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ABSTRACT

Symbolic reasoning, rule-based symbol manipulation, is a hallmark of human in-
telligence. However, rule-based systems have had limited success competing with
learning-based systems outside formalized domains such as automated theorem
proving. We hypothesize that this is due to the manual construction of rules in
past attempts. In this work, we aim to build a rule-based system that can rea-
son with natural language but without manually constructing rules. We propose
MetaQNL, a “Quasi-Natural Language“ that can express both formal logic and
natural language sentences, and MetaInduce, a learning algorithm that induces
MetaQNL rules from training data consisting of questions and answers, with or
without intermediate reasoning steps. In addition, we introduce soft matching—a
flexible mechanism for applying rules without rigid matching, overcoming a typ-
ical source of brittleness in symbolic reasoning. Our approach achieves state-of-
the-art accuracy on multiple reasoning benchmarks; it learns compact models with
much less data and produces not only answers but also checkable proofs. Further,
experiments on two simple real-world datasets demonstrate the possibility for our
method to handle noise and ambiguity.

1 INTRODUCTION

Symbolic reasoning—rule-based symbol manipulation—is a core component of human intelli-
gence (Mercier & Sperber, 2017). It has also been a core part of computer science research, and
has achieved significant success in domains such as software verification (Darvas et al., 2005) and
theorem proving (Kovács & Voronkov, 2013). However, such success has been restricted to domains
amenable to rigid, precise formalization. It remains a challenge how to translate such success into
“informal” domains such as reasoning with commonsense knowledge and natural language input.
Prior attempts to build rule-based systems, which rely on manually constructed rules, have achieved
limited success and tended to produce brittle systems.

Deep learning provides an attractive alternative that can easily sidestep the question of representa-
tion. Deep networks can be trained to perform a reasoning task by directly predicting the answer
without explicit symbol manipulation (Clark et al., 2020). However, they can require a large amount
of training data and can suffer from poor generalization. More importantly, unlike symbolic sys-
tems, a deep network is a black box that is hard to interpret and verify. Such lack of interpretability
is undesirable in certain applications, especially those critical to safety and security.

In this work, we ask how to build a rule-based system that reasons symbolically but can work with
natural language and handle domains difficult to formalize. Such a system would perform reasoning
by explicit symbol manipulation based on rules, therefore is more interpretable and verifiable, but at
the same time flexible enough for natural language.

At a glance, this may appear a large departure from the conventional wisdom that learning-based
systems, particularly deep networks, are far superior to rule-based systems, as history has demon-
strated repeatedly. However, we hypothesize that this conventional wisdom is incorrect because it
assumes a false dichotomy between using learning and using rules; rule-based systems underper-
formed not because they were rule-based, but because it is difficult to construct rules manually.
Further, we hypothesize learning rules from data is key to building effective rule-based systems, but
it may require a different kind of learning than gradient descent.
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The elephant is big

The elephant is tall

Big, tall things are strong

If something is strong, then it likes cats

The elephant likes cats

[A] is [X]
[A] is [Y]
[X], [Y] things are [Z]
---
[A] is [Z]

If something is [X] then it [Y]
[A] is [X]
---
[A] [Y]

The elephant is strong

Figure 1: Example proof in MetaQNL with 4 assump-
tions, 1 goal, and 2 rule applications. Each rule have
multiple premises and one conclusion. They can have
variables that bind to concrete sentences.

Our goal is thus to develop a method that
automatically learns symbolic rules from
data to enable rules-based reasoning with
natural language. This poses two main
questions. First, what is the system of
rules—the basic structures defining what
symbols and manipulations are allowed—
such that it is compatible with not only for-
mal logic but also natural language? Sec-
ond, what is the learning algorithm that in-
duces rules from training data?

In this work, we take initial steps toward answering both questions. We propose MetaQNL, a sym-
bolic system we call a “Quasi-Natural Language”, which is compatible with not only rigorous logical
inference but also natural language (Fig. 1). We prove theoretical results showing that MetaQNL is
Turing complete. In addition, we propose MetaInduce, a learning algorithm that induces MetaQNL
rules from training data that consists of questions and answers, with or without intermediate reason-
ing steps. It encodes the problem as a maximum satisfiability (MAX-SAT) problem, which can be
solved efficiently by existing solvers.

Reasoning in natural language can be fuzzy and ambiguous. We extend MetaQNL to support such
reasoning through soft matching—relaxing the rigid matching conditions when applying rules. Soft
matching is a potential avenue for applying MetaQNL to real-world, unconstrained natural language.
And it enables integration with state-of-the-art large pretrained language models (Raffel et al., 2020).

Overview of Results. We benchmark our method on 3 tasks: learning compositional instructions,
logical reasoning, and morphological analysis. For compositional instructions, our method not only
achieves 100% accuracy on MiniSCAN (Lake et al., 2019) and SCAN (Lake & Baroni, 2018), but
also recovers the ground truth rules. For logical reasoning, it achieves state of the art on Rule-
Taker (Clark et al., 2020), including the noisy data paraphrased by crowd workers. For morpho-
logical analysis, it learns morphological rules from real-world linguistic data and is competitive
with neural seq2seq models in some languages. Compared to existing methods, our approach learns
compact models with much less data, and produces not only answers but also checkable proofs.
On RuleTaker, our approach learns a model that has only 2869 symbols but is competitive with a
prior approach that uses a neural network with 11 billion parameters (Tafjord et al., 2021). These
results demonstrate the promise of MetaQNL/MetaInduce as a radically different learning approach.
Finally, we discuss the limitations of our current method, as well as potential future improvements
to make it general and scalable enough for more realistic, unconstrained natural language.

2 RELATED WORK

Symbolic Reasoning. Symbolic reasoning has been studied extensively in classical AI, such as in
theorem proving (Robinson & Voronkov, 2001). An open problem is to handle domains without a
natural formalization, e.g., images or texts. One common approach is to manually construct a formal
system (e.g., first-order logic with manually defined functions and predicates) and then perform
semantic parsing to convert images/texts into formalized statements (Mao et al., 2018; Dai et al.,
2019; Saparov & Mitchell, 2022). In contrast, our approach does not require a semantic parser,
because rules in MetaQNL can take natural language sentences directly as premises or conclusions.

Natural Logic (McAllester & Givan, 1993; MacCartney & Manning, 2007) is another class of sym-
bolic systems defined using the syntax of natural language, bypassing semantic parsing. It is highly
specialized, committing to predefined rules for monotonicity reasoning (Icard III & Moss, 2014). In
contrast, MetaQNL has no such restrictions because it is not a specific logic but a meta-language
with minimal structures such that it can instantiate various types of reasoning.

None of these works discussed so far learn rules from data; they instead use a predefined formal
system that is already specialized and already encodes a substantial amount of prior knowledge. In
contrast, MetaQNL is almost “knowledge-free” in the sense that it imposes the weakest possible
structure on the permitted rules and lets the specific rules emerge from data through learning.
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Reasoning with Neural Networks. Neural networks can perform “soft” reasoning in the space of
continuous vectors without manipulating symbols explicitly. Clark et al. (2020) finetune a Trans-
former (Vaswani et al., 2017) to classify whether the goal is provable from the assumptions (both
are sentences in natural language). Saha et al. (2020) and Tafjord et al. (2021) go one step further to
generate proofs. And Bostrom et al. (2021) generate conclusions from premises.

Beyond Transformers, researchers have tried to incorporate inductive biases inspired by sym-
bolic reasoning, leading to neuro-symbolic architectures. One line of work is Neural Theorem
Provers (Rocktäschel & Riedel, 2017; Weber et al., 2019), which uses backward chaining, a clas-
sical symbolic reasoning algorithm, to construct the network architecture dynamically. Another
line of work embeds symbolic structures into continuous vectors while preserving logical opera-
tions (Grefenstette, 2013; Kathryn & Mazaitis, 2018; Lee et al., 2016; Schlag et al., 2019).

Unlike these prior works, we learn symbolic rules instead of weights of a neural network. Further,
during inference, we generate symbolic proofs whose correctness with respect to the rules is guar-
anteed and can be mechanically checked. Saha et al. (2020) and Tafjord et al. (2021) also generate
proofs, but their proofs are natural language texts whose correctness is neither guaranteed nor me-
chanically checkable—their approach trains neural networks to directly predict proofs, but does not
expose a system of rules against which a proof can be checked.

Learning Rules from Data. Inductive logic programming (ILP) learns rules in logic programs such
as Datalog (Muggleton, 1991). Extending ILP to natural language is non-trivial—due to the infeasi-
ble need for a predefined ontology of objects/predicates, as well as a perfect semantic parser. Unlike
ILP, rules in MetaQNL can express not only logic programs but also natural language sentences.
And our experiments show that MetaQNL can solve tasks not easily solvable by ILP.

That said, our method for learning rules draws inspiration from existing ILP approaches encoding
proofs as SAT problems (Raghothaman et al., 2019). However, we have to deal with a richer
and more complex rule space. Our rules consist of sentences with variables, and they form a rich
hierarchy from abstract rules to concrete ones, making the search space for rule learning much larger.
In contrast, rules in ILP are more constrained. They are typically Horn clauses in first-order logic.
And they impose strong syntactic constraints, e.g., using rule templates (Raghothaman et al., 2019),
or by restricting to binary predicates (Evans & Grefenstette, 2018). These constraints are critical to
good performance but are domain-dependent and difficult to get right (Cropper & Dumančić, 2022).
Over-constraining the rule space makes the system less expressive, less generally applicable, and
more brittle in the presence of noise. Another difference is that we minimize the number of rules in
order to generalize, which is unnecessary for ILP due to stronger syntactic constraints.

Beyond ILP, rule learning has also been explored in other contexts. RNNLogic (Qu et al., 2021) uses
RNNs to generate rules for knowledge base completion. They impose strong syntactic constraints
that rules must be expressed as a sequence of predicates, making them less suitable for more general
reasoning. Nye et al. (2020) learn rules for a string rewriting system. MetaQNL is more general
because it can be applied to not only string rewriting but also other forms of reasoning (Sec. 6).
Similar to us, Unification Networks (Cingillioglu & Russo, 2020) learn rules with variables from
concrete examples. However, their system of rules is significantly less general than ours: their
variables can only bind to a single word, whereas our variables bind to arbitrary sentence fragments.
In addition, their system does not support multistep reasoning. All reasoning is done in a single
step: producing a conclusion in the form of an answer (”yes/no”, a number, etc.) given premises
consisting of a question and a set of supporting facts.

3 METAQNL: A SYMBOLIC SYSTEM IN QUASI-NATURAL LANGUAGE

Now we formally define MetaQNL and present theoretical results that MetaQNL is Turing com-
plete. MetaQNL is quasi-natural because it has a formal syntax compatible with natural language.
Like in natural language, a sentence in MetaQNL is simply a sequence of tokens. There are 3 differ-
ent types of tokens—words, variables, and special symbols. Taking the sentence “$FALSE$ The
elephant likes [X]” as an example, “The”, “elephant” and “likes” are words. They
are treated as pure symbols without any meanings attached to them. “[X]” is a variable—a place-
holder that binds to concrete sentences in reasoning. “$FALSE$” is a special symbol. They are
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useful for encoding the structures of specific tasks, which will become more clear in Sec. 6. In this
paper, we delimit special symbols with $. Sentences without variable are called concrete sentences.
Definition 3.1 (Sentence). Let Σw,Σv,Σs be vocabularies of words, variables, and special symbols;
they are disjoint and countable. Let Σ = Σw ∪ Σv ∪ Σs, then any t ∈ Σ is a token. A sentence
s = (t1, t2, . . . , tn) ∈ Σ+ is a non-empty sequence of tokens. A concrete sentence is a sentence
without any variable, i.e., ∀i, ti /∈ Σv .

MetaQNL expresses permitted reasoning steps through rules. A rule has multiple sentences as
its premises (“The elephant [X]”, “If something [X] then it [Y]”) and one sen-
tence as the conclusion (“The elephant [Y]”). Intuitively, the conclusion should follow from
the premises regardless of what values the variables take. Concrete rules are rules without variables.
Definition 3.2 (Rule). A rule takes the form of p1; p2; . . . ; pn ` c, with n premises p1, p2, . . . , pn ∈
Σ+ and a conclusion c ∈ Σ+. It is concrete if all premises and the conclusion are concrete.

In reasoning, rules are made concrete by substituting variables with concrete sentences. Given the
rule r1 = “The elephant [X]; If something [X], it [Y] ` The elephant
[Y]”, we can instantiate it with the substitution {[X] → is strong,[Y] → likes cats},
deriving the concrete rule r2 = “The elephant is strong; If something is
strong, it likes cats ` The elephant likes cats”. Here we say r1 is more
general than r2, or r2 is an instance of r1. Applying substitutions makes a sentence/rule more
specific, introducing a partial order among sentences/rules (proofs in Appendix A).
Definition 3.3 (Substitution). Let Σ+

−s = (Σw ∪ Σv)+ be the set of sentences with only words and
variables (without special symbols). A substitution σ is a function from Σv to Σ+

−s.1 Substitutions
can be extended to be functions on tokens, sentences, and rules. Given a token t ∈ Σ, applying the
substitution σ produces a sentence σt, which equals to σ(t) if t is a variable. Otherwise, σt is just t
itself. Given a sentence s = (t1, t2, . . . , tn), applying σ produces σs = (σt1, σt2, . . . , σtn).2 Given
a rule r = p1; p2; . . . ; pn ` c, applying σ produces σr = σp1;σp2; . . . ;σpn ` σc.
Definition 3.4 (Partial order among sentences and rules). Let s1 and s2 be two sentences, s2 is an
instance of s1 (denoted by s2 ≤ s1) if and only if there exists a substitution σ such that s2 = σs1.
In this case, we also say s1 is more general than s2. Similarly, given two rules r1 and r2, r2 is an
instance of r1 (denoted by r2 ≤ r1) if and only if ∃σ, r2 = σr1.

In reasoning (Fig. 1), the prover is given a set of rulesM, multiple concrete sentences A as assump-
tions, and one sentence g as the goal. It iteratively instantiates concrete rules fromM and applies
them to generate a proof of g. Similar to Prolog, g may have variables (“The elephant [X]”),
and the prover succeeds if it proves any instance of g (e.g., “The elephant sleeps”).
Definition 3.5 (Proof). A proof P = (V,E) is a directed acyclic graph whose vertices V are con-
crete sentences or concrete rules. For each concrete rule r = p1; p2; . . . pn ` c ∈ V , it must satisfy
two conditions: (1) r connects to its conclusion c ∈ V via an edge (r, c) ∈ E; (2) For each premise
pi, we have pi ∈ V and (pi, r) ∈ E. Besides these edges, there cannot be any other edge in E.
Also, there can be multiple sentences without inbound edges (the proof’s assumptions), but there is
only one sentence without outbound edges (the proof’s goal).
Definition 3.6 (Theorem proving). Given a set of rulesM = {r1, r2, . . . , rk}, concrete sentences
A = {a1, a2, . . . , an} as assumptions, and a sentence g as the goal, the theorem prover tries to find
a proof P such that: (1) P ’s assumptions are A. (2) P ’s goal is an instance of g. (3) Every rule r in
P is an instance of a rule inM.

Now we have defined MetaQNL as a symbolic system. To characterize its theoretical expressiveness,
we note that MetaQNL is Turing complete (Theorem 3.7, proof in Appendix B). The implication of
our theoretical results is encouraging—In principle, MetaQNL can solve any task to the extent that
the task is solvable by computer programs. Though in practice, challenges may arise from how to
express the task in an appropriate form and how to learn a suitable set of rules.
Theorem 3.7 (Turing completeness of MetaQNL). For any recursively enumerable language L, it
is possible to construct a set of MetaQNL rules for recognizing L.

1The substitutions is defined on all variables, but in practice it only involves a few. We think of it as being
the identity function for other variables.

2We are abusing notations to treat a token and a single-token sentence interchangeably.
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4 METAINDUCE: LEARNING RULES FROM DATA

Problem Setup and Loss Function. Learning rules is a machine learning problem where the model
consists of symbolic rules rather than continuous weights. The problem setup is familiar: We want
to use the training set Dtrain to find a model that performs well not only on Dtrain itself but also on
the test set Dtest. For MetaQNL specifically, the training set Dtrain = {D+

train,D
−
train} consists of a

set of provable examples D+
train and a set of unprovable examples D−train. They both contain training

examples in the form of (Ai, gi), where Ai is a set of assumptions and gi is the goal. A modelM
is consistent with a provable example (Ai, gi) ∈ D+

train if gi is provable from Ai using rules inM.
Similarly,M is consistent with an unprovable example (Ai, gi) ∈ D−train if gi cannot be proved from
Ai. In other words, provable examples are positive examples demonstrating sound logical inference,
whereas unprovable examples are negative examples demonstrating unsound inference.

Given only Dtrain, we need to find a model consistent with as many examples in Dtest as possible.
However, it is not sufficient to optimize the consistency with training data, because there is a trivial
model that performs perfectly in training but fails in testing—one rule per example. That is, any
example (Ai, gi) ∈ D+

train with Ai = {a1, a2, . . . , ak} is provable using the rule a1; a2; . . . ; ak ` gi.
Thus we need to penalize the model complexity. Here we measure it as the number of rules and
minimize a loss function that evaluates both model complexity and consistency with training data:

L(M) = |M| − λ+N (M,D+
train)− λ−N (M,D−train), (1)

where |M| is the number of rules; N (M,D+
train) and N (M,D−train) are the number of prov-

able/unprovable examples consistent with M. λ+ and λ− are hyperparameters controlling the
trade-off between the three terms.

The optimization is challenging. Even a single evaluation of L(M) is expensive: N (M,D+
train)

and N (M,D−train) require running the prover on all training examples. Further, it is much harder
to find the optimalM due to the combinatorial and non-differentiable search space. We introduce
MetaInduce, a general method for learning rules by encoding Eqn. 1 as a maximum satisfiability
(MAX-SAT) problem, which can be solved efficiently by existing solvers.

Algorithm 1: MetaInduce
Input : Training data

Dtrain = {(Ai, gi)}ni=1; Ai is the
assumptions; gi is the goal.

Output: ModelM consisting of a set of rules
1 M← ∅
2 for j ← 1 to num epochs do
3 for i← 1 to n do
4 candidates←

propose rules(Dtrain, i)
5 prove(Ai, gi, candidates ∪M)

6 rules← abstract rules()
7 M← prune rules(rules)

Overview of MetaInduce. MetaInduce is out-
lined in Algorithm 1. Similar to SGD for train-
ing neural networks, MetaInduce goes through
the training data for several epochs; during an
epoch, it processes one example per iteration.
Given an example (Ai, gi) (either provable or
unprovable), it first relies on a rule proposer for
generating candidate rules that are concrete and
potentially useful for proving gi from Ai. Then
it runs an existing prover to search for proofs,
using both the candidate rules and existing rules
in the model. At the end of each epoch, MetaIn-
duce abstracts all concrete rules used in the
proofs into rules with variables. Then it per-
forms rule pruning—selecting M as a subset

of the rules minimizing the loss (Eqn. 1). Next, we explain each step in more detail.

Rule Proposal. The rule proposer is dataset-dependent and allows incorporating prior knowledge
about a particular task. However, a good rule proposer alone—if not in MetaInduce—is not sufficient
for learning rules. First, the proposer only generates concrete rules. It is up to MetaInduce to abstract
them into rules with variables. Second, the rule proposer generates rules useful for a single training
example, whereas MetaInduce learns rules useful for the entire dataset. Third, the rule proposer does
not have to be accurate. MetaInduce can reliably learn correct rules even if most candidate rules are
wrong (see Sec. 6). More discussions on dataset-dependent rule proposers are in Appendix C.

Theorem Proving. Theorem proving in MetaQNL is straightforward, thanks to existing algorithms
such as forward/backward chaining (Russell & Norvig, 2002). Forward chaining starts with the
assumptions and applies rules to derive new sentences until the goal is reached. Conversely, back-
ward chaining starts with the goal and applies rules in the reverse direction until all assumptions are
satisfied. Our implementation returns proofs containing all paths to the goal up to a depth limit.
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red and light and round and small
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[X] and round and [Y]
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round
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round

(a) Examples of anti-unifying two concrete rules into
more abstract rules. Anti-unification may have multi-
ple solutions that are not comparable with each other.

𝑐𝑟! 𝑐𝑟"

𝑐𝑟#

𝑐𝑟$ 𝑐𝑟%

(𝑐𝑟! ∧ 𝑐𝑟") ∨ 𝑐𝑟# ∨ (𝑐𝑟$ ∧ 𝑐𝑟%)

(b) Encoding as a boolean constraint a proof with 3
paths from assumptions to the conclusion. Each con-
crete rule cri corresponds to a boolean variable. The
proof is a disjunction of all paths; each path is a con-
junction of concrete rules.

Rule Abstraction. The proofs contain only concrete rules, and we have to generalize them into rules
with variables. We use a symbolic procedure called anti-unification (Plotkin, 1970). Given two rules
r1 and r2, it attempts to find the most specific rule r such that r1 ≤ r and r2 ≤ r (analogous to
the lowest common ancestor of two nodes in a tree; see Fig. 2a for examples and Appendix D for
details). It does so by recursively matching the beginning of two sentences.

Let Γ be the set of all concrete rules in the proofs. We iteratively anti-unify rules in Γ and add the
result back, until no new rule can be generated. The result is denoted by Γ′, which contains not only
concrete rules but also their generalizations.

Rule Pruning. Rule pruning selects M as a subset of Γ′ by encoding all proofs as a MAX-SAT
problem, whose solution corresponds to a set of rules that approximately minimize the loss function
Eqn. 1. We encode each rule r ∈ Γ′ using a boolean variable (also denoted r). r = 1 means the rule
should be included in M. For any concrete rule cr ∈ Γ′, we have an additional boolean variable
cr. cr = 1 means cr is necessary for proving the training examples. We impose 3 different types of
constraints on these boolean variables:
• Data consistency: For the ith training example, its proof Pi may have many paths from the as-

sumptions to the goal, but the example is provable as long as any one of them is valid. For provable
examples, we encode Pi as a disjunction of proof paths. Each path is valid if and only if all con-
crete rules along the path are valid. So we encode a proof path as a conjunction of all cr boolean
variables it contains (Fig. 2b). Analogously, for unprovable examples, we simply take the negation
of the previous boolean formula to encourage the absence of a valid proof. Finally, a good model
is not necessarily consistent with every training example. So Pi is encoded as a soft constraint
with weight λ+ or λ−.

• Model complexity: To minimize the number of rules, we add a soft constraint ¬r of weight 1 for
each r boolean variables. It encourages r = 0.

• Rules instantiation: Each concrete rule cr must be an instance of a rule r. Let r1, r2, . . . , rk ∈ Γ′

be the set of all rules in Γ′ such that cr ≤ ri. cr can be instantiated only if at least one of them is
in the model. Therefore, we add a hard constraint cr→ r1 ∨ r2 ∨ · · · ∨ rk.

Given the boolean constraints above, a MAX-SAT solver finds an assignment of boolean variables
to minimize the combined weights of violated constraints, which equals to Eqn. 1. Therefore, it
learns a set of rules minimizing our loss function. Note that using MAX-SAT leads to NP-hard time
complexity in the worst-case. However, this could be improved in the future by using approximate
MAX-SAT solvers or learning in mini-batches (more discussions on scalability in Appendix E).

5 SOFT MATCHING

Similar to classical theorem proving, reasoning in MetaQNL relies on precise and rigid matching be-
tween rules and assumptions. For example, the rule “The [A] smiles ` Someone smiles”
is not applicable to “An elephant smiles” due to the lack of “The”. Although precise match-
ing guarantees the rigor of reasoning, reasoning in natural language is often fuzzy and ambiguous,
without the same degree of rigor as a mathematical proof. Supporting fuzzy reasoning is necessary
for MetaQNL to cover a broader spectrum of reasoning in natural language. It requires us to relax
the rigorous proofs in Definition 3.6 to fuzzy proofs with scores indicating the degree of rigor. An-
other benefit of soft matching is that it allows the system to degrade gracefully—it can produce an
“educated guess” if existing rules are insufficient for producing a rigorous answer.

We extend MetaQNL with soft matching—relaxing the rigid matching conditions when applying
rules. Think of applying a rule r to a set of assumptions A as instantiating concrete rules: with rigid
matching, we instantiate concrete rules cr such that cr’s premises are A and cr must be an instance
of r. In contrast, soft matching produces both concrete rules cr and scores. cr’s premises are still
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A but cr is not required to be an instance of r. Further, the matching scores can be aggregated to
calculate proof scores, allowing us to produce fuzzy proofs when rigorous proofs are impossible.
Definition 5.1 (Soft matching). Given a rule r and concrete sentences A = {a1, a2, . . . , an} as
assumptions, soft matching outputs concrete rules with scores: (cr1, s1), (cr2, s2), . . . , (crk, sk)
such that (1) ∀i, si ∈ [0, 1]. (2) ∀i, cri’s premises are A.

There are many possible ways to realize soft matching, including using neural networks. In this
paper, as an initial step, we perform soft matching only in testing. During training, MetaInduce still
uses rigid matching for learning rules. Once the rules have been learned, we use them for making
predictions with soft matching. We study two simple mechanisms for soft matching based on:

• Neural pretrained language model: Given r and A, we use a pretrained language model to output
concrete rules. Specifically, we encode soft matching as a seq2seq task and finetine a T5 Raffel
et al. (2020) model. This method requires supervision for finetuning.

• Symbolic anti-unification: Given r and A, r is not applicable, but we can find a more general
rule r′ that is applicable by anti-unifying A with r’s premises. For example, anti-unifying “An
elephants smiles” with “The [A] smiles” produces “[A] smiles”. Note that rigid
matching is a special case when r itself is applicable. For calculating the matching score, we use
heuristics based on the number of perfectly matched words between r and A.

6 EXPERIMENTS

We instantiate MetaQNL/MetaInduce on three tasks: learning compositional instructions on MiniS-
CAN (Lake et al., 2019)/SCAN (Lake & Baroni, 2018), logical reasoning on RuleTaker (Clark et al.,
2020), and morphological analysis on SIGMORPHON 2018 (Cotterell et al., 2018). We achieve
state-of-the-art accuracy on the three synthetic datasets (MiniSCAN, SCAN, and RuleTaker) using
only a minor fraction of training data. The rules recovered by MetaInduce match precisely with the
ground truth rules of MiniSCAN and SCAN. Further, we evaluate our method with soft matching
on two non-synthetic datasets: SIGMORPHON 2018 and ParaRules. Results show the promise of
our method in handling noise and ambiguity that are ubiquitous in real-world data. Though our ex-
periments do not show MetaQNL/MetaInduce readily outperform neural networks on unconstrained
natural language, they demonstrate the promise of a radically different learning approach.

Learning Compositional Instructions. MiniSCAN and SCAN have a similar format of translating
a source sequence to a target sequence, e.g., “jump→ JUMP”, “jump twice→ JUMP JUMP”.
MiniSCAN consists of only 14 training examples, whereas SCAN has 17K. State of the art has
reached 100% accuracy on both datasets (Liu et al., 2020; Nye et al., 2020; Chen et al., 2020).

In training, each source/target pair x → y is a provable example (Ai, gi), with empty assumptions
Ai = ∅ and the goal gi = “x $MAPS TO$ y”, e.g., “jump twice $MAPS TO$ JUMP JUMP”.
In testing, we use “x $MAPS TO$ [Y]” as the goal, where [Y] is a placeholder to be filled by the
prover. The prover succeeds if it proves a goal with any [Y]. There is no unprovable example.

We use a rule proposer independent of specific training examples. First, it generates all concrete
rules with ≤ 2 premises by combining the sentences in the training set in all possible ways.
Then it filters the rules using prior knowledge about compositional generalization: The meaning
of a long sequence depends on its subsequences. For example. “jump $MAPS TO$ JUMP `
jump twice $MAPS TO$ JUMP JUMP” is a valid rule, since jump is a subsequence of jump
twice. But “look $MAPS TO$ LOOK ` jump twice $MAPS TO$ JUMP JUMP” is not a
valid rule. Smilar assumptions were also made in prior works (Nye et al., 2020; Liu et al., 2020)

We use backward chaining as the prover and Z3 (De Moura & Bjørner, 2008) as the MAX-SAT
solver. For SCAN, we train only on the 400 shortest examples and test on four different splits:
simple, length, addprim jump, and addprim turn left. On both datasets, MetaInduce
achieves 100% testing accuracy and successfully recovers the ground truth rules. Here is an exam-
ple rule learned from SCAN: “[A] $MAPS TO$ [B]; [C] $MAPS TO$ [D] ` [A] after
[C] $MAPS TO$ [D] [B]”. Appendix F contain more details/examples about the rule proposer
and the learned rules, as well as results showing the effects of the hyperparameter λ+. Our experi-
ments take 30 minutes to run on a laptop, which compares favorably with methods using deep neural
networks (e.g., 1 day on GPUs in Liu et al. (2020)).
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(a) Answer predicting accuracies on RuleTaker
(OWA). Rows are depths of test proofs. N/A means
the test example can be neither proved nor disproved.

D3 D5

ProofWriter Ours ProofWriter Ours

N/A 99.9 99.4 99.4 99.6
0 100.0 100.0 100.0 100.0
1 99.3 100.0 100.0 100.0
2 99.7 99.7 99.9 100.0
3 99.2 98.9 100.0 100.0
4 99.1 98.9 99.9 99.4
5 98.8 98.6 100.0 99.1

All 99.6 99.4 99.7 99.7

(b) Answer predicting accuracies on the OWA ver-
sion of ParaRules. The model is trained on D3 +
ParaRules and tested on ParaRules.

PRover ProofWriter Ours

0 99.7 99.9 100.0
1 98.6 99.3 99.7
2 98.2 98.3 99.4
3 96.5 98.2 98.8
4 88.0 91.5 100.0

All 98.4 99.1 99.7

Logical Reasoning. RuleTaker tests logical reasoning in synthetic sentences. It consists of examples
similar to Fig. 1. We use the OWA (open-world assumption) version introduced by Tafjord et al.
(2021), where a sentence can be proved, disproved, or neither. For example, if “The elephant
be tall” is true, then “The elephant be not tall” should be false. To handle such
cases, we prepend sentences with special symbols $TRUE$ or $FALSE$, so that the example can be
disproved using the rule “$TRUE$ The elephant be tall ` $FALSE$ The elephant
be not tall”. For each example to be proved, we add it to the set of provable examples D+

train
and its negation to unprovable examples D−train. Conversely, for each example to be disproved, we
add it to D−train and its negation to D+

train. For examples that can be neither proved nor disproved, we
add itself and its negation to D−train.

RuleTaker includes ground truth proofs providing concrete rules such as “$TRUE$ The
elephant be tall ` $FALSE$ The elephant be not tall” but not any abstraction
that allows generalizing beyond the specific examples. Our rule proposer simply generates these
ground truth concrete rules, whereas MetaInduce tries to learn abstract rules. And we use simple
heuristics for filtering invalid rules generated by anti-unification. On machines with 0 GPUs, 32GB
RAM, and 4 CPUs, we run MetaInduce for 5 epochs on 10K training examples, which takes about
20 hours. We use forward chaining as the prover and a depth limit of 7. The hyperparameters λ+
and λ− are tuned on validation data. Examples of learned rules are in Appendix G.

We compare our method with ProofWriter (Tafjord et al., 2021)—a state-of-the-art method that also
uses ground truth proofs. Following their setup, we test on D5 (a subset of RuleTaker with proof
depths ≤ 5) and train separate models on D5 and D3 (proof depths ≤ 3). Results are in Table 1a.
MetaInduce achieves state-of-the-art accuracy and is competitive with ProofWriter. Further, it learns
significantly more compact models with much less training data. For example, the model trained
on D3 with λ+ = λ− = 1.28 using only 14% of the training data has only 79 rules and a total of
2869 symbols, but achieves a test accuracy of 99.4%. In comparison, ProofWriter has an accuracy
of 99.6% and is based on T5-11B (Raffel et al., 2020), which has 11 billion parameters.

RuleTaker consists of only simple sentences generated by templates. To test our system using
data closer to natural language, we evaluate on ParaRules—a part of RuleTaker of 40K examples
whose assumptions are paraphrased into natural language by crowd workers. We apply the language
model–based soft matching mechanism described in Sec. 5. Following ProofWriter, we train on D3
+ ParaRules and test on ParaRules. Please see Appendix G for details. Results are in Table 1b. we
achieve an accuracy of 99.7%, outperforming PRover (Saha et al., 2020) and ProofWriter.

Morphological Analysis. In addition, we evaluate on the morphological analysis task in Akyürek
et al. (2021). Morphological analysis is not a reasoning task. But it is frequently used by prior
work as a testbed of compositional generalization and learning symbolic rules/programs from data,
which are two important aspects of our method. Given the surface form of a word (e.g., studied),
the model predicts its lemma (study) and an unknown number of tags, such as SG (singular)
and PST (past tense). The data is constructed from the SIGMORPHON 2018 dataset. It consists
of 3 languages with varying morphological complexity—Spanish, Swahili, and Turkish. For each
language, they sample a training set of 1K examples and three test sets of 100 examples each (FUT,
PST, and OTHER).

To apply MetaQNL, we represent both the surface form and the lemma as characters. The
surface form serves as the assumption, whereas the lemma and the tags serve as conclusions.
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For example, for the Spanish surface form zarandeamos with lemma zarandear and tags
V;IND;PRS;1;PL, we treat z a r a n d e a m o s as the assumptions and construct 6
provable examples with goals $LEMMA$ z a r a n d e a r, $TAG$ V, · · · , $TAG$ PL.
Examples with the same assumption but any other goals are treated as unprovable. The rule proposer
simply generates rules that can prove the conclusion in a single step, such as z a r a n d e a
m o s ` $TAG$ V. More details and examples are in Appendix H.

Following Akyürek et al. (2021), we evaluate the predictions using F1 score and compare with a
standard seq2seq neural network: LSTMs (Hochreiter & Schmidhuber, 1997) with attention. Note
that we’re comparing with the baseline in Akyürek et al. (2021), not their proposed method. Their
method is orthogonal to us since it focuses on augmenting the training data.

Table 2: F1 scores of morphological analysis. FP av-
erages the results on FUT and PST. O is the results on
OTHER.

Model Spanish Swahili Turkish

FP O FP O FP O

LSTMs + Attention 66 88 75 90 69 85
Ours 55 82 81 86 53 71
Ours + Soft matching 66 84 80 85 53 70

Results are shown in Table 2. Note that the
task is not trivial: the neural baseline per-
forms far from perfect, especially on FUT
and PST (an F1 score of 66% on Spanish).
Unlike the baseline, our method learns in-
terpretable morphological rules; e.g., the
suffix áramos in Spanish indicates the
paste tense (more examples are in Ap-
pendix H). In terms of performance, our
method (without soft matching) is com-
petitive with the baseline on Swahili, but
there are still gaps on Spanish and Turkish. Further analysis reveals different reasons behind the
gaps: Turkish morphology is very complex. But our current way of instantiating MetaQNL only
considers proofs of depth 1, which could be a restriction for learning more expressive rules. Span-
ish morphology is relatively simple. Our F1 score still has large room for improvement, because it
learns over-specific rules that achieve high precision but low recall.

Next, we explore the use of soft matching. We keep training the same and apply soft matching only
in testing. Given a testing example such as z a r a n d e a m o s, we consider not only
applicable rules learned by MetaInduce but also additional rules generated through our simple soft
matching mechanism based on anti-unification (Sec. 5). All rules are ranked based on their matching
scores, which are calculated using heuristics. Rigid matching always has the highest score, and more
perfectly matched characters lead to higher scores. After ranking the rules, we apply them one by
one until we get a predicted lemma.

The bottom row in Table 2 shows the result of soft matching. Even this simple form of soft matching
can close the gap on Spanish. However, it leads to no improvements on Swahili and Turkish. We
found that the individual rules learned on Swahili and Turkish are more approximate, i.e. more like
“rules of thumb”—they capture the general pattern but have many exceptions. This is due to the
increased morphological complexity. In these two languages, there are fewer simple rules such as
“This suffix always indicates the past tense.” As a result, relaxing the matching conditions naively
would lead to too many spurious rules.

7 LIMITATIONS AND OPEN QUESTIONS

First, our approach is far from mature. Substantial further development is needed for handling free-
form natural language, e.g., in benchmarks of arithmetic or commonsense reasoning (Cobbe et al.,
2021; Talmor et al., 2019). Soft matching is one possible way to address linguistic variations, e.g.,
by using a pretrained language model to output matching scores between rules and assumptions.

Our experiments are not large-scale but serve as proof of concept for a novel approach at an early
stage. MetaInduce does not yet scale to millions of training examples (Appendix E), which may be
necessary to learn enough rules to handle the complexity of natural language. The current bottleneck
is rule abstraction, which can be possibly addressed through better methods than anti-unification.

MetaInduce is a meta algorithm that permits many variations of its components. This provides many
open questions and opportunities for integration with deep learning. For example, the rule proposer
or theorem prover can be a deep network instead of a manually crafted heuristic.
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REPRODUCIBILITY STATEMENT

To aid reproducibility, we have submitted the anonymous code as a part of the supplementary materi-
als. The final code will be released upon the publication of this paper. All datasets used in this paper
are publically accessible. In addition, we formally define MetaQNL in Sec. 3 and include proofs of
theoretical results in Appendix A, B, and D. We also include additional details and examples about
our method (e.g., rule proposers for different datasets) in Appendix F, G, H, and I.
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Ádám Darvas, Reiner Hähnle, and David Sands. A theorem proving approach to analysis of secure
information flow. In International Conference on Security in Pervasive Computing (SPC), 2005.

Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS), 2008.

Richard Evans and Edward Grefenstette. Learning explanatory rules from noisy data. Journal of
Artificial Intelligence Research, 61:1–64, 2018.

Edward Grefenstette. Towards a formal distributional semantics: Simulating logical calculi with
tensors. arXiv preprint arXiv:1304.5823, 2013.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to automata theory, lan-
guages, and computation. Acm Sigact News, 32(1):60–65, 2001.

10



Under review as a conference paper at ICLR 2023

Thomas F Icard III and Lawrence S Moss. Recent progress on monotonicity. In Linguistic Issues in
Language Technology (LiLT), 2014.

William W Cohen Fan Yang Kathryn and Rivard Mazaitis. Tensorlog: Deep learning meets proba-
bilistic databases. Journal of Artificial Intelligence Research, 1:1–15, 2018.
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Reasoning with weak unification for question answering in natural language. In Annual Meeting
of the Association for Computational Linguistics (ACL), 2019.

Gonzague Yernaux and Wim Vanhoof. Anti-unification in constraint logic programming. Theory
and Practice of Logic Programming, 19:773–789, 2019.

12



Under review as a conference paper at ICLR 2023

A PARTIAL ORDER AMONG SENTENCES AND RULES

Here we prove that the ≤ in Definition 3.4 is indeed a partial order relation. First note that rule
equality is defined modulo premise reordering and α-conversion. In other words, premises are
unordered, and variable renaming does not change a rule.

Definition A.1 (Sentence length). The length of a sentence s = (t1, t2, . . . , tn) ∈ Σ+, denoted by
length(s), is n.

Lemma A.2 (Substitutions are noncontractive). Applying substitutions does not make a sentence
shorter. More formally, for any sentence s = (t1, t2, . . . , tn) ∈ Σ+ and substitution σ : Σv → Σ+

−s,
we have length(σs) ≥ n. Further, length(σs) = n if and only if σ maps all tokens in s to sentences
of length 1, i.e., ∀i, length(σti) = 1.

Proof. For any substitution σ : Σv → Σ+
−s and variable v ∈ Σv , σ(v) ∈ Σ+

−s is a sentence. There-
fore, for any token t ∈ Σ, length(σt) ≥ 1 (Definition 3.3). For any sentence s = (t1, t2, . . . , tn),
length(σs) =

∑n
i=1 length(σti) ≥ n. And the equality holds if and only if ∀i, length(σti) = 1.

Theorem A.3 (Partial order among sentences). If sentence equality is defined modulo α-conversion,
then the ≤ in Definition 3.4 is a partial order among sentences. In other words,

1. ∀s ∈ Σ+, s ≤ s.

2. ∀s1, s2 ∈ Σ+, if s1 ≤ s2 and s2 ≤ s1, then s1 = s2 modulo α-conversion.

3. ∀s1, s2, s3 ∈ Σ+, if s1 ≤ s2 and s2 ≤ s3, then s1 ≤ s3.

Proof. We prove the 3 statements separately.

1. Let ε be the identity substitution mapping any variable to itself, i.e., ∀v ∈ Σv, ε(v) = v.
From Definition 3.3, ε also maps any token to itself (∀t ∈ Σ, εt = t), and therefore any
sentence to itself (∀s ∈ Σ+, εs = s). Applying Definition 3.4, we have ∀s ∈ Σ+, s ≤ s.

2. Given two sentences s1 = (t1, t2, . . . , tn), s2 = (t′1, t
′
2, . . . , t

′
m) such that s1 ≤ s2 and

s2 ≤ s1, there exist substitutions σ, ϕ such that s1 = σs2 and s2 = ϕs1 (Defini-
tion 3.4). Applying Lemma A.2 to them separately leads to n = m and ∀i, length(ϕti) =
length(σt′i) = 1. According to Definition 3.3, we derive ∀i, ti = σt′i and t′i = ϕti. If ti
is not a variable, t′i = ϕti = ti, i.e., all non-variable tokens in s1 and s2 are identical.
If ti is a variable, t′i must also be a variable because otherwise ti = σt′i would not be a
variable. Therefore, both σ and ϕ are just renaming variables. And it is straightforward to
verify that they cannot map different variables to the same. In other words, σ and ϕ are
α−conversions; s1 = s2 modulo α-conversion.

3. Given three sentences s1, s2, and s3 such that s1 ≤ s2 and s2 ≤ s3, there exist substitutions
σ and ϕ such that s1 = σs2 and s2 = ϕs3. Let µ = σ ◦ ϕ be the function composite of σ
and ϕ. µ is also a substitution and s1 = µs3. Therefore, s1 ≤ s3.

Theorem A.4 (Partial order among rules). The ≤ in Definition 3.4 is a partial order among rules.
In other words,

1. For any rule r, r ≤ r.

2. For any two rules r1 and r2, if r1 ≤ r2 and r2 ≤ r1, then r1 = r2 modulo α-conversion.

3. For any three rules r1, r2 and r3, if r1 ≤ r2 and r2 ≤ r3, then r1 ≤ r3.

Proof. Similar to the proof of Theorem A.3.
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Definition A.5 (Strictly partial order among sentences/rules). Let s1 and s2 be two sentences, s1
is strictly more general than s2 (denoted by s2 < s1) if and only if s2 ≤ s1 and s1 6= s2 modulo
α-conversion. Similarly, if r1 and r2 are rules, r2 < r1 if and only if r2 ≤ r1 and r1 6= r2 modulo
α-conversion.

B TURING COMPLETENESS OF METAQNL

We prove the Turing completeness of MetaQNL (Theorem 3.7) through its connection with unre-
stricted grammars, which have been known to be equivalent to Turing machines. First, we repeat
a few definitions that can be found in common textbooks on formal languages and automata the-
ory (Hopcroft et al., 2001).
Definition B.1 (Unrestricted grammar). An unrestricted grammar is a formal grammar G =
(N,T, P, S), where N is a finite set of nonterminal symbols, T is a finite set of terminal sym-
bols, and N ∩T = ∅. P is a finite set of production rules of the form α→ β, where α ∈ (N ∪T )+

is an non-empty string, and β ∈ (N ∪T )∗ is an arbitrary string. S ∈ N is a designated start symbol.
Definition B.2 (Direct derivation). For any strings u, v ∈ (N ∪ T )∗, we say u directly derives to
v (denoted as u ⇒ v) if and only if there exists a production rule α → β such that u = lαr and
v = lβr, where l, r ∈ (N ∪ T )∗ are arbitrary strings.
Definition B.3 (Derivation). The “derives to” relation (⇒∗) is the reflexive transitive closure of the
“direct derives to” relation (⇒).
Definition B.4 (Language of unrestricted grammar). Given an unrestricted grammar G =
(N,T, P, S), its language L(G) = {w ∈ T ∗ | S ⇒∗ w} consists of all terminal strings deriv-
able from the start symbol S.

Next, we prove that for any unrestricted grammar G, there exists a set of MetaQNL rules that can
recognize its language L(G).
Theorem B.5 (MetaQNL can express unrestricted grammar). For any unrestricted grammar G =
(N,T, P, S), there exists a set of MetaQNL rules that can recognize L(G), i.e., for any w ∈ T ∗,
S ⇒∗ w is provable in MetaQNL if and only if w ∈ L(G).

Proof. Let G = (N,T, P, S) be an arbitrary unrestricted grammar. We construct a system of
MetaQNL rules with the word vocabulary Σw = N ∪ T , the variable vocabulary Σv = {L,R},
and the special symbol vocabulary Σs = {⇒∗}. We can assume they are disjoint without loss of
generality. Then for each production rule α→ β ∈ P , we construct four MetaQNL rules:

S ⇒∗ [L]α[R] ` S ⇒∗ [L]β[R] (2)
S ⇒∗ α[R] ` S ⇒∗ β[R] (3)
S ⇒∗ [L]α ` S ⇒∗ [L]β (4)

S ⇒∗ α ` S ⇒∗ β (5)

. And we have a special rule without any assumption:

` S ⇒∗ S (6)

. We want to prove that these rules can be used to recognize L(G).

Let w ∈ L(G), i.e., S ⇒∗ w. From Definition B.3, we have S ⇒ u1 ⇒ u2 ⇒ · · · ⇒ uk−1 ⇒ w,
where ui ∈ (N ∪ T )∗ are intermediate strings for deriving w. We prove that S ⇒∗ w is provable
in MetaQNL by induction on k. When k = 1, we have S ⇒ w. According to Definition B.2, there
must be a production rule S → w ∈ P . It corresponds to a MetaQNL rule S ⇒∗ S ` S ⇒∗ w
(Eqn. 5). Together with the special rule ` S ⇒∗ S (Eqn. 6), we can prove S ⇒∗ w in MetaQNL.

When k > 1, since uk−1 ⇒ w, there must be a production rule α → β ∈ P such that uk−1 = lαr
and w = lβr, where l, r ∈ (N ∪ T )∗. Regardless of whether l and r are empty. One of the four
corresponding MetaQNL rules can be instantiated to be S ⇒∗ lαr ` S ⇒∗ lβr, which is equivalent
to S ⇒∗ uk−1 ` S ⇒∗ w. Also, the inductive hypothesis tells us S ⇒∗ uk−1 is provable in
MetaQNL. Therefore, S ⇒∗ w is also provable.

Conversely, given any w ∈ (N ∪ T )∗ such that S ⇒∗ w is provable in MetaQNL, we want to prove
S ⇒∗ w. We perform induction on the number of steps k it takes to prove S ⇒∗ w in MetaQNL.
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When k = 1, it must be proved by a single application of the special rule ` S ⇒∗ S (Eqn. 6).
Therefore w = S. According to Definition B.3, S ⇒∗ w holds.

When k > 1, our proof depends on which one of the four types of MetaQNL rules (Eqn. 2 to Eqn. 5)
is applied in the last step when proving S ⇒∗ w. Here we only consider Eqn. 2 since it is the most
sophisticated case; other cases are similar. So S ⇒∗ [L]α[R] ` S ⇒∗ [L]β[R] is the last
MetaQNL rule applied, and l, r ∈ (N ∪ T )+ are the strings used to instantiate the variables [L]
and [R] (w = lβr). By that time, we must have already proved the assumption S ⇒∗ lαr within
k − 1 steps. So the inductive hypothesis tells us S ⇒∗ lαr. The last MetaQNL rule corresponds to
a production rule α → β. Definition B.2 tells us lαr ⇒ lβr. Therefore, we have S ⇒∗ lβr, and
S ⇒∗ w.

Theorem 3.7 is a direct corollary of Theorem B.5 since unrestricted grammars can express any
recursively enumerable language.

C DOMAIN-SPECIFIC RULE PROPOSERS

In this work, we use different rule proposers for different tasks. They are described in Sec. 6, and
examples of proposed rules are in Appendix F, G, and H. However, we argue that the domain-
dependent rule proposer does not significantly compromise our method’s general applicability to
different tasks and datasets. Actually, it may also be an advantage. It is desirable to have a learning
system that can learn with minimal domain knowledge, but learn much more efficiently when more
knowledge is available. The rule proposer provides a neat way of incorporating domain knowledge
into the system for more efficient learning—a feature that deep neural networks struggle to acquire.

Also, the specific rule proposers used in the paper only encode a modest amount of knowledge
about the datasets—not necessarily more than the assumptions in prior works. For RuleTaker, our
rule proposer assumes ground truth proofs are available. The same assumption was made by all
prior works on this dataset (Clark et al., 2020; Saha et al., 2020; Tafjord et al., 2021). For SCAN,
we encode prior knowledge about compositional generalization: The meaning of a long sequence
depends on the meaning of its subsequences. Similar assumptions were made in the “interpretation
grammar” in Nye et al. (2020) and the “analytical expressions” in Liu et al. (2020)

Further, as we mentioned in Sec. 7, the rule proposer has substantial room for future research. One
particularly exciting direction is to train deep neural networks for proposing rules, which can reduce
the need for manually crafted heuristics.

D UNIFICATION AND ANTI-UNIFICATION OF SENTENCES AND RULES

Unification and anti-unification (Plotkin, 1970; Robinson & Voronkov, 2001) are basic symbolic
procedures in formal logic that are useful for theorem proving and logic programming (Russell &
Norvig, 2002; Yernaux & Vanhoof, 2019). In MetaQNL, unification is used in backward chaining,
and anti-unification is used to abstract concrete rules into rules with variables. We adapt existing
problem setups and algorithms from formal logic to MetaQNL. The algorithms we use for MetaQNL
do not have theoretical guarantees as in formal logic, but they work well in practice. The anti-unifiers
they compute may not satisfy the conditions of most specific anti-unifiers (Definition D.7). But strict
anti-unification is not necessary for rule abstraction to work. In principle, all we need is a procedure
for generating abstract rules from concrete ones.

Unification. Given two sentences (or two rules), unification aims to find substitutions mapping
them to the same sentence (or rule). Such substitutions are called unifiers. We extend unification to
MetaQNL by adapting prior work, especially the unification algorithm developed by Kutsia (2002)
for a variant of first-order logic with sequence variables and flexible arity symbols.
Definition D.1 (Unifier). A substitution σ : Σv → Σ+

−s is a unifier of two sentences s1, s2 ∈ Σ+ if
and only if σs1 = σs2. Similarly, it is a unifier of two rules r1 and r2 if and only if σr1 = σr2.

Two sentences may have multiple unifiers. Taking s1 = [X] is [Y], s2 =
The elphant [Z] as an example, their unifiers include σ = {[X] →
The elephant,[Z] → is [Y]}, ϕ = {[X] → The elephant,[Y] → tall,[Z] →
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hello [X] [X] hello

hello hello hello hello hello hello hello hello hello … How are you ? ? you are how

[X] you [Y] [X] are [Y]

Figure 3: The minimal complete set of unifiers of two sentences can be empty, finite, or infinite
(e.g., “hello [X]” and “[X] hello”). The minimal complete set of anti-unifiers is non-empty
and finite.

is tall}, etc. Both σ and ϕ are valid unifiers, but they lead to different sentences when applied:
σs1 = The elephant is [Y], ϕs1 = The elephant is tall. We prefer σ to ϕ
because it is more general; it does not introduce any new information not in s1 and s2. In contrast,
we cannot infer the “tall” in ϕ. This is the intuition behind the concept of “most general unifiers”.
Definition D.2 (Most general unifier). Let the substitution σ be a unifier of sentencens s1 and s2, it
is a most general unifier if and only if there is no unifier ϕ of s1 and s2 such that σs1 < ϕs1.

In unification, we want to compute a set of most general unifiers, and we want the set to be minimal
and complete. Below we define these concepts for sentences.
Definition D.3 (Complete set of unifiers). Let U be a set of unifiers of sentences s1 and s2, U
is complete if and only if for any unifier ϕ of s1 and s2, there exists a unifier σ ∈ U , such that
ϕs1 ≤ σs1.
Definition D.4 (Minimal set of unifiers). Let U be a set of unifiers of sentences s1 and s2, U is
minimal if and only if for any σ, ϕ ∈ U , ϕs1 ≤ σs1 implies σ = ϕ (modulo α-conversion).
Definition D.5 (Minimal complete set of unifiers). Let U be a set of unifiers of sentences s1 and s2,
U is a minimal complete set of unifiers if and only if it is both minimal and complete.

The definitions for rules are parallel. Given two sentences (or two rules), the unification problem
is to compute a minimal complete set of unifiers. The result can be empty (e.g., unifying “hello
world” and “how are you”), finite (“hello [X]” and “[Y] world”), or infinite (“hello
[X]” and “[X] hello”, Fig. 3 Left).

Anti-unification. Given two sentences (or two rules), anti-unification aims to generalize them into
a single sentence (or rule). Anti-unification has also been studied in formal logic (Plotkin, 1970;
Kutsia et al., 2014). We extend it to MetaQNL by adapting prior work. For simplicity, we define
anti-unification only for sentences, but it applies to rules as well.
Definition D.6 (Anti-unifier). Given two sentences s1 and s2, their anti-unifier is a triple (s, σ1, σ2)
of a sentence s and two subsitutions σ1, σ2, such that σ1s = s1 and σ2s = s2.
Definition D.7 (Most specific anti-unifier). Let (s, σ1, σ2) be an anti-unifier of sentencens s1 and
s2, it is a most specific anti-unifier if and only if there is no substitution ϕ, σ′1 and σ′2 such that

1. σ1 = σ′1 ◦ ϕ, σ2 = σ′2 ◦ ϕ

2. ϕs < s

3. (ϕs, σ′1, σ
′
2) is also an anti-unifier of s1 and s2

Definition D.8 (Complete set of anti-unifiers). LetA be a set of anti-unifiers of sentences s1 and s2,
A is complete if and only if for any anti-unifier (s, σ1, σ2) of s1 and s2, there exists a substitution ϕ
and an anti-unifier (ϕs, σ′1, σ

′
2) such that σ1 = σ′1 ◦ ϕ, σ2 = σ′2 ◦ ϕ.

Definition D.9 (Minimal set of anti-unifiers). Let A be a set of anti-unifiers of sentences s1 and s2,
A is minimal if and only if for any (s, σ1, σ2), (s′, σ′1, σ

′
2) ∈ A, if there exists a substitution ϕ such

that

1. s′ = ϕs

2. σ1 = σ′1 ◦ ϕ, σ2 = σ′2 ◦ ϕ

then ϕ must be an α-conversion, i.e. ϕs = s (modulo α-conversion).
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Definition D.10 (Minimal complete set of anti-unifiers). LetA be a set of anti-unifiers of sentences
s1 and s2,A is a minimal complete set of anti-unifiers if and only if it is both minimal and complete.

Given two sentences (or two rules), the anti-unification problem is to compute a minimal complete
set of anti-unifiers. Unlike unification, the result of anti-unification must be non-empty and finite
(Fig. 3).

Theorem D.11 (Anti-unification is finitary). Let A be a minimal complete set of anti-unifiers of
sentences s1 and s2, then A is non-empty and finite.

Proof. For any sentences s1 and s2, we have a trivial anti-unifier ([X], σ1, σ2) where σ1 =
{[X] → s1} and σ2 = {[X] → s2}. Since A is complete, apply Definition D.8 and we will
know A must be non-empty.

For any anti-unifier (s, ϕ1, ϕ2) ∈ A, we have ϕ1s = s1 (Definition D.6). Apply Lemma A.2 to
derive length(s) ≤ length(ϕ1s) = length(s1). Therefore, the length of s is bounded. Also, s cannot
have non-variable tokens besides those in s1, so its vocabulary is also bounded. There are a finite
number of different sentences that s can take. Therefore, A must also be finite.

Our current anti-unification algorithm is adapted from Kutsia et al. (2014). It recursively matches
the beginning of two sentences. Let s1 and s2 be sentences, and s is a more general sentence in their
anti-unifier. If s1 and s2 start with the same word w, s should also start with w. Otherwise, s should
start with a variable corresponding to some prefixes of s1 and s2. The algorithm searches for all
such prefixes and anti-unifies the remaining parts of the sentences recursively.

E COMPUTATIONAL COMPLEXITY AND SCALABILITY OF METAINDUCE

Theoretical Time Complexity. MetaInduce consists of four steps (Sec. 4): rule proposal, theorem
proving, rule abstraction, and rule pruning. Let n be the number of training examples, rule proposal
and theorem proving are O(n). Rule abstraction is Ω(n2) since we anti-unify all pairs of rules. Rule
pruning is NP-hard due to the use of MAX-SAT. Therefore, our system, in its current form, would
struggle with very large n. In order to scale to millions of examples, future work would have to
reduce the complexity to O(n).

For rule abstraction, note that our pairwise anti-unification is only a design choice at the imple-
mentation level, rather than a conceptual necessity. In principle, all we need is a procedure for
generating abstract rules from concrete ones. It is possible to develop more efficient algorithms for
rule abstraction with linear or even sublinear runtime. They can also be based on machine learning,
e.g., Cingillioglu & Russo (2020).

For rule pruning, one potential way to scale it up is through approximate MAX-SAT solvers. Similar
to deep learning, MetaInduce does not necessarily require achieving the global minimum to work
well. Another important direction to explore is learning in mini-batches. It avoids encoding the
entire dataset as a large MAX-SAT problem, and instead solves multiple small MAX-SAT problems.

Experimental Run Time. On SCAN, our method takes 30 minutes to run on a laptop, which
compares favorably with methods using deep neural networks (e.g., 1 day on GPUs in Liu et al.
(2020)). On RuleTaker, our experiments take 2 days. It is impossible to directly compare with
ProofWriter (Tafjord et al., 2021) since the authors haven’t released the code.

Our run time is noteworthy considering that deep neural networks are trained on software/hardware
stacks (GPUs, cuDNN, PyTorch, etc.) highly optimized for them. And our method is at an early
stage without nearly as much engineering effort for improving the run time efficiency. At this stage,
it is difficult to perform a more comprehensive comparison of the run time fairly (e.g., using the
same hardware).

F DETAILS OF MINISCAN/SCAN EXPERIMENTS

MiniSCAN. The 14 MiniSCAN (Lake et al., 2019) training examples represented as sentences in
MetaQNL ($MAPS TO$ is a special symbol):
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dax $MAPS TO$ RED

lug $MAPS TO$ BLUE

wif $MAPS TO$ GREEN

zup $MAPS TO$ YELLOW

dax fep $MAPS TO$ RED RED RED

lug fep $MAPS TO$ BLUE BLUE BLUE

wif blicket dax $MAPS TO$ GREEN RED GREEN

lug blicket wif $MAPS TO$ BLUE GREEN BLUE

dax kiki lug $MAPS TO$ BLUE RED

lug kiki wif $MAPS TO$ GREEN BLUE

lug fep kiki wif $MAPS TO$ GREEN BLUE BLUE BLUE

lug kiki wif fep $MAPS TO$ GREEN GREEN GREEN BLUE

wif kiki dax blicket lug $MAPS TO$ RED BLUE RED GREEN

wif blicket dax kiki lug $MAPS TO$ BLUE GREEN RED GREEN

The 10 testing examples:

zup fep $MAPS TO$ YELLOW YELLOW YELLOW

zup blicket lug $MAPS TO$ YELLOW BLUE YELLOW

zup kiki dax $MAPS TO$ RED YELLOW

zup fep kiki lug $MAPS TO$ BLUE YELLOW YELLOW YELLOW

wif kiki zup fep $MAPS TO$ YELLOW YELLOW YELLOW GREEN

lug kiki wif blicket zup $MAPS TO$ GREEN YELLOW GREEN BLUE

zup blicket wif kiki dax fep $MAPS TO$ RED RED RED YELLOW GREEN YELLOW

zup blicket zup kiki zup fep $MAPS TO$ YELLOW YELLOW YELLOW YELLOW YELLOW YELLOW

dax blicket zup $MAPS TO$ RED YELLOW RED

wif kiki zup $MAPS TO$ YELLOW GREEN

Below are some examples of candidate rules generated by the rule proposer. Note that many of them
are wrong because the premises are not sufficient to deduce the conclusion.

` lug fep kiki wif $MAPS TO$

GREEN BLUE BLUE BLUE

dax $MAPS TO$ RED ` wif blicket dax $MAPS TO$ GREEN RED GREEN

lug $MAPS TO$ BLUE ` lug kiki wif $MAPS TO$ GREEN BLUE

lug $MAPS TO$ BLUE ` lug fep $MAPS TO$ BLUE BLUE BLUE

dax $MAPS TO$ RED; lug $MAPS TO$ BLUE ` wif blicket dax kiki lug $MAPS TO$

BLUE GREEN RED GREEN

MetaInduce learns 7 rules corresponding to the ground truth rules of MiniSCAN:
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` dax $MAPS TO$ RED

` lug $MAPS TO$ BLUE

` wif $MAPS TO$ GREEN

` zup $MAPS TO$ YELLOW

[A] $MAPS TO$ [B] ` [A] fep $MAPS TO$ [B] [B] [B]

[A] $MAPS TO$ [B]; [C] $MAPS TO$ [D] ` [A] kiki [C] $MAPS TO$ [D] [B]

[A] $MAPS TO$ [B]; [C] $MAPS TO$ [D] ` [A] blicket [C] $MAPS TO$ [B] [D] [B]

SCAN. Some examples in SCAN (Lake & Baroni, 2018):

walk $MAPS TO$ WALK

jump $MAPS TO$ JUMP

turn right $MAPS TO$ RIGHT

jump after turn left $MAPS TO$ LEFT JUMP

walk right $MAPS TO$ RIGHT WALK

walk after run $MAPS TO$ RUN WALK

turn left twice $MAPS TO$ LEFT LEFT

turn opposite left $MAPS TO$ LEFT LEFT

turn around right $MAPS TO$ RIGHT RIGHT RIGHT RIGHT

walk around left $MAPS TO$ LEFT WALK LEFT WALK LEFT WALK LEFT WALK

Below are some examples of the candidate rules generated by the rule proposer.

run $MAPS TO$ RUN ` walk after run $MAPS TO$ RUN WALK

walk $MAPS TO$ WALK; run $MAPS TO$ RUN ` walk after run $MAPS TO$ RUN WALK

run $MAPS TO$ RUN ` jump twice after run twice $MAPS TO$

RUN RUN JUMP JUMP

run twice $MAPS TO$ RUN RUN ` jump twice after run twice $MAPS TO$

RUN RUN JUMP JUMP

MetaInduce learns 20 rules corresponding to the ground truth rules of SCAN:

19



Under review as a conference paper at ICLR 2023

` walk $MAPS TO$ WALK

` look $MAPS TO$ LOOK

` run $MAPS TO$ RUN

` jump $MAPS TO$ JUMP

` turn right $MAPS TO$ RIGHT

` turn left $MAPS TO$ LEFT

` turn opposite left $MAPS TO$

LEFT LEFT

` turn opposite right $MAPS TO$

RIGHT RIGHT

` turn around left $MAPS TO$

LEFT LEFT LEFT LEFT

` turn around right $MAPS TO$

RIGHT RIGHT RIGHT RIGHT

[A] $MAPS TO$ [B] ` [A] left $MAPS TO$ LEFT [B]

[A] $MAPS TO$ [B] ` [A] right $MAPS TO$ RIGHT [B]

[A] $MAPS TO$ [B] ` [A] opposite left $MAPS TO$

LEFT LEFT [B]

[A] $MAPS TO$ [B] ` [A] opposite right $MAPS TO$

RIGHT RIGHT [B]

[A] $MAPS TO$ [B] ` [A] around left $MAPS TO$

LEFT [B] LEFT [B] LEFT [B] LEFT [B]

[A] $MAPS TO$ [B] ` [A] around right $MAPS TO$

RIGHT [B] RIGHT [B] RIGHT [B] RIGHT [B]

[A] $MAPS TO$ [B] ` [A] twice $MAPS TO$ [B] [B]

[A] $MAPS TO$ [B] ` [A] thrice $MAPS TO$ [B] [B] [B]

[A] $MAPS TO$ [B]; [C] $MAPS TO$ [D] ` [C] and [A] $MAPS TO$ [D] [B]

[A] $MAPS TO$ [B]; [C] $MAPS TO$ [D] ` [A] after [C] $MAPS TO$ [D] [B]

We tune λ+ on 1000 validation examples. The validation accuracy is fairly robust w.r.t. λ+ (Table 3).

Table 3: Validation accuracies on SCAN with different λ+.

λ+ 0.32 0.64 1.28 2.56 5.12 ∞
#Rules learned 16 17 20 20 20 20
Accuracy 85.9 90.3 100.0 100.0 100.0 100.0

G DETAILS OF RULETAKER EXPERIMENTS

Examples in RuleTaker are lemmatized and converted to lowercase. We also remove periods and
insert a space before each comma. Fig. 4 shows the form of ground truth proofs in RuleTaker. For
this specific example, our rule proposer would generate 2 candidate rules below:
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the elephant be big

the elephant is tall

big , tall things be strong

if something be strong , then it like cats

the elephant like cats

the elephant be strong

Figure 4: RuleTaker contains ground truth proofs in the form of directed acyclic graphs from the
assumptions to the conclusion. The nodes in the graph are concrete sentences without variables.

$TRUE$ the elephant be big;

$TRUE$ the elephant be tall;

$TRUE$ big , tall things be strong;

` $TRUE$ the elephant be strong

$TRUE$ the elephant be strong;

$TRUE$ if something be strong , then it like cats;

` $TRUE$ the elephant like cats

Below are some example rules learned from RuleTaker:

$TRUE$ [A] [B];

$TRUE$ [A] [C];

$TRUE$ if someone [C] and they [B] then [D];

` $TRUE$ [D]

$TRUE$ [A] does not [B];

` $FALSE$ [A] [B]

$TRUE$ [A] [B];

$TRUE$ [C] [D];

$TRUE$ if someone [B] and [C] [D] then they [E];

` $TRUE$ [A] [E]

$TRUE$ [A] be [B];

$TRUE$ [A] be [C];

$TRUE$ [B] , [C] things be [E];

` $TRUE$ [A] be [E]
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$TRUE$ [A] be [B];

$TRUE$ [A] be [C];

$TRUE$ if someone be [C] and [B] then they [D];

` $TRUE$ [A] [D]

$TRUE$ [A] be [B] ` $FALSE$ [A] be not [B]

$TRUE$ [A] [B];

$TRUE$ if something [B] then it [C]

` $TRUE$ [A] [C]

Experimental details on ParaRules.

ParaRules (Clark et al., 2020) is a part of RuleTaker, consisting of 40K examples whose assumptions
are paraphrased into natural language by crowd workers. The intermediate conclusions and the goal
remain synthetic. Here we describe the details of our experiments of MetaInduce + soft matching
on ParaRules (Sec. 6). Following ProofWriter (Tafjord et al., 2021), we train on D3 + ParaRules
and test on ParaRules. First, we run MetaInduce on D3 to learn a set of rules in the same way as on
the synthetic RuleTaker dataset. Let T be the set of sentences in the learned rules; they are synthetic
and they may have variables.

Then we extract a dataset from ParaRules for training neural networks for soft matching. ParaRules
contains pairs of (s, p), where s is a synthetic sentence (e.g., “the elephant like cats”)
and p is its paraphrased version (e.g., “the elephant is fond of felines”). For each
(s, p) and t ∈ T (e.g., “[A] [B]”), we check whether s can match with t symbolically (yes in this
case). If so, we know p should be mapped to s when trying to apply a rule with t. And the training
data consists of all triples of (s, p, t).

We implement the mapping by finetuning a text-to-text transformer T5-large (Raffel et al., 2020).
The input sequence is the concatenation of p and t, e.g., “the elephant is fond of
felines <SEP> [A] [B]”. And the output sequence is s, (e.g., “the elephant like
cats”). We finetune the model with a learning rate of 10−4 and a batch size of 32 using the
AdamW optimizer (Loshchilov & Hutter, 2019). Experiments were run on machines with 2 CPUs,
16GB memory, and a NVIDIA A6000 GPU. One trained, we use the model to perform matching
when evaluating the learned rules on ParaRules (results in Sec. 6.).

H DETAILS OF SIGMORPHON 2018 EXPERIMENTS

Rule Proposer. The rule proposer simply generates concrete rules that can prove the goals in a
single step. For the previous example, it generates the 6 candidate rules below:

z a r a n d e a m o s ` $LEMMA$ z a r a n d e a r

z a r a n d e a m o s ` $TAG$ V

z a r a n d e a m o s ` $TAG$ IND

z a r a n d e a m o s ` $TAG$ PRS

z a r a n d e a m o s ` $TAG$ 1

z a r a n d e a m o s ` $TAG$ PL
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Learned Rules. Below are some example rules learned on the Spanish part of SIGMORPHON
2018:

[A] e a m o s ` $LEMMA$ [A] e a r

[A] á r a m o s ` $TAG$ PST

n o s - [A] e m o s ` $TAG$ SBJV

n o - [A] z c a m o s ` $LEMMA$ [A] c e r

[A] z a m o s ` $LEMMA$ [A] z a r

I HEURISTICS FOR CONSTRAINING THE SPACE OF RULES

We use a few simple and general heuristics for constraining the space of rules and pruning invalid
rules generated by anti-unification. First, we merge multiple variables that always appear together.
For example, the [A] [B] [C] and [D] [E] in the rule below can be merged.

$TRUE$ if [A] [B] [C] then [D] [E];

$TRUE$ [A] [B] [C]

` $TRUE$ [D] [E]

So the rule becomes:

$TRUE$ if [A] then [B];

$TRUE$ [A]

` $TRUE$ [B]

A variable in a rule is called a free variable, if it appears only once. For example, the rule

if something is red, then tomorrow will be sunny;

[X] is red

` tomorrow will be sunny

contains a free variable [X]. We only consider rules with no more than 1 free variable and require
that they cannot appear in the conclusion. Because they would allow arbitrary conclusions formed
by substituting them with other sentences. For example, the rule below is not allowed because of
the free variable [X] in the conclusion:

$TRUE$ today is sunny ` $TRUE$ Tommorow is [X]

In addition, a rule cannot contain a premise made of one single free variable. Because this premise
can be satisfied by any sentence, and there is no point including it in the rule. For example, the rule
below is not allowed because of the free variable [X]:

$TRUE$ [X];

$TRUE$ if [A] then [B];

$TRUE$ [A]

` $TRUE$ [B]
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