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Multi-scale Regional Attention Deeplab3-+: Multiple
Myeloma Plasma Cells Segmentation in Microscopic Images
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Abstract

Multiple myeloma cancer is a type of blood cancer that happens when the growth of
abnormal plasma cells becomes out of control in the bone marrow. There are various ways
to diagnose multiple myeloma in bone marrow such as complete blood count test (CBC)
or counting myeloma plasma cell in aspirate slide images using manual visualization or
through image processing technique. In this work, an automatic deep learning method
for the detection and segmentation of multiple myeloma plasma cell have been explored.
To this end, a two-stage deep learning method is designed. In the first stage, the nucleus
detection network is utilized to extract each instance of a cell of interest. The extracted
instance is then fed to the multi-scale function to generate a multi-scale representation.
The objective of the multi-scale function is to capture the shape variation and reduce the
effect of object scale on the cytoplasm segmentation network. The generated scales are then
fed into a pyramid of cytoplasm networks to learn the segmentation map in various scales.
On top of the cytoplasm segmentation network, we included a scale aggregation function
to refine and generate a final prediction. The proposed approach has been evaluated on the
SegP(C2021 grand challenge and ranked second on the final test phase among all teams.
Keywords: Myeloma Plasma Cell, Segmentation, Attention Deeplabv3+, Deep Learning,
SegPC2021, Grand Challenge

1. Introduction

Cancer happens when the cells start to grow out of control and spread to healthy surround-
ing tissue. Myeloma, also known as multiple myeloma, is a type of blood cancer that arises
from plasma cells in the bone marrow Rajkumar et al. (2014); Guyton and Hall (2006).
More specifically, bone marrow is a kind of soft tissue found inside some part of larger
bones in the human body. Different types of blood cells such as red blood cells, white
blood cells, and platelets are made in the bone marrow Hideshima et al. (2007). Plasma
cells developed by the B lymphocytes (type of white blood cells) form part of the body’s
immune system. To fight infections, antibodies, also known as immunoglobulin, are pro-
duced by normal plasma cells. In myeloma cancer plasma cells crow in the bone marrow
in a way there is no space for normal red cells, white cells, and platelets. Myeloma begins
to develop when the DNA is damaged or changed during the production of new plasma
cells. These abnormal plasma cells (myeloma cells) will spread in a different part of bone
marrow and produce more abnormal cells. Myeloma cells will produce a large number of
paraproteins (type of antibody) which are useless and unable to fight the infections Bird
et al. (2011). Unlike other cancers, myeloma will not form a tumor or lump but it will
lead to the accumulation of abnormal plasma cells in the bone marrow and paraproteins
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Figure 1: Some samples of myeloma plasma cells microscopy images Gupta et al. (2021),
where the myloma cancer cells are detected and highlighted with colored bound-
ary.

in the body. Multiple myeloma is referred to the situation when myeloma cancers affect
multiple parts of the body Alexanian and Dimopoulos (1994). Since myeloma cell can be
differentiated from normal plasma cells based on histology and morphological features, it is
a common method to diagnose multiple myeloma cancer through the aspirate slide images
Kyle et al. (2007); Palumbo et al. (2009); Nau and Lewis (2008). In this method, at first,
blood samples will be extracted from bone marrow by using the injection of the needle
onto the bone. The extracted blood sample will be transferred to a slide and stained using
hematoxylin and eosin. Abnormal plasma cells will be detected and marked using manual
microscopic visualization (sample is shown in figure 1). Finally, based on the estimation of
the normal plasma cells in bone marrow, the presence or absence of myeloma cancer will
be concluded Minges Wols (2001).

Although manual inspection of stained slide images is a gold standard of diagnosis
of myeloma cancer, it is time-consuming and prone to inter and intraobserver variation.
These limitations could be compensated by the use of advanced digital image processing
techniques such as object detection and segmentation. Automation of the abnormal plasma
cell detection alongside expert pathologist decision could lead to the reduction of diagnosis
time and workload of the pathologist. To this end, in this paper, we propose a deep network
that utilizes a pyramid of Attention Deeplabv3+ model in a regional-based manner to
segment each instance of a myeloma cancer cell. We utilize our approach on the multiple
myeloma plasma cell segmentation challenge which provided by Gupta et al. (2018, 2020);
Gehlot et al. (2020); Gupta et al. (2021). Our contribution is summarized as follows:

e Second ranking on the SegP(C2021 challenge for multiple myeloma cancer cell segmen-
tation.

e Regional base instance segmentation approach.

e guiding cytoplasm segmentation network with additional nucleus mask as a supervi-
sory signal.
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2. Related Work

Advanced image processing and machine learning methods such as image classification,
object detection, and segmentation could have promising applications in various medical
domains Azad et al. (2019); Asadi-Aghbolaghi et al. (2020); Feyjie et al. (2020). Detection
and segmentation of abnormal cells in microscopic images have been proposed by several re-
searchers in recent works. For instance, Vyshnav et al. used a deep learning-based approach
for multiple myeloma cancer detection in stained microscopic images. They compared the
performance of Mask R-CNN and U-Net in segmentation and inferred that Mask R-CNN
has superior performance than U-Net in myeloma cell segmentation Vyshnav et al. (2020).
Authors of Tehsin et al. (2019) used convolutional neural networks to classify the nor-
mal and abnormal plasma cells in stained microscopic images. For the classification task,
AlexNet Krizhevsky et al. (2012) model is utilized to extract features from microscopic
images, and then Support Vector Machine (SVM) applied to the extracted feature set to
classify the sample. The main novelty of this work was the pre-processing stage where they
used a median filter for each R, G, and B color channel individually and linear contrast
stretching for the color enhancement. Vuola et al. used Mask-RCNN and U-Net ensembled
for nuclei segmentation in microscopic images. They inferred that Mask-RCNN and U-Net
have similar results on the nucleus segmentation task. They reported that U-Net has better
performance in nucleus segmentation than Mask R-CNN in the term of similarity index. On
the other hand, the Mask R-CNN has better performance in the term of precision assess-
ment. Finally, they concluded that an ensembled model improves the model performance
in nucleus segmentation Vuola et al. (2019). Saeedizadeh et. al. Saeedizadeh et al. (2016).
used a bottleneck algorithm, modified watershed, and SVM for myeloma cell detection in
microscopic images. At first, using the color normalization technique they separated the
white blood cell from red blood cells. Then the thresholding technique is used to separate
the nucleus from the cytoplasm area. Further, the watershed and bottleneck algorithms are
exploited to separate the connected cells. Finally, by using the series of decision rules and
the use of an SVM classifier they achieved the sensitivity of 96.52% and precision of 95.28%
in recognition of myeloma cells Saeedizadeh et al. (2016). Even though the literature work
gained promising results, their applicability in the multiple myeloma cancer cell segmenta-
tion is limited due to the challenges such as overlap between cytoplasm’s of instances, the
fuzzy boundary of the cytoplasm, and overlaying of one nucleus on another cytoplasm in
microscopic images. To mitigate these limitations, we propose a regional attention deep
model to segment each cell with precise attention.

3. Methodology

A general diagram of the proposed structure is depicted in figure 2. The proposed methods
consist of two stages: in the first stage, the nucleus segmentation network extracts all
the nucleus instances. Then each instance fed into a multiscale cytoplasm segmentation
network. This network utilizes the Attention Deeplab3+ model to segment the cytoplasm
area. In the next subsections, we will elaborate on each part in more detail.
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Figure 2: Proposed regional Attention Deeplabv3+ model for multiple myeloma plasma
cells segmentation. The proposed method applies a U-net structure to learn the
segmentation map for each nucleus instance then it utilizes multi-scale attention
deeplabv3+ model to generate the segmentation mask for cytoplasm.
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3.1 Nucleus Segmentation

In the proposed architecture instead of jointly learning the segmentation of the nucleus and
cytoplasm mask, we utilize a two-stage strategy. Our main motivation is to use the detected
nucleus instance as a supervisory signal for the cytoplasm instance segmentation to deal
with overlapped areas. In other words, the man objective of the first stage is to extract all
the possible nucleus instances from the input image. Then each extracted nucleus instance
alongside the cropped image patch is fed to the multi-scale instance selection function. The
instance selection function is simply an image cropping function with a predefined scale.
We use multi-scale to deal with varying cytoplasm scales. In figure 2, a sample of cropped
nucleus instances with varying scale sizes (0.5 to 3.0) is demonstrated. To learn the nucleus
segmentation map we train a U-net model using a nucleus annotation mask. It is worthwhile
to mention that we include the predicted nucleus instance alongside the cropped image as
an input for the cytoplasm segmentation network. The goal of this extra input is to guide
the network for the object of interest.

3.2 Cytoplasm Segmentation

In a regular auto-encoder decoder structure the encoder network consists of several convo-
lutions blocks followed by pooling operations to encode the object of interest in high-level
representation space. In this structure, due to the consecutive pooling operation, the spa-
tial dimension of the network may considerably decrease which can result in less discrim-
inated representation power for objects with varying scale. To mitigate this problem, the
Deeplabv3+ model utilized an atrous convolution structure. The atrous convolution applies
a set of upsampled convolutional kernels to describe the object of interest in higher receptive
filed size. To further improve the representation power of the Deeplab model, Azad et al.
Azad et al. (2020) proposed a two-level add-on attention mechanism to extract more infor-
mative features from the atrous convolutions. Where the first level attention mechanism
scales the representation space to highlight the more informative channels then the second
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Figure 3: Segmentation results of the proposed method for both nucleus and cytoplasm
area. The cropped image alongside the predicted nucleus mask is fed to the cy-
toplasm network to generate the instance cytoplasm segmentation. Using the
detected nucleus mask as a supervisory signal guides the model to separate in-
stances from the highly overlapped background.

attention mechanism utilizes a 3D convolution kernel between each atrous scale to learn
a robust non-learn feature set. In this section, we use the Attention Deeplabv3+ model
to tackle the cytoplasm segmentation problem. Cytoplasm boundary has a high overlap
with the background area and it requires careful attention to discriminate the cytoplasm
boundary from the background area. In our implementation, we fed the extracted nucleus
area alongside the image batch to the model to learn the instance segmentation mask. We
also apply the image histogram equalization method to normalize samples. Sample of the
estimated masks for the given nucleus instance is depicted in figure 3.

3.3 Aggregation function

Learning objects of interest in multi-scale fashion can produce a robust segmentation mask.
In this work, we apply the multi-scale technique on the input level. Consequently, the
model generates a multi-scale segmentation mask. The main objective of this multi-scale
technique is to tackle the problem of cytoplasm boundary. More specifically, the cytoplasm
boundary has a non-rigid shape. If the object boundary (cytoplasm of the detected nucleus)
is considerably small, then the models need precise attention around the nucleus boundary
with a small scale. On the other hand, if the boundary is big then the model needs big
attention to separate it from other instances. We solve this limitation by defining several
scales. Since the ultimate objective of the model is to produce a single segmentation mask
for each instance, we propose to use an aggregation function to combine and select a single
segmentation mask. The aggregation function can use the output of all scales to generate
a single prediction (like non-maxima suppression), however, in our experiment we observe
that selecting a scale for each instance can produce better performance than non-maxima
suppression. To perform this operation, we simply start from the lowest scale and calculate
the relation between the detected cytoplasm area and the nucleus area. If the ratio is higher
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than a threshold value then the next scale is evaluated. The process goes through the next
scales until finding the appropriate condition. In other words, how local the network should
focus to separate the object from the background and other instances.

3.4 Training Procedure

Our training procedure consists of two stages. In the first stage, we train the U-net model
to segment the nucleus from the input images. The training process takes into account
the training and validation set and learns the nucleus mask. We train the model for 100
epochs using the Adam optimization with a learning rate of 1le — 4. In the second phase,
we trained each Attention Deeplabv3+ model using the patches extracted from the input
image alongside the nucleus mask (resulted from the nucleus segmentation network). For
each scale, we train the model for 100 epochs using the Adam optimization with a learning
rate of le — 5. All training is done using cross-entropy loss on a single GTX 1080 GPU.

3.5 Inference Procedure

The inference stage uses the trained models to generate the segmentation mask for both
nucleus and cytoplasm instances. In our inference, we use a fixed number of scales (4 scales)
for the test phase.

4. Results

The proposed method is evaluated on multiple myeloma cell segmentation grand challenges
which are provided by the SegPC 2021. The challenge data set consists of a training set with
290 samples, validation and test sets with 200 and 277 samples respectively. All the samples
are annotated by the pathologist and instance base segmentation masks are provided for
the object of interest (myeloma plasma cells). We trained our model using the training and
validation set. During the competition time, we generated the segmentation mask for each
instance. The challenge leaderboard compared each team using the MIOU metric, where
our method ranked second among all teams. Table 1 shows the comparison results for the
top five winning teams.

Table 1: Performance comparison on the final test phase for SegPC2021 grand challenge

seg
Teams Ranking | Score (mIoU)
XLAB Insights 1 0.9389
bmdeep (Proposed Method) 2 0.9385
DSC-IITISM 3 0.9382
507 4 0.9366
AIVIS ) 0.9276

As shown in table 1, the proposed method outperformed most of the competitors and
achieved the second-best place with a small gap (0.0004) from the first team. It is worth-
while to mention that the Xlab approach combined several instances of state-of-the-art



MULTI-SCALE REGIONAL ATTENTION DEEPLAB3-+

Ground-Truth ) Estimation

Figure 4: A sample of prediction results on SegPC2021 grand challenge.

segmentation architectures such as SCNet Vu et al. (2021) and ResNeSt Zhang et al. (2020)
with minor modifications to suit them for the cell segmentation task. In addition, heavy im-
age augmentation has been reported which leads to enhance the performance of the model.
While this ensemble approach slightly increased the performance, its computational and
memory complexity makes it less effective for real-world application. On the other hand,
our proposed method comparatively requires less memory and fewer inferences time on a
single GPU. We would like to point out that both third and fourth teams utilized Mask-
RCNN for cell segmentation. This approach is well known for both instance segmentation
and object detection. In the other words, it is capable of separating the object in the
image using its corresponding mask and bounding box. This architecture relies on region
proposals (generated by region proposal network) and a feature extractor. The region pro-
posal network will be followed by an ROI alignment operation which produces desirable
output for the region classifier. Finally, this model uses a fully convolution network for
instance segmentation and a region classifier for class prediction. The training process of
this network involves minimizing multiple loss functions for several task learning. Although
Mask-RCNN suits well for the instance segmentation task, it fails to produce a precise
segmentation mask for low resolution and highly overlapped objects. While our proposed
method uses the predicted nucleus mask as a supervisory signal to overcome the highly over-
lapped objects. Furthermore, Due to the invariant sailing of the fully convolutional neural
network structure of Mask-RCNN, this network is not capable to differentiate the spatial
information between different receptive fields of different sizes. Thus, Semantic information
resulted from small-scale receptive fields, will have less capability to capture the object
boundary with varying shapes. To overcome these issues, our method utilizes a multi-scale
learning strategy to to decrease the effect of scales variation and learn the shape variations
through multi-scale representation. Figure 4 demonstrates some prediction results where
the proposed method estimated both nucleus and cytoplasm masks with high performance.

As explained earlier the proposed method uses a multi-scale strategy to generate a
precise segmentation mask for the cytoplasm instances. In this section, we will elaborate
on the scale selection strategy and its effect on the final performance. To this end, we have
extracted the statistical scale information from the training set. The histogram information
is depicted in figure 5.

According to figure 5, we can observe that the ratio of cytoplasm area to nucleus area is
distributed in almost four different peaks (shown with green circles). Thus, we select four
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Figure 5: Histogram of the area of cytoplasm to the nucleus on the validation set. Histogram
peaks are highlighted with green circles to show the importance scale values.
slightly bigger values selected for each peak (shown with red line) to produce a
better receptive field size.

scales to generate a precise segmentation mask. It is worthwhile to mention that we select
the scale value a bit higher than the histogram peaks (shown with red line on figure 5) to
generate an image patch to cover the appropriate receptive field size. In our experiment
for the final test phase, we selected 4 different scales as depicted in figure 2. Overall, using
each scale separately can produce a 92.5 mloU. hence we used the aggregation technique to
boost the performance.

5. Conclusion

In this paper, we proposed a multi-scale regional Attention Deeplabv3+ model for myeloma
plasma cell segmentation. The proposed method utilized a U-net model for nucleus instance
segmentation. The segmented nucleus instance is extracted from the input image and
alongside the predicted nucleus mask fed into a multi-scale cytoplasm detector network.
The cytoplasm detector took into account the strength of the Attention Deeplabv3+ model
to segment each cytoplasm instance. We further proposed an aggregation function to select
the more related scale to fulfill the prediction score. Evaluation results on the final challenge
phase demonstrated outstanding results.

Acknowledgements. All the implementation code is available:
https://github.com/bmdeep/SegPC2021
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