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ABSTRACT

Recent years have seen a surge of interest in meta-learning techniques for tackling
the few-shot learning (FSL) problem. However, the meta-learner is prone to
overfitting since there are only a few available samples with sampling noise on
a clean dataset. More importantly, when handling the data sampled with noisy
labels, meta-learner could be extremely sensitive to label noise on a corrupted
dataset. To address these two challenges, we present Eigen-Reptile (ER) that
updates the meta-parameters with the main direction of historical task-specific
parameters to alleviate sampling and label noise. Specifically, the main direction is
computed in a fast way for the required large-scale matrix. Furthermore, to obtain
a more accurate main direction for Eigen-Reptile in the presence of label noise, we
further propose Introspective Self-paced Learning (ISPL). We have theoretically
and experimentally demonstrated the soundness and effectiveness of the proposed
Eigen-Reptile and ISPL. Particularly, our experiments on different tasks show
that the proposed method is able to outperform or achieve highly competitive
performance compared with other gradient-based methods with or without noisy
labels.

1 INTRODUCTION

Meta-learning, also known as learning to learn, is the key for few-shot learning (FSL) (Vinyals et al.,
2016; Chi et al., 2021). One line of the meta-learning methods are gradient-based, which usually
optimize meta-parameters as initialization that can fast adapt to new tasks with few samples. However,
fewer samples often lead to a higher risk of overfitting (Zintgraf et al., 2019), as the result of the
ubiquitous sampling noise and label noise in practice. Particularly, a popular first-order method,
Reptile (Nichol et al., 2018), updates the meta-parameters towards the inner loop direction, which is
from the current initialization to the last task-specific parameters.

For sampling noise on a clean dataset, as shown by the bold line of Reptile in Figure 1, with the
gradient update at the last step, the update direction of meta-parameters has a significant disturbance.
It is because sampling noise leads the meta-parameters to overfit on the sampled samples at gradient
steps. Many prior works have proposed different solutions for the meta-overfitting problem (Zintgraf
et al., 2019), such as using dropout (Bertinetto et al., 2018; Lee et al., 2020), and modifying the loss
function (Jamal & Qi, 2019) etc.. This paper casts the meta-overfitting problem as a gradient noise
problem that from sampling noise while performing gradient update (Wu et al., 2019). Neelakantan
et al. (2015) and other works have proved that introducing additional gradient noise can improve the
generalization of neural networks with a large number of samples. However, for FSL, there are only
a few samples of each task, and the model will not only learns the contents that need to be identified
but also overfits the noise (Zhang et al., 2016).

Meta-learner is also inevitably affected by label noise because of the required large number of
tasks. More specifically, high-quality manual labeling data is often time-consuming and expensive.
And low-cost approaches to collect low-quality annotated data, such as from search engines, will
introduce noisy labels. Conceptually, the initialization learned by existing meta-learning algorithms
can severely degrade in the presence of noisy labels. As shown in Reptile with noisy labels of Figure
1, noisy labels cause a significant random disturbance in the update direction of Reptile. Furthermore,
conventional algorithms about learning with noisy labels require much more data for each class (Yao
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Figure 1: Inner loop steps of Reptile, Eigen-Reptile. Reptile updates meta-parameters towards the
last task-specific parameters, which is biased. Eigen-Reptile considers all samples more fair with the
main direction of historical task-specific parameters. Note that the main direction is the eigenvector
corresponding to the largest eigenvalue.

et al., 2018; Patrini et al., 2017). Therefore, there are few methods that can directly be applied to
address noisy FSL problems.

To effectively address these issues, in this paper, we propose a novel method, namely Eigen-Reptile
(ER), based on the original Reptile. In particular, as shown in Figure 1, Eigen-Reptile updates the
meta-parameters with the main direction of task-specific parameters that can effectively alleviate
sampling and label noise. However, it is unrealistic to compute parameters’ main direction due to the
large scale of neural network parameters. Therefore, we introduce the process of fast computing the
main direction (Turk & Pentland, 1991) into FSL, which computes the eigenvectors of the inner loop
step scale matrix instead of the parameter scale matrix. Intuitively, noisy labels will degrade the main
direction, which in turn degrades the Eigen-Reptile, with the increase of noise ratio. To get a more
accurate main direction for Eigen-Reptile in the presence of noisy labels, we propose Introspective
Self-paced Learning (ISPL) that constructs multiple prior models with randomly sampling to discard
high loss samples from the dataset. We have theoretically and experimentally demonstrated the
soundness and effectiveness of the proposed methods.

Experimental results show that Eigen-Reptile significantly outperforms the baseline model Reptile by
22.93% and 5.85% on corrupted Mini-ImageNet of 5-way 1-shot and clean Mini-ImageNet of 5-way
5-shot, respectively. Moreover, the proposed algorithms outperform or are highly competitive with
recent gradient-based methods on few-shot classification tasks.

The main contributions of this paper can be summarized as follows:

• We propose Eigen-Reptile that can alleviate noise (both sampling and label noise) effectively.
Besides, we propose ISPL, which improves the computed main direction for Eigen-Reptile
in the presence of noisy labels.
• We theoretically verify the effectiveness of the proposed Eigen-Reptile for sampling and

label noise. Furthermore, we theoretically show that ISPL improves Eigen-Reptile by
improving the accuracy of the observed eigenvector learned with corrupted samples.
• The proposed methods outperform or achieve highly competitive performance compared

with the recent gradient-based methods on few-shot tasks.

2 RELATED WORK

There are three main types of meta-learning approaches: metric-based meta-learning approaches
(Ravi & Larochelle, 2016; Andrychowicz et al., 2016; Santoro et al., 2016), model-based meta-
learning approaches (Vinyals et al., 2016; Koch et al., 2015; Mordatch, 2018; Snell et al., 2017;
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Oreshkin et al., 2018) and gradient-based meta-learning approaches (Finn et al., 2017; Jamal & Qi,
2019; Zintgraf et al., 2018; Li et al., 2017; Rajeswaran et al., 2019). In this paper, we focus on
gradient-based meta-learning approaches which can be viewed as the bi-level loop. The goal of the
outer loop is to update the meta-parameters on a variety of tasks, while task-specific parameters are
learned through only a small amount of data in the inner loop. In addition, some algorithms achieve
state-of-the-art results by additionally training a all-way classification task on meta-training set (Yang
et al., 2020; Hu et al., 2020) like transfer learning (Zuo et al., 2018; Liu, 2020), we do not discuss
these algorithms in this paper.

Meta-Learning with overfitting. Due to too few samples, meta-learner inevitably tends to overfit
in FSL (Mishra et al., 2017). Zintgraf et al. (2018) introduces additional context parameters to the
model’s parameters, which can prevent meta-overfitting; Bertinetto et al. (2018) find that regulariza-
tion such as dropout can alleviate meta-overfitting and Yin et al. (2019) propose meta-regularization
on weights; Jamal & Qi (2019) propose a novel paradigm of Task-Agnostic Meta-Learning (TAML),
which uses entropy or other approaches to minimize the inequality of initial losses beyond the
classification tasks to improve the generalizability of meta-learner; Similar to TAML, Rajendran et al.
(2020) introduces an information-theoretic framework of meta-augmentation to make meta-learner
generalize to new tasks; Ni et al. (2020) improves the performance of meta-learners by data augmen-
tation. All these methods stay at the model level. However, we solve the meta-overfitting problem
from the gradient aspect. We propose Eigen-Reptile, which updates the meta-parameters by the main
direction of task-specific parameters to alleviate meta-learner overfit on noise.

Learning with noisy labels. Learning with noisy labels has been a long-standing problem (Frénay
& Verleysen, 2013; Han et al., 2018b;a). There are many approaches to solve it, such as studying
the denoise loss function (Hendrycks et al., 2018; Patrini et al., 2017; Arazo et al., 2019), relabeling
(Lin et al., 2014), and so on. Nevertheless, most of these methods require much data for each class.
Gao et al. (2019) propose hybrid attention based prototypical networks for noisy few-shot relation
classification but without good transferability. For model-agnostic noisy FSL, a gradient-based
meta-learner is trained to optimize an initialization on various tasks with noisy labels. As there are
few samples of each class, the traditional algorithms for noisy labels cannot be applied. When the
existing gradient-based meta-learning algorithms, such as Reptile, update meta-parameters, they
focus on the samples that generate the last gradient step. And these samples may be corrupted,
which makes the parameters learned by meta-learner susceptible to noisy labels. To better solve the
problem of noisy FSL, we further proposed ISPL based on the idea of Self-paced Learning (SPL)
(Kumar et al., 2010; Khan et al., 2011; Basu & Christensen, 2013; Tang et al., 2012) to learn more
accurate main direction for Eigen-Reptile. ISPL constructs prior models to decide which sample
should be discarded when train task-specific models. In contrast, the model with SPL learns the
samples gradually from easy to complex, and the model itself decides the order, which can improve
the robustness like adversarial training (Neelakantan et al., 2015; Zhang et al., 2020; Gao et al., 2020;
Du et al., 2021). However, SPL is not applicable in meta-learning because of the number of tasks.

3 PRELIMINARIES

Gradient-based meta-learning aims to learn meta-parameters φ as initialization that can adapt to new
tasks after a few iterations. The dataset D is usually divided into the meta-training set Dmeta−train
and meta-testing set Dmeta−test, which are used to optimize meta-parameters and evaluate its
generalization, respectively. For meta-training, we have tasks {Ti}Bi=1 drawn from task distribution
p(T ), each task has its own train set Dtrain and test set Dtest, and the tasks in Dmeta−test are
defined in the same way. Note that there are only a small number of samples for each task in FSL.
Specifically, the N-way K-shot classification task refers to K examples for each of the N classes.
Generally, the number of shots in meta-training should match the one at meta test-time to obtain the
best performance (Cao et al., 2019). In this paper, we follow Lee et al. (2019); Cao et al. (2019)
to increase the training shots appropriately to get the main direction of individual tasks during
meta-training. To minimize the test loss L(Dtest, φ̃) of an individual task, meta-parameters φ need
to be updated n times to get suitable task-specific parameters φ̃. That is minimizing

L(Dtest, φ̃) = − 1

N

∑
E

 1

K

∑
(x,y)∈Dtest

log q
(
ŷ = y | x,φ, φ̃

) (1)
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where φ̃ = Un(Dtrain,φ), Un represents n inner loop steps through gradient descent or Adam
(Kingma & Ba, 2014) on batches from Dtrain, q (·) is the predictive distribution.

When considering updating the meta-parameters in the outer loop, different algorithms have different
rules. In the case of Reptile, after n inner loop steps, the meta-parameters can be updated as:

φ←− φ+ β(φ̃− φ) (2)

where β is a scalar stepsize hyperparameter that controls the update rate of meta-parameters.

4 EIGEN-REPTILE FOR CLEAN AND CORRUPTED DATA

The proposed Eigen-Reptile alleviates the meta-learner overfitting on sampling noise (on a clean
dataset) and label noise (on a corrupted dataset). Furthermore, ISPL improves the performance of
Eigen-Reptile by computing a more accurate main direction when there are noisy labels in the dataset.

4.1 THE EIGEN-REPTILE ALGORITHM

To alleviate overfitting on sampling and label noise and improve the generalizability of meta-learner,
we propose Eigen-Reptile, which updates d-dimensional meta-parameters with the main direction
of historical task-specific parameters. We train the task-specific model with n inner loop steps that
start from the meta-parameters φ. Let i-th column W:,i ∈ Rd×1 of historical task-specific parameter
matrix W ∈ Rd×n be the parameters after i-th gradient update, e.g., W:,i = U i(Dtrain,φ). And
treatW:,i as a d-dimensional parameter point wi in the parameter space. e ∈ Rd×1 is a unit vector
that represents the main direction of n parameter points inW . Intuitively, projecting all parameter
points onto e should retain the most information.

We represent the parameter points by a straight line of the form w = w + le, which shows that the
straight line passes through the mean pointw and the signed distance of a pointw from w is l. Then
we get the loss function J(l1, l2, · · · , ln, e) =

∑n
i=1 ‖ w + lie−wi ‖2. And determine the signed

distance l of each point by partially differentiating J with respect to li, we get li = e>(wi −w).
Plugging in this expression for li in J , we get

J(e) = −
n∑
i=1

e>(wi −w)(wi −w)>e+

n∑
i=1

‖ wi −w ‖2 = −e>Se+

n∑
i=1

‖ wi −w ‖2 (3)

where S =
∑n
i=1 (wi −w)(wi −w)> is a scatter matrix. According to Eq.3, minimizing J is

equivalent to maximizing e>Se. Note that e needs to be roughly consistent with the gradient update
direction V in the process of learning task-specific parameters. Use Lagrange multiplier method as

max e>Se s.t.
{
V e > 0

e>e = 1
,where V =

1

bn/2c

bn/2c∑
i=1

wn−i+1 −wi (4)

We get the objective function

g(µ, e, λ, η) = e>Se− λ(e>e− 1) + µ(−V e+ η2),where λ 6= 0, µ ≥ 0 (5)

then partially differentiating g in Eq.5 with respect to µ, e, λ, η,
−V e+ η2 = 0

2Se− 2λe− µV = 0

e>e− 1 = 0

2µη = 0

(6)

According to Eq.6, if η = 0, then V and e are orthogonal, which obviously does not meet our
expectations. So we get η 6= 0, and µ = 0, then Se = λe. We can see e is the eigenvector of S
corresponding to the largest eigenvalue λ, which is the required main direction. It should be noted
that even if V is not directly related to e, in Eigen-Reptile, the linear constraint V e > 0 in Eq.4 must
be retained as it determines the update direction of the outer-loop. Otherwise, the algorithm will not
converge.
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A concerned question about Se = λe is that the scatter matrix S ∈ Rd×d grows quadratically
with the number of parameters d. As the large number of of parameters typically used in neural
networks, computing eigenvalues and eigenvectors of S could come at a prohibitive cost (the worst-
case complexity isO

(
d3
)

). To avoid calculating the eigenvectors of S directly, we focus onW>W

(centralizeW by subtracting the mean w, and the scatter matrix S = WW>). AsW>Wê = λ̂ê,
multiply both sides of the equation withW ,

WW>Wê︸︷︷︸
e

= λ̂︸︷︷︸
λ

Wê︸︷︷︸
e

(7)

It can be found from Eq.7 that W>W ∈ Rn×n and WW> ∈ Rd×d have the same eigenvalue,
λ = λ̂. Furthermore, we get the eigenvector ofWW> as e = Wê. The main advantage of Eq.7 is
that the intermediate matrixW>W now grows quadratically with the inner loop steps. As we are
interested in FSL, n is very small. It will be much easier to compute the eigenvector ê of W>W .
Then we get the eigenvector e ofWW> based on ê. Moreover, we project parameter update vectors
wi+1 −wi, i = 1, 2, · · · , n− 1 on e to get the corresponding update stepsize ν, so meta-parameters
φ can be updated as

φ←− φ+ βνζe, where ζ =
λ∑n

m=1 λm
(8)

where β is a scalar stepsize hyperparameter that controls the update rate of meta-parameters, ζ is the
proportion of the largest eigenvalue to the sum of all eigenvalues. The larger the value of ζ, the more
accurate the meta-parameter update direction.

The Eigen-Reptile algorithm is summarized in Algorithm 1 of Appendix A. To illustrate the validity
of Eigen-Reptile for sampling noise (gradient noise in gradient updating), we present Theorem 1:

Theorem 1 Assume that the gradient noise variable x follows Gaussian distribution (Hu et al.,
2017; Jastrzbski et al., 2017; Mandt et al., 2016), x ∼ N

(
0, σ2

)
. Moreover, x and neural network

parameter variable are assumed to be uncorrelated. The observed covariance matrix C equals
noiseless covariance matrix Ct plus gradient noise covariance matrix Cx. Then, we get

C =
1

n− 1
S = Ct +Cx = Pt(Λt + Λx)P>t = Pt(Λt + σ2I)P>t = PtΛP

>
t = PΛP> (9)

where Pt and P are the orthonormal eigenvector matrices of Ct and C respectively, Λt and Λ are
the corresponding diagonal eigenvalue matrices, and I is an identity matrix. It can be seen from
Eq.9 that C and Ct has the same eigenvectors. We defer the proof to the Appendix B.

Theorem 1 shows that eigenvectors are not affected by gradient noise. Therefore, Eigen-Reptile can
find a more generalizable starting point for new tasks without overfitting sampling noise (on the clean
dataset). As for label noise (on the corrupted dataset), the analysis is shown in Appendix D. We also
show the complexity analysis in Appendix C, which illustrates that Reptile and Eigen-Reptile are the
same in spatial complexity and time complexity.

4.2 THE INTROSPECTIVE SELF-PACED LEARNING FOR MORE ACCURATE MAIN DIRECTION

Sample for model 1

Sample for model 2

Sample for model 3

Noisy labels

True samples

Figure 2: Randomly sample examples to build
different prior models.

As shown in Appendix D, Eigen-Reptile addresses the
noisy FSL problem by separating noisy information.
However, with the increase of noise ratio, the eigen-
vector will gradually become invalid. To get a more
accurate eigenvector, we propose Introspective Self-
paced Learning (ISPL).
Self-paced learning (SPL) learns the samples from low
losses to high losses, which is proven beneficial in
achieving a better generalization result (Khan et al.,
2011; Basu & Christensen, 2013; Tang et al., 2012).
Besides, some previous work (Zhu et al., 2019) solve
the problem of traditional noisy labels by SPL. Nev-
ertheless, in a meta-learning setting, a meta-learner is
trained on various tasks; the initial model may have
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lower losses for trained classes and higher losses for unseen classes or noisy samples. For this reason,
we cannot train the task-specific model in the same way as SPL to solve the noisy FSL problem. To
this end, we propose an improved SPL algorithm to help Eigen-Reptile achieve better performance for
the problem of the noisy labels. As shown in Figure 2, even though the two categories of the yellow
and green show an excellent distribution that can be well separated, some samples are marked wrong.
To address this noisy label problem, we build three prior models. Specifically, we randomly sample
three times, and model 1 is trained with a corrupted label. Due to different samples learned by prior
models, building multiple models to vote on the data will obtain more accurate losses. Moreover,
samples with losses above a certain threshold will be discarded. Furthermore, we imitate SPL to add
the hidden variable v = 0 or 1 that is decided by Q prior models before the loss of each sample to
control whether the sample should be abandoned. And we get the task-specific loss as

LISPL (φ,v) =

h∑
i=1

viL (xi, yi,φ) ,where vi = arg min
v

vi
Q

Q∑
j=1

Lj (xi, yi,φj)− γvi (10)

where h is the number of samples x from dataset Dtrain, y is label, γ is the sample selection
parameter, which gradually decreases, parameter of model j is φj = Un(Dj ,φ), Dj ∈ Dtrain. Note
that we update the meta-parameters with the model trained on h samples from Dtrain. The ISPL
is summarized in Algorithm 2 of Appendix A. Intuitively, it is difficult to say whether discarding
high-loss samples containing correct and wrong samples will improve the accuracy of eigenvector, so
we prove the effectiveness of ISPL by Theorem 2.

Theorem 2 LetWo be the parameter matrix only generated by the corrupted samples. Compute the
eigenvalues and eigenvectors of the observed expected parameter matrix

1

λ
E(Ctr)e = Po(I −

Λo

λ
)P>o e ≈ Po(I −

λo
λ
I)P>o e > Po(I −

λo − ξ
λ− ξ

I)P>o e (11)

where Ctr is the covariance matrix generated by clean samples, λ is the observed largest eigenvalue,
λo is the largest eigenvalue in the corrupted diagonal eigenvalue matrix Λo, Po is the orthonormal
eigenvector matrix of corrupted covariance matrix. According to Eq.11, if λo/λ is smaller, the
observed eigenvector e is more accurate. Assume that the discarded high loss samples have the same
contributions ξ to λ and λo, representing the observed and corrupted main directional variance,
respectively. Note that these two kinds of data have the same effect on the gradient updating of the
model, so this assumption is relatively reasonable. Furthermore, it is easy to find that (λo−ξ)/(λ−ξ)
is smaller than λo/λ. We defer the proof to the Appendix E.

Theorem 2 shows that discard high loss samples can help improve the accuracy of the observed
eigenvector learned with corrupted labels. Therefore, ISPL can improve the performance of Eigen-
Reptile but not other meta-learning algorithms.

5 EXPERIMENTAL RESULTS AND DISCUSSION

In our experiments, we aim to (1) evaluate the effectiveness of Eigen-Reptile to alleviate overfitting
on sampling and label noise, (2) test the robustness of Eigen-Reptile to some hyperparameters, (3)
evaluate the improvement of ISPL to Eigen-Reptile in the presence of noisy labels. The code and data
for the proposed model are provided for research purposes 1 and all experiments run on a 2080 Ti.

5.1 META-LEARNING WITH CLEAN TOY DATA ON REGRESSION

In this experiment, we evaluate Eigen-Reptile by the 1D sine wave K-shot regression problem
(Nichol et al., 2018). Each task is defined by a sine curve y(x) = Asin(x+ b), where the amplitude
A ∼ U([0.1, 5.0]) and phase b ∼ U([0, 2π]). The amplitude A and phase b are varied between tasks.
The goal of each task is to fit a sine curve with the data points sampled from the corresponding y(x).
We calculate loss in `2 using 50 equally-spaced points from the whole interval [−5.0, 5.0] for each
task. The loss is ∫ 5.0

−5.0
‖ y(x)− ŷ(x) ‖2 dx (12)

1Code is included in the supplemental material and will be released upon the paper acceptance.

6



Under review as a conference paper at ICLR 2022

4 2 0 2 4
6

4

2

0

2

4

6
pred after 0
pred after 8
pred after 16
pred after 24
pred after 32
true
train

(a) ER iteration 1
4 2 0 2 4

6

4

2

0

2

4

6
pred after 0
pred after 8
pred after 16
pred after 24
pred after 32
true
train

(b) ER iteration 10000
4 2 0 2 4

6

4

2

0

2

4

6
pred after 0
pred after 8
pred after 16
pred after 24
pred after 32
true
train

(c) ER iteration 20000
4 2 0 2 4

6

4

2

0

2

4

6
pred after 0
pred after 8
pred after 16
pred after 24
pred after 32
true
train

(d) ER iteration 30000

4 2 0 2 4
6

4

2

0

2

4

6
pred after 0
pred after 8
pred after 16
pred after 24
pred after 32
true
train

(e) R iteration 1
4 2 0 2 4

6

4

2

0

2

4

6
pred after 0
pred after 8
pred after 16
pred after 24
pred after 32
true
train

(f) R iteration 10000
4 2 0 2 4

6

4

2

0

2

4

6
pred after 0
pred after 8
pred after 16
pred after 24
pred after 32
true
train

(g) R iteration 20000
4 2 0 2 4

6

4

2

0

2

4

6
pred after 0
pred after 8
pred after 16
pred after 24
pred after 32
true
train

(h) R iteration 30000

Figure 3: Eigen-Reptile (ER) and Reptile (R) training process on the regression toy test. (a), (b), (c),
(d) and (e), (f), (g), (h) show that after the gradient update 0, 8, 16, 24, 32 times based on initialization
learned by Eigen-Reptile and Reptile respectively.

where ŷ(x) is the predicted function that start from the initialization learned by meta-learner.

The K-shot regression task fits a selected sine curve through K points, here K = 10. For the
regressor, we use a small neural network, which is the same as (Nichol et al., 2018), except that
the activation functions are Tanh. Specifically, the small network includes an input layer of size 1,
followed by two hidden layers of size 64, and then an output layer of size 1.

In this part, we mainly compare Reptile and Eigen-Reptile. Both meta-learners use the same regressor
and are trained for 30000 iterations with inner loop steps 5, batch size 10, and a fixed inner loop
learning rate of 0.02.

0 5000 10000 15000 20000 25000 30000
Iterations

0.0

0.5

1.0

1.5

2.0

2.5

Lo
ss

loss of Eigen-Reptile
loss of Reptile

Figure 4: Loss of the 10-shot regression.

We report the results of Reptile and Eigen-
Reptile in Figure 3. It can be seen that the curve
fitted by Eigen-Reptile is closer to the true green
curve, which shows that Eigen-Reptile performs
better. According to Jamal & Qi (2019), the
initial model with a larger entropy before adapt-
ing to new tasks would better alleviate meta-
overfitting. As shown in Figure 3, from 1 to
30000 iterations, Eigen-Reptile is more gener-
alizable than Reptile as the initial blue line of
Eigen-Reptile is closer to a straight line, which
shows that the initialization learned by Eigen-
Reptile is less affected by gradient noise. Fur-
thermore, Figure 4 shows that Eigen-Reptile
converges faster and gets a lower loss than Rep-
tile.

5.2 META-LEARNING IN CLEAN
REALISTIC PROBLEM

We verify the effectiveness of Eigen-Reptile on two realistic few-shot classification dataset Mini-
Imagenet (Vinyals et al., 2016) and CIFAR-FS (Bertinetto et al., 2018), and the results of CIFAR-FS
are shown in Appendix F.

The Mini-Imagenet dataset contains 100 classes, each with 600 images. We follow Ravi & Larochelle
(2016) to divide the dataset into three disjoint subsets: meta-training set, meta-validation set, and
meta-testing set with 64 classes, 16 classes, and 20 classes, respectively. We follow the few-shot
learning protocols from prior work (Vinyals et al., 2016), except that the number of the meta-training
shot is 15 as Lee et al. (2019); Cao et al. (2019), which is still much smaller than the number of
samples required by traditional tasks. Moreover, we run our algorithm on the dataset for the different
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Table 1: Accuracy of FSL on Mini-Imagenet N-way K-shot. The ± shows 95% confidence interval
over tasks.

Algorithm 5-way 1-shot 5-way 5-shot

Matching Nets (Vinyals et al., 2016) 43.56± 0.84% 55.31± 0.73%
MAML (Finn et al., 2017) 48.70± 1.84% 63.11± 0.92%
FOML (Finn et al., 2017) 48.07± 1.75% 63.15± 0.91%

Meta-SGD (Li et al., 2017) 50.47± 1.87%. 64.03± 0.94%
GNN (Gidaris & Komodakis, 2018) 50.30% 66.40%

CAML (Zintgraf et al., 2018) 51.82± 0.65% 65.85± 0.55%
TAML (Jamal & Qi, 2019) 51.77± 1.86% 65.60± 0.93%

Meta-dropout (Lee et al., 2019) 51.93± 0.67% 67.42± 0.52%
Warp-MAML (Flennerhag et al., 2020) 52.30± 0.80% 68.4± 0.60%

MC (128) (Park & Oliva, 2020) 54.08± 0.93% 67.99± 0.73%
ARML (Yao et al., 2020) 50.42± 1.73% −

Reptile (32) (Nichol et al., 2018) 49.97± 0.32% 65.99± 0.58%
Eign-Reptile (32) 51.80± 0.90% 68.10± 0.50%
Eign-Reptile (64) 53.25± 0.45% 69.85± 0.85%

number of test shots and compare our results to other meta-learning algorithms. What needs to be
reminded is that approaches that use deeper, residual networks or pretrained all-way classifier on
meta-training set can achieve higher accuracies (Gidaris & Komodakis, 2018; Yang et al., 2020; Hu
et al., 2020). So for a fair comparison, we only compare algorithms that use convolutional networks
without a pretrained model as Reptile does. Specifically, our model follows (Nichol et al., 2018),
which has 4 modules with a 3× 3 convolutions and 64 filters, 2× 2 max-pooling etc.. The images
are downsampled to 84 × 84, and the loss function is the cross-entropy error. We use Adam with
β1 = 0 in the inner loop. Our model is trained for 100000 iterations with a fixed inner loop learning
rate of 0.0005, 7 inner-loop steps and batch size 10.

The results of Eigen-Reptile and other meta-learning approaches are summarized in Table 1. The pro-
posed Eigen-Reptile (64 filters) outperforms and achieves highly competitive performance compared
with other algorithms for 5-shot and 1-shot classification problems, respectively. More specifically,
for 1-shot, the results of MC are similar to that of Eigen-Reptile. However, as a second-order
optimization algorithm, the computational cost of MC is much higher than that of Eigen-Reptile (as
shown in Appendix C, Eigen-Reptile is a first-order algorithm like Reptile). Furthermore, the result
of Eigen-Reptile is much better than Reptile for each task. Compared with Reptile, Eigen-Reptile
uses the main direction to update the meta-parameters to alleviate the meta-overfitting caused by
gradient noise. More importantly, Eigen-Reptile outperforms the state-of-the-art meta-overfitting
preventing method Meta-dropout (Lee et al., 2019), which is based on regularization. This result
shows the effectiveness of addressing the meta-overfitting problem from the perspective of alleviating
gradient noise.
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Figure 5: The number of inner-loop and accuracy of
5-way 5-shot task on Mini-Imagenet.

We follow Lee et al. (2019); Cao et al. (2019) to
vary the number of inner-loops and the number
of corresponding training shots to show the ro-
bustness of Eigen-Reptile on the 5-way 5-shot
problem. Besides, other hyperparameters are
not changed.

As shown in Figure 5, after the number of inner-
loops i reaches 7, the test accuracy tends to be
stable, which shows that changing the number
of inner-loops within a specific range has little
effect on Eigen-Reptile. That is, Eigen-Reptile
is robust to this hyperparameter. As for train
shot, to make the trained task-specific param-
eters as unbiased as possible, we specify train
shot roughly satisfies d i×batch sizeN e+ 1, where
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Table 2: Average test accuracy of 5-way 1-shot on the Mini-Imagenet with label noise. S denotes
symmetric label noise, AS denotes asymmetric label noise

Algorithm p = 0.0
p = 0.2 p = 0.5

S AS S AS

Reptile (Nichol et al., 2018) 47.64% 43.49% 45.51% 23.33% 42.03%
Reptile+ISPL 47.23% 43.70% 45.42% 21.83% 41.09%
Eigen-Reptile 47.87% 45.01% 46.50% 27.23% 42.29%

Eigen-Reptile+ISPL 47.26% 45.49% 46.83% 28.68% 43.71%

N is the number of classes. So when i = 7, the number of train shots is 15. It is important to note that
in our experiments, Reptile with the hyperparameters set by its authors, the number of inner-loops is
8, the number of train shots is 15, and the corresponding accuracy is 65.99%, which is much lower
than the result of Eigen-Reptile.

5.3 META-LEARNING WITH LABEL NOISE

We conduct the 5-way 1-shot experiment with noisy labels generated by corrupting the original labels
of Mini-Imagenet. There are symmetric label noise and asymmetric label noise in this experiment.
For symmetric label noise, correct labels are flipped to other labels with equal probability, i.e., in
the case of symmetric noise of ratio p, a sample retains the correct label with probability 1− p, and
it becomes some other label with probability p/(N − 1). On the other hand, for asymmetric label
noise, we randomly flip the labels of one class to the labels of another fixed class with probability p.

Note that we only introduce noise in the train set during meta-training, where the meta-training shot is
30. Moreover, all meta-learners with 32 filters are trained for 10000 iterations to alleviate overfitting
on corrupted samples, and the learning rate is 0.001 in the inner loop. The sample selection parameter
γ = 10 that decreases by 0.6 every 1000 iterations.

As shown in Table 2, for symmetric label noise, with the increase of the ratio p, the performance of
Reptile decreases rapidly. When p = 0.5, the initialization learned by Reptile can hardly meet the
requirements of quickly adapting to new tasks with few samples. On the other hand, Eigen-Reptile
is less affected by symmetric label noise, especially when the noise ratio is high, i.e., p = 0.5. As
for asymmetric label noise, meta-learners are trained on tasks with the same noise transition matrix,
which allows meta-learners to learn more useful information, so the results are higher than that with
symmetric noise. Like the results of symmetric label noise, Eigen-Reptile outperforms Reptile in all
tasks.

As shown in Table 2, Eigen-Reptile+ISPL achieves better results than that of Eigen-Reptile when
p 6= 0. Specifically, ISPL plays a more significant role when p is higher. However, when p = 0,
ISPL harms Eigen-Reptile, as ISPL only discards correct samples. These results corresponding to the
conclusion in Appendix D, with the increase of noise ratio, the eigenvector will gradually become
invalid, which demonstrates the effectiveness of ISPL and verify the idea that ISPL collaborates
with Eigen-Reptile by providing improved main direction. In addition, ISPL does not significantly
improve or even degrades the results of Reptile. This is because too many high-loss samples are
removed, causing Reptile to fail to converge quickly with the same number of iterations. These
experimental results show that Eigen-Reptile and ISPL can effectively separate noisy information,
thereby alleviating the meta-overfitting on corrupted samples.

6 CONCLUSION

This paper proposes a gradient-based meta-learning algorithm Eigen-Reptile. It updates the meta-
parameters through the main direction, proven by theory and experiments to effectively alleviate
the overfitting on sampling and label noise. Furthermore, to get closer to real-world situations, we
introduce noisy labels into the meta-training dataset. The proposed ISPL constructs prior models to
select samples for Eigen-Reptile to get a more accurate main direction.
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A PSEUDO-CODE

Algorithm 1 Eigen-Reptile
Input: Distribution over tasks P (T ), outer step size β.

1: Initialize meta-parameters φ
2: while not converged do
3: W = [ ], ν = 0
4: Sample batch of tasks {Ti}Bi=1 ∼ P (T )
5: for each task Ti do
6: φi = φ
7: Sample train set Dtrain of Ti
8: for j = 1, 2, 3, ..., n do
9: φji = U j(Dtrain,φi)

10: W appendsW:,j = flatten(φji ), W:,j ∈ Rd×1
11: end for
12: Mean centering,W = W −w, w ∈ Rd×1
13: Compute eigenvalue matrix Λ̂ and eigenvector matrix P̂ of scatter matrixW>W

14: Eigenvalues λ1 > λ2 > · · · > λn in Λ̂

15: Compute eigenvector matrix ofWW>, P = WP̂
16: Let the eigenvector corresponding to λ1 be a unit vector, ‖ e1i ‖22= 1
17: for j = 1, 2, 3, ..., n− 1 do
18: ν = ν + (W:,j+1 −W:,j)e

1
i

19: end for
20: e1i = λ1∑n

m=1 λm
× e1i

21: Calculate the approximate direction of task-specific gradient update V :
22: V = 1

bn/2c
∑bn/2c
i=1 W:,n−i+1 −W:,i

23: if e1i · V < 0 then
24: e1i = −e1i
25: end if
26: end for
27: Average the main directions to get ẽ = (1/B)

∑B
i=1 e

1
i

28: Update meta-parameters φ←− φ+ β × ν/B × ẽ
29: end while

Algorithm 2 Introspective Self-paced Learning
Input: Dataset Dtrain, initialization φ, batch size b, selection parameter γ, attenuation coefficient µ,
the number of prior models Q.

1: Initialize network parameters φ∗ = φ for a sampled task
2: for j = 1, 2, 3, · · · , Q do
3: Sample examples Dj from Dtrain for training modelj , φj = Um(Dj ,φ

∗)
4: end for
5: Train task-specific parameters:
6: for i = 1, 2, 3, · · · , n do
7: Compute hidden variable vector v:
8: v = arg minv vq

∑b
q=1 Lq − γ

∑b
q=1 vq ,

9: where Lq = 1
Q

∑Q
j=1 Lj (xq, yq,φj)

10: Update task-specific parameters φ∗:
11: φ∗ = arg minφ∗ LISPL (φ∗, v)
12: γ = γ − µ
13: end for
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B PROOF OF THEOREM 1

Gradient update always with gradient noise inserted at every iteration, which caused Reptile, MAML,
etc. cannot find accurate directions to update meta-parameters. In this section, we will prove that
Eigen-Reptile can alleviate gradient noise.

Theorem 1 Assume that the gradient noise variable x follows Gaussian distribution (Hu et al., 2017;
Jastrzbski et al., 2017; Mandt et al., 2016), x ∼ N

(
0, σ2

)
. Furthermore, x and neural network

parameter variable are assumed to be uncorrelated. The observed covariance matrix C equals
noiseless covariance matrix Ct plus gradient noise covariance matrix Cx. Then, we get

C =
1

n− 1
S = Ct +Cx = Pt(Λt + Λx)P>t = Pt(Λt + σ2I)P>t = PtΛP

>
t = PΛP> (13)

where Pt and P are the orthonormal eigenvector matrices of Ct and C respectively, Λt and Λ are
the corresponding diagonal eigenvalue matrices, and I is an identity matrix. It can be seen from
Eq.13 that C and Ct has the same eigenvectors.

Proof B.1 In the following proof, we assume that the probability density function of gradient noise
variable x follows Gaussian distribution, x ∼ N

(
0, σ2

)
. Treat the parameters in the neural network

as variables, and the parameters obtained by each gradient update as samples. Furthermore, gradient
noise and neural network parameters are assumed to be uncorrelated.

For observed parameter matrixW ∈ Rd×n, there are n samples, letWi,: ∈ R1×n be the observed
values of the i-th variable Wi, and W = [W>

1,:, · · · ,W>
i,: , · · · ,W>

d,:]
>. Similarly, we denote the

noiseless parameter matrix byW t = [(W t
1,:)
>, · · · , (W t

i,:)
>, · · · , (W t

d,:)
>]>, and

W = W t +X (14)

Where X = [X>1,:, · · · ,X>i,:, · · · ,X>d,:]> is the dataset of noise variables. Then, centralize each
variable by

W k = Wk −
1

n

n∑
i=1

Wk,:(i) (15)

So we get W = [W
>
1 , · · · ,W

>
d ]>. Suppose W t is also centralized by the same way and get

W t = [W t
>
1 , · · · ,W t

>
d ]>. Then, we have:

W = W t +X (16)

Computing the covariance matrix ofW :

C =
1

n
WW

>

=
1

n
(W t +X)(W t

>
+X>)

=
1

n
(W tW t

>
+W tX> +XW t

>
+XX>)

(17)

SinceW t andX are uncorrelated,W tX> andXW t
>

are approximately zero matrices. Thus:

C ≈ 1

n
(W tW t

>
+XX>) = Ct +Cx (18)

The componentCx(i, j) is the correlation betweenXi andXj which corresponds to the i-th and j-th
rows ofX . As the two noise variables are not related to each other, if i 6= j, then Cx(i, j) = 0. So
Cx ∈ Rd×d is a diagonal matrix with diagonal elements σ2. Decompose Ct as:

Ct = PtΛtP
>
t (19)

where Pt is the noiseless orthonormal eigenvector matrix and Λt is the noiseless diagonal eigenvalue
matrix, then

Cx = ΛxPtP
>
t = PtΛxP

>
t = PtCxP

>
t (20)
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where Λx = σ2I , and I is the identity matrix. Thus,

C = Ct +Cx

= PtΛtP
>
t + PtΛxP

>
t

= Pt(Λt + Λx)P>t

= PtΛP
>
t

(21)

where Λ = Λt + Λx. It can be seen from Eq.21 that C and Ct has the same eigenvector matrix. In
other words, eigenvector is not affected by gradient noise.

C ALGORITHM COMPLEXITY ANALYSIS OF EIGEN-REPTILE

As for the time complexity of Eigen-Reptile, the cost of single gradient descent in the inner-loop
is O(d), where d is the number of network parameters. The cost of the scatter/covariance matrix
computations is O(n2d), where n is the number of inner-loop. Moreover, the worst-case complexity
of computing eigenvalue decomposition is O(n3). Finally, the computational complexity of restoring
eigenvector is O(nd). We set the maximal number of outer-loop to T . Hence the time complexity of
Eigen-Reptile is

O(T (n3 + n2d+ nd+ nd)) = O(Td) (22)

In FSL, n is small (in this paper n = 7 ), so the overall time complexity isO(Td).

As for Reptile, the time complexity is also O(Td), which means that the time complexity of both
Reptile and Eigen-Reptile is much lower than the second-order optimization algorithms.

As for spatial complexity, Eigen-Reptile needs to store a d×n matrix and a n×n matrix. The overall
spatial complexity isO(d), while the spatial complexity of Reptile is O(d), too.

It can be seen that, compared to Reptile, Eigen-Reptile is the same in spatial complexity and time
complexity. Still, the accuracy of Eigen-Reptile is much higher than that of Reptile.

D EFFECTIVENESS OF EIGEN-REPTILE FOR NOISY FSL

Eigen-Reptile addresses the noisy FSL problem by separating noisy information. More specifically,
from the perspective of signal to noise ratio (SNR) :

SNR =
δ2clean
δ2noise

(23)

where δ2clean is the variance of weight points introduced by clean data, and δ2noise is the variance of
weight points introduced by corrupted data.
Normally, SNR�1, which shows that the effective information is far more than noisy information.
Specifically, in a task-specific training, weight matrix W is composed of all weight points, and we
decompose it as:

W = USVT =

r∑
k=1

σkukvk
T (24)

where r is the rank of W , uk is the eigenvector of the covariance matrix WWT , vk is the eigenvector
of the covariance matrix WTW .
The singular values are ordered in decreasing magnitude as σ1 ≥ σ2 ≥ · · · ≥ σr which are the
positive square roots of the eigenvalues of WWT . In Eigen-Reptile, we only remain the eigenvector
corresponding to the largest eigenvalue, e.g., σ2

1 , which can be viewed as the δ2clean in SNR. In
contrast, the noisy information δ2noise is removed by omitting the low singular values. However, with
the increase of noise ratio, Eigen-Reptile is more and more likely to suffer from the problem that the
influence of corrupted samples gradually dominates the main update direction.

16



Under review as a conference paper at ICLR 2022

E PROOF OF THEOREM 2

In this section, we will prove that discarding high loss samples will result in a more accurate main
direction in noisy FSL.

Theorem 2 LetWo be the parameter matrix only generated by the corrupted samples. Compute the
eigenvalues and eigenvectors of the observed expected parameter matrix

1

λ
E(Ctr)e = Po(I −

Λo

λ
)P>o e ≈ Po(I −

λo
λ
I)P>o e > Po(I −

λo − ξ
λ− ξ

I)P>o e (25)

whereCtr is the covariance matrix generated by clean samples, λ is the observed largest eigenvalue,
λo is the largest eigenvalue in the corrupted diagonal eigenvalue matrix Λo, Po is the orthonormal
eigenvector matrix of corrupted covariance matrix. According to Eq.25, if λo/λ is smaller, the
observed eigenvector e is more accurate. Assume that the discarded high loss samples have the same
contributions ξ to λ and λo, representing the observed and corrupted main directional variance,
respectively. Note that these two kinds of data have the same effect on the gradient updating of the
model, so this assumption is relatively reasonable. Furthermore, it is easy to find that (λo−ξ)/(λ−ξ)
is smaller than λo/λ.

Proof E.1 Here, we use w to represent the parameter point obtained after a gradient update. For
convenience, let w be generated by a single sample, w ∈ Rd×1. Then the parameter matrix can be
obtained,

W =
[
wtr

1 wtr
2 · · · wo

1 · · · wo
m · · · wtr

n

]
(26)

where wo represents the parameters generated by the corrupted sample, and wtr represents the
parameters generated by the true sample. Furthermore, there are n parameter points generated by
n samples. Moreover, there are m corrupted parameter points generated by m corrupted samples.
Mean centeringW , and show the observed covariance matrix C as

C =
1

n
WW>

=
1

n

[
wtr

1 wtr
2 · · · wtr

n

]


(wtr
1 )>

(wtr
2 )>

...
(wtr

n )>


=

1

n
(wtr

1 (wtr
1 )> + · · ·+wo

1(wo
1)> + · · ·+wo

m(wo
m)>

+ · · ·+wtr
n (wtr

n )>)

(27)

It can be seen from the decomposition of C that the required eigenvector is related to the parameters
obtained from the true samples and the parameters obtained from the noisy samples. For a single
parameter point

ww> =


a1
...
ai
...
ad

 [a1 · · · ai · · · ad] =


a21 a1a2 · · · a1ad
a2a1 a22 · · · a2ad

...
...

. . .
...

ada1 ada2 · · · a2d

 (28)

As we discard all high loss samples that make the model parameters change significantly, and the
randomly generated noisy labels may cause the gradient to move in any direction, we assume that the
variance of corrupted parameter point variables is δ. Compute the expectations of all variables in
the corrupted parameter point

E(ww>) =


δ21 + E(a1)2 E(a1a2) · · · E(a1ad)
E(a2a1) δ22 + E(a2)2 · · · E(a2ad)

...
...

. . .
...

E(ada1) E(ada2) · · · δ2d + E(ad)
2

 = Ω (29)
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Let the sum of all corrupted 1
nE(ww>) be Ωo, then

Ωo =
1

n


mδ2 +

∑m
j=1 E(aj1)2 · · ·

∑m
j=1 E(aj1ajd)∑m

j=1 E(aj2aj1) · · ·
∑m
j=1 E(aj2ajd)

...
. . .

...∑m
j=1 E(ajdaj1) · · · mδ2 +

∑m
j=1 E(ajd)

2

 (30)

And let the sum of all true 1
nww

> be Ctr. So the expectation of C can be written as,

E(C) = E(Ctr) + Ωo (31)

Treat eigenvector and eigenvalue as definite values, we get

(Ωo + E(Ctr))e = λe (32)

where e is the observed eigenvector, λ is the corresponding eigenvalue. Divide both sides of the
equation by λ.

1

λ
E(Ctr)e = (I − 1

λ
Ωo)e

= Po(I −
1

λ
Λo)P

>
o e

≈ Po(I −
λo
λ
I)P>o e

(33)

where λo is the largest eigenvalue in the corrupted diagonal eigenvalue matrix Λo, Po is the
orthonormal eigenvector matrix of Ωo. According to Eq.33, if λo/λ is smaller, e is more accurate.
Discard some samples with the largest losses, which may contain true samples and noisy samples.
Assume that the discarded high loss samples have the same contributions ξ to λ and λo, as these
two kinds of data have the same effect on the gradient updating of the model. Compare the ratio of
eigenvalues before and after discarding, get

λo
λ︸︷︷︸

before

− λo − ξ
λ− ξ︸ ︷︷ ︸
after

=
ξ(λ− λo)
λ(λ− ξ)

> 0
(34)

Obviously, λ > λo, and if we don’t discard all samples, then λ > ξ. So Eq.34> 0, which means
discarding high loss samples could reduce λo/λ. Therefore, discarding high loss samples can
improve the accuracy of eigenvector in the presence of noisy labels.

For further analysis, we assume that any two variables are independently and identically distributed,
the expectation of variable a, E(a) = ε. Thus,

1

λ
Ωo =

p

λ


δ2 + ε2 · · · ε2

ε2 · · · ε2

...
. . .

...
ε2 · · · δ2 + ε2

 (35)

where p is the proportion of noisy labels, np = m. As can be seen from Eq.35, if pε2/λ ≈ 0, then
Ωo/λ is a diagonal matrix. According to proof. B.1, the observed eigenvector e is unaffected by
noisy labels with the corresponding eigenvalue p(δ2+ε2)

λ .

F EXPERIMENTS ON CIFAR-FS

In this part, we will test Eigen-Reptile on another realistic dataset. Bertinetto et al propose CIFAR-FS
(CIFAR100 few-shots), which is randomly sampled from CIFAR-100, containing images of size
32 × 32. The settings of Eigen-Reptile (64 filters) in this experiment are the same as in the mini-
imagenet experiment. Moreover, we do not compare algorithms with additional tricks, such as higher
way. It can be seen from Table 3 that on CIFAR-FS, the performance of Eigen-Reptile is still far
better than Reptile without any parameter adjustment.
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Table 3: Few Shot Classification on CIFAR-FS N-way K-shot accuracy. The ± shows 95%
confidence interval over tasks.

Algorithm 5-way 1-shot 5-way 5-shot

MAML(Finn et al., 2017) 58.90± 1.90% 71.50± 1.00%
PROTO NET (Snell et al., 2017) 55.50± 0.70% 72.00± 0.60%
GNN (Satorras & Estrach, 2018) 61.90% 75.30%

Embedded Class Models (Ravichandran et al., 2019) 55.14± 0.48% 71.66± 0.39%

Reptile (Nichol et al., 2018) 58.30± 1.20% 75.45± 0.55%
Eign-Reptile 61.90± 1.40% 78.30± 0.50%
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