
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SLIM-LLM: SALIENCE-DRIVEN MIXED-PRECISION
QUANTIZATION FOR LARGE LANGUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) have achieved remarkable progress, but their
extensive number of parameters results in high memory usage, significant loading
latency, and substantial computational demands. To address these challenges, post-
training quantization (PTQ) has emerged as an effective technique for compressing
model weights. In the context of PTQ for LLMs, existing uniform quantization
methods, though efficient in terms of memory and computational requirements,
often struggle to maintain performance. In this paper, we propose SliM-LLM, a
Salience-Driven Mixed-Precision Quantization scheme that achieves group-wise
bit-width allocation with mixed precisions for efficient LLMs with high accuracy.
Building on our observation that salient/important weights often follow a structured
distribution, we incorporate two core components to preserve post-quantization
performance in LLMs while maintaining efficiency: 1) Salience-Determined Bit
Allocation adaptively assigns bit widths to groups within each layer based on their
group-level salience, aiming to minimize the reconstruction error of activations;
and 2) Salience-Weighted Quantizer Calibration optimizes quantizer parameters
by incorporating element-level salience, ensuring that the most critical weights are
preserved, further preserving important weights information. With its structured
group partitioning, SliM-LLM offers a hardware-friendly quantization approach,
maintaining computational and memory efficiency comparable to highly optimized
uniform quantization methods. Extensive experiments demonstrate that SliM-
LLM significantly improves the accuracy of various LLMs when quantized to
ultra-low bit widths. For instance, a 2-bit quantized LLaMA-7B model achieves
nearly 6x memory reduction compared to its floating-point counterpart, alongside
a 48% reduction in perplexity compared to the leading gradient-free PTQ method,
all while maintaining GPU inference speed. Furthermore, SliM-LLM+, which
incorporates gradient-based quantizers, reduces perplexity by an additional 35.1%.

1 INTRODUCTION

Large language models (LLMs) have exhibited exceptional performance across a wide array of natural
language benchmarks (Brown et al., 2020; Hendrycks et al., 2020). Notably, LLaMA (Touvron et al.,
2023a) and GPT (Brown et al., 2020) series have significantly contributed to the ongoing evolution of
LLMs towards universal language intelligence. The powerful language understanding capabilities of
LLMs have been transferred to multi-modal domains (Li et al., 2024b; Achiam et al., 2023; Team
et al., 2023; Zhang et al., 2023; Huang et al., 2024b), laying the foundation for artificial general
intelligence (AGI) (Bubeck et al., 2023). Despite these significant achievements, the substantial
computational and memory requirements of LLMs pose huge challenges for real-world applications,
particularly in resource-constrained environments.

To address resource constraints of LLMs, post-training quantization (PTQ) has emerged as an efficient
yet effective compression technique (Dettmers et al., 2022), showing success in quantizing the weights
of pre-trained LLMs (Frantar et al., 2022; Lin et al., 2023; Shao et al., 2023; Lee et al., 2023; Chee
et al., 2024). As LLMs continue to scale, the demand for more aggressive low-bit compression
becomes critical due to limited computational and storage resources in application (Huang et al.,
2024a; Tseng et al., 2024). However, significant performance degradation remains a challenge in
low-bit scenarios (⩽ 3-bit). To mitigate this, unstructured mixed-precision quantization (Shang et al.,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

5

10

20

40

80

160 AWQ

GPTQ

PB-LLM

QuIP

SliM-LLM

Model Size (Params)
7b 13b 30b 65b

W
ik

ite
xt

2
P

er
pl

ex
ity

(a) LLaMA 2-bit Results

2e6
2e7

3.5

4.5

5.5

6.5

OmniQuant

AffineQuant

SliM-LLM*

(c) PTQ Method Classification

Method No Fine-
Tuning

Mixed
Precision

Structured
Quantization Quantizer

AQLM
QuIP*
DB-LLM

C/C/S

QuIP C

AWQ
GPTQ S/S

BiLLM
PB-LLM
LLM-MQ

S/S/S

OmniQuant
AffineQuant G/G

SliM-LLM S

SliM-LLM+ G

Model Size (Params)
7b 13b 30b 65b

(b) LLaMA 3-bit Results with Gradient Quantizer

W
ik

ite
xt

2
P

er
pl

ex
ity

SliM-LLM+

Figure 1: (a) The perplexity (↓) of existing low-bit PTQ methods of LLaMA at 2-bit. Solid-line
indicates methods with structured quantization group. (b) Compare PTQ methods with gradient
quantizer at 3-bit. (c) Features of current low-bit quantization methods. C denotes codebook-based,
S is statistic-based, and G represents gradient-based quantizers.
2023; Huang et al., 2024a; Dettmers et al., 2023) and vector quantization (Chee et al., 2024; Tseng
et al., 2024; Egiazarian et al., 2024) methods have been developed to preserve performance. While
these approaches have advanced the field, they are often hardware-unfriendly, introducing extra
storage requirements such as storing bitmaps or code indices, along with additional computations for
vector decoding. This creates a bottleneck, limiting further reductions in memory and computational
demands during deployments. In sum, ensuring the accuracy of LLMs while maintaining efficiency
during deployment remains a significant challenge for current PTQ approaches.

This paper presents a Salience-Driven Mixed-Group LLM (SliM-LLM) framework, an accurate
and inference-efficient PTQ method for LLMs (⩽ 3-bit). Our approach is grounded in the key
observation that salient or important weights, which are critical to model performance, exhibit a
structured distribution, often clustering within certain channels (see Sec. 3.2.1 and Fig. 3). This
insight, largely overlooked by prior research (Frantar et al., 2022), forms the basis for designing SliM-
LLM as a structured, hardware-friendly mixed-precision low-bit quantization method. It preserves
performance through two key designs that retain important weights at both the global group and local
element levels. First, we develop a novel Salience-Determined Bit Allocation (SBA) method, which
adaptively assigns bit-widths to each quantization group based on their group-level salience ranking.
The allocation strategy is optimized to reduce activation reconstruction errors. By applying higher
precision to more important groups and reducing the bit-width for less critical ones, SBA achieves
a low average bit-width while enhancing the overall performance of LLMs. Next, we introduce
the Salience-Weighted Quantizer Calibration (SQC), which enhances sensitivity to locally salient
weights, ensuring that critical information within groups is preserved. SQC works collaboratively
with SBA, exploiting the local and global salience of weights to preserve the performance of LLMs
after quantization. Unlike element-wise mixed-precision methods (Shang et al., 2023; Dettmers
et al., 2023; Huang et al., 2024a), SliM-LLM is inherently structured, eliminating additional bit or
computational overhead while preserving high performance. This is further demonstrated through
our deployment of SliM-LLM in an application-level inference tool 1 for LLMs, enabling efficient
mixed-precision inference on GPUs with consistently strong performance.

Experiments show that for various LLM families, SliM-LLM surpasses existing training-free PTQ
methods on diverse benchmarks, particularly in low-bit scenarios. Using GPTQ as the backbone, SliM-
LLM improves the perplexity scores of 2-bit LLaMA-13B and LLaMA2-13B on WikiText2 (Merity
et al., 2016) from 20.44 and 28.14 to 8.87 and 9.41, denoting performance improvements of over
56%, respectively. SliM-LLM even outperforms other element-wise mixed-precision PTQ methods,
such as PB-LLM (Shang et al., 2023), APTQ (Guan et al., 2024) and LLM-MQ (Li et al., 2024a),
in a deployment-friendly manner, showcasing its superior low-bit accuracy and efficiency. We also
integrate SliM-LLM into OmniQuant (Shao et al., 2023) and obtain SliM-LLM+ through gradient
optimization to further improve quantization quality. Moreover, the group-wise mixed-precision
strategy can smoothly be adapted to existing quantization-aware training (QAT) (Liu et al., 2023), fine-
tuning based (Guo et al., 2023; Liao & Monz, 2024; Dettmers et al., 2024), or codebook-based (Chee
et al., 2024; Egiazarian et al., 2024; Tseng et al., 2024) LLMs compression methodologies. The
structure of weight salience we theoretically identify introduces a new practical view of the weight
quantization of LLMs.

1 https://github.com/AutoGPTQ/AutoGPTQ

2

https://github.com/AutoGPTQ/AutoGPTQ

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

3-bit 2-bit 1-bit

Salience-Weighted Quantizer Calibration

Μ

Μ

𝒘𝐬 = 𝒘 # 𝐌𝐚𝐬𝐤𝐬

𝒘𝐮𝐬 = 𝒘 # ~𝐌𝐚𝐬𝐤𝐬

)𝒘𝒒𝓛𝒔

𝓛𝒖𝒔

+

16-bit

Salience-Determined Bit Allocation “Slim” 𝒘𝒒

… …

𝒢&
…

Group Salience Sorting

1-bit 1-bit 2-bit 3-bit 3-bit

∆, 𝒛

𝒢'

Original 𝒘𝒇𝒑

… …
16-bit 16-bit 16-bit 16-bit16-bit

∆, 𝒛

𝓓𝒌𝒍(𝒙𝒘𝑻 ||𝒙𝒘𝒒
𝑻)

𝒙

Figure 2: Illustration of our proposed SliM-LLM. The Salience-Determined Bit Allocation (SBA)
optimizes activation-aware structured precision, optimizing the global information distribution in
quantization. Salience-Weighted Quantizer Calibration (SQC) detects discretely distributed salient
weights, enhancing the local important information in LLMs.

2 RELATED WORK

Large Language Models (LLMs) have been significantly developed in diverse natural language
processing domains, establishing a prominent paradigm in these fields (Bubeck et al., 2023; Chang
et al., 2024; Zhao et al., 2023; Brown et al., 2020; Touvron et al., 2023a). Nevertheless, the exceptional
success of LLMs depends on massive parameters and computations, posing significant challenges
for deployment in resource-constrained environments. Consequently, research into the compression
of LLMs has emerged as a promising field. Existing compression techniques for LLMs primarily
include low-bit quantization, pruning, distillation, and low-rank decomposition (Xu et al., 2023;
Ganesh et al., 2021; Frantar et al., 2022; Xiao et al., 2023a; Shao et al., 2023; Chee et al., 2024;
Zhu et al., 2023; Frantar & Alistarh, 2023; Huang et al., 2024a; Qin et al., 2024). Among these
technologies, low-bit quantization gains remarkable attention, for efficiently reducing the model size
without change of network structure(Zhu et al., 2023; Zhao et al., 2023; Chang et al., 2024).

Quantization of LLMs can be generally divided into QAT and PTQ. QAT, by employing a retraining
strategy based on quantized perception, better preserves the performance of quantized models. LLM-
QAT (Liu et al., 2023; Ma et al., 2024a) addresses the data obstacle issue in QAT through data-free
distillation. However, for LLMs with huge size of parameters, the cost of retraining is extremely
inefficient(Chang et al., 2024). Therefore, PTQ has become a more efficient choice for LLMs. For
instance, LLM.int8() (Liu et al., 2023) and ZeroQuant (Yao et al., 2022) explore the quantization
strategies for LLMs in block-wise, which is a low-cost grouping approach that reduces hardware
burden. Subsequently, AWQ (Lin et al., 2023) and OWQ (Lee et al., 2023) also propose scaling
transformations on outlier channels of weight to preserve their information representation capacity.
GPTQ (Frantar et al., 2022) reduces the group quantization error of LLMs through Hessian-based
error compensation (Frantar & Alistarh, 2022), achieving commendable quantization performance at
3-bit. OmniQuant (Shao et al., 2023) introduces a learnable scaling quantizer to reduce quantization
errors in an output-aware manner. To achieve LLM quantization at ultra-low bit-width, recent
novel efforts such as QuIP (Chee et al., 2024), QuIP# (Tseng et al., 2024), and AQLM (Egiazarian
et al., 2024) promote quantization performance at 2-bit through matrix decomposition with learnable
codebooks and fine-tuning. Recent studies (Qin et al., 2024; Liao & Monz, 2024; Dettmers et al.,
2024; Guo et al., 2023) have further refined compression techniques by integrating post-training
quantization (PTQ) with parameter-efficient fine-tuning (PEFT) to enhance model performance via
additional parameter learning.

Mixed-Precision Quantization exploits variations in the importance and redundancy of model
parameters, assigning different bit-widths to each component. HAWQ V2 (Dong et al., 2020) and
V3 (Yao et al., 2021) optimize bit-width allocation layer-wise in traditional visual networks through
Hessian analysis and Integer Linear Programming (ILP). Alternatively, OMPQ (Ma et al., 2023)
employs network orthogonality instead of Hessian for similar purposes. In LLMs, APTQ (Guan
et al., 2024) extends HAWQ’s strategy, allocating varied bit-widths to different transformer blocks
based on Hessian-trace, thus improving the accuracy of 3-bit LLMs. However, such block-wise or
layer-wise mixed-precision allocation at 2-bit still fails to maintain post-compression performance
in LLMs. Recent studies such as SpQR (Dettmers et al., 2023), PB-LLM (Shang et al., 2023), and
LLM-MQ (Li et al., 2023) have introduced finer-grained partitioning for grouped quantization with
element-wise mixed-precision for accurate weight quantization. Nevertheless, these low-bit methods
still rely on special structures and fine-grained grouping to ensure accuracy, which brings the huge
burden of real hardware deployment and inference speed.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

3 SLIM-LLM

This section introduces a group-wise mixed-precision quantization method, SliM-LLM, designed to
overcome the accuracy and efficiency bottlenecks of mixed-precision LLMs. We devise two novel
strategies for LLMs, including the use of Salience-Determined Bit Allocation (SBA) based on global
salience distribution to determine group bit-widths, and Salience-Weighted Quantizer Calibration
(SQC) to enhance the perception of locally important weight information. We introduce SBA and
SQC in Sec. 3.2 and Sec. 3.3, respectively.

3.1 PRELIMINARIES

Quantization Framework. We first present the general uniform quantization process of LLMs
according to common practice (Liu et al., 2023; Shao et al., 2023; Achiam et al., 2023). The
quantization process requires mapping float-point weights distributed within the interval [wmin, wmax]
to an integer range of 2N , where N is the target bit-width. The quantization function for weight
wf ∈ Rn×m follows:

ŵq = clamp(⌊wf

s
⌉+ z, 0, 2N − 1), s =

wmax − wmin

2N − 1
, z = −⌊wmin

s
⌉ (1)

where ŵq indicates quantized weight which is integer, ⌊·⌉ is round operation and clamp(·) constrains
the value within integer range (e.g. [0, 1, 2, 3], N = 2). ∆ is scale factor and z is quantization zero
point, respectively. When converted to 1-bit quantization, the calculation follows:

ŵb = sign(wf), sign(w) =

{
1 if w ≥ 0,

−1 others.
, α =

1

l
||wf ||ℓ1 (2)

where ŵb is binary result. α denots binarization scales and l is the number of elements in weight (Qin
et al., 2023), used for dequantization through αŵb. We can formalize the per-layer loss in PTQ,
following the common practice (Nagel et al., 2020; Frantar et al., 2022):

L(ŵf) = ||xw⊤
f − xŵ⊤

f ||2≈ tr((ŵf −w)H(ŵf −w)⊤) (3)

where x ∈ Rt×m denotes the input vectors from calibration dataset, ŵf ∈ Rn×m is dequantized
weight from quantization result in Eq. (1) or Eq. (2), and H = 1

P

∑P
k=1 x

[k]⊤x[k] is proxy Hessian
matrix by Levenberg-Marquardt approximation (Marquardt, 1963; Frantar & Alistarh, 2022) from a
set of input activations.

Parameter Salience. In LLMs, the importance of each element in the weight matrix is vari-
ous (Dettmers et al., 2023; Frantar & Alistarh, 2023). According to Eq. (3), quantizing different
elements causes different impacts on the model’s output loss. Elements that significantly influence
the loss are termed salient weights. Consequently, we follow the SparseGPT (Frantar & Alistarh,
2023) to define the salience of each element as:
Definition 1. In the quadratic approximation of the loss as expressed in Eq. (3), we give the Hessian
matrix H ∈ Rm×m generated by 1

P

∑P
k=1 x

[k]⊤x[k] for a weight matrix, the removal of the element

at (i, j) induces an error δi,j =
w2

i,j

[H−1]2j,j
to the output matrix for linear projection in LLMs.

where [H−1]jj denotes the jth diagonal entry for the inverse Hessian, and H−1 can be efficiently
calculated through Cholesky decomposition (Krishnamoorthy & Menon, 2013). According to
Definition. 1, we map the elimination error δij to the salience measure of each weight element in
LLMs, representing the impact of different weights on the output loss and the language capabilities,
which also leads the generation of mixed-precision quantization strategies (Dettmers et al., 2023;
Shang et al., 2023; Huang et al., 2024a; Li et al., 2024a) for LLMs. However, existing mixed-precision
solutions require the discrete allocation of bit-widths across the entire weight matrix, which imposes
a significant burden on hardware computations, thereby affecting the inference efficiency.

3.2 SALIENCE-DETERMINED BIT ALLOCATION

We reveal the phenomenon of spatial clustering in the distribution of weight salience, which inspires
our proposed concept of group-wise mixed-precision quantization for LLMs, and then introduce the
Salience-Determined Bit Allocation (SBA) technique to allocate the optimal precision to each group.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

3.2.1 SPATIAL DISTRIBUTION OF GLOBAL SALIENCE

Report

Reporter: Huang Wei 2024/3/2

(b) Salience of layer-2-Down

(d) Salience of layer-10-Down

(a) Salience of layer-2-Out

(c) Salience of layer-10-Out

Figure 3: Salience weight distribution in
layer-2 and layer-10 of LLaMA-7B.

We first conduct an empirical investigation into the
weight salience distribution. The results reveal that
certain channels exhibit higher salience and show ten-
dencies for spatial clustering. As illustrated in Fig. 3,
salient clustering are identified around the 2100th,
3218th and 3853rd channels within the 2nd layer’s at-
tention projection of the LLaMA-7B model. A similar
structured pattern is observed near the 600th, 2200th
and 3992nd channels in the 10th layer. Also, clustered
salience is detected in other layers (as shown in Fig. 3).
More examples of spatial clustering of salience are
provided in Appendix G.

Then, we analyze the underlying reasons for this phe-
nomenon. According to Definition 1,the salience of
weights is proportional to the magnitude of the weights
and the trace of the Hessian matrix, which can be ap-
proximated by the product of input activations x⊤x. In
LLMs, activations exhibit extreme outlier channels, while the numerical differences in weights are
relatively slight (Xiao et al., 2023a; Nrusimha et al., 2024). Therefore, we propose an analysis of how
the outlier channels in activations influence the distribution of weight salience:
Theorem 1. Given the input calibration activation x ∈ Rt×m with an outlier channel x∗

:,p ≫
x:,j ,∀j ∈ [0,m], j ̸= p at the position of channel-p. The trace elements of H = x⊤x will show
great outlier value at (p, p), where Hp,p ≫ Hj,j ,∀j ∈ [0,m], j ̸= p, as Hp,p is produced by
[x∗⊤

:,p x
∗
:,p] =

∑t
i=0 x

∗2
i,p, which further leads to the parameter salience larger at the pth channel of

weight, where δ:,p > δ:,k, δ:,k =
w2

:,k

[H−1]2k,k
,∀k ∈ [0, t], k ̸= p.

Theorem 1 elucidates the influence of outlier activation on the distribution of channel salient weights
(detailed proof in the Appendix G.1). Furthermore, recent research indicates that outlier channels
in LLMs activations consistently appear in fixed yet clustered patterns (Nrusimha et al., 2024).
According to Theorem 1, these consistently occurring anomalous activations result in the distribution
of salient weights, as depicted in Fig. 3. Then, during group-wise quantization, the average salience
of each group shows different features.

Meanwhile, previous unstructured mixed-precision, incurred additional storage requirements and
computational overheads, affecting the real-time inference. However, the strong spatial structured
characteristics observed in the salient of weights in this section strongly inspire us to first develop a
group-wise mixed-precision strategy within the weight matrix while maintaining inference efficiency.
Therefore, we aim to allocate bit-widths based on intra-group salient disparities, which not only
enhances quantization accuracy but also ensures the inference efficiency of LLMs with structured
bit-widths saving and dequantization.

3.2.2 SALIENCE-DETERMINED BIT ALLOCATION FOR STRUCTURED GROUP

To allocate optimal bit-widths to each group, we introduce a Salience-Determined Bit Allocation
(SBA) technique for mixed-precision LLMs, as depicted in Fig. 2. This technique, predicated on
the differences in group salience, determines the optimal bit-width allocation for different groups by
minimizing the distance of information entropy with the original weight output.

Specifically, we first utilize the average salience as the importance indicator for each weight group
and rank them accordingly. The proposed SBA optimizes the following formula to determine the
optimal number of salient-unsalient quantization groups of LLMs:

Objective : argminDkl (xw
⊤
f || x(ŵsba)

⊤), ŵsba = [ŵ0,b0 , ŵ1,b1 ...ŵk−1,bk−1
, ŵk,bk]

Constrain :|GN−1| = |GN+1|, GN−1 = {bi|bi = N − 1}, GN+1 = {bj |bj = N + 1},
(4)

where Dkl(·||·) denotes the Kullback-Leibler (KL) divergence between two outputs, ŵsba
f generally

represents the de-quantization results of weight, employing group-wise mixed-precision designated

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

as [ŵ0,b0 , ŵ1,b1 ...ŵk−1,bk−1
, ŵk,bk], where bi represents the bit-width for the ith group and G is a

set of groups with the same bit-width, N is the targeted average bit-width. We apply a compensation
constraints strategy to maintain a consistent average bit-width for our SBA. For example, in 2-bit
quantization, the groups with the highest salience are quantized to 3-bit. To offset the additional bits,
we quantize an equal number of groups with the lowest salience to 1-bit (|GN−1| = |GN+1|), while
the remaining groups are set to 2-bit.

We utilize an effective double-pointer search (more detailed examples in Appendix C) to optimize
our objective in Eq. (4). When the weight output channel size is m and group size is 128, k = m

128 ,
the search region for weight is limited to [0, k

2], which is highly efficient with limited searching
space, e.g., only 16 iterations are needed in LLaMA-7B. We also provide detailed searching error
examples in Appendix C. Notably, SBA diverges from traditional quantization with mean squared
error (MSE) in Eq. (3) by instead utilizing the KL divergence as its measure of loss. Compared to
using the mean squared error (MSE) for weights, SBA leverages the KL divergence of block outputs
as a precision allocating metric, aiming to maximize the similarity between the distribution of the
LLM’s output activation matrix and the quantized activation distribution. This approach enhances the
model’s information representation capacity under low-bit quantization, facilitating optimal bit-width
allocation. We note that HAWQ v2 (Dong et al., 2019) employs ILP to allocate bit-width for layers,
which can also be adapted to our group-wise target. However, unlike the allocation of precision
based solely on the weight matrix loss of each group, SBA can accurately perceive the impact of
different precisions within each block on the model’s output information, allowing for a more optimal
bit-width allocation. More experiments comparing SBA and ILP are shown in Section 4.2.

3.3 SALIENCE-WEIGHTED QUANTIZER CALIBRATION

In addition to the global group-wise distribution of salience, we notice that salience within the group
still shows local differences in discrete distribution. Common existing quantizers apply uniform
consideration across all weights to minimize the effect (error) of quantization, lacking the capability
to perceive differences in local salience. Therefore, in this section, we introduce a Salience-Weighted
Quantizer Calibration (SQC) to enhance the information of significant weights within the group by
amplifying the quantizer awareness of salient weight.

3.3.1 DISCRETE DISTRIBUTION OF LOCAL SALIENCE

Salience Matrix of layer-15-Out

Group-2

Local Salience

Salient Weight

… Group-K

0.0008

0.0006

0.0004

0.0002

0.0000
0 500 1000 1500 2000 2500 3000 3500 4000

2500

3000

3500

4000

Figure 4: Local salience distribution of the
10th MHA output layer in LLaMA-7B.

In the aforementioned section, we group-wisely allo-
cate the bit-width for each group based on the global
salience. To maintain the efficiency of quantized in-
ference, we employ a commonly used sequential struc-
tured grouping (Frantar et al., 2022; Lin et al., 2023;
Shao et al., 2023). However, this group-wise mixed-
precision also leads to differences in salience among the
various elements within the same group. Specifically,
as the salience distribution in Fig. 4, within the 10th

attention output layer of LLaMA-7b, a subset of sparse
weights within the comparatively less salient Group-2
(Fig. 4) still maintains a high level of importance. In
LLMs, a small number of weight elements with outliers
affect the local distribution of salience. These discrete
weights typically account for only approximately 1%
within the group but play a crucial role in the modeling capability of LLMs.

The existing vanilla quantizers face the challenge of representing significant weight information, by
only considering the mean error of all elements within a group. When quantizing weights according
to Eq. (1) in group-wise format, a large number of non-salient weights at the intra-group statistical
level tend to dominate the parameters generated by the quantizer. This leads to a degradation of
salient information within the group, thereby affecting the model performance of LLMs.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

3.3.2 SALIENCE-WEIGHTED QUANTIZER CALIBRATION FOR LOCAL SALIENCE AWARENESS

To prevent the degradation of local salient weight information in each group, we propose the Salience-
Weighted Quantizer Calibration (SQC), which enhances the expression of salient weights through
local salience awareness, thereby reducing the quantization error of these significant elements and
improving the compressed performance of LLMs.

Based on a common observation (Dettmers et al., 2023; Huang et al., 2024a), the proportion of
relatively salient weights in each group is only 1-5%. Therefore, we employ the 3-σ rule for a mask
to select the salience part (w < (µ− 3σ) ∪w > (µ+ 3σ)) in each group (Fig. 2), which accounts
for about 1% elements. After the selection, we get wi = ws

i ∪wus
i , where ws

i is the salient part and
wus

i represents the non-salient elements within group i. To effectively keep the information of local
salient weights, SQC first introduces the calibration parameter τ to the SQC quantizer, liberating the
perception interval during quantization. Then we define the local salience awareness loss of the SQC
quantizer through calibration:

argmin
τ

||ws
i − τ · s{Q(ws

i , τ · s, τ · z)− τ · z}||22+ ||wus
i − τ · s(Q(wus

i , τ · s, τ · z)− τ · z)||22 (5)

where Q(·) denotes the quantization process in Eq. (1), || · ||22 represents the ℓ2 loss, aligned with
Eq. (3). ws

i and wus
i denotes the salient and less salient part of group i, respectively, generated from

a mask operation. In Eq. (5), τ expands the solution space of s and z, flexibly adjusts s and z to
search the optimal loss under τ∗, without bringing additional parameters, as ws

i and wus
i share the

same quantizer. The search space for τ by linearly dividing the interval [1-λ, 1+λ] into 2n candidates.
We empirically set λ at 0.1 and n at 50 to achieve a balance between efficiency and accuracy.

Compared to traditional quantizer calibration methods, SQC effectively mitigates the degradation of
intra-group local salient weights caused by general average loss by enhancing the loss sensitivity to
salient elements during the calibration (more experiments are detailed in Appendix E). Moreover, the
SQC process allows ws

i and wus
i to share a set of parameters τ∗s and τ∗z, eliminating the need to

differentiate intra-group weights during storage and inference. This facilitates straightforward group-
wise dequantization calculations, thereby avoiding the hardware overhead associated with element-
wise bitmap and unstructured grouping. SQC and SBA each capture local salient weight information
within groups and global salient weight combinations across groups, effectively enhancing the
protection of critical information during quantization, thereby accurately preserving the overall
performance of LLMs at extremely low bit-widths.

3.4 IMPLEMENTATION PIPELINE OF SLIM-LLM

We integrate our mixed-precision framework into advanced PTQ methods, such as GPTQ (Frantar
et al., 2022) and OmniQuant (Shao et al., 2023), all of which are inference-friendly with group-wise
quantization. We primarily integrate SBA and SQC into GPTQ to get SliM-LLM. For SliM-LLM+,
the SBA is plugged into OmniQuant with a learnable quantizer. The plugging pipeline of SliM-LLM
is provided in Algorithm 1 (line 4 and line 9), detailed functions are shown in Appendix B.1.

Algorithm 1 Main Framework of SliM-LLM.

func SliM-LLM(w, xF , β, λ, N)
Input: w ∈ Rn×m - FP16 weight

xF ∈ Rt×m - calibration data
β - group size
λ - hessian regularizer
N - average bit-width

Output: ŵq - quantized weight

1: H := 1
P

∑P
k=1 x

[k]
F x

[k]T
F hessian matrix

2: H in := Cholesky((H + λI)
−1

)
3: ŵq := 0n×m

4: G{·} := SBA(w,xF ,H
in, β,N)

5: for b = 0, β, 2β, ... do
6: wb := w:,b:b+β

7: gb := G[b]
8: wb

s,w
b
us := sal_mask(wb)

9: ŵb
q := SQC(wb

s,w
b
us, gb)

10: GPTQ-error compensation:
11: E := (w:,b:b+β − ŵb

q)/H
in
bb:b+βb+β

12: w:,b+β: := w:,b+β: −E ·H in
b:b+β,b+β:

13: end for
14: return ŵq

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Quantization results of LLaMA family with statistic quantizer. We report the WikiText2
perplexity in this table, C4 results are shown in Appendix H. ‘-’ denotes that the selected works did
not give the results on listed models or the codes

#W PPL↓ Method 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B 3-8B 3-70B

16-bit - 5.68 5.09 4.10 3.53 5.47 4.88 3.31 5.75 2.9

3-bit

APTQ 6.76 - - - - - - - -
LLM-MQ - - - - - 8.54 - - -
RTN 7.01 5.88 4.87 4.24 6.66 5.51 3.97 27.91 11.84
AWQ 6.46 5.51 4.63 3.99 6.24 5.32 - 8.22 4.81
GPTQ 6.55 5.62 4.80 4.17 6.29 5.42 3.85 8.19 5.22
SliM-LLM 6.40 5.48 4.61 3.99 6.24 5.26 3.67 7.16 4.08

2-bit

LLM-MQ - - - - - 12.17 - - -
RTN 1.9e3 781.20 68.04 15.08 4.2e3 122.08 27.27 1.9e3 4.6e5
AWQ 2.6e5 2.8e5 2.4e5 7.4e4 2.2e5 1.2e5 - 1.7e6 1.7e6
GPTQ 152.31 20.44 13.01 9.51 60.45 28.14 8.78 210.00 11.90
QuIP 29.74 12.48 11.57 7.83 39.73 13.48 6.64 84.97 13.03
PB-LLM 24.61 17.73 12.65 7.85 25.37 49.81 NAN 44.12 11.68
SliM-LLM 14.58 8.87 7.33 5.90 16.01 9.41 6.28 39.66 9.46

Table 2: Quantization results of LLaMA-1 and LLaMA-2 models with learnable quantizer. We report
the WikiText2 perplexity in this Table, C4 results are shown in Appendix H. ‘-’ denotes that the
selected works have not reported the results on listed models or published the codes

#W PPL↓ Method 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B

16-bit - 5.68 5.09 4.10 3.53 5.47 4.88 3.31

3-bit
OmniQuant 6.15 5.44 4.56 3.94 6.03 5.28 3.78
AffineQuant 6.14 5.45 4.59 - 6.08 5.28 -
SliM-LLM+ 6.07 5.37 4.34 3.72 5.94 5.11 3.35

2-bit
OmniQuant 9.72 7.93 7.12 5.95 11.06 8.26 6.55
AffineQuant 13.51 7.22 6.49 - 10.87 7.64 -
SliM-LLM+ 9.68 7.17 6.41 5.74 10.87 7.59 6.44

4 EXPERIMENTS

We evaluated SliM-LLM and SliM-LLM+ under weight-only conditions, focusing on 2/3-bit pre-
cisions. Per-channel group quantization is utilized in our framework with groupsize = 128 in
experiments. Since no back-propagation in SliM-LLM, the quantization is carried out on a sin-
gle NVIDIA A800 GPU. For SliM-LLM+, we employ the AdamW optimizer, following Omni-
Quant (Shao et al., 2023), which is also feasible on a single A800. We randomly select 128 samples
from WikiText2 (Merity et al., 2016) as calibration data, each with 2048 tokens.

Models and Evaluation. To comprehensively demonstrate the low-bit performance advantages of
SliM-LLM and SliM-LLM+, we conduct experiments across OPT (Zhang et al., 2022), LLaMA (Tou-
vron et al., 2023a), LLaMA-2 (Touvron et al., 2023b) and LLaMA-3. We employ the perplexity
as our evaluation metric, which is widely recognized as a stable measure of language generation
capabilities (Frantar et al., 2022; Lin et al., 2023; Huang et al., 2024a; Shang et al., 2023; Shao et al.,
2023; Chee et al., 2024; Egiazarian et al., 2024; Huang et al., 2024b), particularly in compression
scenarios. Experiments are carried out on the WikiText2 (Merity et al., 2016) and C4 (Raffel et al.,
2020)datasets. Furthermore, to assess the practical application capabilities of quantized LLMs, we
also evaluate their accuracy on zero-shot benchmarks, including PIQA (Bisk et al., 2020), ARC (Clark
et al., 2018), BoolQ (Clark et al., 2019), and HellaSwag (Clark et al., 2018).

Baseline. Since SliM-LLM and SliM-LLM+ are efficient PTQ approaches without additional
training or fine-tuning, QAT and re-training methods are not within the comparison range of our work.
The experiments evaluate existing advanced quantization methods and GPU-friendly computations,
including vanilla round-to-nearest (RTN), GPTQ (Frantar et al., 2022), AWQ (Lin et al., 2023). And
mixed-precision quantization techniques, including PB-LLM (Shang et al., 2023) (17 × 8-bit+ 6

7 × 1-
bit), LLM-MQ (Li et al., 2024a), and APTQ (Guan et al., 2024), as well as the codebook-based
method QuIP (Chee et al., 2024) are also compared in this work. We compare SliM-LLM+ with

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Performance comparisons of different quantization methods for zero-shot tasks.
Model / Acc↑ #W Method PIQA ARC-e ARC-c BoolQ HellaSwag Winogrande Avg.

LLaMA-7B

16-bit - 77.47 52.48 41.46 73.08 73.00 67.07 64.09
2-bit GPTQ 55.49 31.02 22.17 53.49 33.84 41.91 39.65
2-bit AWQ 47.78 28.77 21.31 31.19 24.47 40.03 32.26
2-bit SliM-LLM 57.83 33.46 25.09 56.05 36.70 52.64 43.84
2-bit OmniQuant 63.63 43.91 27.32 58.02 48.78 52.97 49.11
2-bit SliM-LLM+ 64.96 45.66 28.67 64.59 48.86 53.35 51.02

LLaMA-13B

16-bit - 79.10 59.89 44.45 68.01 76.21 70.31 66.33
2-bit GPTQ 70.37 47.74 35.88 51.57 61.39 60.84 54.63
2-bit AWQ 49.23 30.01 29.49 30.88 26.72 46.30 35.44
2-bit SliM-LLM 73.19 47.95 36.27 55.92 63.04 61.79 56.36
2-bit OmniQuant 73.14 49.38 36.93 63.34 62.19 61.77 57.64
2-bit SliM-LLM+ 74.15 50.26 37.04 64.31 63.57 63.11 58.74

LLaMA-30B

16-bit - 80.08 58.92 45.47 68.44 79.21 72.53 67.44
2-bit GPTQ 71.92 48.27 36.20 61.27 65.76 63.11 57.76
2-bit AWQ 49.17 28.56 25.97 34.73 24.97 46.99 35.07
2-bit SliM-LLM 75.52 51.29 39.29 62.01 66.10 64.07 59.71
2-bit OmniQuant 76.23 53.23 39.52 63.34 65.57 64.82 60.22
2-bit SliM-LLM+ 76.31 54.07 39.79 63.35 67.14 64.93 60.91

LLaMA-65B

16-bit - 80.79 58.71 46.24 82.29 80.72 77.50 71.04
2-bit GPTQ 76.16 52.48 40.14 77.23 71.96 70.22 64.70
2-bit SliM-LLM 77.09 53.72 40.25 77.51 72.05 70.91 65.26
2-bit OmniQuant 77.78 53.71 40.90 78.04 74.55 68.85 65.64
2-bit SliM-LLM+ 78.06 53.90 41.18 78.33 75.59 69.99 66.18

gradient optimizer-based OmniQuant (Shao et al., 2023) and AffineQuant (Ma et al., 2024b). When
applying SliM-LLM, the quantization process for a 7B model takes only about 50 minutes.

4.1 MAIN RESULTS

We show experiments within the LLaMA family in this section and detailed results for the OPT
models are available in Appendix H. For language generation tasks, as depicted in Tab. 1, SliM-LLM
markedly outperforms its backbone GPTQ, particularly under the 2-bit. Specifically, on LLaMA-7B,
SliM-LLM achieves a 90% decrease in perplexity, while on LLaMA-3-8B, it improves by 81%. In
comparison with the element-wise mixed-precision PB-LLM and the codebook-based QuIP method,
SliM-LLM further reduces the perplexity by 41%~51%. As shown in Tab. 1, the performance of SliM-
LLM+ is still ahead compared to OmniQuant and AffineQuant, further proving the effectiveness and
of the mixed-precision framework. We also provide dialogue examples of 2-bit instruction fine-tuning
Vicuna-13B (Chiang et al., 2023) and LLaMA-13B in Appeandix I.

Morever, our method exhibits zero-shot advantages at 2-bit, as shown in Tab. 3, where SliM-LLM and
SliM-LLM+ still outperforms other methods. For instance, compared with GPTQ and OmniQuant,
our approach achieves an average improvement of 4.19% and 1.91% on LLaMA-7B. Meanwhile, for
LLaMA-65B, 2-bit SliM-LLM and SliM-LLM+ is close to FP16 results (less than 6% degradaion
in accuracy). Overall, our proposed mixed-precision framwork demonstrates superior performance
across different model sizes, with its advantages becoming increasingly significant at lower bit-width.

4.2 ABLATION RESULTS

Table 4: WikiText2↓ performance of SBA
and ILP on LLaMA.

Method #W 7B 13B 30B 65B

ILP 2-bit 17.55 9.51 9.27 7.46
SBA 2-bit 14.58 8.87 7.33 5.90

Abliation of SBA and SQC. We conduct a detailed
ablation study to illustrate the benefits of bit-width allo-
cation and the impact of each component. Fig. 5(a) com-
pares three strategies for allocating bit-widths across
groups, including random allocation, head-tail alloca-
tion by spatial order, and our proposed SBA. When the
average bit-width remains constant, random and head-tail mixed-precision allocation prove ineffective
and even result in performance degradation, as shown in Fig. 5(a). In contrast, SBA consistently
delivers significant improvements in post-quantization performance, validating the efficacy of our

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

10

20

40

80

GPTQ

SBA

SQC

SliM-LLM

W
ik

it
e

x
t2

 P
e

rp
le

x
it
y

10

20

40

80

GPTQ

Random

Head-Tail

SliM-LLM

Model Size (Params)
6.7b 13b 30b2.7b1.3b

W
ik

it
e

x
t2

 P
e

rp
le

x
it
y

(SBA+SQC)

6.7b 13b 30b2.7b1.3b
Model Size (Params)

(a) Ablation of Group Precision Allocation (b) Effect of SBA and SQC Component

(SBA+SQC)

Figure 5: Ablation results on OPT models. Random means randomly selecting the same number
of lower/higher-bit groups; head-tail denotes using the head groups as the lower-bit and the same
number of tails as the higher-bit on the original sequence of group.

Table 5: Deployment results of GPTQ and Slim-LLM on GPU. Group size is set to 128.
#W LLaMA-* 1-7B 1-13B 2-7B

WM RM PPL↓ Token/s WM RM PPL↓ Token/s WM RM PPL↓ Token/s

FP16 - 12.6G 14.4G 5.68 69.2 24.3G 27.1G 5.09 52.5 12.7G 14.6G 5.47 69.3

3-bit GPTQ 3.2G 5.1G 6.55 83.4 5.8G 8.7G 5.62 57.6 3.2G 5.2G 6.29 56.3
SliM-LLM 3.2G 5.2G 6.40 79.1 5.8G 8.8G 5.48 48.5 3.2G 5.4G 6.26 55.9

2-bit GPTQ 2.2G 4.1G 152.31 83.9 4.0G 7.5G 20.44 92.6 2.2G 4.1G 60.45 83.6
SliM-LLM 2.3G 4.4G 14.58 61.2 4.1G 7.8G 8.87 73.7 2.3G 4.1G 16.01 64.4

mixed-precision approach. Fig. 5(b) presents the ablation effects of SBA and SQC, demonstrating that
both methods, based on the perception of global and local salience, enhance quantization performance.
SBA is particularly effective in smaller models, and combining these two methods can further boost
capabilities of LLMs. We also provide the detailed ablation results on group size in Appendix F.

Compare of SBA and ILP. We compare the performance between the ILP model in HAWQ v2 (Dong
et al., 2019) and SBA on the LLaMA model. Tab. 4 shows that SBA achieves comprehensive
performance superiority on LLaMA. We observed that under a 2-bit scenario, ILP ensures an equal
number of 1-bit and 3-bit groups within the search space {1-bit, 2-bit, 3-bit}. The advantage of ILP
lies in a broader selection range for target bit-widths, but under commonly used fixed integer bit-
widths (e.g. 2-bit, 3-bit), SBA’s double-pointer search strategy based on output feature KL proposed
by SBA can achieve a more optimal matching strategy.

4.3 EFFICIENT INFERENCE ON DEVICE

We utilize the open-source AutoGPTQ to extend CUDA kernel supporting experimental mixed-
precision inference, with detailed process in Appendix B.2. We evaluate the deployment performance
of LLaMA-7/13B and LLaMA-2-7B under 2/3-bit settings in Tab. 5. The results indicate that our
mixed-precision approach maintains a good compression rate on GPUs and significantly enhances
model accuracy, only with a slight decrease in inference speed on the A800 (due to the inference
alignment of different bit-width). Since current 1-bit operations lack well hardware support, additional
consumption of storage and computation is required on device. There remains considerable scope for
optimization in mixed-precision computing, and we aim to further improve this in future work.

5 CONCLUSION

In this work, we introduce SliM-LLM, a group-wise mixed-precision PTQ framework tailored for
LLMs, designed to enhance performance with low-bit weights in a deployment-friendly manner.
The essence of SliM-LLM lies in employing the Salience-Determined Bit Allocation to dynamically
allocate bit widths, thereby improving the preservation of global salience information. Within
groups, the Salience-Weighted Quantizer Calibration is designed to enhance local information
perception, further minimizing the loss associated with locally salient weights. Experiments validate
the effectiveness of SliM-LLM, showing notable accuracy improvements across various LLMs,
and ensuring efficiency in inference. In conclusion, SliM-LLM is versatile and can be seamlessly
integrated with different quantization frameworks and successfully improves the performance of
LLMs supporting practical deployment in resource-constrained environments.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. GPT-4 technical
report. arXiv preprint arXiv:2303.08774, 2023.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical
commonsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz, Ece Kamar,
Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, et al. Sparks of artificial general intelligence:
Early experiments with GPT-4. arXiv preprint arXiv:2303.12712, 2023.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of
large language models with guarantees. Advances in Neural Information Processing Systems, 36,
2024.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E Gonzalez, et al. Vicuna: An open-source chatbot impressing
GPT-4 with 90%* chatgpt quality. See https://vicuna. lmsys. org (accessed 14 April 2023), 2023.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. BoolQ: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. LLM.int8 (): 8-bit matrix
multiplication for transformers at scale. arXiv preprint arXiv:2208.07339, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. SpQR: A sparse-quantized repre-
sentation for near-lossless LLM weight compression. arXiv preprint arXiv:2306.03078, 2023.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in Neural Information Processing Systems, 36, 2024.

Zhen Dong, Zhewei Yao, Amir Gholami, Michael W Mahoney, and Kurt Keutzer. Hawq: Hessian
aware quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 293–302, 2019.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Hawq-v2: Hessian aware trace-weighted quantization of neural networks. Advances in neural
information processing systems, 33:18518–18529, 2020.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Elias Frantar and Dan Alistarh. SparseGPT: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Prakhar Ganesh, Yao Chen, Xin Lou, Mohammad Ali Khan, Yin Yang, Hassan Sajjad, Preslav Nakov,
Deming Chen, and Marianne Winslett. Compressing large-scale transformer-based models: A case
study on bert. Transactions of the Association for Computational Linguistics, 9:1061–1080, 2021.

Ziyi Guan, Hantao Huang, Yupeng Su, Hong Huang, Ngai Wong, and Hao Yu. APTQ: Attention-
aware post-training mixed-precision quantization for large language models. arXiv preprint
arXiv:2402.14866, 2024.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. arXiv preprint arXiv:2311.12023, 2023.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and
Jacob Steinhardt. Measuring massive multitask language understanding. arXiv preprint
arXiv:2009.03300, 2020.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. BiLLM: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024a.

Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. How Good Are Low-bit Quantized LLaMA3 Models?
An Empirical Study. arXiv preprint arXiv:2404.14047, 2024b.

Aravindh Krishnamoorthy and Deepak Menon. Matrix inversion using cholesky decomposition.
In 2013 signal processing: Algorithms, architectures, arrangements, and applications (SPA), pp.
70–72. IEEE, 2013.

Changhun Lee, Jungyu Jin, Taesu Kim, Hyungjun Kim, and Eunhyeok Park. OWQ: Lessons
learned from activation outliers for weight quantization in large language models. arXiv preprint
arXiv:2306.02272, 2023.

Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, Xiuhong Li, Kai Zhong, Guohao
Dai, Huazhong Yang, and Yu Wang. Llm-mq: Mixed-precision quantization for efficient llm
deployment. In The Efficient Natural Language and Speech Processing Workshop with NeurIPS,
volume 9, 2023.

Shiyao Li, Xuefei Ning, Ke Hong, Tengxuan Liu, Luning Wang, Xiuhong Li, Kai Zhong, Guohao
Dai, Huazhong Yang, and Yu Wang. LLM-MQ: Mixed-precision quantization for efficient LLM
deployment. In Advances in Neural Information Processing Systems (NeurIPS) ENLSP Workshop,
2024a.

Yanwei Li, Yuechen Zhang, Chengyao Wang, Zhisheng Zhong, Yixin Chen, Ruihang Chu, Shaoteng
Liu, and Jiaya Jia. Mini-gemini: Mining the potential of multi-modality vision language models.
arXiv preprint arXiv:2403.18814, 2024b.

Baohao Liao and Christof Monz. Apiq: Finetuning of 2-bit quantized large language model. arXiv
preprint arXiv:2402.05147, 2024.

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. AWQ:
Activation-aware weight quantization for LLM compression and acceleration. arXiv preprint
arXiv:2306.00978, 2023.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. LLM-QAT: Data-Free Quantization Aware
Training for Large Language Models. arXiv preprint arXiv:2305.17888, 2023.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Shuming Ma, Hongyu Wang, Lingxiao Ma, Lei Wang, Wenhui Wang, Shaohan Huang, Li Dong,
Ruiping Wang, Jilong Xue, and Furu Wei. The era of 1-bit llms: All large language models are in
1.58 bits. arXiv preprint arXiv:2402.17764, 2024a.

Yuexiao Ma, Taisong Jin, Xiawu Zheng, Yan Wang, Huixia Li, Yongjian Wu, Guannan Jiang, Wei
Zhang, and Rongrong Ji. Ompq: Orthogonal mixed precision quantization. In Proceedings of the
AAAI conference on artificial intelligence, volume 37, pp. 9029–9037, 2023.

Yuexiao Ma, Huixia Li, Xiawu Zheng, Feng Ling, Xuefeng Xiao, Rui Wang, Shilei Wen, Fei Chao,
and Rongrong Ji. Affinequant: Affine transformation quantization for large language models.
arXiv preprint arXiv:2403.12544, 2024b.

Donald W Marquardt. An algorithm for least-squares estimation of nonlinear parameters. Journal of
the society for Industrial and Applied Mathematics, 11(2):431–441, 1963.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Markus Nagel, Rana Ali Amjad, Mart Van Baalen, Christos Louizos, and Tijmen Blankevoort. Up or
down? adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pp. 7197–7206. PMLR, 2020.

Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, and Yoon
Kim. Mitigating the impact of outlier channels for language model quantization with activation
regularization. arXiv preprint arXiv:2404.03605, 2024.

Haotong Qin, Mingyuan Zhang, Yifu Ding, Aoyu Li, Zhongang Cai, Ziwei Liu, Fisher Yu, and
Xianglong Liu. Bibench: Benchmarking and analyzing network binarization. arXiv preprint
arXiv:2301.11233, 2023.

Haotong Qin, Xudong Ma, Xingyu Zheng, Xiaoyang Li, Yang Zhang, Shouda Liu, Jie Luo, Xianglong
Liu, and Michele Magno. Accurate LoRA-Finetuning Quantization of LLMs via Information
Retention. arXiv preprint arXiv:2402.05445, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. PB-LLM: Partially binarized large
language models. arXiv preprint arXiv:2310.00034, 2023.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Gemini Team, Rohan Anil, Sebastian Borgeaud, Yonghui Wu, Jean-Baptiste Alayrac, Jiahui Yu, Radu
Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, et al. Gemini: a family of highly capable
multimodal models. arXiv preprint arXiv:2312.11805, 2023.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023a.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open foundation
and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023b.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better LLM quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023a.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks. arXiv preprint arXiv:2309.17453, 2023b.

Yuhui Xu, Lingxi Xie, Xiaotao Gu, Xin Chen, Heng Chang, Hengheng Zhang, Zhensu Chen,
Xiaopeng Zhang, and Qi Tian. Qa-lora: Quantization-aware low-rank adaptation of large language
models. arXiv preprint arXiv:2309.14717, 2023.

Z Yao, RY Aminabadi, M Zhang, X Wu, C Li, and Y Zeroquant He. Efficient and affordable
post-training quantization for large-scale transformers. URL https://arxiv. org/abs/2206.01861,
2022.

Zhewei Yao, Zhen Dong, Zhangcheng Zheng, Amir Gholami, Jiali Yu, Eric Tan, Leyuan Wang,
Qijing Huang, Yida Wang, Michael Mahoney, et al. Hawq-v3: Dyadic neural network quantization.
In International Conference on Machine Learning, pp. 11875–11886. PMLR, 2021.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer language
models. arXiv preprint arXiv:2205.01068, 2022.

Yiyuan Zhang, Kaixiong Gong, Kaipeng Zhang, Hongsheng Li, Yu Qiao, Wanli Ouyang, and
Xiangyu Yue. Meta-transformer: A unified framework for multimodal learning. arXiv preprint
arXiv:2307.10802, 2023.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A LIMITATIONS

Though the mixed-precision framework significantly improves the quantization performance of
LLMs, the current out-of-the-box deployment tools still cannot well support efficient mixed-precision
computing. Meanwhile, the support for 1/2/3-bit inference on GPUs remains limited, which affects
the inferencing advantages of low-bit models. We believe there is significant room for improvement
in the hardware efficiency of mixed-precision LLMs in the future.

B SLIM-LLM IMPLEMENTATION

B.1 DETAILED IMPLEMENTATION

In this section, we present the specific implementation details of SliM-LLM, which utilizes
GPTQ (Frantar et al., 2022) as its backbone for mixed-precision quantization and incorporates
both SBA and SQC. SliM-LLM+ is consistent with SliM-LLM in SBA computations but does
not include the SQC component, instead retaining learnable weight clipping (LWC) approach in
OmniQuant (Shao et al., 2023) for gradient optimization.

Algorithm 2 Detailed functions in SliM-LLM.

func SBA(w,xF ,H
in, β,N)

1: G{·} := {0} // initialize group bit-width
2: e := inf // bit-width searching error
3: p∗ := 0 // number of (N -1)-bit and (N+1)-

bit
4: l := N − 1 // lower bit-width
5: h := N + 1 // higher bit-width
6: S{·} := average(w2

[Hin]2diag
)

7: for p = 1, 2, ..., [m2β] do
8: ŵb

l := fakequant(wb
b∈top_k_min(p), l,)

9: ŵb
h := fakequant(wb

b∈top_k_max(p), h,)

10: ŵb
N := fakequant(wb

b∈others, N,)

11: ŵq := ŵb
l ∪ ŵb

l ∪ ŵb
h

12: if Dkl (xw
⊤ || xŵ⊤

q) < e then
13: e := Dkl (xw

⊤ || xŵ⊤
q)

14: p∗ := p
15: end if
16: end for
17: G{l} := S{top_k_min(p∗) = l}
18: G{h} := S{top_k_max(p∗) = h}
19: G{N} := S{middle_k([m2]− 2p∗) = N}
20: return G{·}

func SQC(wb
s,w

b
us, gb)

1: wmax := max(wb
s ∪wb

us)
2: wmin := min(wb

s ∪wb
us)

3: λ := 0.1
4: n := 50
5: e := inf // scale searching error
6: ∆∗ ∈ Rn×1 // per-channel scale
7: z∗ ∈ Rn×1 // per-channel zero point
8: for τ ∈ [1− λ, 1 + λ] with 2n slices do
9: ∆ := τ(wmax − wmin)/(2

gs − 1)
10: z := −⌊(τwmin)/∆⌉
11: ŵb

s := fakequant(wb
s, gb,∆, z)

12: ŵb
us := fakequant(wb

us, gb,∆, z)
13: Ls := ||wb

s − ŵb
s||2

14: Lus := ||wb
us − ŵb

us||2
15: if Ls + Lus < e then
16: e := Ls + Lus

17: z∗ := z
18: ∆∗ := ∆
19: end if
20: end for
21: ŵb

q := fakequant(wb, gb,∆
∗, z∗)

22: return ŵb
q

Algorithm 2 primarily encompasses the core details of both SBA and SQC. In SBA, the importance
of each group is determined by sorting the average salience of groups, followed by a bi-pointer
search that increases the number of (N − 1)-bit and (N + 1)-bit groups to maintain their quantity
equilibrium. The optimization function then utilizes the KL divergence from Eq. (4) to determine the
optimal mixed-precision ratio. SQC, on the other hand, enhances its information by amplifying the
quantization error of unstructured weight groups. When the last two parameters, scale and zero point,
in the fakequant(·) function are omitted, the default values from Eq. (1) are used.

B.2 MIXED BIT STORAGE AND COMPUTING

We developed a framework for storage and inference deployment supporting mixed-precision quanti-
zation based on AutoGPTQ. The deployment process is as follows. After completing mixed-precision

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

wT

m

n

wint

n

group1

group2

… …

group3

1 1 1 0 0 1 …
1 1 0 0 1 0
0 …

0 1 0 0
0 1 1 1 Int-3bit

Int-2bit
…

0.2

0.1

-0.2

-0.3

-0.1

0.6

-0.4

0.6

0.5

…

FP16-3bit

FP16-2bit

…

…

quantize

32bit

rows

rows

quantize

m*

… …

FP16 to 2bit

FP16 to 3bit

Int-4bit

Int-2bit

Int-3bit

FP16 to 4bit

pack

pack

group1

group2

group3

Figure 6: The memory layout shown in the figure is modified based on AutoGPTQ. The transposed
original weights w⊤ ∈ Rm×n are still divided into multiple groups along the row direction after
quantization. The elements within each group are vertically packed into integers and then reassembled
into ŵint. The figure employs corresponding colors to indicate how each original number is mapped
to a specific position within the packed integers after quantization, which finally generates ŵint ∈
Rm∗×n, where m∗ is compressed from m by packing several low-bit number. Similarly, ẑint is also
packed into integers to save memory.

quantization with SliM-LLM, it outputs scales, zeros, and group-wise bit-width generated during
the quantization process to identify the quantization parameters and precision of each group in the
Linear Projection weights. AutoGPTQ then packs the weights and zeros into integer-compressed
representations (denoted by ŵint and ẑint respectively) based on the precision of different groups,
significantly reducing storage and operational bit-width. After the quantized weights are packed,
AutoGPTQ loads the model onto the GPU, where the mixed precision quantization kernel on the
GPU performs dequantization on the weights and zeros of different groups and calculation with input
activation, ultimately producing the final output.

In the mixed-precision deployment of AutoGPTQ, the weight memory layout is organized by group,
with each group sharing the same precision, which is shown in Fig. 6. Within each group, elements
with the same precision are packed as integers, eliminating the need for additional padding, which
saves space. Given that the bit-width of integers is a power of 2, this is compatible with group size
that is also a power of 2. For instance, even with the odd-bit such as 3-bit storage, integers can store
these numbers without padding, as the commonly used group size is 128, a multiple of almost all
definition of integer type. This ensures that elements within a group fully utilize the space provided
by integers, without storing numbers of different precision within the same integer. ẑint follow the
original logic of AutoGPTQ but are packed with a uniform precision along the channel direction
for ease of use. Other tensors, like scales, remain in the same floating-point format to ensure the
correctness of dequantization calculations.

To indicate the precision of each group, we also introduce an additional array to store bit-width of
each group, where each number is represented as a 2-bit value aggregated into integers, marking the
quantization precision of each group for accurate reconstruction. We use cumulative calculations to
determine the starting index of each group, ensuring correctness despite changes in ŵint height and
starting indices caused by varying precision. Using the above methods to store the quantized weights,
zeros, and additional bit arrays effectively reduces memory usage during model storage and loading,
thereby lowering the resource overhead required for model deployment.

Once the weights are packed, we follow the modified AutoGPTQ logic for GPU inference. The GPU
processes and dequantizes the weights group by group for computation. During GPU computation,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

(a) Layer-5

Query Key Value Out FC2

(b) Layer-10

Query Key Value Out FC2

(c) Layer-15

Query Key Value Out FC2

Figure 7: Error curves of SBA for select weights in the 5th, 10th, and 15th layers of OPT-1.3B.

a thread dequantizes a segment of continuous memory data in one column of ŵint and performs
vector dot product calculations with the input activation shared within the block, accumulating the
results in the corresponding result matrix. When threads form a logical block, the block handles the
computation and reduction of a continuous channel region. We complete the linear layer computation
by iterating through all logical blocks. Leveraging AutoGPTQ’s initial logic and CUDA Warp’s
32-thread units, we ensure similar code structure and data access logic for threads within each warp
when group size is 128. This method was primarily conducted to validate feasibility os SliM-LLM,
demonstrating that the mixed precision quantization with integer packing does not cause additional
computational overhead, indicating the efficiency and accuracy advantage of SliM-LLM. In summary,
by dividing weight into several structured groups with mixed precision and employing a reasonable
GPU utilization strategy, Slim-LLM balances performance and efficiency.

C SEARCHING DETAILS OF GROUP-WISE SALIENCE-DETERMINED BIT
ALLOCATION

We optimize the mixed-precision configuration based on the output information entropy (KL-
divergence), searching for the optimal compensation bit-width ratio as shown in Eq. (4).

Initially, we rank each group by their average salience, a metric for quantization, and employ a
double-pointer that moves simultaneously from both the beginning (lowest salience) and end (highest
salience) of the sorted list. This ensures an equal number of groups at low and high bit-widths,
effectively balancing the global average bit-width compensation. We then calculate the relative
entropy under the corresponding precision ratio and search for the optimal ratio. Fig 7 displays the
search error curves related to the 2nd, 10th, and 15th Transformer layers in the OPT1.3B model,
showcasing the search curves for certain self-attention layers (Query, Key, Value, FC2).

Due to the limited range of the search, extreme scenarios involve either a half (N − 1)-bit and half
(N + 1)-bit without N -bit or all groups being N -bit (uniform precision). Fig 7 demonstrates that
lower quantization errors can be achieved under mixed-precision compared to quantization at the
uniform bit-width. We also find that multiple low-error precision combinations are possible within a
group of weights, allowing SBA to flexibly select the optimal ratio through its versatile search.

D EVLUATIION FUNCTION OF SBA

In Tab. 6, we employ various objective functions and compare their performance in SBA across
different models. Compared to the commonly used Mean Squared Error (MSE) loss, Kullback-Leibler
(KL) divergence ensures the distribution of critical activation positions within the model from an
information entropy perspective, making it a superior choice for the bit-width allocation strategy in

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

SBA for the OPT and LLaMA models. When computing KL divergence in this context, we first
transform the layer outputs into probability distributions using softmax.

Table 6: Comparison of MSE and KL Divergence in SBA.
Method # W OPT-1.3B OPT-2.7B OPT-6.7B OPT-13B LLaMA-7B LLaMA2-7B

MSE 2-bit 32.50 27.58 15.14 13.28 21.94 16.86
KL Divergence 2-bit 30.71 13.26 11.27 10.12 14.58 16.01

E EXTENSION ABLATION ON SQC

In this section, we visualize the effectiveness of SQC in mitigating the degradation of information in
locally salient weights. We observed the absolute error of weights in a randomly selected channel
of the quantized OPT-1.3B model. As shown in Fig. 8, the overall absolute error of the weights
post-quantization with a standard quantizer was 0.0055, while with SQC it was reduced to 0.0039.
This further demonstrates that the search parameter τ , as applied in Eq. (5), effectively optimizes the
quantizer parameters, thereby reducing quantization errors.

More importantly, SQC effectively perceives the information of locally salient weights, as indicated
by the red regions in Fig. 8. Compared to the vanilla quantizer, SQC significantly reduces the
error of salient weights. Specifically, the prominent weights at indices 375 in Fig. 8(a) show higher
quantization errors, while in Fig. 8(b), this error is effectively reduced. This confirms SQC’s ability
to perceive locally salient weights, effectively preventing the degradation of critical information.

F EXTENSION ABLATION ON QUANTIZATION GROUP-SIZE

To investigate the impact of different group sizes on the quantization effectiveness of SliM-LLM,
we evaluated performance with 256 and 512 columns at a 3-bit level, observing that larger group
sizes enhance GPU efficiency during inference. The findings suggest that increased group granularity
does not substantially elevate perplexity across four models, indicating that SliM-LLM is robust and
conducive to more efficient deployment methods. In contrast, at 2-bit, we assessed group sizes of
64 and 32 columns. With finer group granularity, the models displayed reduced perplexity. This
is attributed to smaller groups providing more detailed data representation and utilizing additional
quantization parameters, although they also raise computational and storage demands. A group size
of 128 strikes a better balance between efficiency and quantization performance.

G EXTENSION ON SALIENCE CHANNEL CLUSTERING

G.1 DISCUSSION OF THEOREM 1

Theorem 1. Given the input calibration activation x ∈ Rt×m with an outlier channel x∗
:,p ≫

x:,j ,∀j ∈ [0,m], j ̸= p at the position of channel-p. The trace elements of H = x⊤x will show
great outlier value at (p, p), where Hp,p ≫ Hj,j ,∀j ∈ [0,m], j ̸= p, as Hp,p is produced by
[x∗⊤

:,p x
∗
:,p] =

∑t
i=0 x

∗2
i,p, which further leads to the parameter salience larger at the pth channel of

weight, where δ:,p > δ:,k, δ:,k =
w2

:,k

[H−1]2k,k
,∀k ∈ [0, t], k ̸= p.

Proof. Given x ∈ Rt×m with outlier channel x∗
:,p, p ∈ [0,m], and other elements with small

magnitude xi,j , where x∗
q,p ≫ xi,j and i, j ̸= q, p. We can get the Hessian matrix with Levenberg-

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

(a) Quantization Error of Vanilla Quantizer

(b) Quantization Error of SQC

Average absolute error: 0.0055

Average absolute error: 0.0039

E
rr
o
r

E
rr
o
r

Figure 8: Absolute channel error of the weight of the OPT-1.3B model. The red line represents the
quantization error for the locally salient weights, and the lightmauve represents other weights. (a)
Vanilla quantizer error on the 794th channel of OPT-1.3B. (b) SQC error on the 794th channel of
OPT-1.3B

Table 7: Ablation results on OPT-6.7B, LLaMA-7B, LLaMA-2-7B, LLaMA-3-8B with SliM-LLM
under different group size (#g denotes the group size).

Precision / PPL↓ #g OPT-6.7B LLaMA-7B LLaMA-2-7B LLaMA-3-8B

3-bit
512 11.65 6.96 6.69 8.87
256 11.33 6.92 6.94 8.14
128 11.27 6.40 6.24 7.62

2-bit
128 14.41 14.58 16.01 39.66

64 13.95 13.41 15.02 29.84
32 12.47 11.91 11.95 16.93

Marquardt (Marquardt, 1963) approximation in Eq. (3):

x11 x12 x13 · · · x1m

x21 x22 x23 · · · x2m

...
...

...
. . .

...
...

...
... x∗

q,p

...
...

...
...

. . .
...

xt1 xt2 xt3 · · · xtm


·



x11 x21 · · · xt1

x21 x22 · · · xt2

...
...

. . .
...

...
... x∗

q,p

...
...

...
. . .

...
x1m x2m · · · xtm


=


x2
11 + .. · · · · · · · · ·

...
. . . · · ·

...
...

... x∗
1,p

2 + ..
...

· · · · · · · · ·
. . .


(6)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

where [x∗⊤
:,p x

∗
:,p] will appears at position Hp,p. And following SparseGPT (Frantar & Alistarh,

2023), the inverse matrix of H can be formulated as:

δi,j =
w2

i,j

[diag((x⊤x+ λI)−1)]2
(7)

where (x⊤x+λI)−1 is the new representation of Hessian matrix H for the layer-wise reconstruction
problem, and λ is the dampening factor for the Hessian to prevent the collapse of the inverse
computation. Additionally, in accordance with the configuration in LLMs (Frantar & Alistarh, 2023;
Frantar et al., 2022; Sun et al., 2023), the value of λ set is extremely small (λ ≤ e−1), while the
values located at the diagonal of Hessian are large. Therefore, only considering the influence of
diagonal elements (Sun et al., 2023), we can further approximate salience as:

δi,j =
w2

i,j

[diag((x⊤x+ λI)−1)]2
≈

w2
i,j

[(diag(x⊤x))−1]2
= (wi,j · ||xj ||22)2 (8)

Here the diagonal of x⊤x is diag(||xj ||22), and ||xj ||2 evaluates the ℓ2 norm of jth channel across
different tokens. Consequently, it can be summarized that when there is an outlier channel-p, the
value of ||xp||2 is primarily influenced by [x∗⊤

:,p x
∗
:,p]. Additionally, since the activation values are

relatively large and the differences in weight values are comparatively small, the pth channel of
weights will also exhibit salience.

G.2 DISTRIBUTION OF SALIENCE, ACTIVATION AND WEIGHT MAGNITUDE

Fig. 9 illustrates the distribution of salience among certain weights in LLMs. This section provides
additional examples to demonstrate how the distribution of weights and input activation characteristics
influence the salience of parameters in LLMs. The figure captures seven linear projections in the multi-
head self-attention (MHA) and feed-forward block (FFB) layers of the 2nd and 10th Transformer
modules in the LLaMA-7B model.

(a) layer-2

Salience

Activation

Weight

Query Key Value Out Up Gate Down

Salience

Activation

Weight

(b) layer-10

Figure 9: Salience, activation and weight distribution in the 2nd and 10th layers of LLaMA-7B

In line with previous findings (Nrusimha et al., 2024; Xiao et al., 2023a), activations demonstrate
particularly marked outlier phenomena on anomalous tokens and channels, with extremes differing
by more than two orders of magnitude. Notably, distinct anomalous channels are present in the
MHA’s Query, Key, and Value layers, where outliers vary significantly across different tokens. This

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

pattern is consistent in the FFB layers. We observe that disparities in weight magnitudes are less
pronounced than those in activation, thus exerting a reduced impact on outlier channels. Moreover,
weights distribute structurally along rows or columns (Dettmers et al., 2023; Huang et al., 2024a),
affecting the overall distribution of salience from a row-wise perspective (Fig. 9). However, the most
prominent salience is predominantly driven by activation across channels (column-wise).

G.3 HESSIAN DIAGONAL CLUSTERING

Sec. 3.2.1 demonstrates that outlier tokens in input activations result in significant values at the
corresponding positions along the diagonal of the weight Hessian matrix. Additionally, due to
the token sink phenomenon (Xiao et al., 2023b; Nrusimha et al., 2024), areas around significantly
activated key tokens exhibit increased salience, creating clusters of salient regions along the Hessian
matrix diagonal. To further elucidate this phenomenon, Fig. 10 shows the values along the diagonal of
the Hessian matrix for selected weights in the 2nd and 10th layers of the LLaMA-7B model. Within
this diagonal, certain positions display pronounced values (indicated in red), whereas others are
relatively moderate. In the attention aggregation layer of the 10th layer, the token sink phenomenon
results in a pronounced convergence of significant values along the Hessian matrix diagonal, with deep
red areas indicating regional clustering. These findings reinforce the influence of input activations on
the diagonal of the Hessian matrix, subsequently leading to a clustering phenomenon in the salience
distribution of weights across channels.

Query Key ValueDown Out

(a) layer-2

(b) layer-10

Figure 10: Hessian diagonal magnitude in attention layers of 2nd and 10th layers of LLaMA-7B

H MORE COMPARISONS

In this section, we provide supplementary experiments for SliM-LLM. Tab. 8 displays the comparative
results of SliM-LLM and SliM-LLM+ with other methods on the OPT series models. Tab. 9 shows
the performance of SliM-LLM when quantizing the LLaMA family models on the C4 dataset,
while Tab. 10 also compares the results of SliM-LLM+ on the C4 dataset.In Tab. 11, we compared
the quantization results of GPTQ, AWQ, and SliM-LLM at 2-bit on the Gemma2 and Mixtral
models, demonstrating the greater stability of SliM-LLM across a wider range of model structures.
Additionally, in Tab. 12, we supplemented the 4-bit results of different quantization methods in the
LLaMA series models, showing that SliM-LLM and SliM-LLM+ exhibit the smallest quantization
errors at practical 4-bit levels. To provide a comprehensive evaluation across a broader set of
benchmarks, we further compared the quantization results on MMLU and MathQA in Tab. 13.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Quantization results of OPT Models on WikiText2 (group size is 128).
#W PPL↓ Method 1.3B 2.7B 6.7B 13B 30B 66B

16-bit - 14.63 12.47 10.86 10.12 9.56 9.34

3-bit

RTN 1.2e2 3.0e2 23.54 46.03 18.80 1.4e6
GPTQ 16.47 13.69 11.65 10.35 9.73 10.96
AWQ 16.32 13.58 11.41 10.68 9.85 9.60
QuIP 16.21 13.79 11.51 10.50 9.75 9.59

SliM-LLM 15.91 13.26 11.27 10.26 9.70 9.48
OmniQuant 15.72 13.18 11.27 10.47 9.79 9.53
AffineQuant 15.61 12.98 11.18 10.51 9.81 -
SliM-LLM+ 15.58 12.84 11.18 10.44 9.67 9.51

2-bit

RTN 1.3e4 5.7e4 7.8e3 7.6e4 1.3e4 3.6e5
GPTQ 1.1e2 61.59 20.18 21.36 12.71 82.10
AWQ 47.97 28.50 16.20 14.32 12.31 14.54
QuIP 41.64 28.98 18.57 16.02 11.48 10.76

PB-LLM 45.92 39.71 20.37 19.11 17.01 16.36
SliM-LLM 30.71 24.08 14.41 13.68 11.34 10.94
OmniQuant 23.95 18.13 14.43 12.94 11.39 30.84
SliM-LLM+ 24.57 17.98 14.22 12.16 11.27 14.98

Table 9: Quantization results of LLaMA Family with statistic quantizer on C4 (group size is 128).
#W PPL↓ Method 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B 3-8B 3-70B

16-bit - 7.08 6.61 5.98 5.62 6.97 6.46 5.52 9.22 6.85

3-bit

APTQ 6.24 - - - - - - - -
RTN 8.62 7.49 6.58 6.10 8.40 7.18 6.02 1.1e2 22.39
AWQ 7.92 7.07 6.37 5.94 7.84 6.94 - 11.62 8.03
GPTQ 7.85 7.10 6.47 6.00 7.89 7.00 5.85 13.67 10.52
SliM-LLM 6.14 6.05 6.33 5.94 7.74 5.26 5.09 13.10 8.64

2-bit

RTN 1.0e3 4.5e2 99.45 17.15 4.9e3 1.4e2 42.13 2.5e4 4.6e5
AWQ 1.9e5 2.3e5 2.4e5 7.5e4 1.7e5 9.4e4 - 2.1e6 1.4e6
GPTQ 34.63 15.29 11.93 11.99 33.70 20.97 NAN 4.1e4 21.82
QuIP 33.74 21.94 10.95 13.99 31.94 16.16 8.17 1.3e2 22.24
PB-LLM 49.73 26.93 17.93 11.85 29.84 19.82 8.95 79.21 33.91
SliM-LLM 32.91 13.85 11.27 10.95 16.00 9.41 7.01 1.1e2 15.92

Table 10: Quantization results of LLaMA-1 and LLaMA-2 models with learnable quantizer on C4.
#W PPL↓ Method 1-7B 1-13B 1-30B 1-65B 2-7B 2-13B 2-70B

16-bit - 7.08 6.61 5.98 5.62 6.97 6.46 5.52

3-bit
OmniQuant 7.75 7.05 6.37 5.93 7.75 6.98 5.85
AffineQuant 7.75 7.04 6.40 - 7.83 6.99 -
SliM-LLM+ 7.75 6.91 6.36 5.96 7.71 6.90 5.85

2-bit
OmniQuant 12.97 10.36 9.36 8.00 15.02 11.05 8.52
AffineQuant 14.92 12.64 9.66 - 16.02 10.98 -
SliM-LLM+ 14.99 10.22 9.33 7.52 18.18 10.24 8.40

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 11: PPL Comparison on Gemma2 and Mixtral.
Model/Evaluation Method PPL (wikitext2)

Gemma2-9B
GPTQ 2-bit 186.77
AWQ 2-bit 217.83

SliM-LLM 2bit 26.30

Mixtral 8x7B
GPTQ 2-bit 16.38
AWQ 2-bit 3.2e5

SliM-LLM 2bit 7.44

Table 12: The PPL results of our proposed method and other methods under 4bit quantization.
Method LLaMA-7B LLaMA-13B LLaMA2-7B LLaMA2-13B LLaMA3-8B

FP16 5.68 5.09 5.47 4.88 5.75
AWQ 5.81 5.30 5.62 4.97 6.63
GPTQ 5.85 5.20 5.61 4.98 6.50
SliM-LLM 5.83 5.16 5.59 4.95 6.42

Omniquant 5.77 - 5.58 - -
SliM-LLM+ 5.75 - 5.57 - -

Table 13: The results(%) on MMLU and MathQA for multiple quantized LLaMA models.
Model Method Humanities Social Sciences STEM Other MMLU MathQA

LLaMA-7B
GPTQ 2-bit 24.87 21.84 21.79 24.01 23.32 21.11
AWQ 2-bit 24.21 21.71 21.25 23.98 22.95 22.21

SliM-LLM 2bit 24.94 23.60 23.40 25.50 25.10 23.74

LLaMA-13B
GPTQ 2-bit 24.23 23.20 22.99 24.78 23.85 21.68
AWQ 2-bit 24.17 31.07 28.61 25.14 26.89 21.98

SliM-LLM 2bit 25.12 31.74 29.19 26.17 27.05 23.17

LLaMA2-7B
GPTQ 2-bit 25.02 22.13 22.61 23.17 23.44 21.07
AWQ 2-bit 25.12 22.79 24.26 24.01 24.51 19.06

SliM-LLM 2bit 26.60 23.23 25.70 25.70 25.81 22.55

LLaMA2-13B
GPTQ 2-bit 23.91 27.17 26.10 25.78 25.53 20.87
AWQ 2-bit 24.17 31.07 28.61 25.14 26.89 19.53

SliM-LLM 2bit 26.27 32.20 29.98 26.46 27.34 23.48

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

I REAL DIALOG EXAMPLES

In this section, we show some dialogue examples of LLaMA-2-13B and Vicuna-13B with SliM-
LLM-2bit and GPTQ-2bit in Fig. 11.

The eight planets in Solar System are Mercury, ____Prompt:
, 10.2. The eight pill o free games of p. 62.2. The way we do this.GPTQ-2bit:
Venus, Earth, Mars, Jupiter, Saturn, Uranus and Neptune.Slim-LLM-2bit:
The tallest and most famous tower in France is ____Prompt:
is 350 and most recently.GPTQ-2bit:
320 meters high.Slim-LLM-2bit:
The 2012 Summer Olympic was held in ___Prompt:
The 2012 Summer Olympic was held in 1016 (a.185) and the 775,000 km from
each.

GPTQ-2bit:

2012 in London, the United Kingdom.Slim-LLM-2bit:

LLaMA-2-13B

What are the capitals of Brazil, Mexico and France?Prompt:

What is the RER score?GPTQ-2bit:
The capital of Brazil is Brasília, the capital of Mexico is Mexico City, and the capital
of France is Paris.

Slim-LLM-2bit:

What are the ancient civilizations in Europe?Prompt:

I am trying to find a book to nook over the life of to 300,000 or so. The ancient
civilization is the one in which history books be pop and I have a be, oh, do you
know the one the Mayan, the one of the total for Dake.

GPTQ-2bit:

The ancient civilizations in Europe include the Roman Empire, the Byzantine Empire,
and the Ottoman Empire.

Slim-LLM-2bit:

What are the logical circuits?Prompt:

What is the order of the logical cumulated?
What is the best strategy to do in a single?
What is the most popular to be eaten? What are the most sought?

GPTQ-2bit:

The logical circuits are the basic components for building the logical functions,
which are required for digital computing. These circuits use logic structures and
devices that allow the use of Boolean and multiple logic to implement the functional
requirements as defined by a problem solving method of computer. In digital
computing, circuits perform the logical tasks required for solving problems.

Slim-LLM-2bit:

Vicuna-13B

Figure 11: Some examples of conversations. LLaMA-2-13B and Vicuna-13B are chosen to show the
case of language supplementary and Q&A ability. And GPTQ-2bit is selected as the comparison. We
color the text to show the reasonable or inappropriate responses.

24

	Introduction
	Related Work
	SliM-LLM
	Preliminaries
	Salience-Determined Bit Allocation
	Spatial Distribution of Global Salience
	Salience-Determined Bit Allocation for Structured Group

	Salience-Weighted Quantizer Calibration
	Discrete Distribution of Local Salience
	Salience-Weighted Quantizer Calibration for Local Salience Awareness

	Implementation Pipeline of SliM-LLM

	Experiments
	Main Results
	Ablation Results
	Efficient Inference on Device

	Conclusion
	Limitations
	SliM-LLM Implementation
	Detailed Implementation
	Mixed Bit Storage and Computing

	Searching Details of Group-Wise Salience-Determined Bit Allocation
	Evluatiion Function of SBA
	Extension Ablation on SQC
	Extension Ablation on Quantization Group-Size
	Extension on Salience Channel Clustering
	Discussion of Theorem 1
	Distribution of salience, activation and weight magnitude
	Hessian Diagonal Clustering

	More Comparisons
	Real Dialog Examples

