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ABSTRACT

We introduce VL-JEPA, a vision-language model built on a Joint Embedding Pre-
dictive Architecture (JEPA). Instead of autoregressively generating tokens as in
classical VLMs, VL-JEPA predicts continuous embeddings of the target texts. By
learning in an abstract representation space, the model can focus on task-relevant
semantics while abstracting away surface-level linguistic variability. In a strictly
controlled comparison against standard token-space VLM training with the same
vision encoder and training data, VL-JEPA achieves stronger performance while
having 50% fewer trainable parameters. At inference time, a lightweight text de-
coder is invoked only when needed to translate VL-JEPA predicted embeddings
into text. We show that VL-JEPA natively supports selective decoding that can
reduce the number of decoding operations by ∼2.85× while maintaining similar
performance compared to dense non-adaptive uniform decoding. Beyond gener-
ation, the embedding-space formulation naturally supports open-vocabulary clas-
sification and retrieval without any architecture modification. VL-JEPA achieves
leading SoTA zero-shot results on diverse real-world video-language understand-
ing tasks on COIN, CrossTask, EgoExo4D, SSv2, and WORLDPREDICTION-WM,
substantially outperforming larger generative VLMs trained with more data.

1 INTRODUCTION

One of the most important aspects of advanced machine intelligence is the ability to understand the
physical world that surrounds us. This ability enables AI systems to learn, reason, plan and act in the
real world in order to assist humans (LeCun, 2022). Intelligent systems that need to act in the real
world includes robots and wearable devices (Fung et al., 2025). Machine learning tasks that make
up for this ability include captioning, retrieval, visual question answering, action tracking, reasoning
and planning etc (Bordes et al., 2024; Chen et al., 2025b). Other systems requirements for real-world
applications include real-time response with low latency and models with lower inference cost.

Currently, the common approach to achieve these tasks is to train large token-generative Vision Lan-
guage Models (VLMs) (Liu et al., 2023; Dai et al., 2023; Alayrac et al., 2022; Chen et al., 2024b;
Cho et al., 2025; Chen et al., 2022), which takes visual input XV , textual query XQ to generate
desired textual response Y autoregressively in token space, i.e., (XV , XQ) 7→ Y . This is straight-
forward but inadequate for two main reasons. First, VLMs are expensive to develop, because they
are trained to generate responses Y to queries by capturing both task-relevant semantics with task-
irrelevant surface linguistic features such as words choice, style or paraphrasing. During training,
VLMs must model both aspects, which results in unnecessary computing effort spent producing di-
verse token sequences that ultimately do not impact the correctness of the output. Second, real-time
tasks involving live streaming video (e.g., live action tracking) require sparse and selective decoding
(e.g.,, emitting a description only when a new event occurs) (Zhou et al., 2024). However, VLMs
rely on autoregressive token-by-token decoding, which must be completed before revealing the un-
derlying semantics of Y . This process introduces unnecessary latency and hampers the ability to
update semantics dynamically in real time.

This paper introduces a Joint Embedding Predictive Architecture for Vision-Language (VL-JEPA),
turning expensive learning of data-space token generation into more efficient latent-space semantic
prediction. As illustrated in Fig. 1, the model employs x-encoder to map vision inputs XV into
embedding SV , a y-encoder to map the textual target Y into an embedding SY , and a predictor
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that learns the mapping (SV , XQ) 7→ SY where XQ is a textual query (i.e., the prompt). The
training objective is defined in the embedding space LVL-JEPA = D(ŜY , SY ) instead of the data
space LVLM = D(Ŷ , Y ). During inference, a y-decoder reads out the predicted embedding ŜY to
text space Ŷ when needed.

Figure 1: VL-JEPA.

Thanks to its non-generative nature, VL-JEPA is not forced to
reconstruct every surface detail of Y in the token space. Instead,
it only needs to predict the abstract representation SY in the em-
bedding space. In the raw one-hot token space, different plausi-
ble Y outputs for the same input often appear nearly orthogonal
if they don’t share overlapping tokens. However, in the embed-
ding space, these diverse targets can be mapped to nearby points
that share similar semantics. This simplifies the target distribu-
tion thus makes the learning process more efficient. In addition,
unlike VLMs, this approach eliminates the need for learning lan-
guage generation with a heavy decoder during training, resulting
in significant efficiency gains.

Thanks to its non-autoregressive nature, VL-JEPA can produce continuous streams of target se-
mantic embeddings within sliding windows with minimal latency as it only require a single forward
pass without autoregressive decoding. This is particularly advantageous for real-time online appli-
cations such as live action tracking, scene recognition, or planning, where the embedding stream can
be selectively decoded by a lightweight y-decoder, enabling efficient and prompt updates.

In this work, we empirically validate the advantages of VL-JEPA. First, we conduct a strictly con-
trolled comparison against classical token-generative VLM (Liu et al., 2023; Cho et al., 2025): both
setups use the same vision encoder, spatial resolution, frame rate, training data, batch size, and
number of iterations, etc., with the only difference being the objective in token space or embedding
space. Under this matched training condition, VL-JEPA delivers consistently higher performance on
zero-shot captioning and classification while using roughly half the trainable parameters, indicating
that embedding-space supervision improves learning efficiency.

Beyond the training phase, VL-JEPA also delivers substantial inference-time efficiency improve-
ment through selective decoding, where decoding happens only due to significant change in the
predicted embedding stream. Empirically, this strategy reduces the number of decoding operations
by ∼2.85× while preserving overall output quality, as measured by average CIDEr scores against
human annotations.

VL-JEPA achieves leading zero-shot performance across a diverse set of video-language bench-
marks, including step recognition on COIN (Tang et al., 2019) and CrossTask (Zhukov et al., 2019),
fine-grained keystep recognition on EgoExo4D (Grauman et al., 2024), and video classification on
SSv2 (Goyal et al., 2017), SSv2-Events (Bagad et al., 2023), and SSv2-Temporal (Sevilla-Lara
et al., 2021). It further demonstrates a non-trivial zero-shot text-to-video retrieval performance on
YouCook2 (Zhou et al., 2018), achieving 17.7 recall@1, while not training with contrastive objec-
tive. All these results are obtained with a single VL-JEPA model, without any architectural modifica-
tions or task-specific heads. Beyond zero-shot evaluations, we further show that short finetuning of
VL-JEPA yields state-of-the-art results on COIN step recognition, reaching 72.84% accuracy. The
code and model will be open-sourced. In summary, the contributions of this paper are as follows:

• We introduce VL-JEPA, the first non-generative model that can perform general-domain
vision-language tasks in real-time, built on a joint embedding predictive architecture. It
achieves SoTA zero-shot scores on wide range of video-language understanding tasks.

• We demonstrate in controlled experiments that VL-JEPA, trained with latent space embed-
ding prediction, outperforms VLMs that rely on data space token prediction.

• We show that VL-JEPA delivers significant efficiency gains over VLMs for online video
streaming applications, thanks to its non-autoregressive design and native support for se-
lective decoding.

• We demonstrate the scalability of VL-JEPA with consistent improvement when scaling the
number of model parameters and dataset size.
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2 RELATED WORKS

JEPA Models. JEPA model learns by predicting the representation of a target input Y from the
representation of a context input X . Early instantiations include I-JEPA for image encoding (Assran
et al., 2023) and V-JEPA for video encoding (Bardes et al., 2023), which demonstrated the effec-
tiveness of this objective over pixel reconstruction approach in their respective modality. Recent
JEPA work falls into two categories. One category of work emphasizes better unimodal represen-
tation learning (Assran et al., 2023; Bardes et al., 2023; Fei et al., 2023) or cross-modal alignment
(Lei et al., 2025; Jose et al., 2025). The other direction targets world modeling, where pretrained
encoders are frozen and action-conditioned predictors are trained for conditional prediction of state
representations (Zhou et al., 2025; Baldassarre et al., 2025; Assran et al., 2025). This has shown good
results but remains limited to narrow domains like mazes or robotic pick-and-place. Our proposed
VL-JEPA is the first designed for general-purpose vision–language tasks. It performs conditional
latent prediction over vision and text, and preserves efficiency while enabling flexible, multitask
architecture.

Vision Language Models. Existing vision-language models largely fall into two families: (1)
CLIP-style models with a non-predictive joint-embedding architecture (JEA) (Radford et al., 2021;
Zhai et al., 2023; Bolya et al., 2025; Liu et al., 2024; Chen et al., 2023) encode images and texts
independently into a common latent space, XV 7→ SV and Y 7→ SY . By minimizing LCLIP =
D(SV , SY ) with a contrastive loss (e.g., InfoNCE), CLIP learns aligned representations that support
zero-shot classification and vision–language retrieval; (2) Generative VLMs (Liu et al., 2023; Chen
et al., 2022; Dai et al., 2023; Alayrac et al., 2022; Chen et al., 2024b; Cho et al., 2025; Beyer et al.,
2024) connect a vision encoder (Radford et al., 2021; Fini et al., 2025) with a language model (e.g.,
LLM). They are typically trained with LVLM = D(Ŷ , Y ), i.e., next token prediction with cross-
entropy loss, and can learn to handle various vision-text-to-text generation tasks such as visual
question answering (VQA).

CLIP VLM VL-JEPA

Generation ✗ ✓ ✓
Retrieval ✓ ✗ ✓

Table 1: Task coverage comparison.

Our proposed VL-JEPA integrates the architectural advan-
tages and task coverage of both CLIPs and VLMs (Table 1).
Since VL-JEPA learns in embedding space, it can leverage
web-scale noisy image–text pairs (Jia et al., 2021), yield-
ing strong open-domain features. On the other hand, VL-
JEPA supports conditional generation tasks with a readout
text decoder. Meanwhile, compared to generative VLMs
that optimize directly in data space, VL-JEPA is more efficient at learning in the latent space. In
addition, it is also more efficient for online inference, as it allows naturally selective decoding.

3 METHODOLOGY

Model Architecture. We propose VL-JEPA (Fig. 2), which instantiates the joint embedding pre-
dictive architecture (JEPA) for vision–language learning. VL-JEPA learns triplets ⟨XV , XQ, Y ⟩,
where XV denotes the visual input (a single image or a sequence of video frames), and (XQ, Y )
are the textual query and target (e.g., an instruction and its answer). The model comprises of four
modules:

1. Vision encoder compresses high-volume visual inputs to compact representations, XV 7→
SV , where SV is a sequence of continuous vectors analogous to “visual tokens” in VLMs.
VL-JEPA is agnostic to the specific encoder: one can use image encoders such as CLIP
(Radford et al., 2021), Perception Encoder (Bolya et al., 2025), DINOv2/v3 (Oquab et al.,
2023; Siméoni et al., 2025), or video encoders such as V-JEPA 2 (Assran et al., 2025).

2. Text encoder embeds the target into a latent space, Y 7→ SY , serving as the y-encoder of
JEPA. It also encodes the query text to embeddings, which is fed into the predictor along with
visual tokens. In this work, the text encoder is kept frozen to avoid representation collapse.

3. Predictor is the core component of VL-JEPA. It learns the mapping (SV , XQ) 7→ ŜY .
Visual and query embeddings are first projected into a common dimension and then passed
through multiple Transformer layers. After pooling (e.g., average pooling or selecting the
query token), the output is projected into the SY space.
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Figure 2: Left: VL-JEPA learns to predict target embedding SY instead of reconstruct raw target Y
in token space as in classical VLMs. VL-JEPA can do selective decoding during inference, based on
the predicted embedding stream. Right: In addition to vision-text-to-text tasks such as captioning,
the VL-JEPA’s embedding space allows to also handle open-vocabulary classification and text-to-
video retrieval tasks using a single model architecture.

4. Text decoder is not involved during training. At inference time, it reads out the predicted
embedding as human-readable text, ŜY 7→ Ŷ .

Training Objective. With the target embedding SY = y-encoder(Y ) and the prediction ŜY ,
the training loss is defined as the L2 distance between them: LVL-JEPA =

∥∥ŜY − SY

∥∥2
2
.

Compared to the token-space cross-entropy loss used by generative VLMs, doing regression in the
embedding space benefits from a simplified target distribution. Specifically, many real-world predic-
tion tasks are inherently ill-posed: for the same input X , there may exist multiple plausible targets
Y that are all acceptable. For example, given the query “What will happen if I flip this light switch
down?”, both “the lamp is turned off” and “room will go dark” are valid answers. If VL-JEPA’s
y-encoder embeds them into nearby points (ideally yielding a compact unimodal distribution) the
learning task will become much easier: the model no longer needs to fit multiple disjoint high-
density regions in sparse token space, but only a single coherent mode in a continuous embedding
space. Additionally, this loss does not require running inference and backpropagation in the LLM
decoder during training, yielding considerable efficiency gains.

However, embedding space loss raises the risk of representation collapse, where the y-encoder
could over-simplify SY to constant vectors, allowing the predictor to learn only a trivial mapping.
Methods to address this issue involves adding regularization term (Bardes et al., 2021), employing
exponential moving average (EMA) to y-encoder (Assran et al., 2025), or freezing the y-encoder
(Zhou et al., 2025). In this work, we adopt the last strategy for 1) simplicity, 2) training efficiency,
and 3) the availability of text encoders that effectively capture task-relevant semantics while filtering
out surface-level linguistic details.

Multi-tasking with a Single Architecture. VL-JEPA performs query-conditioned prediction in
embedding space, allowing a single architecture to support diverse task families (Fig. 2). For vision-
to-text generation tasks such as captioning, the query XQ is a captioning prompt and the predictor
learns to predict the embedding of the target caption, which is then decoded into text. VL-JEPA
also supports CLIP-style open-vocabulary classification and text-to-video retrieval. In classification,
candidate label texts are encoded into embeddings and compared with ŜY to select the nearest match.
In retrieval, candidate videos are mapped to ŜY with a captioning prompt and ranked by similarity
to the encoded query.

Selective Decoding for Streaming Video Applications. Real-world video applications often re-
quire online streaming inference, such as tracking user actions in smart glasses for procedural as-
sistance (Chen et al., 2024c), monitoring world states for online planning, navigation and robotics
(Shukor et al., 2025; Black et al., 2025; Song et al., 2025). A central challenge is balancing two
competing needs: on the one hand, the model must continuously update semantics as new frames
arrive; on the other hand, computational efficiency and latency are critical. Existing VLMs typically
rely on explicit memory mechanisms (Zhou et al., 2024; Qian et al., 2024) to decide when to decode
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or complex KV-cache optimizations (Di et al., 2025) for efficiency, since autoregressive language
models are expensive to run continuously.

VL-JEPA, in contrast, natively supports selective decoding. Since it predicts a semantic answer
embedding non-autoregressively, the model provides a continuous semantic stream of ŜY that can be
monitored in real time. This stream can be stabilized with simple smoothing (e.g., average pooling)
and decoded only when a significant semantic shift is detected, such as when the local window
variance exceeds a threshold. In this way, VL-JEPA maintains always-on semantic monitoring while
avoiding unnecessary decoding, achieving both responsiveness and efficiency.

4 EXPERIMENTS

We begin by outlining the implementation details of VL-JEPA in §4.1. In §4.2, we demonstrate the
advantage of embedding prediction by comparing it with a token-predictive VLM baseline under a
strictly controlled setting. In §4.3, we evaluate the effectiveness of VL-JEPA’s selective decoding,
and show that it reduces decoding cost while maintaining the performance. Next, we benchmark
VL-JEPA against state-of-the-art models across a range of downstream tasks, including zero-shot
and finetuning video understanding (§4.4, §4.5), and WorldPrediction (§4.6). Finally, we present
ablation studies in §4.7 and scalability analysis in §4.8. Additional experimental details are deferred
to the appendix.

4.1 IMPLEMENTATION OF VL-JEPA

Data. We include PLM-IMAGE-AUTO, which is one of the core components of PLM’s training
data (Cho et al., 2025). It provides detailed captions generated by a synthetic engine powered by
Llama-3.2-90B-Vision. We include its SA-1B split (9.35M) and OpenImages split (1.64M).
DATACOMP (Gadre et al., 2023) is a large-scale web image–text collection commonly used for
vision-language pretraining; we use 10.1M re-captioned samples from (Li et al., 2024). PIXMO-CAP
(Deitke et al., 2025) is a high-quality human-annotated dataset frequently used in recent VLMs, from
which we use 0.59M detailed captions. We include video captioning data from PLM-VIDEO-AUTO
(2.1M from YT-1B and 0.17M from Ego4D) (Cho et al., 2025). We also include atomic action de-
scriptions from EGO4D (Grauman et al., 2022) (3.70M) and EGOEXO4D (Grauman et al., 2024)
(0.95M). These fine-grained action descriptions are commonly used to train egocentric vision lan-
guage models, e.g., EgoVLP (Lin et al., 2022a), LaViLa (Zhao et al., 2023). ACTION100M. An
internal dataset annotated on HowTo100M following the methodology used in VLWM (Chen et al.,
2025b). It contains 100M automatically annotated segments across 0.71M instructional videos. For
each segment, we uniformly sample one annotation from {brief caption, detailed caption, brief ac-
tion, detailed action}.

Model. Vision Encoder. Unless otherwise specified, we use a frozen V-JEPA 2 ViT-L (Assran
et al., 2025) with 304M parameters. Each video input is uniformly sampled into 64 frames at 2562

resolution. For image inputs, the same image is duplicated 64 times to match the input shape. The
encoder outputs 8192 visual tokens, each of dimension 1024. Text Encoder & Decoder. We use a
pretrained encoder–decoder language model capable of both encoding and decoding nearly identical
text representations. For the experiments in this paper, we adopt a variant of the SONAR models
(Duquenne et al., 2023), trained with a sequence-to-sequence NLL objective and an additional In-
foNCE loss. The model can be easily replaced with other off-the-shelf alternatives. The encoder
outputs two 1024-dimensional embeddings—one for the query and one for the target—which re-
main frozen during pretraining. The decoder is used only at inference time.

Predictor. The predictor is initialized with the last 8 Transformer layers of Llama-3.2-1B, re-
sulting in 490M trainable parameters. We disable the causal attention mask so that both vision and
query embeddings can be jointly attended. Linear projections connect the predictor with the vision
and text encoders, and average pooling is applied to obtain the predicted target embedding.

Training Setup. VL-JEPA is trained on 16 nodes with 8×NVIDIA H200 GPUs each, using a
global batch size of 2048 and bf16 precision. We adopt a constant learning rate of 1×10−4 to
facilitate stable resumption and extended training, though better scheduling like cosine may further
improve performance. Models are trained for 30k iterations, corresponding to 61.4M seen samples.
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Figure 3: Comparison of embedding prediction (VL-JEPA) and token prediction (VLM). We
conduct a fair comparison of under strictly aligned training settings (encoder, data, batchsize, etc.).
Left: Zero-shot video captioning CIDEr score averaged over 3 datasets and zero-shot classification
accuracy (top-5) averaged over 3 benchmarks. Right: Comparing the trainable parameters and
average inference time cost.

4.2 EMBEDDING PREDICTION VS. TOKEN PREDICTION: A CONTROLLED COMPARISON

Evaluation Setup. In this section, we compare VL-JEPA to a token-generative VLM baseline
under a strictly aligned training conditions. Both models use the same Perception Encoder (Bolya
et al., 2025) (frozen ViT-L-14 with 3362 resolution, no tiling, 16 frames per video) for vision inputs.
We use the same training iterations with the same effective batch size of 128, same learning rate
scheduler on the same pretraining data mixture described above (§4.1). The only difference is the
prediction task: VL-JEPA predicts target embeddings (Duquenne et al., 2023) using a 0.5B predictor,
whereas the VLM baseline performs next-token prediction with cross-entropy using a 1B LLM.
For VLM, we use the standard training recipe and codebase of PerceptionLM (Cho et al., 2025),
aligning frozen vision encoder and text-only LLM Llama-3.2-1B. For VL-JEPA, we initialize
the predictor from the 8-16 layers of Llama-3.2-1B.

We evaluate both models at regular checkpoints throughout training spanning from 500K to 15M
samples seen. At each checkpoint, we measure the performance on video captioning and video clas-
sification. For video captioning, we report CIDEr scores averaged across YouCook2 (Zhou et al.,
2018), MSR-VTT (Xu et al., 2016) and PVD-Bench (Bolya et al., 2025). VL-JEPA decodes the pre-
dicted embeddings while VLM generates the tokens directly. For video classification, we report top-
5 accuracy averaged across CrossTask-Step, CrossTask-Task (Zhukov et al., 2019) and EgoExo4D
(Grauman et al., 2024). For VL-JEPA we choose the candidate with lowest cosine distance to the
predicted embedding, while for VLM we pick the class with lowest perplexity.

Results. As shown in Fig. 3, both models yield comparable performance after 500K samples seen
in both tasks, with respectively 1.23 and 1.35 CIDEr in video captioning and 14.9% and 14.0% top-
5 accuracy for VL-JEPA and VLM. After a few iterations, we show that VL-JEPA’s performance
increase is much sharper compared to VLM, reaching 14.7 CIDEr and 35.3% top-5 accuracy after
5M samples seen. This gap remains constant as training scales at 15M samples with 14.8 CIDEr
and 41.0% top-5 accuracy for VL-JEPA, while the VLM baseline yield respectively 7.1 CIDEr and
27.2% top-5 accuracy. This controlled comparison highlights the benefit of predicting embeddings
rather than tokens, showing both higher sample efficiency and stronger absolute performance.

We compare the inference cost of the above VL-JEPA and the VLM by pre-loading 64 video frames
into memory and repeatedly decoding text 100 times with the same prompt, measuring the average
time per sample. As shown in Fig. 3 (right most), both models exhibit comparable latency when
generating text. What differentiates our model from classical VLM is the decoupling between the
prompt processing (“Query Embedding”) and the video encoder (“Encoder + Predictor”) from the
text generation module (“Decoder”). This allows us to only use the first part of the model to perform
retrieval and decode text only when needed (see Section 4.3 below), making our model more scalable
for online video inference.

4.3 EFFECTIVENESS OF SELECTIVE DECODING

Evaluation Setup. We evaluate the effectiveness of VL-JEPA’s embedding-guided selective de-
coding on long-form video streams. To this end, we design a benchmark task where the goal is
to recover a temporal sequence of annotations while minimizing the number of text decoding op-
erations, which dominate inference cost. As shown in Fig. 4 (left), decoding is performed only

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 4: Evaluation of selective decoding. Left: We compare uniform sampling of decoding
points at fixed intervals (red) and embedding-guided selective decoding (blue). Performance is
measured by the average CIDEr score between each annotation y and its closest decoded output
ŷ. Right: Results on EgoExo4D show that selective decoding achieves a Pareto improvement over
uniform sampling: for the same performance level, it requires fewer decoding operations.

at selected points along the VL-JEPA embedding stream, yielding a sequence of N decoded out-
puts [(t̂1, ŷ1), (t̂2, ŷ2), . . . , (t̂N , ŷN )]. Each ground-truth annotation [(t1, y1), (t2, y2), . . . , (tT , yT )]
is then aligned to its nearest decoded output in time (illustrated as ◦ · · · ◦ in Fig. 4), and CIDEr is
computed between matched pairs. We use the EgoExo4D (Grauman et al., 2024) validation set in
procedural activity domains, which consists of 218 videos with an average duration of 6 minutes
and about T = 143 atomic action annotations per video.

As a baseline, we consider uniform sampling, where decoding points are placed at fixed intervals
regardless of the underlying video content. Standard streaming VLMs are limited to this strat-
egy, whereas VL-JEPA supports a more effective alternative: adaptive selection of decoding points
guided by its predicted embeddings. We apply agglomerative clustering with temporal connectiv-
ity constraints (Murtagh & Contreras, 2012) to partition the embedding sequence into N segments
of high intra-segment monosemanticity (Chen et al., 2024a), measured by variance (i.e., Ward dis-
tance). The intuition is that within a semantically coherent segment, decoded outputs are highly
similar, so decoding once per segment captures the essential information while greatly reducing
overall decoding cost. The midpoint of each segment is then chosen as the decoding point, and de-
coding is performed either from the exact embedding or from the average-pooled embedding within
the segment.

Results. As shown in Fig. 4 (right), we sweep the average decoding frequency from 2.0 Hz down
to 0.01 Hz (i.e., average intervals between consecutive decoding operations from 0.5s to 100s) by ad-
justing either the stride of uniform sampling or the number of clusters in adaptive selection. Across
the entire range, adaptive selection consistently Pareto-dominates uniform sampling. In particular,
selective decoding at 0.35 Hz (i.e., ∼2.85s interval) matches the performance of uniform decoding
at 1 Hz, reducing decoding cost by ∼2.85×. We further observe that average pooling provides con-
sistent gains for both strategies, since it provides denoising and stabilization on embeddings prior
feeding into the decoder.

4.4 ZERO-SHOT VIDEO UNDERSTANDING

Evaluation Setup. We evaluate VL-JEPA following the CLIP-style evaluation protocol: candidate
labels are embedded with the target encoder and matched against the predicted embeddings using
cosine similarity. We assess VL-JEPA on a broad suite of video classification benchmarks. We
evaluate on COIN (Tang et al., 2019) and CrossTask (Zhukov et al., 2019), two widely used dataset
constructed from YouTube instructional videos. We include EgoExo4D fine-grained keystep recog-
nition benchmark (Grauman et al., 2024), EPIC-KITCHENS-100 (EK-100) (Damen et al., 2022)
action recognition benchmark, and Something-Something-v2 (SSv2) (Goyal et al., 2017) classifi-
cation. In addition, we assess zero-shot classification on SSv2-Events (Bagad et al., 2023) and
SSv2-Temporal (Sevilla-Lara et al., 2021).

Results. Table 2 reports zero-shot results. VL-JEPA surpasses existing baselines on COIN,
CrossTask, EgoExo4D, and SSv2. On EK-100, it outperforms LaViLa (Zhao et al., 2023) and
PE models and approaches the performance of GPT4Ego (Dai et al., 2024), which relies on a LaV-
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COIN Step Recognition
Model Acc.

Random Performance 0.1
DistantSup. (Lin et al., 2022b) 10.2
CLIP (Radford et al., 2021) 14.8
ProcedureVRL (Zhong et al., 2023) 16.6
VL-JEPA 16.7

CrossTask Step Recognition
Model Acc.

Random Performance 1.0
PE-Core-L (Bolya et al., 2025) 38.4
PE-Core-G (Bolya et al., 2025) 42.1
Qwen2.5VL 7B (Bai et al., 2025) 31.9
VL-JEPA 49.0

EgoExo4D Keystep Recognition
Model Acc.

Random Performance 0.4
PE-Core-L (Bolya et al., 2025) 10.9
PE-Core-G (Bolya et al., 2025) 12.9
Qwen2.5VL 7B (Bai et al., 2025) 14.6
VL-JEPA 22.2

EPIC-KITCHENS-100 Action Recognition
Model Verb Noun Action

Random Performance 1.3 0.5 0.1
PE-Core-B (Bolya et al., 2025) 7.8 10.0 3.3
PE-Core-L (Bolya et al., 2025) 10.7 17.3 6.0
PE-Core-G (Bolya et al., 2025) 9.9 19.5 6.5
Qwen2.5VL 3B (Bai et al., 2025) 18.7 11.8 5.7
Qwen2.5VL 7B (Bai et al., 2025) 15.0 15.8 5.7
Qwen2.5VL 32B (Bai et al., 2025) 18.3 20.6 8.6
LaViLa-B (Zhao et al., 2023) – – 16.3
LaViLa-L (Zhao et al., 2023) – – 23.8
GPT4Ego-B (Dai et al., 2024) – – 28.9
GPT4Ego-L (Dai et al., 2024) – – 33.2
VL-JEPA 24.3 35.4 25.0

Something-Something-v2 Video Classification
Model SSv2 SSv2-Temporal SSv2-Events

Random Performance 0.6 5.6 2.0
PE-Core-B (Bolya et al., 2025) 5.8 18.5 12.2
PE-Core-L (Bolya et al., 2025) 9.3 31.9 16.2
PE-Core-G (Bolya et al., 2025) 9.1 29.6 18.2
Qwen2.5VL 3B (Bai et al., 2025) 2.9 26.9 6.1
Qwen2.5VL 7B (Bai et al., 2025) 7.5 26.4 9.9
Qwen2.5VL 32B (Bai et al., 2025) 9.5 28.4 10.0
VideoCLIP-B (Xu et al., 2021) – 9.8 6.4
VideoCon-L (Bansal et al., 2024) – 15.2 11.4
VideoPrism-B (Zhao et al., 2024) – 16.1 11.9
VideoPrism-g (Zhao et al., 2024) – 18.6 15.7
VL-JEPA 10.6 29.6 15.8

Table 2: Zero-shot video understanding benchmark results.

iLa backbone combined with a heavy pipeline involving ChatGPT chain-of-thought prompting and
SAM segmentation (Kirillov et al., 2023). In contrast, VL-JEPA achieves competitive accuracy with
a much simpler and more efficient design.

4.5 FINETUNING VL-JEPA
Table 3: Finetuning step recognition results.

Model COIN CrossTask
ClipBERT (Lei et al., 2021) 30.8 –
VideoCLIP (Xu et al., 2021) 51.2 60.1
TimeSformer (Bertasius et al., 2021) 54.6 60.9
DistantSup. (Lin et al., 2022b) 57.0 64.2
VideoTaskGraph (Ashutosh et al., 2023) 57.2 64.5
Paprika (Zhou et al., 2023) 51.0 63.5
VideoTF (Narasimhan et al., 2023) 56.5 –
ProcedureVRL (Zhong et al., 2023) 56.9 –
VideoLLM-online-8B-v1+ (Chen et al., 2024c) 63.1 –
VideoLLM-MoD (Wu et al., 2024) 63.4 –
VLog (Lin & Shou, 2025) 57.4 –
ProVideLLM-8B/11+ (Chatterjee et al., 2025) 67.3 –
VL-JEPA (FT) 77.2 86.9

In addition zero-shot evaluation, we further
assess the ability of VL-JEPA to adapt to
downstream tasks through short finetuning
(less than 10 epochs). We use the same L2
loss for fine-tuning. Table 3 shows results
of full-shot step recognition on COIN (Tang
et al., 2019) and CrossTask (Zhukov et al.,
2019). VL-JEPA achieves state-of-the-art
performance, reaching 77.2% on COIN and
86.9% on CrossTask, surpassing previous
methods that rely on large VLMs.

4.6 WORLDPREDICTION-WM

Evaluation Setup. We evaluate VL-JEPA on the “world modeling” task in the WORLDPREDIC-
TION (Chen et al., 2025a) benchmark, where the model is provided with two images representing the
initial and final world states and must identify, among four candidate video clips, the action that ex-
plains the observed transition. To adapt VL-JEPA, we duplicate and concatenate the initial and final
state images to extract a state embedding, and encode each action candidate into action embeddings.
The model then selects the candidate whose embedding is closest to the state embedding.

Results. Table 4 shows accuracy comparisons. VL-JEPA attains 61.8% top-1 accuracy on
WORLDPREDICTION-WM, establishing a new state of the art. Our VL-JEPA model not only sub-
stantially surpasses existing VLMs of comparable or larger scale but also exceeds the performance
of frontier LLMs such as GPT-4o, Claude-3.5-sonnet, and Gemini-2.0.

4.7 ABLATION STUDY

Evaluation Setup. We study different design choices for VL-JEPA. Each model variant is trained
for 23k steps with a batch size of 256 on a dataset mixture of 3M samples. The mixture consists
of 50% of video action recognition, 25% video captioning and 25% of image captioning, randomly
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Table 4: WORLDPREDICTION-WM benchmark results. We compare the accuracy between large
VLMs, socratic LLMs, and VL-JEPA. Our lightweight model achieves a new SoTA at 61.8%.

Vision Language Models Socratic LLMs (w/ Qwen2.5-VL-72B captions) Ours

InternVL2.5 Qwen2.5-VL Llama-3.1 Llama-4 Qwen2.5 GPT-4o Claude-3.5 Gemini-2 VL-JEPA
2B 4B 26B 38B 3B 7B 32B 72B 8B 70B 109B 400B 3B 7B 72B N/A N/A N/A 2B

20.0 29.8 30.2 50.3 21.6 45.5 49.0 57.0 48.7 49.8 52.7 53.6 44.0 49.1 48.5 52.0 53.3 55.6 61.8

Table 5: Ablation study results.

Ablation Setting R@1 Acc.

Predictor LLM (L8–16) 16.73 45.20
LLM (L0–8) 15.80 35.86
LLM (L4–12) 16.00 38.96
LLM scratch 15.40 40.56

Attention Bi-directional 21.13 49.82
Causal 16.73 45.20

Loss L2 16.73 45.20
L1 15.20 36.22

Figure 5: Scalability Analysis. VL-JEPA benefits from 3 dimen-
sion of scaling: encoder size, predictor size, and training data.

sampled from our pretraining data. We evaluate on two task groups: average zero-shot text-to-video
retrieval (Recall@1) on 4 datasets (validation split of PLM-Video-Auto, MSR-VTT, ActivityNet,
DiDeMo), and average zero-shot close-vocabulary action recognition (top-1 accuracy) on 4 datasets
(step and task recognition on COIN and CrossTask). We report the results in Tab. 5.

Results. Predictor initialization. Using mid-to-late LLM layers (L8--16) yields the best recog-
nition accuracy (45.2), followed by L4–12 (38.9) and the early layers L0–8 (35.8). We observe a
clear positive correlation between recognition performance and the depth of the LLM layers. More-
over, initializing from a pretrained LLM consistently improves recognition (LLM scratch consists
of 8 layers). Predictor Attention Mask. Bi-directional attention outperforms causal attention on
both retrieval (R@1 21.1 vs. 16.7) and recognition (49.8 vs. 45.2). This reinforces the previous
observation that richer interactions between the query and visual tokens strengthen both tasks. Note
that in this setting, the query token is appended to the end of the token sequence. Training Loss. L2
loss achieves the best overall balance, outperforming L1 for both retrieval (R@1 16.7 vs. 15.2) and
recognition (45.2 vs. 36.2).

4.8 SCALABILITY ANALYSIS

Fig. 5 presents the results of scaling VL-JEPA. For model scaling, we use different sizes of V-JEPA 2
vision encoder, and vary the number of LLM Transformer layers for the predictor. For data scaling,
we compare zero-shot mode performance with different training samples seen. Results show that
both model scaling and data scaling yield consistent improvement in text-to-video retrieval and
classification (i.e., video-to-text retrieval), measured on same group of datasets used in §4.7.

5 CONCLUSION

We have present VL-JEPA, a new vision–language model built upon the joint embedding predictive
architecture. By shifting supervision from discrete token space to continuous semantic embedding
space, VL-JEPA simplifies the learning target, avoids redundant modeling of surface linguistic vari-
ability, and enables non-autoregressive prediction. Through controlled experiments, we show that
VL-JEPA outperforms generative VLMs trained with cross-entropy loss under matched training
data budget, while achieving superior training efficiency and significantly lower inference latency.
Beyond generation tasks, the embedding-based design further allows VL-JEPA to handle open-
vocabulary classification and cross-modal retrieval within a single unified architecture. Its ability
to emit continuous semantic embeddings also makes it particularly well suited for real-time video
applications, where selective decoding can improve both responsiveness and efficiency.
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Oriane Siméoni, Huy V Vo, Maximilian Seitzer, Federico Baldassarre, Maxime Oquab, Cijo Jose,
Vasil Khalidov, Marc Szafraniec, Seungeun Yi, Michaël Ramamonjisoa, et al. Dinov3. arXiv
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The appendix is organized as follows: in A we discuss the limitations of this work, in B we provide
additional related work, and in C we present further retrieval results.

A LIMITATIONS

In this work, we demonstrated the advantages of VL-JEPA over standard VLMs, particularly in
efficiency, streaming, and video–text tasks. Our goal at this stage, is not to propose a universal alter-
native to VLMs, as this would require broader evaluation on tasks such as reasoning, tool use, and
agentic behaviors where current token generative VLMs excel. We focused on video understanding
benchmarks like action recognition and captioning, though the architecture can naturally extend to
tasks such as VQA with an adjusted training mixture. While our study considered only video and
text modalities, the approach could be extended to others, such as audio, using dedicated encoders.
We trained with an L2 loss to align predictions with text features, which assumes a unimodal target
distribution and may limit performance on tasks with inherent multimodal target distribution. Fi-
nally, although our results show clear benefits from scaling parameters and dataset size, we did not
fully explore this direction, leaving it for future work.

B ADDITIONAL RELATED WORKS

Efficient Vision Language Models. The growing size and training cost of VLMs has motivated
efforts to improve efficiency. On the training side, strong performance can be achieved by updat-
ing only a subset of parameters, such as the vision–language connector (Tsimpoukelli et al., 2021;
Alayrac et al., 2022; Vallaeys et al., 2024; Shukor et al., 2023; Koh et al., 2023; Merullo et al., 2023;
Dai et al., 2023). At inference, efficiency is pursued through pruning parameters or visual tokens
(Cao et al., 2023; Shukor & Cord, 2024; Vasu et al., 2025). For real-time use cases, recent work ex-
plores small VLMs (Yao et al., 2024; Marafioti et al., 2025) and heuristics to reduce query frequency
in asynchronous inference (Shukor et al., 2025).

C ZERO-SHOT VIDEO RETRIEVAL RESULTS

We compare models on text-to-video retrieval under the Recall@1 (R@1) metric in Talbe 6. The
“Data” column summarizes the total number of paired vision–language samples (image–text or
video–text) exposed during all training stages. CLIP (Radford et al., 2021) uses 400M image-text
pairs. CLIP4Clip (Luo et al., 2021) builds on CLIP with an additional 380k HowTo100M (Miech
et al., 2019) finetuning clips. InternVideo (Wang et al., 2022)used CLIP pretraining and added
14.35M video-text pairs and 100M LAION image–text pairs. InternVideo2 (Wang et al., 2024)
scales further with 100M video-text and 300M LAION image–text pairs. CoCa (Yu et al., 2022)
uses 4.8B pairs from JFT-3B + ALIGN. VideoCoCa (Yan et al., 2022) extends CoCa pretraining
with VideoCC3M. VideoPrism (Zhao et al., 2024) use pretrained CoCa (4.8B), WebLI (∼1B), and
618M extra samples. Perception Encoder (PE) (Bolya et al., 2025) is trained on 2.3B MetaCLIP
(Xu et al., 2023) data. SigLIP2 (Tschannen et al., 2025) is trained on 12B WebLI image-text pairs.

Our VL-JEPA is trained with only 0.05B data, which is orders of magnitude smaller than founda-
tion models. Despite this, it achieves competitive results, notably outperforming VideoCoCa-B on
YouCook2 while using ∼100× less data. In addition, unlike other baselines we do not use con-
trastive objective during training. We emphasize that the goal of this paper is not to produce
a state-of-the-art retrieval model, but rather to demonstrate that VL-JEPA achieves reasonable re-
trieval performance given its scale. Importantly, many VLMs cannot perform retrieval at all without
architectural modifications.

LLM USAGE

We used large language models (LLMs) solely as writing assistants for this paper. Specifically,
they were employed to help rephrase sentences for clarity and readability. No content, ideas, or
experimental results were generated by LLMs. The authors take full responsibility for the scientific
contributions and all written content.
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Table 6: Text-to-video retrieval Recall@1. “Data” column reports the total paired vision–language
data (image–text or video–text) seen during training. Note that, unlike other baselines, VL-JEPA is
not trained with contrastive objective and keep the text encoder frozen.

Model Data MSR-VTT ActivityNet DiDeMo MSVD YouCook2
VL-JEPA 0.06B 22.3 22.9 22.5 35.1 17.7

CLIP (Radford et al., 2021) 0.4B 30.6 – – 36.2 –
CLIP4Clip (Luo et al., 2021) 0.4B 32.0 – – 38.5 –

InternVideo (Wang et al., 2022) 0.5B 40.7 30.7 31.5 43.4 –
InternVideo2-1B (Wang et al., 2024) 0.4B 51.9 60.4 57.0 58.1 –
InternVideo2-6B (Wang et al., 2024) 0.4B 55.9 63.2 57.9 59.3 –

PE-B (Bolya et al., 2025) 2.3B 47.6 39.0 50.4 –
PE-L (Bolya et al., 2025) 2.3B 50.3 46.4 57.2 –
PE-G (Bolya et al., 2025) 2.3B 51.2 54.7 59.7 –

CoCa-B (Yu et al., 2022) 4.8B 27.5 21.7 – – 11.2
CoCa (Yu et al., 2022) 4.8B 30.0 28.5 – – 16.8
VideoCoCa-B (Yan et al., 2022) 4.8B 31.2 29.6 – – 16.5
VideoCoCa (Yan et al., 2022) 4.8B 34.3 34.5 – – 20.3

VideoPrism-B (Zhao et al., 2024) 6.4B 37.0 49.6 – – –
VideoPrism-g (Zhao et al., 2024) 6.4B 39.7 52.7 – – –

SigLIP2-B (Tschannen et al., 2025) 12.0B 38.5 28.6 – 49.0 –
SigLIP2-G (Tschannen et al., 2025) 12.0B 43.1 38.3 – 54.3 –
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