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ABSTRACT

Through the collaboration of multiple agents possessing diverse expertise and
tools, multi-agent systems achieve impressive progress in solving real-world prob-
lems. Given the user queries, the meta-agents, serving as the brain within these
systems, are required to decompose the queries into multiple sub-tasks that can be
allocated to suitable agents capable of solving them, so-called agent-oriented plan-
ning. In this study, we identify three critical design principles of agent-oriented
planning, including solvability, completeness, and non-redundancy, to ensure that
each sub-task is effectively resolved, leading to satisfactory responses to the orig-
inal queries. These principles further inspire us to propose a novel framework for
agent-oriented planning in multi-agent systems, leveraging a fast task decomposi-
tion and allocation process followed by an effective and efficient evaluation via a
reward model. During the planning process, the meta-agent is also responsible for
evaluating the performance of the expert agents, making timely adjustments to the
sub-tasks and scheduling as necessary. Besides, we integrate a feedback loop into
the proposed framework to further enhance the effectiveness and robustness of
such a problem-solving process. Extensive experiments demonstrate the advance-
ment of the proposed framework in solving real-world problems compared to both
single-agent systems and existing planning strategies for multi-agent systems.

1 INTRODUCTION

In recent years, large language models (LLMs) (Achiam et al., 2023; Chowdhery et al., 2023; Tou-
vron et al., 2023) have achieved impressive breakthroughs in natural language understanding and
generation, marking a critical advancement in the exploration of artificial general intelligence (AGI).
As the capabilities of LLMs progress, LLM-empowered agents (Qin et al., 2023; Dong et al., 2023;
Wang et al., 2024b) emerge as key components for integrating expertise and tools to translate these
advancements into practical applications effectively. Advancing this paradigm, multi-agent sys-
tems (Shen et al., 2024; Chen et al., 2023; Wu et al., 2023b), which involve multiple diverse agents,
provide great flexibility and adaptability by leveraging and collaborating on the strengths of various
agents, promoting comprehensive solutions to complex real-world problems.

Previous studies (Cai et al., 2023; Qian et al., 2023) propose to define suitable standard operating
procedures (SOPs) based on the insights and experiences of human professionals for solving specific
tasks, such as software development (Hong et al., 2023) and simulating personality traits (Serapio-
Garcı́a et al., 2023). In these scenarios, multiple agents are assigned to execute tasks following the
predefined SOPs, resulting in remarkable successes. However, for multi-agent systems designed to
tackle a diverse range of complex real-world problems, there is a critical need for a central entity
that can automatically generate task-specific operating procedures and coordinate the activities of
various agents (Wang et al., 2024b).

This central entity, typically referred to as a meta-agent (a.k.a. a controller or planner), carries two
primary responsibilities. Firstly, the meta-agent needs to comprehend user queries and decompose
them into several sub-tasks, ensuring that each sub-task can be adequately addressed by a single
agent. Secondly, the meta-agent is also expected to assign these sub-tasks to the appropriate agents
for execution, enabling the solutions of these sub-tasks to collectively provide comprehensive an-
swers to the original user query.
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However, since the meta-agent cannot effectively associate sub-tasks based on the provided agent
descriptions, the performance of task decomposition and allocations might be sub-optional. To
tackle these challenges, we identify three design principles for an agent-oriented planning frame-
work, including solvability, completeness, and non-redundancy, which further inspire us to propose
a novel framework for multi-agent systems.

Specifically, to resolve a user query, the meta-agent first performs fast task decomposition and al-
location, which serves as the intermediate results that can be further modified and revised. The
proposed framework incorporates a reward model designed to efficiently evaluate the solvability of
sub-tasks without requiring actual agent calls. According to the evaluation results, some sub-tasks
may be executed by the assigned agents, others may be recognized as inappropriate and be required
to perform a replanning, while the remaining sub-tasks would be further assessed through the rep-
resentative works mechanism, which helps determine whether they should be planned in detail or
re-described for better aligning the ability of agents. A detector is utilized to identify the missing
key information or redundant content in the decomposed sub-tasks, and to provide suggestions to
the meta-agent for enhancing the completeness and non-redundancy. Besides, a feedback loop is
integrated into the proposed framework to promote ongoing enhancements for the meta-agent.

Extensive experiments are conducted based on a reasoning dataset that needs the collaboration of
multiple agents. The comparisons between the proposed agent-oriented planning framework and
baseline methods demonstrate the remarkable advancements achieved by the proposed framework.
Besides, we conduct an ablation study to confirm the contributions of the different components in
the proposed framework, and provide discussions on the potential for further improvements in the
performance of agent-oriented planning within multi-agent systems.

2 RELATED WORK

Large language models (LLMs) (Brown, 2020; Achiam et al., 2023; Chowdhery et al., 2023; Tou-
vron et al., 2023; Le Scao et al., 2023; Zhang et al., 2022) have demonstrated remarkable capabilities
in understanding and generating human language (Zhao et al., 2023). To enhance LLMs’ ability to
solve complex problems, some research focuses on improving the internal reasoning capabilities
of LLMs, typically involving decomposing complex questions into sequential intermediate steps
before generating the final responses, as exemplified by Chain-of-Thought (CoT) prompting (Wei
et al., 2022) and its variants (Kojima et al., 2022; Wang et al., 2022; Zhou et al., 2022; Li et al.,
2023). For further improvements, recent studies propose to adopt multi-agent systems (Hong et al.,
2023; Wu et al., 2023b) which leverage the collective intelligence and specialized skills of multiple
LLM-empowered agents to solve tasks collaboratively.

There are mainly two technical approaches for meta-agents, which serve as the controller that
manages the flow of operations, to perform task decomposition: interleaved decomposition and
decomposition-first. In the first kind of method, React (Yao et al., 2022) generates reasoning and ac-
tion in an interleaved manner, where reasoning helps the meta-agent update action plans and action
enables interaction with agents. Visual ChatGPT (Wu et al., 2023a) meticulously designs a series
of prompts to help inject the visual information into ChatGPT, designed to solve complex visual
questions with diverse visual foundation models step-by-step. HUSKY (Kim et al., 2024) trains an
action model to iterate between two stages: generating the next action to take and executing the
action using expert models and updating the current solution state.

Cooperative multi-agent planning (MAP) has been an active research area for many years (Torreno
et al., 2017). While early MAP works focus on coordination methods for agents using planning
representations (Durfee et al., 1999), a significant turning point is the introduction of MA-STRIPS
(Brafman & Domshlak, 2008), a minimalist multi-agent extension of the well-known STRIPS plan-
ning model (Fikes & Nilsson, 1971), which provided a widely accepted standardized format for
MAP. Following this, MA-PDDL (Kovacs et al., 2012), the multi-agent version of PDDL (Aeronau-
tiques et al., 1998), marked the first attempt to create a de facto standard specification language for
MAP tasks. Both symbolic methods and reinforcement learning-based methods (He et al., 2015;
Yao et al., 2020b) have become mainstream approaches in MAP. In recent years, the development
of LLMs has brought considerable attention to LLM-empowered agents (Wang et al., 2024a). Some
methods have enhanced the planning proficiency of LLMs by incorporating a planner (Liu et al.,
2023; Dagan et al., 2023; Guan et al., 2023; Yang et al., 2023), while others have explored combining
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an LLM with a lightweight neural planner (Yao et al., 2020a; Lin et al., 2024). These developments
have injected new vitality into the advancement of MAP.

Although remarkable progress has been made, plans generated solely through prompt-based meth-
ods often fall short of meeting the principles of solvability, completeness, and non-redundancyissues
that have largely been overlooked in prior work, which motivates us to propose a novel agent-
oriented planning framework for multi-agent systems.

3 PRELIMINARIES

Definition of Agent-Oriented Planning In this study, a multi-agent system involves a series of
LLM-empowered agents. These agents are constructed by providing specialized tools and unique
system prompts that set their identity and instructions, and are powered by LLMs for query under-
standing, tool use, and response generation. For example, a search agent can utilize search engines
to retrieve up-to-date information relevant to a given query, while a code agent is capable of gener-
ating code and executing the code via a code interpreter. The collaboration among these agents is
facilitated by a meta-agent, which serves as the brain of the multi-agent systems. When a user query
is submitted to the multi-agent system, the meta-agent sends the relevant requests to the appropriate
agents, optimizing for both effectiveness and efficiency. The responses produced by these agents are
finally aggregated and synthesized to generate a comprehensive answer to the original user query.

Formally, given a user query Q, a meta-agent P needs to select some appropriate agents from a
total of n agents, denoted as A = {A1, ...,An}. Each agent is associated with a description d that
outlines its capability. We denote the collection of all agent descriptions as D = {d1, ..., dn}. The
user query Q is decomposed into m sub-tasks, with each sub-task assigned to a specific agent based
on their descriptions:

P(Q,D,A) = {(qi,A′
i) | i ∈ [m]}. (1)

After that, each selected agent i ∈ [m] produces a response to its assigned sub-task, denoted as ri =
A′

i(qi). These responses are then utilized to generate the final answer based on R = {r1, ..., rm} to
resolve the original query Q. Such a process is called agent-oriented planning.

Challenges The challenges of agent-oriented planning in multi-agent systems can be two-fold.
Firstly, different from existing studies focused on task decomposition (Shen et al., 2024; Lu et al.,
2024) or chain-of-thought reasoning (Wei et al., 2022), agent-oriented planning requires intentional
decomposition of user queries to effectively associate sub-tasks with agents, which includes con-
siderations of the description of sub-tasks, the granularity of decomposition, the format of the re-
sponses, and so on. An example is illustrated at the higher left of Figure 1. Given a user query
“How much tin (kg) with 100 kg of copper can lower the mixture’s melting point to 800 ℃?”, a
naive decomposition might suggest “determine the melting point of tin and copper.” followed by
“calculate the amount of tin (kg) required to reduce the melting point of the mixture to 800 ℃ with
100 kg of copper.”. However, when the sub-task of determining the melting points is assigned to
a search agent, it may not result in satisfied responses since the query involves two entities simul-
taneously. In the context of agent-oriented planning, it is important to consider the capabilities of
a search agent. As a result, such a sub-task should be further decomposed into individual entity
searches: first determine the melting point of tin and then determine the melting point of copper.

Secondly, assigning sub-tasks to appropriate agents is non-trivial, as the meta-agent can only rely on
the agents’ descriptions to determine task allocation in most cases (Shen et al., 2024). However, a
concise and highly generalized description that adequately illustrates an agent’s capabilities may
not always be available, leading to suboptimal allocation. For example, if the description of a
commonsense agent does not specify the extent of its knowledge base, the meta-agent may struggle
to ascertain whether it is suitable to assign the task of querying the melting points of tin and copper
to that agent, as shown at the lower left of Figure 1.

Design Principles We further identify three critical principles that guide the design of our frame-
work for effective and efficient agent-oriented planning in multi-agent systems:

• Solvability. Each sub-task qi ∀i ∈ [m] should be independently and completely resolvable
by at least one single agent within the multi-agent system, ensuring that the response for
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Figure 1: Examples of agent-oriented planning in multi-agent systems, regarding two challenges
(left side) and three design principles (right side).

each sub-task can be reliable. If a sub-task does not satisfy solvability, the meta-agent is
expected to take some modifications or further decomposition.

• Completeness. The array of sub-tasks {q1, ..., qm} should include all necessary information
from the original user query Q, which ensures that the aggregation of responses of these
sub-tasks can effectively yield a comprehensive answer to the user query. While a sub-
task might include only some pieces of necessary information, it is not allowable for any
particular piece of critical information to be omitted from all sub-tasks.

• Non-Redundancy. The array of sub-tasks {q1, ..., qm} should not include redundant ele-
ments, avoiding those task executions that are either irrelevant to resolving Q, or duplicated.
The principle of non-redundancy promotes that the sub-tasks form a minimal effective set
necessary to address the user query, enhancing overall efficiency.

Several examples are provided on the right side in Figure 1 for a better understanding of these design
principles. Note that here we focus on the redundancy between sub-tasks that should be optimized,
and believe that adding redundancy among agents is necessary for fault tolerance (please refer to
Appendix F.1 for further discussions on fault tolerance), especially considering unexpected changes
in agent availability.

While these principles may appear general in nature, we propose explicit specification and system-
atic design that follows these principles in the domain of LLM-based multi-agent systems. We hope
that these principles, along with the framework we have outlined, can serve as a good standing point
and inspire further research in this field.

4 AGENT-ORIENTED PLANNING IN MULTI-AGENT SYSTEMS

In this section, we introduce the details of the proposed agent-oriented planning framework. The
overall architecture is illustrated in Figure 2.

4.1 FAST DECOMPOSITION AND ALLOCATION

First of all, following existing studies (Shen et al., 2024; Chen et al., 2023), we provide detailed
instructions to the meta-agent to guide it in performing agent-oriented planning. Different from pre-
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Re-describe

Representative works

Query Meta-agent Responses

Plan Refined Plan

Fast Decomposition
& Allocation

Execution

Agents

Feedback

Reward model
Replan

Plan in detail

… …

Redundant sub-tasks

Missing dependencies

Detector

Figure 2: Overall architecture of the proposed agent-oriented planning framework. The framework
begins with the meta-agent performing a fast decomposition and allocation of the received user
query, resulting in an initial plan. A detector is employed to improve the completeness and eliminate
redundancy of the plan, while a reward model provides scores to guide the meta-agent in refining
the plan further, which involves operations such as replan, plan-in-detail, etc. The refined plan is
sent back to the multi-agent system for generating responses to the user query.

vious studies, the provided instructions incorporate the following requirements: (i) Integration of
user query Q and all the agent descriptions A: We include both the user query and the descriptions
of agents in the instructions, promoting the meta-agent to fully consider the capabilities of each
agent and tailor the sub-tasks to align with these capabilities. (ii) Suggestions for assigned agents:
We require the meta-agent to provide suggestions for the agents assigned to each decomposed sub-
task. Although we tend to separate task decomposition and assignment into two independent tasks
performed sequentially, the experimental observations indicate that combining these two tasks en-
hances the effectiveness of agent-oriented planning. (iii) Structured decomposition of tasks: The
decomposed tasks are required to be structured in a sequential manner, specifying any dependencies
that may exist between sub-tasks, which ensures that the execution of tasks follows a correct logical
order. The adopted prompt can be found in Appendix A.1.

The aforementioned process of agent-oriented planning, which is called fast decomposition and al-
location in this study, heavily relies on the capabilities of the meta-agent and meticulously designed
system prompts. While such an end-to-end approach can achieve high efficiency, its success rate,
namely fulfilling the three design principles mentioned above and providing reliable answers to the
original user query, and its stability, namely the meta-agent can follow instructions and produce
formatted responses, might not be satisfactory.

Inspired by recent studies on inference time computing (OpenAI, 2024b), we propose to design
mechanisms to guide the meta-agent toward more comprehensive reasoning processes. The results
of fast decomposition and allocation should be viewed as intermediate outputs rather than final
results, which need to be further evaluated to offer detailed revision suggestions for the meta-agent.
More details on this proposed approach are provided in the next section.

4.2 IS A SUB-TASK COMPLETELY RESOLVED?

To determine whether a sub-task can be resolved by a single agent, i.e., satisfying the principle of
solvability, a straightforward solution is to send the sub-task to every agent in the system. Each
agent generates a response to the sub-task, allowing us to select the best answer and assess whether
it completely resolves the sub-task. However, this approach is often impractical due to the unafford-
able overhead. For a user query decomposed into m sub-tasks, a multi-agent system with n agents
would need to execute a total of m × n agent calls for just a single trial, making it an inefficient
strategy in scenarios with a large number of agents and sub-tasks.

To tackle this, we propose a reward model designed to provide efficient evaluations of the solv-
ability of sub-tasks, which aims to predict the quality of the agents’ responses to sub-tasks without
necessitating actual agent calls.

5
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Specifically, we first prepare a dataset for training the reward model. For a given user query Q,
we follow the fast decomposition and allocation process introduced in Section 4.1, requiring the
meta-agent to decompose Q into several sub-tasks and select l agents for each sub-task based on the
agents’ descriptions, which can be formally given as follows:

P(Q,D,A) = {(qi,Ai,1, ...,Ai,l) | i ∈ [m]}. (2)

After that, we execute the plan, i.e., sending the sub-tasks to the assigned agents, and obtain all the
responses from agents as:

{ri,j = Ai,j(qi) | i ∈ [m], j ∈ [l]}, (3)

where the choice of l can be a trade-off. A large l leads to comprehensive responses from lots of
agents for constructing the training dataset, while it might need more computation resources and
affect the overall quality of the dataset. In this study, we set l to be half the number of agents in the
multi-agent systems.

We utilize a scorer S that evaluates agents’ responses to sub-tasks, i.e., S(qi, ri,j) = si,j , which
serves as annotations in the training dataset. The scorer S provides evaluations from three
key aspects: correctness, relevance, and completeness, and can be implemented using powerful
LLMs (OpenAI, 2024a) or human annotators. We apply this scoring process across a diverse ar-
ray of user queries Q = {Qk}Kk=1 and collect the results to form the training dataset, denoted as
T = {(qk,i, dk,i,j , sk,i,j) | k ∈ [K], i ∈ [mk], j ∈ [l]}. More details on the construction of the
dataset, such as the adopted prompts, are summarized in Appendix C.

The reward model, parameterized as θ, consists of embedding layers followed by fully connected
layers. We obtain embeddings for both the sub-task and the agent’s description separately, then
concatenate these embeddings together and feed them into the fully connected layers for further
processing. To provide evaluations without making actual agent calls, we design a training objective
aimed at minimizing the discrepancies between the model’s predictions and the annotations provided
by the scorer, which can be formulated as follows:

L(T , θ) =
1

K

K∑
k=1

1

mk

mk∑
i=1

1

l

l∑
j=1

(sk,i,j −Mθ(qk,i, dk,i,j))
2. (4)

With the well-trained reward model, the evaluation of the results produced by fast decomposition
and allocation can be summarized as follows. For each suggestion provided by the meta-agent,
stating the assignment of sub-task qi to agent A′

i, the reward model predicts a score denoted as
Mθ(qi, d

′
i). A sufficiently high predicted score, which implies that qi can be completely resolved

by agent A′
i, leads to the acceptance of this suggestion. Conversely, if the predicted score falls below

a predefined threshold, which indicates that the assignment should be revisited by the meta-agent,
the reward model provides a set of scores ŝi,j = Mθ(qi, dj) for all the agents Aj , j = 1, ..., n.
From these scores, the meta-agent reports the optimal solution as jmax = argmaxj ŝi,j .

Note that there may be scenarios where the highest score ŝjmax
is still below the threshold, indicating

that the sub-task qi does not satisfy the principle of solvability and that no single agent can resolve
it independently. In these cases, the meta-agent P is required to perform a replan on qi. The prompt
used for replan is detailed in Appendix A.2.

4.3 SUB-TASK MODIFICATIONS

In addition to the two scenarios mentioned in Section 4.2, where the assignment of sub-task qi to
agent A′

i is either predicted to be acceptable by the reward model or to be entirely inappropriate
and requires a replan process, there also exists another situation where agent A′

i might not provide
a reliable response to sub-task qi, even though the assignment seems reasonable according to the
reward model.

We identify two intrinsic reasons for such a situation in agent-oriented planning. First, the descrip-
tion of the sub-task may lack critical information necessary for solving the problem, such as the
interpretation of contextual elements like pronouns or other ambiguous terms. In such cases, while
the agent possesses the capability to resolve the sub-task, the missing information can hinder it from
providing a satisfactory response. Second, the sub-task qi might be too complex, therefore a single
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agent can only address parts of this sub-task based on its expertise and tools. In this subsection, we
design mechanisms to distinguish between these two cases and propose corresponding solutions.

To be specific, for each agent, we propose to construct a set of representative works that record the
tasks it has completely resolved. We would initially bypass the construction and update for these
representative works (refer to Section 4.5 for more details) and focus on how to utilize them to make
sub-tasks modifications here. Given a sub-task qi, we calculate its similarity with a representative
work qt following cos(E(qi), E(qt)), where E is the embedding part in M and cos(u, v) = u·v

∥u∥2∥v∥2

calculates the cosine similarity. We define the similarity as follows:

sim(qi,Qj) = max{cos(E(qi), E(qt))|qt ∈ Qj}, (5)

where it can be denoted as simi,j for short.

A large max{simi,j | j ∈ [n]} indicates that the representative works of the agent corresponding
to max{simi,j | j ∈ [n]} contain a sub-task similar to qi. Such a case should be attributed to the
first reason mentioned above, and we tend to request the meta-agent to perform re-describe on qi
according to the similar representative work.

On the other hand, if the calculated similarity does not meet the threshold, we regarded qi as too
complex for any single agent in the system to solve (corresponding to the second reason above). As a
result, the meta-agent P is requested to perform plan-in-detail for further decomposing the sub-task
into simple ones. To avoid creating redundant sub-tasks, we provide P with all the sub-tasks and
explicit instruction on avoiding overlapping sub-asks. The prompt used for sub-task modification
can be found in Appendix A.3 and Appendix A.4.

4.4 DETECTOR FOR COMPLETENESS AND NON-REDUNDANCY

Following the idea in fast decomposition and allocation, we attempt to enhance the proposed
framework by incorporating detailed instructions to satisfy the principles of completeness and non-
redundancy, such as “make sure all the important information of the original task such as nouns or
numbers are included in the sub-tasks”. However, empirical observations reveal that these instruc-
tions do not mitigate these issues. In fact, more than 15% of user queries still exhibit such issues
during decomposition.

To tackle these issues, we involve a detector, implemented by providing a role-play prompt to LLMs,
to evaluate both the completeness and non-redundancy of the intermediate results provided by the
meta-agent. For the principle of completeness, the detector extracts all key elements and require-
ments from the original query and then matches these elements against each sub-task, determining
whether the sub-tasks collectively address all essential aspects of the original task. The detector
is also required to determine whether there are any additional dependencies needed beyond those
identified during decomposition (e.g., unforeseen dependencies). If such dependencies exist, the
execution results of these dependent sub-tasks should also be provided as inputs. Regarding the
principle of non-redundancy, the detector checks for identical information and requirements across
sub-tasks. The detector flags the redundancy if two sub-tasks include overlapping content.

When the provided results do not satisfy the principles of completeness or non-redundancy, the de-
tector identifies the missing key information or redundant content and offers recommendations for
refining the plan, such as suggestions for supplementing missing details or removing overlapping
sub-tasks. The prompt used for the detector is provided in Appendix A.5. From the experimen-
tal results shown in Table 2, we observe that the detector effectively mitigates the issues of task
decomposition incompleteness and redundancy, leading to an effective and efficient agent-oriented
planning process.

4.5 FEEDBACK LOOP

An automatic feedback loop is integrated into the proposed agent-oriented planning framework,
promoting ongoing enhancement of the meta-agent. As introduced in Section 4.2, the reward model
can identify certain sub-tasks as being resolvable by specific agents. These identified sub-tasks are
then collected to form the representative works of the corresponding agents. The training data for
the reward model, which includes the sub-tasks and the ground truth scores of responses provided
by the agents, is utilized to initialize these representative works.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Note that the representative works are continuously updated. When a user query is completely
resolved, the sub-tasks decomposed from that user query can be added to the representative works
of the agents who are selected to provide responses to these sub-tasks. To prevent redundancy in
the representative works, we implement a similarity threshold. This threshold ensures that only new
and sufficiently distinct sub-tasks are incorporated into an agent’s representative works, maintaining
the diversity and relevance of the tasks that each agent has previously resolved.

5 EXPERIMENTS

In this section, we provide empirical comparisons between the proposed agent-oriented planning
framework and the existing studies.

5.1 SETTINGS

Datasets & Evaluations We conduct experiments based on a numerical reasoning dataset (Kim
et al., 2024), which necessitates the collaboration of multiple agents in resolving the queries. For
example, a query can be “If Sarah wants to buy one BMW X5 and one Tesla Model 3, how much
more would she need to pay to buy the BMW X5 compared to the Tesla Model 3?” To resolve this
query, we first need to search for the prices of the BMW X5 and Tesla Model 3, and then calculate
the price difference between them. Following previous study (Kim et al., 2024), we adopt Husky-
QA, which consists of 1,440 queries in the training data and 292 queries in the test data. Besides,
we also provide more experimental results on DROP (Dua et al., 2019) and IIRC (Ferguson et al.,
2020) in Appendix E.1.

For quantification comparisons, we provide instructions to GPT-4o (OpenAI, 2024b) for assisting in
judging whether the execution results align with the ground truth and calculate the accuracy as the
evaluation metrics. The prompt used for evaluation can be found in Appendix D.

Involving Agents In the experiments, the multi-agent system includes a meta-agent and several
diverse agents, including a code agent, math agent, search agent, and commonsense agent. The
descriptions of these agents, which are similar to those in previous studies (Kim et al., 2024) for
a fair comparison: (i) Code Agent: Generate code in Python for precise computations to solve the
given task; (ii) Math Agent: Answer math questions by reasoning step-by-step; (iii) Search Agent:
Call the Bing Search API to obtain information related to the given task; (iv) Commonsense Agent:
Leverage commonsense knowledge to answer given questions, such as the metal melting points and
the atomic numbers of helium and hydrogen.

The meta-agent is tasked with decomposing user queries into sub-tasks and assigning the most suit-
able agents to execute those sub-tasks. We use GPT-4o as the employed LLM for all agents, and the
used prompts are provided in Appendix B. An investigation of the effectiveness of involving expert
agents powered by task-specified LLMs can be found in Appendix E.3.

Reward Model We adopt all-MiniLM-L6-v2 (Wang et al., 2020) as the embedding layers of the
reward model, which maps text sentences or paragraphs into a 384-dimensional dense vector space.
The embeddings for both the sub-task and the agents description are computed separately, and are
concatenated together to form a 768-dimensional dense vector. Following the embedding model, we
add a three-layer multilayer perceptron (MLP) with output dimensions of 256,64, and 1, respectively.
We freeze the embedding layers and only finetune the parameters of the MLP, making the training
process efficient. The batch size is set to 32, the learning rate is 1e-3. We train the reward model for
50 epochs on one Tesla V100-SXM2-32GB GPU.

Baselines For the single-agent systems, we utilize GPT-4o as a baseline method, providing user
queries directly without any additional prompt engineering. Besides, we provide GPT-4o with
Chain-of-Thought (CoT) (Wei et al., 2022) prompt and Zero-Shot CoT (Kojima et al., 2022) prompt
to guide LLMs to perform reasoning processes, resulting in two baselines denoted as CoT and
Zero-Shot CoT. Taking a further step, we instruct GPT-4o to serve as a meta-agent responsible
for performing fast task decomposition and allocations. We implement two baselines, denoted as
Meta-Agent and Meta-Agent: Traversal, respectively. Meta-Agent denotes that the LLM selects
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Table 1: Comparisons between the proposed agent-oriented planning framework and baselines.

Method Accuracy (%) Prompt Tokens (M) Completion Tokens (M) Time (s)

GPT-4o 33.3 0.02 0.09 1,968
CoT 35.6 0.07 0.08 1,375
Zero-Shot CoT 32.2 0.02 0.11 1,565
Meta-Agent 30.0 0.65 0.13 5,364
Meta-Agent: Traversal 35.2 3.07 0.69 23,175
REACT 37.6 2.47 0.19 11,510
HUSKY 39.6 0.83 0.15 10,394

Ours 43.7 1.12 0.38 11,869

one agent for each sub-task, while Meta-Agent: Traversal denotes that GPT-4o iteratively queries
all agents for each sub-task and selects the best response.

Regarding multi-agent systems, we compare the proposed framework with REACT (Yao et al.,
2022) and HUSKY (Kim et al., 2024), which are representative methods involving task decomposi-
tion and sub-task execution.

5.2 COMPARISONS AND ANALYSIS

The comparisons between the proposed agent-oriented planning framework and the baseline meth-
ods are shown in Table 1. We adopt accuracy as the metric for comparing effectiveness, and use
prompt/completion tokens (refer to the total cost on the whole test dataset) and the execution time
for comparing efficiency.

Overall, the experimental results demonstrate that the proposed agent-oriented planning framework
achieves notable improvements compared to all baseline methods. To be specific, when comparing
with single-agent systems including GPT-4o, CoT, and Zero-Shot CoT, the proposed agent-oriented
planning framework outperforms these systems by 10.4%, 8.1%, and 11.5% in terms of accuracy,
respectively. These improvements can be attributed to the collaboration among multiple diverse
agents and the effective scheduling provided by the meta-agent.

It is not surprising to observe that the cost of the proposed framework is significantly higher than
single-agent systems, and is at the same level compared to other multi-agent systems. These addi-
tional costs during the inference phase, which include task decomposition, allocation, and modifi-
cations carried out by the meta-agent, are affordable and can be worthwhile as long as they bring
significant improvements in accuracy and stability when applying real-world applications. Such
an exploration aligns with a recent study (OpenAI, 2024b) in inference time computing, aimed at
efficiently utilizing more tokens to resolve challenging tasks.

Compared to systems that also involve a meta-agent for task decomposition and allocation, we can
observe from the table that the proposed method achieves at least a 4.1% improvement in terms of
accuracy while maintaining the same level of computation costs and inference times. The results
of Meta-Agent and Meta-Agent: Iteration indicate that simply instructing GPT-4o to perform task
decomposition and allocation does not always yield satisfactory responses, even though the capa-
bilities of LLM are recognized as powerful. Existing studies in task composition and allocation
fail to consider the abilities and characteristics of the agents beyond their descriptions, and lack
mechanisms for modifications and feedback within the multi-agent system, which can be hindered
by the challenges as summarized in Section 3. The proposed framework is built upon these identi-
fied design principles and incorporates novel mechanisms for automatically evaluating intermediate
results, allowing timely modifications and revisions, which guides and leverages the strengths of
LLMs within the multi-agent system for effectively resolving user queries and enhancing overall
system performance.

5.3 FURTHER DISCUSSIONS

Ablation Study We conducted an ablation study to confirm the contributions of different com-
ponents in the proposed framework. Specifically, we disable the detector, the reward model, and
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Table 2: Experimental results of ablation study.

Method Accuracy (%) Prompt Tokens (M) Completion Tokens (M) Time (s)

Ours 43.7 1.12 0.38 11,869
w/o Plan Detector 36.6 1.05 0.29 9,504
w/o Reward Model 38.7 1.17 0.37 11,651
w/o Representative Works 41.1 1.14 0.36 11,178

Table 3: Experimental results on the impact of scorer and reward model

Method Accuracy (%) Prompt Tokens (M) Completion Tokens (M) Time (s)

Ours 43.7 1.12 0.38 11,869
+ Manual Scoring 46.9 1.26 0.40 12,676
+ Full Parameter Tuning 47.9 1.28 0.41 13,063

the representatives of agents in separate experiments, with results reported in Table 2. From these
results, we can observe that the detector has a significant impact on execution accuracy, as indicated
by a notable increase in the incompleteness rate during the meta-agent’s task decomposition phase.
Both the reward model and the representative works are necessary in ensuring the solvability of tasks
and in selecting the most suitable agents for each sub-task. Overall, these results demonstrate that all
three components are indispensable, working together to ensure the feasibility of task decomposition
and allocation, leading to satisfactory responses to the original user queries.

Impact of Scorer and Reward Model The training dataset is constructed based on annotations
provided by the scorer, which in the previous experiments is implemented using LLMs. In this sec-
tion, we shift to using human annotators to manually provide scores for the responses, evaluating
whether a reward model trained on this manually labeled dataset would further enhance perfor-
mance. This approach is denoted as Manual Scoring. More detailed information about the manual
scoring process can be found in Appendix C. Besides, based on the manually scored training dataset,
we investigate the setting of updating the embedding layers of the reward model, denoted as Full
Parameter Tuning.

The experimental results shown in Table 3 indicate that both manual scoring and full parameter tun-
ing of the reward model lead to improved performance. These results suggest the potential for further
improving the proposed agent-oriented planning framework by providing high-quality datasets for
training robust. Although using a human-expert-based scorer can lead to further improvements, we
predominantly adopt a model-based scorer in the above experiments, as it is a more cost-effective
and generalizable manner. Besides, we provide empirical studies on the generalization capability of
the reward model in Appendix E.2, showing that the reward model trained on one dataset demon-
strates good generalization to other datasets.

6 CONCLUSION

In this study, we propose a novel agent-oriented planning framework for multi-agent systems, fol-
lowing three critical design principles to ensure that the meta-agent can effectively decompose the
user query into several sub-tasks for producing satisfactory responses. The proposed framework
utilizes a fast decomposition and allocation process, which relies on the ability of LLMs to generate
an intermediate schedule efficiently. After that, a reward model and the representative work mecha-
nism are employed to evaluate these intermediate results, routing three different paths for executing
the sub-task or making necessary modifications to align the sub-task with agents, such as replan
the sub-task, plan in detail, and re-describe. Extensive experiments demonstrate that the proposed
agent-oriented framework achieves significant improvements over both the existing single-agent and
multi-agent baseline methods. We provide discussions on the contributions of different components
in the framework and the potential for improvements in agent-oriented planning. We will release the
source code to promote further research in the community.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Ale-
man, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Constructions Aeronautiques, Adele Howe, Craig Knoblock, ISI Drew McDermott, Ashwin Ram,
Manuela Veloso, Daniel Weld, David Wilkins Sri, Anthony Barrett, Dave Christianson, et al.
Pddl— the planning domain definition language. Technical Report, Tech. Rep., 1998.

Ronen I Brafman and Carmel Domshlak. From one to many: Planning for loosely coupled multi-
agent systems. In ICAPS, volume 8, pp. 28–35, 2008.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge, Chenfei Wu, Wang
You, Ting Song, Yan Xia, et al. Low-code llm: Visual programming over llms. arXiv preprint
arXiv:2304.08103, 2, 2023.

Guangyao Chen, Siwei Dong, Yu Shu, Ge Zhang, Jaward Sesay, Börje F Karlsson, Jie Fu, and Yemin
Shi. Autoagents: A framework for automatic agent generation. arXiv preprint arXiv:2309.17288,
2023.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):
1–113, 2023.

Gautier Dagan, Frank Keller, and Alex Lascarides. Dynamic planning with a llm. arXiv preprint
arXiv:2308.06391, 2023.

Yihong Dong, Xue Jiang, Zhi Jin, and Ge Li. Self-collaboration code generation via chatgpt. arXiv
preprint arXiv:2304.07590, 2023.

Dheeru Dua, Yizhong Wang, Pradeep Dasigi, Gabriel Stanovsky, Sameer Singh, and Matt Gardner.
DROP: A reading comprehension benchmark requiring discrete reasoning over paragraphs. In
Proceedings of the 2019 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), pp.
2368–2378, 2019. URL https://aclanthology.org/N19-1246.

Edmund H Durfee, Charles L Ortiz Jr, Michael J Wolverton, et al. A survey of research in distributed,
continual planning. Ai magazine, 20(4):13–13, 1999.

James Ferguson, Matt Gardner, Hannaneh Hajishirzi, Tushar Khot, and Pradeep Dasigi. IIRC: A
dataset of incomplete information reading comprehension questions. In Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1137–1147,
2020. URL https://aclanthology.org/2020.emnlp-main.86.

Richard E Fikes and Nils J Nilsson. Strips: A new approach to the application of theorem proving
to problem solving. Artificial intelligence, 2(3-4):189–208, 1971.

Lin Guan, Karthik Valmeekam, Sarath Sreedharan, and Subbarao Kambhampati. Leveraging pre-
trained large language models to construct and utilize world models for model-based task plan-
ning. Advances in Neural Information Processing Systems, 36:79081–79094, 2023.

Ji He, Jianshu Chen, Xiaodong He, Jianfeng Gao, Lihong Li, Li Deng, and Mari Ostendorf. Deep
reinforcement learning with a natural language action space. arXiv preprint arXiv:1511.04636,
2015.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn
Song, and Jacob Steinhardt. Measuring mathematical problem solving with the MATH dataset.
In Thirty-fifth Conference on Neural Information Processing Systems Datasets and Benchmarks
Track (Round 2), 2021. URL https://openreview.net/forum?id=7Bywt2mQsCe.

11

https://aclanthology.org/N19-1246
https://aclanthology.org/2020.emnlp-main.86
https://openreview.net/forum?id=7Bywt2mQsCe


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Sirui Hong, Xiawu Zheng, Jonathan Chen, Yuheng Cheng, Jinlin Wang, Ceyao Zhang, Zili Wang,
Steven Ka Shing Yau, Zijuan Lin, Liyang Zhou, et al. Metagpt: Meta programming for multi-
agent collaborative framework. arXiv preprint arXiv:2308.00352, 2023.

Joongwon Kim, Bhargavi Paranjape, Tushar Khot, and Hannaneh Hajishirzi. Husky: A unified,
open-source language agent for multi-step reasoning. arXiv preprint arXiv:2406.06469, 2024.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. Advances in neural information processing systems,
35:22199–22213, 2022.

Daniel L Kovacs et al. A multi-agent extension of pddl3. 1. In ICAPS 2012 Proceedings of the 3rd
Workshop on the International Planning Competition (WS-IPC 2012), pp. 19–37, 2012.

Teven Le Scao, Angela Fan, Christopher Akiki, Ellie Pavlick, Suzana Ilić, Daniel Hesslow, Roman
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A PLAN GENERATION AND MODIFICATION

A.1 META-AGENT PROMPT

The one-shot prompt for meta-agent’s fast decomposition and allocation is shown in Figure 3.

meta_agent_prompt = ’’’
You are a planning agent. You are responsible for decomposing the given query into sub-tasks

and choose the most suitable agent for each sub-task. Your main goal is to efficiently
and accurately complete task planning based on the descriptions of agents provided,
ensuring the coherence and quality of the sub-tasks.

Please output the sub-tasks and corresponding agents in the following json format: [{"task":
task_description, "id": task_id, "name": name_of_agent, "reason":
your_detailed_reason_for_the_choice, "dep":dependency_task_ids}]. In this format, "task"
is the description of the sub-task, which will be used as the input of the chosen agents;
"dep" denotes the id of the previous sub-task which generates a new resource relied by

the current sub-task.
The available agents and the corresponding descriptions are: [code_agent: Generate code in

Python for precise computations to solve the given task. math_agent: Answer math
questions by reasoning step-by-step. search_agent: Call Bing Search API for obtaining
information regarding the given task. commonsense_agent: Answer the given question using
commonsense reasoning.].

---
Here is an example:
User query: If a plane can carry 300 passengers and decides to fly from China to Indonesia,

how many full flights are needed to transport 1\% of the population of China to Indonesia
?

Output:
[

{
"task": "Determine the population of China.",
"id": 1,
"name": "search_agent",
"reason": "The search_agent can find the most recent and accurate population data for

China.",
"dep": []

},
{

"task": "Calculate 1% of the population of China.",
"id": 2,
"name": "math_agent",
"reason": "The math_agent can reason through the calculation step-by-step.",
"dep": [1]

},
{

"task": "Determine the number of full flights needed to transport 1% of the population
of China to Indonesia, given that each plane can carry 300 passengers.",

"id": 3,
"name": "math_agent",
"reason": "The math_agent can reason through the division and rounding process.",
"dep": [2]

}
]
---
Given the user query, output the task plan with the format above directly. Make sure all the

important information such as nouns or numbers are included in the sub-tasks. If you
think the query can be done with just one agent, you can output only one sub-task.

‘‘‘

Figure 3: One-shot prompt for the meta-agent.

A.2 REPLAN

The prompt for replanning is shown in Figure 4.
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replan_prompt = ’’’
You are a planning agent. You are preliminarily responsible for decomposing the given query

into sub-tasks and choose the most suitable agent for each sub-task according to the
following json format: [{"task": task_description, "id": task_id, "name": name_of_agent,
"reason": your_detailed_reason_for_the_choice, "dep":dependency_task_ids}]. In this
format, "task" is the description of the sub-task, which will be used as the input of the
chosen agents; "dep" denotes the id of the previous sub-task which generates a new

resource relied by the current sub-task.
The available agents and the corresponding descriptions are: [code_agent: Generate code in

Python for precise computations to solve the given task. math_agent: Answer math
questions by reasoning step-by-step. search_agent: Call Bing Search API for obtaining
information regarding the given task. commonsense_agent: Answer the given question using
commonsense reasoning.].

Given the user query: %s, the preliminary task decomposition is: %s.
But the sub-task: %s cannot be solved by any agent. Now you are responsible for replaning this

sub-task based on agents’ capabilities. Output the new sub-task with the format above
directly.

’’’

Figure 4: Prompt for replanning.

A.3 PLAN IN DETAIL

The prompt for planning in detail is shown in Figure 5.

plan_in_detail_prompt = ’’’
You are a planning agent. You are preliminarily responsible for decomposing the given query

into sub-tasks and choose the most suitable agent for each sub-task according to the
following json format: [{"task": task_description, "id": task_id, "name": name_of_agent,
"reason": your_detailed_reason_for_the_choice, "dep":dependency_task_ids}]. In this
format, "task" is the description of the sub-task, which will be used as the input of the
chosen agents; "dep" denotes the id of the previous sub-task which generates a new

resource relied by the current sub-task.
The available agents and the corresponding descriptions are: [code_agent: Generate code in

Python for precise computations to solve the given task. math_agent: Answer math
questions by reasoning step-by-step. search_agent: Call Bing Search API for obtaining
information regarding the given task. commonsense_agent: Answer the given question using
commonsense reasoning.].

Given the user query: %s, the preliminary task decomposition is: %s.
But the sub-task: %s cannot be solved only with agent %s. Now you are responsible for planning

this sub-task in detail and choose the most suitable agents based on agents’
capabilities. Output the new sub-tasks with the format above directly. Make sure that
there are no duplicate content between new sub-tasks and the given preliminary task
decomposition.

’’’

Figure 5: Prompt for planning in detail.

A.4 RE-DESCRIBE

The prompt for re-describing the sub-task is shown in Figure 6.

redescribe_subtask_prompt = ’’’
Rewrite the following sentence based on the given example, while keeping the key information

unchanged. Besides, output the rewritten sentence in the form like ***rewritten***.
---
Here is an example:
Example sentence: ’Determine the population of the United States in 2022.’
Sentence to be rewritten: ’Assess the population of China in 2022.’
Rewritten sentence: ’Determine the population of China in 2022.’
Output: ***’Determine the population of China in 2022.’***
---
Example sentence: %s
Sentence to be rewritten: %s
’’’

Figure 6: Prompt for re-describing the sub-task.
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A.5 DETECTOR

The prompt for the detector is shown in Figure 7.

plan_detector_prompt = ’’’
You are a plan detector responsible for analyzing the completeness and redundancy of the plan.

Given the query and the plan formulated to solve the query, which involves several sub-
tasks, you should do the following things:

1. **Detect whether the plan satisfies the completeness.**: Evaluate whether the set of
subtasks covers all key aspects of the original task including important numbers and
nouns. Specifically, check if each important element and requirement from the original
task is addressed by at least one subtask. Provide a brief explanation if any key
information is missing.

2. **Detect whether the plan satisfies the non-redundancy.**: Evaluate whether any two sub-
tasks contain identical information and requirements. If there is any redundant part,
list and provide suggestions for optimizing the plan.

---
For example:
Task: If a plane can carry 300 passengers and flies from Brazil to Nigeria with a full load,

then returns with only 75% capacity filled, how many passengers in total has it
transported between the two countries in one round trip?

Subtask 1: Determine the number of passengers transported from Brazil to Nigeria in one flight
with a full load. Dependency: []

Subtask 2: Determine the number of passengers transported from Nigeria to Brazil in one flight
with 75% capacity filled. Dependency: []

Subtask 3: Calculate the total number of passengers transported between Brazil and Nigeria in
one round trip. Dependency: [1, 2]

Analyse: This plan does not satisfy completeness because the subtask loses the information of
’a plane can carry 300 passengers’ of the original task. This plan satisfies non-
redundancy because each subtask has a unique focus and there is no overlap in the
information covered.

Suggestions: Add the information of ’a plane can carry 300 passengers’ to subtask 1 and
subtask 2.

---
If there is no need to modify the plan, just return ’The plan satisfies completeness and non-

redundancy.’.
’’’

Figure 7: Prompt for the detector.

B AGENTS

The prompts for the code, math, search and commonsense agent are shown in Figure 8, 9, 10, 11
separately.
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code_agent_prompt = ’’’You ara a code agent. You can be used for : 1) computing large numbers,
fractions or decimals. 2) counting or averaging long lists of numbers. 3) performing

date-related operations, such as counting the number of days between two dates. Write
code in Python to solve the given task with history. Give the code in the following form
directly.

- Here is an example:
Task: Calculate the combined population of China and India in 2022.
History: The answer of ’Determine the population of China in 2022’ is 1.412B. The answer of ’

Determine the population of India in 2022’ is 1.417B.
Code:
‘‘‘python
# Given populations
population_china_2022 = 1.412 * 10**9 # 1.412 billion
population_india_2022 = 1.417 * 10**9 # 1.417 billion

# Calculate combined population
combined_population_2022 = population_china_2022 + population_india_2022

# Print the result
print(f"The combined population of China and India in 2022 is {combined_population_2022}

people.")
‘‘‘
---
Task: %s
History: %s
Code:
’’’

rewrite_code_agent_prompt = ’’’You are a rewrite agent. Given the input question, the code
addressing this question and the corresponding output, rewrite the output into a complete
sentence that integrates information from the question and the code output.

---
Question: %s
Code: %s
Code output: %s
Output:
’’’

Figure 8: Prompt for the code agent.

math_agent_prompt = ’’’You are a math agent. You can answer math questions by reasoning step-
by-step with the data provided in the question and history. Present the answer "ANS" to
the subquestion in LaTeX using the format ’The answer is \boxed{ANS}.’ without any units
in the box.

---
Question: %s
History: %s
Solution:
’’’

Figure 9: Prompt for the math agent.
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search_agent_prompt = ’’’You are a search agent. Write a concise, informative Bing Search
query for obtaining information regarding the given task.

- Here is an example:
Task: Determine the population of China in 2022.
History: None
Search query: China population 2022
---
Task: %s
History: %s
Search query:
’’’
rewrite_search_agent_prompt = ’’’You are a rewrite agent. Given the search question, the

response in the web_pages from the bing search api, answer the search question with the
information from the response in concise words. Remove redundant information that is
irrelevant to the question.

---
Question: %s
Answer_box: %s
Answer:
’’’

Figure 10: Prompt for the search agent.

commonsense_agent_prompt = ’’’You are a commonsense agent. You can answer the given question
with logical reasoning, basic math and commonsense knowledge.

---
Question: %s
History: %s
Solution:
’’’

Figure 11: Prompt for the commonsense agent.

C CONSTRUCTING TRAINING DATASET

The prompt for the scorer is shown in Figure 12. The criteria for manual scoring are consistent with
the standards outlined in the prompt provided to the scorer.
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scorer_prompt = ’’’
Please act as an impartial judge and evaluate the quality of the response provided by the %s

to the user task. Your evaluation should consider three factors: correctness, relevance
and completeness. Assign a score of 0, 1 or 2 for each factor and provide a brief
explanation for your score. The following is the grading criteria.

---
Correctness
0: The response contains severe errors and is completely inaccurate.
1: The response has some errors, but the main content is generally correct
2: The response is completely accurate and fully meets the requirements of the task.
Relevance
0: The response is minimally relevant to the task and completely off-topic.
1: The response is somewhat relevant to the task but may include some unrelated content.
2: The response is highly relevant to the task, directly addressing the core issue without any

unrelated content or deviation.
3. Completeness
0: The response lacks necessary detail or key information, resulting in an incomplete

understanding of the task.
1: While the response addresses part of the task, more information or content is needed for

completeness.
2: The response provides comprehensive information and detailed explanations.
---
Besides, summarize the final result in the form like ’**Correctness: score, Relevance: score,

Completeness: score**’ at the end of your response, where score can be chosen from 0, 1
and 2.

---
Task
%s
[The Start of Agent’s Response]
%s
[The End of Agent’s Response]
’’’

Figure 12: Prompt for the scorer.

We design a mapping function that converts different combinations of correctness, relevance, and
completeness values into a final score, which is shown in Figure 13. Then, a score of 5 or higher is
considered sufficiently high, while a score of 1 or lower is considered sufficiently low.

score_map = {
(2, 2, 2): 8,
(2, 1, 2): 7,
(2, 2, 1): 6,
(2, 1, 1): 5,
(1, 2, 2): 4,
(1, 1, 2): 3,
(1, 2, 1): 2,
(1, 1, 1): 1,

}
def level_score(correctness, relevance, completeness):

return score_map.get((correctness, relevance, completeness), 0)

Figure 13: Mapping function.

D EVALUATION

The prompt for comparing the response with the ground truth is shown in Figure 14.
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evaluate_prompt = ’’’
You are CompareGPT, a machine to verify the correctness of predictions. Answer with only yes/

no.
You are given a question, the corresponding ground-truth answer and a prediction from a model.

Compare the "Ground-truth answer" and the "Prediction" to determine whether the
prediction correctly answers the question. The prediction may contain extra information,
but a correct prediction includes the ground-truth answer. You can answer "yes" if the
prediction includes the ground-truth answer. You must answer "no" if there are any
specific details in the ground-truth answer that are not mentioned in the prediction. If
the prediction states something as a possibility, treat it as a definitive answer. Note
that the error within three decimal places is negligible.

---
Question: %s
Ground-truth answer: %s
[Start of the prediction]
%s
[End of the prediction]
’’’

Figure 14: Prompt for comparing the response with the ground truth.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 EXPERIMENTS ON MORE DATASETS

In addition to Husky-QA (Kim et al., 2024), we also conduct experiments on DROP (Dua et al.,
2019) and IIRC (Ferguson et al., 2020). The experimental results are shown in Table 4, which indi-
cate that the proposed framework significantly outperforms the baselines, achieving at least a 5.0%
improvement on both DROP and IIRC. These experimental results further confirm the effectiveness
and advancements of the proposed framework.

Table 4: Accuracy (%) comparisons between the proposed framework and baselines on DROP and
IIRC.

Method DROP IIRC

GPT-4o 23.0 33.0
CoT 26.0 35.0
Zero-Shot CoT 24.5 33.0
Meta-Agent 25.5 32.5
Meta-Agent: Traversal 27.5 34.0
REACT 29.0 36.0
HUSKY 28.0 36.5

Ours 34.0 41.5
Ours (reward model trained on Husky-QA) 32.0 39.0

E.2 GENERALIZATION CAPABILITY OF THE REWARD MODEL

To evaluate the generalization capability of the reward model, we train a reward model based on
Husky-QA and utilize it in experiments on the DROP and IIRC datasets. As shown in the bottom in
Table 4, the reward model trained on one dataset demonstrates good generalization to other datasets
(though it experiences a slight performance drop compared to the specifically trained reward model),
achieving superior performance compared to baselines.

E.3 EXPERT AGENTS

To investigate the effectiveness of expert agents powered by LLMs fine-tuned on task-specific
datasets, we adopted Qwen2-Math-7B (Zhu et al., 2024) as the backbone LLM for the math agent
and DeepSeek-Coder-V2 (Yang et al., 2024) as the backbone LLM for the code agent. The experi-
mental results show that integrating these expert agents results in an additional 1.8% improvement
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on Husky-QA compared to using GPT-4. These results demonstrate the potential for further en-
hancements of the proposed framework by incorporating more powerful expert agents.

E.4 MULTIPLE AGENTS WITH SAME EXPERTISE

Based on the proposed framework, we set up an experiment involving 4 different math agents, using
GPT-3.5, GPT-4o, Qwen2-Math-7B, and Llama-3.2-3B, respectively. We instruct the multi-agent
system to solve the complex math problem from MATH (Hendrycks et al., 2021). With the proposed
framework, the queries are decomposed into multiple queries and these agents run in parallel to
resolve them. The experimental results are shown in Table 5, demonstrating the effectiveness (at
least 6% improvements) of the proposed framework.

Table 5: Accuracy (%) comparisons on MATH.

GPT-3.5 GPT-4o Qwen2-Math-7B-Instruct Llama-3.2-3B Ours

MATH 43 62 66 36 72

E.5 QUANTITATIVE EVALUATION ON SOLVABILITY, COMPLETENESS, AND
NON-REDUNDANCY

We conduct a quantitative evaluation to demonstrate the effectiveness of the proposed framework in
terms of solvability, completeness, and non-redundancy. Specifically, we compare the decomposed
sub-tasks provided by our proposed framework to those provided by GPT-4o. These sub-tasks are
assessed by an LLM-based evaluator, providing binary scores for solvability, completeness, and non-
redundancy, with scores of 1 for those that meet these principles and 0 for not. The experimental
results (averaged scores), as summarized in Table 6, show that the proposed framework achieves
significant improvements.

Table 6: Quantitative Evaluation on Solvability, Completeness and Non-redundancy.

Solvability Completeness Non-redundancy

GPT-4o 0.763 0.822 0.986
Ours 0.938 0.969 0.993

E.6 THE EFFECTIVENESS OF DETECTOR IN HANDLING MISSING DEPENDENCIES

We conduct an experiment to evaluate the effectiveness of the detector in handling missing depen-
dencies. To be more specific, the detector is instructed to determine whether there are any missing
dependencies before a sub-task is assigned to an agent for execution. If such dependencies exist, the
execution results of these dependent sub-tasks must also be provided as inputs. The adopted prompt
is provided in Figure 15. If there exists any missing information, the meta-agent will add sub-tasks
to complete the dependencies. The experiments conducted on Husky-QA show that, by enabling
the detector to handle missing dependencies, the proposed framework obtains a 2.5% performance
increase in accuracy (from 43.7% to 46.2%).

21



1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

dep_detect_prompt = ’’’
You are an intelligent detector tasked with determining whether the provided dependency

information is sufficient to complete a given task. If the dependency information is
insufficient, you will review all historical data to find supplemental information. If
neither the dependency information nor the historical data is sufficient, you will
identify and list the missing information. Besides, the information in the task or a
given query can be viewed as available in the dependency information.

Input:
Task: {Task description}
Dependency Information: {Dependency information provided}
Historical Data: {Historical data (listed with serial numbers)}
Available query: {The query whose information can be viewd as available inthe dependency

information.}

Requirements:
1. Assess Dependency Information: Evaluate if the provided dependency information is

sufficient to complete the task. If sufficient, answer ***Yes***; if not, answer ***No

***. Besides, if the answer is ***Yes***, there is no need to check the following
requirements.

2. Review Historical Data: If the answer above is ***No***, check the historical data to
identify any relevant entries that can supplement the task requirements. List the serial
numbers of the relevant entries as ˜˜˜numbers˜˜˜.

3. Identify Missing Information: If the historical data also cannot supplement the missing
details, explicitly list what information is still required to complete the task as
$$$required additional information$$$.

Output Format (strictly follow this structure):
1. Is the dependency information sufficient: ***Yes***/***No***
2. Relevant information from historical data: ˜˜˜numbers˜˜˜ or ˜˜˜None˜˜˜
3. Missing information: $$$Specific missing information$$$ or $$$None$$$

Examples:
---
Input:
Task: Calculate the total population of China and the United States in 2022.
Dependency Information:
China’s population in 2022 is 1.4 billion.
Historical Data:
1. China’s population in 2022 is 1.4 billion.
2. The United States population in 2022 is 330 million.
3. Total world population in 2022: 8 billion.
Available query: If the populations of China and India were combined in 2022, how many

countries with a population of 70,850,000 each could be formed from this total population
without leaving anyone out?

Output:
1. Is the dependency information sufficient: ***No***
2. Relevant information from historical data: ˜˜˜2˜˜˜
3. Missing information: $$$None$$$
---
Input:
Task: Calculate the total population of China and the United States in 2022.
Dependency Information:
China’s population in 2022 is 1.4 billion.
Historical Data:
1. China’s population in 2022 is 1.4 billion.
2. Total world population in 2022: 8 billion.
Available query: If the populations of China and India were combined in 2022, how many

countries with a population of 70,850,000 each could be formed from this total population
without leaving anyone out?

Output:
1. Is the dependency information sufficient: ***No***
2. Relevant information from historical data: ˜˜˜None˜˜˜
3. Missing information: $$$The United States population in 2022$$$
----
Input:
Task: %s
Dependency Information:
%s
Historical Data:
%s
Available query: %s
Output:
’’’

Figure 15: Prompt for the detector in handling missing dependencies.
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E.7 COMPARISONS AMONG DIFFERENT REPRESENTATION APPROACHES FOR AGENT
DESCRIPTION

In this study, we employ a combination of predefined natural language descriptions and represen-
tative works as the representations of agents descriptions. A natural language description can be
manually provided or automatically generated, detailing the general and task-independent abilities
of agents. While providing a comprehensive and detailed natural language description can be ben-
eficial, it also requires effective prompt engineering. The representative (please refer to Sec. 4.3
for more details) works complement the natural language descriptions and are often task-dependent,
allowing for continuous updates during execution.

We conducted experiments on Husky-QA to compare the effectiveness of different representation
approaches. The results, shown in Table 7, indicate that using natural language descriptions achieves
significantly superior performance compared to using only representative works, which motivates
the majority of existing studies to adopt natural language descriptions. Besides, incorporating task-
specific representative works on top of natural language descriptions leads to a further 11.9% perfor-
mance boost, demonstrating the effectiveness of our proposed combined representation approach.

Table 7: Comparisons among Natural Language Descriptions and Representative Works.

Approaches Accuracy (%)

Natural Language Descriptions 31.8
Representative Works 16.8
Both 43.7

E.8 EFFECTS OF FEEDBACK LOOP

To the best of our knowledge, there is currently no existing feedback loop that can be directly ap-
plied to multi-agent systems for agent-oriented planning. We conduct an additional ablation study
to measure the contribution of the feedback loop. The experimental results indicate that the pro-
posed framework experiences approximately a 1% performance decrease when the feedback loop is
disabled.

F FURTHER DISCUSSIONS

F.1 FAULT TOLERANCE: UNEXPECTED CHANGES IN AGENT AVAILABILITY

We categorize changes in agent availability into two situations: those occurring during non-
execution periods and those during execution.

• During non-execution periods: The proposed framework allows for the addition or removal
of agents. The meta-agent can first broadcast a simple sync signal to determine agent
availability. Only available agents are provided to the meta-agent for task allocation.

• During execution: Changes in agent availability during execution indicate that an agent
selected for a task may unexpectedly become unavailable, leading to the meta-agent not
receiving a response to this sub-task. In such scenarios, the meta-agent is required to reas-
sign the sub-task to another agent with similar capabilities or to further decompose the task
(i.e., plan-in-detail).

F.2 THE LIMITATIONS ON THE NUMBER OF AGENTS

The proposed framework has no inherent limitations on the number of agents. However, as the meta-
agent is powered by LLMs, increasing the number of agents is subject to the contextual window
length restrictions of LLMs (descriptions of a large number of agents could exceed the LLM’s output
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length limit, such as 128K tokens), and the effectiveness of LLMs could be affected by the ability to
handle long contexts.

In practical applications, it is important to consider that as the number of agents increases, there may
be redundant and functionally similar agents, which motivates us to apply some extension strategies
to handle. For example, agents can be grouped according to their abilities. When the meta-agent
allocates sub-tasks, it can first select an agent group for each sub-task and then further choose the
most suitable agent within the group. This strategy respects the LLM’s context window limits and
enhances the accuracy of agent selection.

We conduct an experiment according to the above strategy, which increases the amount of the math
agents and code agents to 4, respectively. The performance on Husky-QA is 46.2%, which is higher
than reported results that only involve one math agent and one code agent, due to the addition
and management of expert agents. These experimental results show that the above strategy can
effectively handle the increasing number of agents.

F.3 THRESHOLD VALUE

In this study, the only hyperparameter that needs tuning is the threshold used for the reward model
to define a sufficiently good plan (i.e., the subtask and the corresponding assigned agent). This score
can be provided by a human-expert scorer or an LLM-based scorer, combining aspects such as cor-
rectness, relevance, and completeness. These scores can be flexibly set up according to downstream
tasks, and, for convenience, normalization can be applied.

The setting of the threshold also depends on the capability of the LLM, particularly its instruction-
following ability. A powerful LLM might allow for more error tolerance, meaning that it can still
provide satisfactory responses even if the plan might not get a rather high score. When the expert
agent’s capabilities are not as powerful, the thresholds need to be set higher (for a good enough
plan), which may lead to more iterations needed to refine plans.
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