgo-7B [36] 62.3 24.0 36.7 77.4 71.4 54.4
MindGYM [10] 70.3 28.6 48.4 84.1 68.4 60.0
OpenVLThinker-7B [8] 70.2 25.3 47.9 78.6 67.4 57.9
NoisyRollout [14] 72.9 28.9 52.8 79.0 68.4 60.4
MM-EUREKA [4] 73.0 26.9 50.3 82.5 66.8 59.9

Qwen2.5-VL-7B-Instruct 67.8 24.7 44.5 83.6 67.4 57.6
EvolvedGRPO (Ours) 74.0 30.8 51.8 85.1 73.2 63.0

performance gap with GPT-4o (63.0 vs. 63.9 on average), our method surpasses all other training
methods based on Qwen2.5-VL-7B-Instruct, exhibiting a distinct advantage. It consistently improves
upon the base model across all reasoning benchmarks, highlighting its robust reasoning ability.

5.3 Main Results on Downstream Generalization
Table 2: Main results on general tasks.

Models MMMU MMStar AI2D

GPT-4o 83.4 69.1 84.6

Mulberry-7B [66] 55.0 61.3 80.1
Virgo-7B [36] 46.7 - -
MindGYM [10] - 64.3 -
OpenVLThinker-7B [8] 51.9 63.2 82.7
MM-EUREKA [4] 52.3 64.1 81.4

Qwen2.5-VL-7B-Instruct 50.6 61.7 82.6
EvolvedGRPO (Ours) 53.0 62.7 83.3

Table 2 summarizes the results of our EvolvedGRPO
and other baselines on downstream general benchmarks.
Overall, our method generalizes well to unseen down-
stream tasks even without task-specific training, thanks to
the improved multi-modal reasoning capabilities brought
by our evolved instructions. However, on challeng-
ing benchmarks like MMMU, all existing reasoning ap-
proaches still fall short compared to GPT-4o, potentially
due to the inherent gap between fine-grained perception
and deep reasoning. We expect future work to explore richer instruction types that bridge this gap
and enable reasoning grounded in fine-grained visual understanding.

5.4 In-depth Analysis

Analysis of Model Training Paradigms To investigate our EvolvedGRPO deeply, we study the
ablation variants of different factors in Table 3. Specifically, we analyze their independence using the
following ablation strategy: (1) Base model: we present the performance of the original Qwen2.5-
VL-Instruct model as a baseline for comparison. (2) SFT : we perform Supervised Fine-Tuning
on the base model using the K12 dataset for supervised learning. (3) GRPO: we apply Grouped
Relative Policy Optimization on the base model using the K12 dataset for reinforcement learning. (4)
ProgressiveGRPO: we build upon GRPO-based reinforcement learning by introducing curriculum-
based dynamic instruction scaling on the K12 dataset, which continuously augments the training data
with more instructions, without adversarial RL. (5) EvolvedGRPO: the method proposed in this work.
It can be observed that: 1) Direct SFT has limited effectiveness in enhancing the model’s reasoning
capabilities. While direct fine-tuning via SFT improves performance on reasoning benchmarks
(+4.9% overall), it fails to guide the model in developing better reasoning strategies. Furtheremore,
RL methods also encounter bottlenecks during the scaling process. GRPO demonstrates superior
learning performance compared to SFT (+6.6% overall); however, it still encounters bottlenecks
during the training process. 2) The effectiveness of the GRPO algorithm can be enhanced
through multi-stage guided data augmentation. The progressive increase of edited instructions
in a curriculum learning manner significantly enhances the effectiveness of reinforcement learning
training, achieving improvements across all benchmarks (+8.9% overall). 3) The introduction of
adversarial reinforcement learning improves both instruction quality and the model’s reasoning
capabilities. This iterative refinement leads to improved training efficiency and progressively stronger
reasoning capabilities, ultimately eliciting the model’s full reasoning potential(+12.1% overall).
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Table 3: Results of ablation study to illustrate the effect of individual strategy.
Methods MathVista ↑ MathVision ↑ MathVerse ↑ GSM8k ↑ MATH500 ↑ Rel. ↑

1 Base Model 67.8 24.7 44.5 83.6 67.4 100.0%

2 SFT 69.1 28.4 48.2 84.0 66.7 104.9%
3 GRPO 71.9 28.9 49.6 82.9 67.0 106.6%
4 ProgressiveGRPO 72.8 29.5 51.2 83.7 69.1 108.9%

5 EvolvedGRPO 74.0 30.8 51.8 85.1 73.2 112.1%

0 10 20 30 40 50 60
Step

400

420

440

460

480

500

520

540

Re
sp

on
se

 L
en

gt
h

Scaling Response Length
EvolvedGRPO
GRPO

(a) Scaling Response Length

0 1 2 3
Round

56

57

58

59

60

61

62

63

Va
lid

at
io

n 
Ac

cu
ra

cy

57.6

59.4

60.8

62.1

57.6

59.4
59.7

60.1

Scaling Validation Accuracy
EvolvedGRPO
GRPO

(b) Scaling Validation Accuracy
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Scaling Visualization of Progressive Evolved Instructions. In Figure 2, we illustrate the changes
in reasoning chain length and model performance during training. Our method enables continuous
growth in reasoning length. After each round of reinforcement learning, the model progressively
adapts to longer reasoning chains, smoothly transitioning from k-step reasoning to k+1-step reason-
ing. In contrast, conventional RL-based methods tend to stabilize after the first round of adaptation,
with reasoning lengths declining. As the reasoning length increases, our method consistently improves
accuracy on the validation dataset. After each training round, the model successfully adapts to the
current difficulty level while maintaining a reasonable accuracy rate. In comparison, the direct GRPO
approach shows only marginal improvements beyond the second round, reflecting limited learning
progress. We further provide a statistical analysis in Appendix C.

6 CONCLUSION

In this work, we propose EvolvedGRPO, a progressive instruction evolution framework that constructs
increasingly challenging multi-modal reasoning datasets via evolved editing instructions to match the
model’s growing reasoning capabilities. We conceptualize the evolution of multi-modal reasoning
instructions as multi-step editing across image and text modalities, and enhance it via adversarial
rewards that jointly optimize the question generator and the answering model. Extensive experimental
results demonstrate that our method progressively scales the instruction complexity without external
supervision and continuously unlocks LVLMs’ reasoning depth and adaptability across various tasks.
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Justification: We give the proof in section 4.
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• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We give experimental setup and implementation details in Section 5.1 and
Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The codes are provided in supplemental materials. The benchmark data comes
from the open-source dataset.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: we have provided necessary implementation details of our method in Appendix
B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: To ensure a fair comparison with the baseline method, we strictly adhere to the
testing settings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: we have provided experiments compute resources of in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research conducted in the paper conform, in every respect, follows the
NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We discuss the Broader Impacts in Appendix F.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We include the license of each asset in Appendix B.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: The paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Crowdsourcing and research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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Appendix

Our appendix is organized as follows.

• More Theoretical Analysis on EVOLVEDGRPO (Section A).
• Experimental details of our EVOLVEDGRPO (Section B).
• External Effectiveness Analysis of EVOLVEDGRPO (Section C).
• Detailed Evolution Illustration of EVOLVEDGRPO Training Pipeline (Section D).
• Qualitative examples of EVOLVEDGRPO and BASE MODEL (Section E).
• Limitations of EVOLVEDGRPO (Section F).

A More Theoretical Analysis on EvolvedGRPO

A.1 Problem Setup

We provide a theoretical analysis of the convergence behavior of EvolvedGRPO, which alternates
training between the question generator policy πQ and the answer model policy πA under the Grouped
Relative Policy Optimization (GRPO) framework.

We next prove that the adversarial training process is convergent for any finite number of k instruction
editing steps, which allows us to generalize the convergence to the entire model training process.

Let πQ be the policy that generates a sequence of instructions I = (I1, . . . , Ik) for given sample
s = (q0, a0, v0). Let πA be the answer model policy generating answer a conditioned on multimodal
input (q, v). The expected total reward objective is:

J (πA, πQ) = E(qk,vk,ak) [R
′(πA; qk, vk, ak)] (10)

where the reward functionR′ is defined as:

R′ = format′+
k∑

i=1

log sim(si, si−1)+

k∑
i=1

log πA(ai|fi(ai−1))− logmax

(
πA(ak|qk, vk),

1

test

)
(11)

The objective of EvolvedGRPO is to solve the following min-max problem:

min
πA

max
πQ

J (πA, πQ). (12)

When optimizing the answer model policy πA, the training sample (qk, vk, ak)
is fixed, making most reward components fixed to πA. Specifically, the term:
E(qk,vk,ak)

[∑k
i=1 log sim(si, si−1) +

∑k
i=1 log πA(ai|fi(ai−1))

]
is decided by old policy

πAold
and πQold

, being independent of current policy πA, and can be treated as a constant during
training. Therefore, the reward function effectively reduces to maximize E(qk,vk,ak) [πA(ak|qk, vk)].
This simplification allows us to focus the GRPO update on maximizing the likelihood of the final
answer token under the current instruction-conditioned policy. All preceding terms serve only as
context and baseline for shaping the total reward but do not influence gradients with respect to πA.

A.2 Proof of Convergence for GRPO

Theorem A.1 (Convergence of GRPO). Let {πθt}∞t=0 be the sequence of policies updated using
GRPO. Then, Then, under the standard assumption that each update approximately maximizes the
GRPO objective, the policy sequence πθt converges to a stationary policy π∗.

Proof. Let η(π) = Ex∼D,y∼π(·|x)[R(x, y)] denote expected return of policy π and we have:

JGRPO(θ; θt) = Ex∼D,y∼πθt (·|x) [min (rA(x, y), clip(r, ϵ)A(x, y))− β ·DKL(πθ∥πθt)] , (13)

where r is importance sampling ratio πθ(x,y)
πθt (x,y)

, and A(x, y) is the normalized group-based advantage.
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Since each update approximately maximizes JGRPO(θ), we have:

JGRPO(θt+1; θt) ≥ JGRPO(θt; θt). (14)

Following the standard policy improvement argument, the change in return satisfies:

η(πθt+1)− η(πθt) = Ex∼D

[
Ey∼πθt+1

(·|x)[R(x, y)]− Ey∼πθt (·|x)[R(x, y)]
]

(15)

= Ex∼D

[
Ey∼πθt (·|x)

[
πθt+1(y|x)
πθt(y|x)

· R(x, y)
]
− Ey∼πθt (·|x)[R(x, y)]

]
(16)

= Ex∼D, y∼πθt (·|x)

[(
πθt+1(y|x)
πθt(y|x)

− 1

)
· R(x, y)

]
(17)

≥ Ex∼D, y∼πθt (·|x)

[
log

πθt+1(y|x)
πθt(y|x)

· R(x, y)
]
. (18)

Since GRPO includes an explicit KL penalty term via clipping, we can apply the Pinsker inequality:

DKL(πθt∥πθt+1
) ≥ 1

2
∥πθt+1

− πθt∥21. (19)

Combine the definition of equation 13, inequality 14 and inequality 19, we can get:

η(πθt+1)− η(πθt) ≥
β

2
∥πθt+1

− πθt∥21. (20)

As η(πθt) is upper bounded (since R(x, y) ∈ [Rmin, Rmax]) and non-decreasing according to
inequality 15, it converges to a limit η∗. Thus, we have:

lim
t→∞

∥πθt+1
− πθt∥1 = 0. (21)

Since the space of probability distributions over discrete outputs is compact under the L1 norm, it
follows that the sequence πθk converges to a stationary policy π∗.

A.3 Proof of Convergence for EvolvedGRPO

Definition A.1 (Local Nash Equilibrium). A pair of policies (π∗
Q, π

∗
A) is a local Nash equilibrium of

J(πQ, πA) if there exist neighborhoods NQ and NA such that:

J (π∗
A, π

∗
Q) ≤ J (πA, π

∗
Q) ∀πA ∈ NA, (22)

J (π∗
A, π

∗
Q) ≥ J (π∗

A, πQ) ∀πQ ∈ NQ. (23)

Since the two policies sequentially optimize their respective objectives, we have:

J (π(t+1)
A , π

(t)
Q ) ≤ J (π(t)

A , π
(t)
Q ) (24)

J (π(t+1)
A , π

(t+1)
Q ) ≥ J (π(t+1)

A , π
(t)
Q ) (25)

As we use DKL[πθ||πref] =
πref (oi,t|q, oi<t)

πθ(oi,t|q, oi<t)
− log

πref (oi,t|q, oi<t)

πθ(oi,t|q, oi<t)
− 1 to prevent the model from

forgetting previously acquired knowledge, while the answer model has the capability to master the
reasoing skill in k-step reasoning through GRPO training. We can make the following assumption:
Assumption 1 (Answer Model Consistence). The answer model exhibits monotonic improvement
in reasoning performance for all editing instructions generated by the question generator during
training. Formally, for any iteration t,

∀πQ, J (π(t+1)
A , πQ) ≤ J (π(t)

A , πQ). (26)
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Table 4: Training hyper-parameters of EvolvedGRPO.

Hyper-parameters Question Generator Answer Model

LLM Init Qwen2.5-7B-VL-Instruct Qwen2.5-7B-VL-Instruct
KL Penalty Low Variance KL Low Variance KL
KL Coefficient 1× 10−2 1× 10−2

Optimizer AdamW AdamW
Learning Rate 1× 10−6 1× 10−6

Weight Decay 1× 10−2 1× 10−2

Numerical Precision AMP32 AMP32
Gradient Clipping 1.0 1.0
Rollout n 5 5
Rollout Temperature 1.0 1.0
Rollout Top-p 0.99 0.99
Rollout Batch Size 512 512
Micro Batch Size for Update 16 16
Micro Batch Size for Experience 64 64
Training Steps 1 30
Resource Usage 4× RTX A6000 4× RTX A6000
Total Epochs 5

Therefore, the accuracy of the answer model is guaranteed to be non-decreasing as different instruction
editions are applied. Consider the space of k-step instruction editing strategies is finite, while
Theorem A.1 suggested the convergence of the answer model under the condition of finite k-step
edition training datasets, the final answer model can also converge. In this situation, the final answer
model cannot improve its performance under π∗

Q by changing its policy π∗
A. Furtheremore, we have:

∀πQ, lim
t→∞

πA −→ π∗
A(πQ) (27)

During the evolution of policy πQ and πA consistently converges to its optimal mode. Then we only
consider the policy πQ under the final condition π∗

A, according to the Theorem A.1, the πQ also
converges to π∗

Q therefore maximize J (π∗
A, πQ). Finally, (πA, πQ) converge to (π∗

A, π
∗
Q) which is

Local Nash Equilibrium. That is, the final equilibrium corresponds to a state where the answer model
is robust, and the questions are maximally adversarial, yet no longer effective in reducing accuracy.

B Experimental Details

B.1 Detailed Training Hyperparameters

We train our models using GRPO strategy. The both models are initialized with Qwen2.5-VL-7B-
Instruct [23]. The detailed hyper-parameters used during training are summarized in Table 4. In the
training process, the details of two different types of instructions are presented in Table 5.

As shown in Table 6, we report the time cost of each module in our training pipeline. To reduce the
overhead introduced by data augmentation, we adopt the vLLM framework for efficient and paral-
lelized inference, which significantly accelerates the instruction editing process. Compared to directly
training with the raw model dataset, our method incurs only an additional 10.0% computational cost.

To enhance the model’s reasoning capability, we use the template "You FIRST think about the
reasoning process as an internal monologue and then provide the final answer. The reasoning process
MUST BE enclosed within <think> </think> tags. The final answer MUST BE put in \boxed{}." for
answer model during both training and evaluation. During reward computation, a format reward is
calculated, and only the content enclosed within "\boxed{}" is considered as the definitive answer.

24



Table 5: Comparison of representative methods for image and text editing.

Attribute Image Editing Text Editing

Input Type Image + Instruction Text + Instruction
Output Type Image Text
Editing Target Pixel-level changes Sentence Addition

Table 6: Resource cost statistics for each stage of the training pipeline using 4× RTX A6000. Stage 1
involves question generation, Stage 2 trains answer model, and Stage 3 trains question generator.

Training Stage Training Time (hours)

Stage 1: Instruction Generation 4
Stage 2: Answer Model Training 60
Stage 3: Question Generator Training 2

B.2 Training Dataset Description

MMK12 encompasses mathematical problems across various knowledge domains, including geome-
try, functions, spatial reasoning, and more. Some important categories are introduced as follows:

Function Reasoning: This task requires models to understand function concepts, analyze function
graphs and expressions, and apply function properties to solve problems. This type of reasoning
develops the model’s ability to comprehend abstract mathematical concepts, fostering its capability
to identify function characteristics, determine critical points, and analyze function behavior.

Geometric Reasoning: This task involves applying spatial relationships, geometric theorems, and
properties of shapes. Through geometric reasoning training, models enhance their spatial visualization,
logical deduction, and formalization abilities for geometry problems, enabling them to solve complex
problems in both plane and solid geometry.

Pattern Reasoning: This type of task focuses on understanding flow diagrams and recognizing patterns
in visual sequences. Models need to discover patterns, predict rule-based changes, or understand
logical relationships in visual content. This task examines the model’s pattern recognition abilities,
inductive reasoning skills, and visual logical thinking.

Table 7: Comparison of datasets in terms of scope, type, image source, QA source, CoT answer
source, and dataset size.

Dataset Scope Type Img. Source QA Source CoT Answer Source Size

MAVIS Geo & Func MCQ & FB Synthetic Synthetic Engine GPT-4o 20K
Geo3k Geo FB Real World Real World None 3K
RCOT Geo MCQ & FB Synthetic Synthetic Engine GPT-4o 10K
MultiMath Diverse MCQ & FB Real World GPT-4o GPT-4o 6.4K

MMK12 [4] Diverse FB Real World Real World Real World 15.6K

B.3 Evaluation Details

To further assess the reasoning capabilities of the models, we construct a validation set comprising
3,000 instances, sampled from multiple benchmarks with 500 instances drawn from each. Detailed
information about the benchmarks is provided in Table 8. The results of the validation experiments
are reported in Section 5.4 and AppendixD.

C Effectiveness Analysis of EvolvedGRPO

In this section, we discuss the effectiveness of EvolvedGRPO for improving the reasoning of LVLMs
with low overhead.
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Table 8: Summary of benchmarks for multimodal and mathematical reasoning evaluation.
Benchmark Task Description Modality Size Source

MathVista-mini Visual math reasoning Image+Text 1.0K MathVista
MathVision-full Diagram-based math QA Image+Text 3.0K MATH-Vision
MathVerse-mini Multiformat math QA Image+Text 3.1K MathVerse
GSM8K Grade-school math QA Text 8.5K OpenAI
MATH500 Competition-level math QA Text 500 MATH Dataset

ValidationTest Math QA Multi-modal 3.0K -

Table 9: Effectiveness of each equation.

Methods MathVista ↑ MathVision ↑ MathVerse ↑ GSM8K ↑ MATH500 ↑ Rel. ↑
1 EvolvedGRPO (Ours) 74.0 30.8 51.8 85.1 73.2 112.1%
2 w/o Image Edition 73.4 29.8 51.3 84.5 72.5 110.6%
3 w/o Text Edition 72.1 31.8 50.9 81.3 68.7 109.7%
4 w/o Image Edition & Text Edition 71.9 28.9 49.6 82.9 67.0 106.6%

5 Qwen2.5-VL-7B-Instruct 71.9 28.9 49.6 82.9 67.0 106.6%

Table 10: Avg performance of all domains on EvolvedGRPO disciplinary reasoning.

Models Physics ↑ Chemistry ↑ Biology ↑ Avg. ↑
1 EvolvedGRPO (Ours) 61.5 65.5 63.9 63.6
2 OpenVLThinker 53.8 60.6 65.0 59.8
3 MM-Eureka 56.2 65.2 65.2 62.2
4 Qwen2.5-VL-7B-Instruct 45.4 56.4 54.0 51.9

5 + GRPO 51.6 57.1 58.6 55.8
6 + EvolvedGRPO w/iter 1 51.4 56.4 57.2 55.0
7 + EvolvedGRPO w/iter 2 54.2 60.8 57.6 57.5

C.1 Effectiveness Analysis

To examine the effectiveness of each type of instruction, we first remove the image editing instructions
and text editing instructions separately, and observe the change in model performance after training.
The complete results are presented in Table 9. We can find that both text editing instruction (+4.0%)
and image editing instruction (+3.1%) are effective for EvolvedGRPO.

C.2 Experimental Results in a Wider Range of Fields

To demonstrate the framework’s generality and effectiveness, we leverage Qwen2.5-VL-7B-Instruct to
perform complex editing instructions across various vision-language tasks. EvolvedGRPO continues
to demonstrate its effectiveness across multiple real-world domains such as physics, chemistry, and
biology. The results in Table 10 provide strong evidence that our method effectively decouples
visual and textual information in diverse areas, leading to a significant enhancement of the model’s
comprehensive reasoning abilities.

Furthermore, the gradual improvement in model performance during the first two rounds of training
in Table 10 also demonstrates the effectiveness of multi round data augmentation training.

D Detailed Evolution Illustration of EvolvedGRPO Training Pipeline

D.1 Theoretical Analysis

For training data that the model has repeatedly encountered, the accuracy can approach 100% over
multiple learning iterations for part of the data. In such cases, since each evaluation samples only
limited responses and the reward is variance-normalized, repeated training causes the responses to
converge. When all responses are correct, the variance becomes 0 and is thus ignored, leading to
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Figure 3: Average reward for the corresponding intervals.

training stagnation. Furthermore, in order to increase accuracy, the model may omit the reasoning
process entirely or produce an incorrect reasoning process that nevertheless yields the correct answer,
resulting in negative rewards that can cause training collapse.

In contrast, EvolvedGRPO introduce additional informational complexity during multi-round training,
thereby increasing the data’s informational entropy and increasing reasoning complexity. This process
reduces the model’s accuracy, strategically promoting an increase in cognitive load that drives the
model to engage in more nuanced multi-step inferential reasoning, preventing training stagnation and
fostering further reasoning learning. Furthermore, the integration of additional information and the
escalation of difficulty within the synthetic data forces the model to extend its reasoning processes,
impeding direct answer memorization and reliance on spurious memorization of erroneous inferential
paths and thereby mitigating the risk of training collapse.

D.2 Experimental Analysis

In this part we calculate the average reward for the corresponding intervals in Figure 3.

We observe that EvolvedGRPO exhibits greater fluctuations during each training round, as it can
consistently improve after data augmentation, thereby maintaining a stable average performance
without rapid decline. Specifically, we found that the reward in EvolvedGRPO fluctuates continuously,
with the average reward sharply decreasing after each data augmentation before gradually increasing.
In contrast, the reward growth in GRPO slows down and eventually stagnates.

The analysis confirms that by generating more complex problems, EvolvedGRPO allows for a richer
variety of high-quality solutions, indicating a more diverse and nuanced reward landscape that
encourages exploration over exploitation.

D.3 Training Visualization

Since reward signals in multi-modal reasoning are closely tied to the depth and structure of the
reasoning process, changes in entropy at both the visual and textual semantic levels can effectively
modulate the reward landscape. Specifically, altering the number of inference steps—particularly
in extended reasoning chains involving over 4096 tokens—tends to induce more substantial and
informative reward variations than shallow input perturbations.

In this section, we report the detailed evolution process of the first three rounds of EvolvedGRPO in
Figure 4. Additionally, the number of editing steps is increased once the reward stabilizes and the
length of the reasoning chain remains unchanged, allowing for further difficulty scaling.
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Figure 4: Detailed Evolution Illustration of Reward-Accuracy, Reward-Format, KL Divergence for
the answer model over Round I, II, and III.

E Qualitative Examples

In Figure 5, we demonstrate the advantages of EvolvedGRPO in complex reasoning problems such
as geometry and statistics.

F Limitations

Due to the limited capabilities of current image editing tools, our approach to image manipulation
remains relatively simple. In future work, we plan to explore hybrid training of LVLMs with more
advanced image editing tools. This integration is expected to further enhance the model’s reasoning
ability and enable more complex and realistic image transformations.
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Question: 
Please answer the question and provide the correct option letter, e.g., A, B, C, D, at the end.
As shown in the figure, P is a point outside ⊙O, PA and PB intersect ⊙O at two points C and 
D respectively. It is known that the central angles of ⁀AB and ⁀CD are 90.0 and 50.0 
respectively, then ∠P = ( )
(A) 45°
(B) 40°
(C) 25°
(D) 20°

Answer: D

EvolvedGRPO:  
<think>
To solve for the angle ∠P, we need to use the properties of the angles in a circle and the relationships 
between the central angles and the inscribed angles.\n\n1. The central angle of arc AB is 90°, so the inscribed 
angle ∠ACB (which is half of the central angle) is 45°.\n2. The central angle of arc CD is 50°, so the inscribed 
angle ∠CAD (which is half of the central angle) is 25°.\n3. Since ∠ACB and ∠CAD are angles in the same 
segment, and ∠P is the external angle to these two angles, we can use the fact that the external angle of a 
triangle is equal to the sum of the two non-adjacent internal angles.
Thus, ∠P = ∠ACB - ∠CAD = 45° - 25° = 20°.
</think>
Option: D

Qwen2.5-VL-7B:  
To solve this problem, we need to use the properties of angles in a circle and the relationship between the 
central angles and the inscribed angles.
1. **Identify the given information:**\n   - The central angle of arc \\( \\overset{\\frown}{AB} \\) is \\( 90^\\circ 
\\).\n   - The central angle of arc \\( \\overset{\\frown}{CD} \\) is \\( 50^\\circ \\).
2. **Use the exterior angle theorem:**\n   - The exterior angle \\( \\angle P \\) is the sum of the two inscribed 
angles \\( \\angle ADB \\) and \\( \\angle ACD \\):\n     \\[\n     \\angle P = \\angle ADB + \\angle ACD = 45^\\circ 
+ 25^\\circ = 70^\\circ\n . .
3. **Correct approach:**\n   - The angle \\( \\angle P \\) is the difference between the angles formed by the 
tangents and the chords:\n     \\[\n     \\angle P = 90^\\circ - 50^\\circ = 40^\\circ\n     
Option: Therefore, the correct answer is: B

Question: 
Mary has written all the numbers from 1 to 30 . How many times has she written digit 2?

Answer: 13

EvolvedGRPO:  
<think>
To determine how many times the digit 2 appears in the numbers from 1 to 30, we need to consider the 
occurrences of the digit 2 in both the tens place and the units place.\n\n1. **Units place**: The digit 2 will 
appear in the units place in the numbers 2, 12, 22. So, it appears 3 times.\n2. **Tens place**: The digit 2 will 
appear in the tens place in the numbers 20, 21, 22, 23, 24, 25, 26, 27, 28, 29. So, it appears 10 
times.\n\nAdding these together, the digit 2 appears \\(3 + 10 = 13\\) times.
</think>

Option: 13

Qwen2.5-VL-7B:  
To determine how many times the digit 2 appears in the numbers from 1 to 30, we need to count the 
occurrences of the digit 2 in each place value (units and tens).\n\n1. **Count the digit 2 in the units place:**\n   
- The numbers that have 2 in the units place are: 2, 12, 22, 32.\n   - There are 4 such numbers.\n\n2. **Count 
the digit 2 in the tens place:**\n   - The numbers that have 2 in the tens place are: 20, 21, 22, 23, 24, 25, 26, 27, 
28, 29.\n   - There are 10 such numbers.\n\nAdding these together, the total number of times the digit 2 
appears is:\n\\[ 4 + 10 = 14 \\]\n\nSo, Mary has written the digit 2 a total of 14 times.
     
Option: 14

Figure 5: Example of complex reasoning. Red highlights Qwen2.5-VL-7B-Instruct’s reasoning errors,
Green shows EvolvedGRPO-7B’s correct answer.

29


	INTRODUCTION
	RELATED WORK
	PRELIMINARIES
	METHOD
	Formulation for Evolved Editing Instructions
	Progressive Instruction Evolution within LVLMs
	Enhanced Evolution with Progressive Training

	EXPERIMENTS
	Experimental Setup
	Main Results on Multi-modal Reasoning
	Main Results on Downstream Generalization
	In-depth Analysis

	CONCLUSION
	More Theoretical Analysis on EvolvedGRPO
	Problem Setup
	Proof of Convergence for GRPO
	Proof of Convergence for EvolvedGRPO

	Experimental Details
	Detailed Training Hyperparameters
	Training Dataset Description
	Evaluation Details

	Effectiveness Analysis of EvolvedGRPO
	Effectiveness Analysis
	Experimental Results in a Wider Range of Fields

	Detailed Evolution Illustration of EvolvedGRPO Training Pipeline
	Theoretical Analysis
	Experimental Analysis
	Training Visualization

	Qualitative Examples
	Limitations

