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Abstract

Despite demonstrating impressive capabilities,001
Large Language Models (LLMs) still often002
struggle to accurately express the factual knowl-003
edge they possess, especially in cases where004
the LLMs’ knowledge boundaries are ambigu-005
ous. To improve LLMs’ factual expressions,006
we propose the UALIGN framework, which007
leverages Uncertainty estimations to represent008
knowledge boundaries, and then explicitly in-009
corporates these representations as input fea-010
tures into prompts for LLMs to Align with fac-011
tual knowledge. First, we prepare the dataset012
on knowledge question-answering (QA) sam-013
ples by calculating two uncertainty estimations,014
including confidence score and semantic en-015
tropy, to represent the knowledge boundaries016
for LLMs. Subsequently, using the prepared017
dataset, we train a reward model that incor-018
porates uncertainty estimations and then em-019
ploy the Proximal Policy Optimization (PPO)020
algorithm for factuality alignment on LLMs.021
Experimental results indicate that, by integrat-022
ing uncertainty representations in LLM align-023
ment, the proposed UALIGN can significantly024
enhance the LLMs’ capacities to confidently025
answer known questions and refuse unknown026
questions on both in-domain and out-of-domain027
tasks, showing reliability improvements and028
good generalizability over various prompt- and029
training-based baselines.030

1 Introduction031

Despite the remarkable proficiency of large lan-032

guage models (LLMs) across a diverse range of033

tasks (Touvron et al., 2023; OpenAI, 2023; Chiang034

et al., 2023), they still frequently face challenges in035

accurately expressing factual knowledge that they036

learned from the pre-training stage but are uncer-037

tain about. In such cases, the knowledge bound-038

aries are somewhat ambiguous by LLMs, remain-039

ing a gap between “known” and “expression” (Lin040

et al., 2024; Zhang et al., 2024b; Li et al., 2024),041

which may lead to the hallucination problem and 042

undermine the reliability and applicability to users. 043

LLMs typically generate responses (“expres- 044

sion”) based on knowledge distributions learned 045

during pre-training (“known”). However, much 046

of the knowledge acquired during this phase ex- 047

hibits vague boundaries, comprising numerous 048

learned but uncertain knowledge pieces (weakly 049

known, light green area of spectrum in Fig. 1 (a)) 050

(Gekhman et al., 2024). Hence, LLMs may not 051

confidently convey accurate information in down- 052

stream tasks even though they hold relevant knowl- 053

edge but don’t make sure (Zhang et al., 2024b). 054

Additionally, LLMs may exhibit overconfidence in 055

the knowledge they are unfamiliar with (unknown, 056

the gray area of spectrum in Fig. 1 (a)), leading 057

to fabricated or hallucinatory content (Zhang et al., 058

2024a; Liu et al., 2024). This issue primarily arises 059

from that LLMs don’t properly reconcile the knowl- 060

edge boundaries with factual accuracy during align- 061

ment (Tian et al., 2024). Unlike previous works that 062

focused on reinforcement learning (RL) through 063

knowledge feedback or factuality alignment (Liang 064

et al., 2024; Xu et al., 2024a; Tian et al., 2024; Lin 065

et al., 2024; Zhang et al., 2024b; Yang et al., 2024), 066

our objective is to elicit LLMs’ weakly known facts 067

and extend beyond merely discerning unknown 068

facts by explicitly utilizing knowledge boundaries 069

in alignment. We aim to leverage the knowledge 070

boundary information of LLMs to instruct LLMs 071

to confidently express their known yet uncertain in- 072

formation and firmly refuse questions beyond their 073

knowledge as in Fig. 1 (b). Based on improve- 074

ments of “known”, LLMs’ expressions are more 075

truthful and reliable, thereby minimizing the dis- 076

crepancy between “known” and “expression” (Lin 077

et al., 2024; Zhang et al., 2024b; Li et al., 2024). 078

Inspired by the aforementioned analysis, we pro- 079

pose the UALIGN framework, which strategically 080

models Uncertainty regarding knowledge boundary 081

representations, subsequently Aligning these esti- 082
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Figure 1: Examples of LLMs with (a) ambiguous and
(b) explicit knowledge boundaries to answer questions.

mations with factuality. Therefore, the UALIGN083

framework focuses on two pivotal issues: how to084

capture the knowledge boundary representations085

and how to align with factuality.086

First, we prepare the dataset that incorporates087

knowledge boundary information for alignment in088

the UALIGN framework. Knowledge boundaries089

always indicate the known level of factual knowl-090

edge, generally implemented using uncertainty es-091

timation methods on LLMs (Ren et al., 2023). To092

precisely capture the intrinsic perception of knowl-093

edge boundary representations given the knowl-094

edge QA datasets, we adopt two uncertainty estima-095

tions of accuracy-based confidence score (Xiong096

et al., 2024) and semantic entropy (Kuhn et al.,097

2023) respectively. We sample multiple responses098

to a question using varied prompting and temper-099

ature sampling to approximate actual knowledge100

boundaries by calculating the confidence and en-101

tropy of each question. The two measures (Kuhn102

et al., 2023; Xiong et al., 2024), as complementary,103

can reflect the convince and dispersion of generated104

responses to a question based on LLMs’ internal105

knowledge. Questions with at least one correct sam-106

pled answer are regarded as “known”, and those107

with all incorrect sampled responses are considered108

“unknown”. We revise ground-truth answers to un-109

known questions to refusal responses to delineate110

known and unknown facts (Zhang et al., 2024a).111

Second, following Ouyang et al. (2022), we ex-112

plicitly leverage the uncertainty estimations to align113

with factuality on the prepared dataset using both114

supervised fine-tuning (SFT) and reinforcement115

learning (RL). We employ SFT to train two uncer-116

tainty estimation models to predict confidence and 117

entropy, and then train a reward model to evaluate 118

the correctness of the generated answer conditioned 119

on the input comprising the question, the gener- 120

ated response, and two uncertainty estimations re- 121

garding the knowledge boundary. With the reward 122

model, we further adopt the Proximal Policy Opti- 123

mization (PPO) (Schulman et al., 2017) algorithm 124

for LLM alignment by feeding both questions and 125

two measures as prompts to elicit the policy LLM’s 126

factual expressions to improve the reliability. 127

Experiments are conducted to evaluate in- 128

domain and out-of-domain performance on a range 129

of knowledge QA datasets. The results demonstrate 130

our proposed UALIGN method significantly en- 131

hances the reliability and generalization for LLMs 132

over several baseline methods to accurately express 133

known factual knowledge and refuse unknown 134

questions, suggesting that leveraging the two em- 135

ployed uncertainty estimations in alignment can 136

notably improve LLMs’ factuality. 137

In summary, our contributions are as follows. 138

1) To the best of our knowledge, UALIGN is 139

the first to explicitly leverage the uncertainty es- 140

timations representing knowledge boundaries for 141

LLM alignment, heralding a promising direction 142

for future research of LLM training1. 143

2) We demonstrate that jointly incorporating con- 144

fidence and semantic entropy into prompts can pro- 145

vide precise knowledge boundary information to 146

elicit LLMs’ factual expressions. 147

3) We conduct main experiments by comparing 148

our UALIGN with various baselines as well as abla- 149

tion studies, validating the reliability improvements 150

and robust generalization of the UALIGN method. 151

2 Methodology 152

The proposed UALIGN framework is introduced in 153

this section with two parts: The Sec. 2.1 involves 154

the UALIGN dataset preparation process, includ- 155

ing strategies to collect multiple responses, as well 156

as uncertainty measures to capture intrinsic repre- 157

sentations of knowledge boundary on knowledge- 158

based QA pairs as illustrated in Fig. 2. The Sec. 2.2 159

utilizes the obtained UALIGN dataset to train the 160

uncertainty estimation models, and further explic- 161

itly incorporate the estimations as input features 162

to elicit LLMs to generate factual responses using 163

SFT- and PPO-based alignment methods as shown 164

in Fig. 3 and Algorithm 1. 165

1The codes will be released on GitHub.
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Figure 2: Illustration of UALIGN dataset preparation process.

2.1 Dataset Preparation166

2.1.1 Responses Sampling Strategy167

As in Fig. 2, to explore the knowledge boundary168

of the LLM given a question, we sample multiple169

responses by repeating the generation procedure170

several times. In this phase, the preparation process171

can be represented in a tuple (Q,P,A). Q contains172

a batch of N QA pairs {(xi, ŷi)}
N
i=1 where xi and173

ŷi denote the i-th question and ground-truth an-174

swer respectively. To mitigate context sensitivity,175

we utilize different few-shot prompts in P with176

temperature T = 0.2 to make a trade-off between177

the accuracy and diversity to represent knowledge178

boundaries (Gekhman et al., 2024). The few-shot179

prompt set P consists of K different 1-shot exem-180

plars in this work which is enough for LLMs to181

generate answers in the correct format. We present182

the few-shot prompts for sampling on TriviaQA183

and SciQ datasets as exemplified in Appendix I.184

In the k-th sampling process for the i-th question185

xi, we employ each few-shot exemplar pk ∈ P186

with the question xi to the LLM to generate the187

k-th response yi
(k). By taking K times of the188

sampling process, we can obtain an answer set189

Y i =
{
yi

(k)
}K
k=1

to xi. We set the labels Zi =190 {
zi

(k)
}K
k=1

by comparing each generated answer191

yi
(k) with the ground-truth ŷi to indicate the cor-192

rectness (zi(k) ∈ {0, 1}, 1 for True and 0 for False).193

We collect and format the data in (xi,Y i,Zi, ŷi)194

in an extended dataset and calculate the uncertainty195

measures subsequently. Note that since fine-tuning196

LLMs on unknown knowledge will encourage hal-197

lucinations (Zhang et al., 2024a; Gekhman et al.,198

2024), we revise the ground-truth answer to the199

question with zi
(k) = 0, ∀zi(k) ∈ Zi to “Sorry, I200

don’t known.” to teach LLMs to refuse the ques-201

tions beyond their knowledge (Zhang et al., 2024a).202

2.1.2 Uncertainty Measures203

In order to quantify the knowledge boundaries, we204

can leverage some uncertainty estimation methods.205

The knowledge boundary of LLMs in this work is206

defined in two aspects. The first involves the prior 207

judgment to a question xi regardless of the answers 208

(Ren et al., 2023) which indicates the certainty level 209

of xi. The second entails the dispersion measure 210

to the distribution of the generated responses in Y i 211

to xi. Accordingly, we adopt accuracy-based con- 212

fidence (Xiong et al., 2024) and semantic entropy 213

(Kuhn et al., 2023) to jointly determine and repre- 214

sent the actual knowledge boundary information. 215

Accuracy-based Confidence A natural idea of 216

aggregating varied responses is to measure the 217

accuracy among the candidate outputs to denote 218

confidence scores (Manakul et al., 2023; Xiong 219

et al., 2024). Given a question xi, the accuracy of 220

candidate responses in Y i by comparing with the 221

ground-truth answer ŷi serves as the confidence 222

score ci, computed as follows. 223

ci = Conf(xi) =
1

K

K∑
k=1

1
(
ỹi = yi

(k)
)

(1) 224

Semantic Entropy Due to the variable length 225

and semantically equivalent generated sequences 226

in sentence-level output spaces, Kuhn et al. (2023) 227

proposes semantic entropy to capture uncertainty 228

on the semantic level to quantify the degree of 229

dispersion of sentence meanings. The semantic 230

entropy ei given xi and Y i is calculated as 231

p(s|xi) =
1

K

K∑
k=1

1
[
yi

(k) ∈ s
]

(2) 232

ei = SE(xi) = −
∑
s

p(s|xi) log p(s|xi) (3) 233

where s denotes a set of sentences in semantic 234

equivalent space. As illustrated in Fig. 1, seman- 235

tic entropy is calculated by clustering semantically 236

equivalent responses, as a measure to quantify the 237

dispersion of generations to confirm the correct an- 238

swer despite the low confidence, which will be fur- 239

ther analyzed with the experimental results in Sec. 240

4.2. We calculate the confidence score and seman- 241

tic entropy for both known and unknown questions. 242
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Figure 3: Illustration of (a) SFT and (b) PPO alignment
processes of UALIGN framework. Note that for simplic-
ity, we only present one estimation model in the figure
but there are actually two.

Algorithm 1 UALIGN Training Algorithm

1: Input: UALIGN dataset D, uncertainty models
τ µ, reward model θ, initial policy πo.

2: Output: Optimized policy πθ.
3: Stage 1: UALIGN SFT
4: Train uncertainty models τ µ on D to predict

ci, ei by feeding xi using Eq. 4 and 5.
5: Train reward model θ on D to predict zi by

feeding xi, ci, ei,yi
(k) using Eq. 6.

6: Stage 2: UALIGN PPO
7: Collect reward r including the reward signal

r1 by θ and KL-penalty r2 between policy πθ
and initial policy πo as Eq. 7.

8: Update policy πθ using the collected reward r.

Then we update a UALIGN dataset D by formatting243

the i-th sample in (xi,Y i,Zi, ŷi, ci, ei).244

2.2 UALIGN Training Process245

2.2.1 UALIGN SFT: Uncertainty Estimation246

and Reward Models Training247

As presented in Fig. 3 (a) and Algorithm 1, given248

dataset D, UALIGN SFT is to train uncertainty249

estimation models to explicitly learn the two esti-250

mations given specific questions. Uncertainty es-251

timation models of τ and µ are utilized to predict252

the confidence score and semantic entropy respec-253

tively, which are continuously used to train a re-254

ward model. When training τ and µ, we only feed255

a question xi to the models to generate two uncer-256

tainty estimations. The training objectives are to 257

minimize the cross-entropy losses Lτ and Lµ as 258

argmin
τ

Lτ , argmin
µ

Lµ, 259

Lτ = −E(xi,ci)∼D [log pτ (ci|xi)] (4) 260

Lµ = −E(xi,ei)∼D [log pµ(ei|xi)] (5) 261

where the models can explicitly learn and express 262

the uncertainty estimations which represent more 263

accurate knowledge boundary information. 264

Subsequently, the reward model is introduced 265

as a binary evaluator to determine if a generated 266

answer yi
(k) ∈ Y i is correctly conditioned on the 267

question xi, confidence ci, and entropy ei. Both 268

ci and ei are explicitly used as additional auxil- 269

iary features to improve the accuracy of the reward 270

model. The binary cross-entropy loss Lθ for the 271

reward model θ is minimized as follows. 272

argmin
θ

Lθ,Lθ = −E(xi,yi
(k),zi(k),ci,ei)∼D[Lθ

(i)] 273

Lθ
(i) = −zi

(k) log pθ(zi
(k)|xi, ci, ei,yi

(k)) 274

−(1− zi
(k)) log(1− pθ(zi

(k)|xi, ci, ei,yi
(k)))

(6)
275

2.2.2 UALIGN PPO: Policy Model Training 276

The UALIGN PPO is to elicit the LLM’s factual 277

expressions to a question with the uncertainty mea- 278

sures using obtained models. Inspired by the 279

progress of reinforcement learning from human 280

feedback (RLHF) technique (Ouyang et al., 2022; 281

Ziegler et al., 2019), we employ proximal policy 282

optimization (PPO) (Schulman et al., 2017) for 283

LLM optimization with the reward model θ. As 284

illustrated in Fig. 3 (b), the LLM to be optimized 285

is used as the policy πθ. During this phase, we 286

iteratively feed the question x, and the predicted 287

confidence c and entropy e to both the policy πθ 288

and the reference πo, and the reward function r 289

will facilitate reliable expressions of y of the pol- 290

icy model πθ. The training objective is to maximize 291

the following reward function r as 292

argmax
πθ

Ex∼D,c∼τ(x),e∼µ(x),y∼πθ(x,c,e) [r] 293

r = θ(x,y, c, e)︸ ︷︷ ︸
r1

−βKL[πθ(x, c, e)||πo(x)]︸ ︷︷ ︸
r2

(7) 294

where the reward function r contains a reward sig- 295

nal r1 from θ and a KL-penalty r2 to make sure 296

the generated answers y by policy πθ don’t diverge 297

too much from the original policy πo. The hyper- 298

parameter β is the coefficient of KL-penalty. 299
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3 Experimental Setting300

3.1 Datasets301

The UALIGN training set is comprised of three302

widely used knowledge-intensive QA datasets:303

TriviaQA (TVQA) (Joshi et al., 2017) which con-304

tains closed-book trivia QA pairs to gauge models’305

factual knowledge, SciQ (Johannes Welbl, 2017)306

requiring scientific professional knowledge, and307

NQ-Open (Kwiatkowski et al., 2019) which is con-308

structed by Google Search queries along with an-309

notated short answers or documents.310

For testing, we evaluate the in-domain (ID) per-311

formance on the corresponding validation/test sets312

and generalization on an out-of-domain (OOD) test313

set LSQA (Xue et al., 2024) which contains multi-314

lingual language-specific QA pairs. More dataset315

details and statistics are presented in Appendix B.316

3.2 Evaluation Metrics317

To evaluate the reliability of LLMs, we employ318

two metrics: Precision (Prec.) and Truthfulness319

(Truth.). Precision is defined as the proportion of320

correctly answered questions among all the known321

questions, representing LLMs’ ability to accurately322

express their known factual knowledge. Truthful-323

ness represents the proportion of the sum of cor-324

rectly answered known questions and refused un-325

known questions among all questions, indicating326

the honesty level of the LLMs.327

To ascertain the correctness of the LLM-328

generated answer y with the ground truth ŷ, we329

employ a string-matching approach. Exact match-330

ing (EM) of y ≡ ŷ always misjudges some correct331

answers with slight distinctions on such closed-332

book QA tasks. Therefore, we replace EM with a333

variant of y ∈ ŷ ∨ ŷ ∈ y to evaluate the accuracy.334

The specific illustrations of evaluation formulas335

and comparisons of several EM variants we tested336

with human evaluations are in Appendix C.337

3.3 Baselines338

We present several baselines in four categories be-339

low. To clearly delineate the differences between340

our proposed method and other baselines, we have341

illustrated all methods in Fig. 7 in Appendix D.342

Prompt-based We present two prompt-based343

baselines namely In-Context Learning (ICL), In-344

Context Learning with Refusal Examples (ICL-345

IDK), and In-Context Learning Chain-of-Thought346

(ICL-CoT) (Wei et al., 2022). The few-shot347

prompt templates are presented in Appendix E.348

SFT-based We employ standard Supervised Fine- 349

Tuning (SFT) by training an LLM to generate 350

answers for all questions. We also introduce R- 351

Tuning (Zhang et al., 2024a) which teaches LLM 352

to refuse their unknown questions. 353

RL-based Following RLHF technique (Ouyang 354

et al., 2022), we first train a reward model to deter- 355

mine correctness by SFT. Then we employ PPO to 356

optimize the policy model with the reward model 357

(RL-PPO). We also introduce an advanced vari- 358

ant called reinforcement learning from knowledge 359

feedback (RLKF) (Liang et al., 2024) which lever- 360

ages knowledge probing and consistency checking 361

to train the reward model. Following Zhang et al. 362

(2024b); Tian et al. (2024); Lin et al. (2024), we 363

also construct the factuality preference dataset to 364

conduct direct preference optimization (RL-DPO) 365

to enhance the factuality of LLMs. 366

Inference-based Another branch of work fo- 367

cuses on shifting the output distribution to improve 368

factuality during inference. Li et al. (2023) (ITI) 369

intervenes in the activations in attention heads to 370

the “truthfulness” direction. 371

3.4 Implementation Details 372

Experiments are conducted on two LLMs: Llama- 373

3-8B (Llama-3) 2 (AI@Meta, 2024) and Mistral- 374

7B (Mistral) 3 (Jiang et al., 2023). When preparing 375

the UALIGN dataset, we sample 10 responses for 376

each question on K = 10 different 1-shot prompts. 377

The sampling temperature T is set to 0.2 to achieve 378

a trade-off between the diversity and factuality of 379

the answer set. During training, all the LLMs are 380

trained using LoRA (Hu et al., 2022) with rank 381

r = 16. Both the uncertainty estimation models 382

and the reward model utilize the vanilla LLM as 383

their bases and are trained using LoRA with rank 384

r = 4. ADAM parameter update is used in a mini- 385

batch mode. Uncertainty estimation models and 386

the reward model are trained using SFT on the 387

UALIGN dataset. The UALIGN PPO algorithm and 388

all the RL-based baselines are implemented by trl 389
4. All training hyper-parameters are presented in 390

Appendix F. When decoding, the temperature is 391

also set to 0.2 to be consistent with the sampling 392

setting. All the experiments are conducted on 4 × 393

NVIDIA A100-40GB GPUs. 394

2https://huggingface.co/meta-llama/Meta-Llama-3-8B
3https://huggingface.co/mistralai/Mistral-7B-v0.1
4https://github.com/huggingface/trl
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Method TVQA (ID) SciQ (ID) NQ-Open (ID) Avg. (ID) LSQA (OOD)
Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑ Prec. ↑ Truth. ↑

Llama-3-8B
ICL 76.15 56.55 70.43 44.30 50.28 20.11 65.62 40.32 77.35 52.98
ICL-IDK 69.17 54.10 68.36 43.00 45.43 20.72 60.98 39.27 66.67 50.24
ICL-CoT 66.68 53.37 72.34 45.90 57.34 23.60 65.45 40.95 73.96 49.37
SFT 70.80 52.57 72.18 45.40 41.41 16.57 61.46 38.18 68.09 46.63
R-Tuning 72.93 55.44 71.38 44.90 47.81 18.12 64.04 39.48 71.54 52.15
RL-PPO 76.32 55.19 75.70 45.80 54.07 24.19 68.03 41.72 72.18 48.43
RL-DPO 72.08 53.96 71.23 44.20 49.65 19.18 64.32 39.11 71.09 48.88
RLKF 77.12 56.07 72.36 44.90 54.86 22.15 68.11 41.04 74.95 52.46
ITI 71.09 53.97 72.35 43.80 43.20 17.13 62.21 38.30 68.52 46.99
UALIGN 79.14 57.04 76.44 48.00 56.60 26.09 70.72 43.71 79.56 55.88

(w/o Conf.) 74.13 54.45 74.05 45.00 54.19 23.60 67.45 41.01 74.25 52.06
(w/o Entro.) 78.43 57.69 75.39 47.50 56.68 27.56 70.16 44.25 76.14 54.43

Mistral-7B
ICL 77.92 55.14 68.62 42.20 52.09 17.95 66.21 38.43 74.09 47.71
ICL-IDK 72.59 51.37 63.74 39.20 51.13 17.67 62.48 36.20 72.27 47.32
ICL-CoT 76.73 54.78 71.87 44.20 54.47 18.22 67.69 39.06 79.24 52.59
SFT 74.57 54.77 65.85 42.50 50.82 14.42 63.74 37.08 68.33 44.00
R-Tuning 67.70 52.25 64.44 40.10 46.33 15.52 59.49 36.29 64.67 44.05
RL-PPO 79.23 55.08 71.35 44.10 53.76 19.19 68.11 39.45 74.49 49.67
RL-DPO 72.20 52.98 66.44 41.80 50.95 16.42 63.19 37.06 67.82 43.77
RLKF 80.43 56.92 70.66 43.90 52.09 18.24 67.72 39.68 74.19 49.23
ITI 74.65 55.16 66.90 44.90 51.12 16.68 64.22 38.91 67.73 46.20
UALIGN 82.10 59.05 73.21 46.70 54.17 19.64 70.82 41.79 76.29 52.89

(w/o Conf.) 76.44 55.13 69.84 43.50 50.30 17.88 65.52 38.83 73.15 47.06
(w/o Entro.) 80.18 57.64 72.90 45.60 52.21 18.44 68.43 40.56 75.34 50.15

Table 1: Experiments of Precision (Prec.) and Truthfulness (Truth.) on four datasets on Llama-3 and Mistral.

4 Results and Analysis395

4.1 Main Experimental Results396

We present the results of UALIGN and several base-397

lines on three ID and one OOD test sets as shown398

in Table 1. Several findings are listed below.399

Reliability Significant improvements are con-400

sistently achieved on diverse datasets using the401

proposed UALIGN framework over other baseline402

methods on both Llama-3 and Mistral. We high-403

light the supreme Precision and Truthfulness per-404

formance using grey highlights among the all base-405

lines of each column in Table 1. The core idea of406

our UALIGN framework is the utilization of un-407

certainty estimation models. Compared with the408

most relevant baselines of RL-PPO and RLKF, both409

the reward model and policy model in UALIGN410

generate predictions and responses conditioned on411

uncertainty estimations regarding the knowledge412

boundaries to questions, thereby yielding better re-413

liability performance. It can be attributed that by414

explicitly appending uncertainty measures follow-415

ing the question, LLMs can assist LLMs in eliciting416

more accurate responses based on intrinsic knowl-417

edge boundary representations.418

Generalization We also introduced an OOD test419

set to assess the generalization capability of the420

Conf. Entro. ID OOD
TVQA SciQ NQ-Open LSQA

Llama-3-8B
✗ ✗ 82.31 79.00 67.45 70.12
✓ ✗ 85.41 84.30 70.37 75.09
✗ ✓ 82.05 77.90 67.85 70.40
✓ ✓ 86.73 86.40 72.00 74.59

Mistral-7B
✗ ✗ 84.53 77.30 65.24 68.31
✓ ✗ 86.80 79.50 72.10 72.95
✗ ✓ 85.24 74.60 66.64 71.22
✓ ✓ 88.06 79.80 75.14 73.61

Table 2: Accuracy of reward model varying different
uses of uncertainty measures Conf. and Entro. in
UALIGN dataset on Llama-3 and Mistral.

UALIGN method. The results in Table 1 indicate 421

that most training-based baselines (SFT, RL, In- 422

ference) are unstable and result in performance 423

decreasing compared with prompt-based baselines 424

when generalizing on the OOD test set. However, 425

comparable reliability performances are obtained 426

on two LLMs using the proposed UALIGN in com- 427

parison with prompt-based methods, demonstrating 428

strong generalization capability. 429

4.2 Effects of Uncertainty Estimation Models 430

Setting To investigate the effects of introducing 431

uncertainty estimations as input features to reward 432

models, we report the accuracy of reward models 433
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Figure 4: Illustration of the effects of different uses
of uncertainty estimations under varying knowledge
boundaries perceived by LLMs.

that vary in different uses of two measures on ID434

and OOD tasks. The reward models are trained on435

the UALIGN dataset on both Llama-3 and Mistral.436

Results As in Table 2, we present the results of437

the accuracy of reward models. Significant accu-438

racy improvements of reward models are obtained439

that predominantly benefit from the use of confi-440

dence scores across both ID and OOD test sets441

on two LLMs, validating the effectiveness of our442

proposed UALIGN framework. The isolated use443

of semantic entropy does not guarantee a stable444

improvement but may even lead to a performance445

decrease on some test sets. However, when se-446

mantic entropy is employed in combination with447

confidence measures, it can facilitate further en-448

hancements, achieving optimal results across most449

test sets as highlighted grey cells for two LLMs.450

Analysis In the UALIGN framework, both confi-451

dence score and semantic entropy are introduced452

to quantify the intrinsic knowledge boundary of453

LLMs to questions. The explicit introduction of the454

knowledge boundary representations in prompts455

can be regarded as the added thinking step like CoT.456

The combined use of confidence and semantic en-457

tropy can achieve supreme prediction performance458

in Table 2. We illustrate the mechanism as follows.459

As demonstrated in Fig. 4 (a), by sampling mul-460

tiple responses to a question, we can approximate461

LLM’s intrinsic knowledge boundary, where the462

certainty level of the answer “The U.S.” is 40%.463

In previous work (Zhang et al., 2024a) which only464

considers the confidence level, the correct answer465

that the LLM knows but is not sure will be dis-466

carded and the LLM will refuse to answer. How-467

ever, as in Fig. 4 (b), the LLM can perceive that 468

even though its certainty level to the correct answer 469

is low, other answers are more uncertain and the 470

dispersion level of answers is relatively high which 471

is quantified by semantic entropy. After UALIGN 472

PPO training, the ability to generate correct an- 473

swers conditioned on questions and estimations is 474

well enhanced. As a result, the correct but unsure 475

knowledge will be elicited in the responses. 476

Figure 5: Results of AUORC↑ of several uncertainty es-
timation methods on TVQA using Llama-3 and Mistral.

4.3 Reliability of Uncertainty Estimations 477

Setting Evaluating the performance of confi- 478

dence score and semantic entropy is essential to 479

the UALIGN method. We present the AUROC (De- 480

tailed in Appendix C) results of two estimations 481

in comparison with three confidence/uncertainty 482

estimation methods (one probability-based method 483

(Prob.), two prompt-based methods including 484

p(True) and verbalized (Verb.) as illustrated in 485

Fig. 8) on TriviaQA on two LLMs. Results on 486

other datasets are remained in Appendix H. Details 487

of baseline estimation baselines are presented in 488

Sec. 5, Appendix G, and Fig. 8. 489

Results In Fig. 5, both the confidence and en- 490

tropy prediction consistently outperform other base- 491

line uncertainty estimation methods. Optimal AU- 492

ROC performances are obtained using confidence 493

on both Llama-3 (80.45) and Mistral (82.19). 494

Analysis After UALIGN SFT stage, the uncer- 495

tainty estimation models are converged on the 496

UALIGN dataset to predict both confidence and en- 497

tropy, indicating the models possess the ability to 498

predict the two measures. Practically, our utilized 499

confidence and semantic entropy incorporate the 500

advantages of both sampling- and training-based 501

uncertainty estimations. Multiple sampling can bet- 502

ter approximate the actual knowledge boundaries 503
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of LLMs, while the training-based approach en-504

ables the LLMs to learn to perceive their intrinsic505

knowledge boundaries. Compared to other base-506

lines that suffer from overconfidence issues with507

low AUROC scores, our utilized methods yield508

more reliable estimates, thereby ensuring improved509

performance for both the reward model and the510

policy model in the following stages.511

Figure 6: Experiments of Precision (Prec.) and Truth-
fulness (Truth.) of various sampling number K of 1, 4,
7, and 10 on TVQA on Llama-3 and Mistral.

4.4 Effects of Sampling Number512

Setting The sampling number K is a crucial513

hyper-parameter in the UALIGN method. Different514

values of K can significantly affect the precision of515

the knowledge boundary measurements. To eval-516

uate the effects, we compare performances using517

various K of 1, 4, 7, and 10. Experimental results518

on TVQA are presented in Fig. 6 in Appendix H.519

Findings The experiments indicate that when520

using small sampling numbers, increasing the K521

leads to significant improvements in both precision522

and truthfulness. However, as K continues to in-523

crease, the reliability improvement tends to plateau,524

exhibiting convergence. Since further increasing525

K requires substantial computational costs, we dis-526

card conducting experiments with larger K.527

Analysis The results in Fig. 6 demonstrate that528

while the sampling number K increases linearly,529

the performance improvements are non-linear. This530

may be attributed to utilizing non-linear metrics, or531

it could suggest that K = 10 can approximate the532

actual knowledge boundaries, resulting in a gradual533

slowdown in performance gains. Consequently, set-534

ting K to 10 in this work makes a trade-off between535

performance gains and computation expense.536

5 Related Works 537

Knowledge Boundary Previous works investi- 538

gate the knowledge boundary to identify the known 539

level of a knowledge piece of LLMs by quantify- 540

ing the confidence or uncertainty estimations like 541

output consistency (Cheng et al., 2024), prompting 542

methods (Ren et al., 2023) or knowledge probing 543

(Ji et al., 2024). Generally, knowledge boundary 544

measures derive from uncertainty estimations. 545

Uncertainty Estimation for LLMs We catego- 546

rize uncertainty estimation methods on LLMs into 547

four classes as illustrated in Figure 8. ➀ Likelihood- 548

based methods Vazhentsev et al. (2023) directly 549

quantify sentence uncertainty over token probabil- 550

ities; ➁ Prompting-based methods instruct LLMs 551

to express uncertainty in words (Lin et al., 2022a; 552

Xiong et al., 2024) or to self-evaluate its correctness 553

on p(True) (Kadavath et al., 2022); ➂ Sampling- 554

based methods aggregate sampled responses to cal- 555

culate consistency (Xiong et al., 2024) or seman- 556

tic entropy (Kuhn et al., 2023); ➃ Training-based 557

methods (Lin et al., 2022a) propose to train LLMs 558

to improve linguistic uncertainty expressions. 559

Factuality Alignment LLM alignment is to 560

guide human preference through Reinforcement 561

Learning from Human Feedback (RLHF) (Ouyang 562

et al., 2022; Bai et al., 2022a). Distinct from recent 563

studies that apply RL to improve LLMs’ factuality 564

(Zhang et al., 2024b; Lin et al., 2024; Liang et al., 565

2024; Xu et al., 2024a), this work improves LLMs’ 566

reliability by explicitly leveraging the uncertainty 567

estimations for LLM alignment. 568

Due to the space limitation, detailed investiga- 569

tions of related works are shown in Appendix G. 570

6 Conclusion 571

In this paper, we present a UALIGN framework to 572

explicitly leverage uncertainty estimations to elicit 573

LLMs to accurately express factual knowledge that 574

LLMs cannot constantly answer correctly due to 575

ambiguous knowledge boundaries. We introduce 576

the dataset preparation process and UALIGN train- 577

ing strategies of factuality alignment by incorporat- 578

ing uncertainty estimations of the confidence score 579

and semantic entropy as input features into prompts. 580

Experiments on several knowledge QA tasks affirm 581

the efficacy of UALIGN to enhance the LLMs’ reli- 582

ability and generalizability, demonstrating signifi- 583

cant improvements over various baselines. 584
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Limitations585

The limitations and future work of this study are586

listed as follows:587

Computational Resources: The current method588

for constructing the UALIGN dataset relies on589

multiple samplings, requiring substantial computa-590

tional cost which linearly increases with the num-591

ber of sampling instances K and significantly con-592

strains the scalability expansion of the dataset in593

this work. To accurately approximate the knowl-594

edge distributions, a higher number of samplings595

is typically more beneficial. Here, we may need596

to introduce some prior knowledge distributions to597

alleviate the computational resource requirements598

and reduce the costs.599

Task Expansion: The dataset used in this pa-600

per is solely based on factual knowledge QA601

tasks, with a simple and fixed template and re-602

sponse format. However, the UALIGN methodol-603

ogy has not been further validated on other fac-604

tual knowledge-based tasks such as open-form605

instruction-following tasks, long-form generation606

like biography, or even knowledge reasoning tasks,607

where the uncertainty estimations remain chal-608

lenging. In future works, we plan to extend the609

UALIGN framework to open-ended generation610

tasks to enhance the LLMs’ factual expressions.611
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Notation Description
Q Dataset containing n Question-Answering pairs. (|Q| = n)
P Set of few-shot exemplars.
xi The i-th question sample in Q.
ŷi The i-th ground-truth answer in Q.

yi
(k) The k-th sampled response to the i-th question in Q.
pk k-th few-shot exemplar to sample yi

(k).
Y i Answering set containing K sampled response

{
yi

(k)
}

for the i-th question xi.
zi

(k) The label of yi
(k) (zi(k) ∈ {0, 1}, 1 for True and 0 for False).

Zi Label set corresponding to Y i.
ci The confidence score for the i-th question xi.
ei The semantic entropy for the i-th question xi.
D Constructed UALIGN training set containing N tuple samples (xi,Y i,Zi, ŷi, ci, ei).
τ Uncertainty estimation model trained to calculate confidence score by feeding x.
µ Uncertainty estimation model trained to calculate semantic entropy by feeding x.
θ Binary classifier by feeding (x, c, e,y) as the reward model.

LM Training loss functions for three models respectively where M ∈ {τ, µ, θ}.
r Final reward signal consisted of reward score r1 and KL-penalty r2.
β Coefficient for the KL-penalty r2.
πθ Policy model to be optimized using r by PPO.
πo Reference model initialized by the original policy.
T Sampling temperatue.
K Number of sampled responses.
N Number of QA pairs.

Table 3: Summarized notations in this work.

A Protocols990

A.1 Definition of Notations991

The definitions of the notations in this work are992

summarized in Table 3.993

A.2 Terminology Use994

• In this work, “UALIGN” in small caps font995

specifically indicates the proposed framework,996

which indicates methodology like UALIGN997

dataset, UALIGN SFT and UALIGN PPO.998

B Dataset Details999

TriviaQA The TriviaQA dataset (Joshi et al.,1000

2017) 5 is a comprehensive reading comprehension1001

dataset of QA resource consisting of approximately1002

650,000 question-answer-evidence triples sourced1003

from 95,000 documents on Wikipedia and various1004

other websites. This dataset is distinguished by its1005

complexity and serves as an effective benchmark1006

for evaluating machine comprehension and open-1007

domain QA systems. Unlike standard QA bench-1008

mark datasets, where answers are directly retriev-1009

able, TriviaQA presents a more rigorous challenge1010

as it requires deeper inference to derive answers.1011

5https://huggingface.co/datasets/mandarjoshi/trivia_qa

When constructing the UALIGN dataset, we pre- 1012

process and extract 76,523 QA samples from the 1013

TriviaQA training set and 9,960 from the devel- 1014

opment set to contribute to the UALIGN training 1015

and in-domain test set respectively. Since approx- 1016

imating the knowledge distribution of a question 1017

requires multiple sampling where the computation 1018

cost is linearly increasing with the sampling time 1019

K, to simplify the setup and conserve computation 1020

resources, we conducted experiments using half of 1021

the training data points from the original dataset. 1022

SciQ The SciQ dataset (Johannes Welbl, 2017) 6 1023

contains 13,679 crowd-sourced science exam ques- 1024

tions about physics, chemistry and biology, among 1025

others. The original dataset was divided, with 1026

11,679 samples allocated as the training set and 1027

an additional 1,000 samples designated as the vali- 1028

dation set. These were subsequently incorporated 1029

into our UALIGN training set and in-domain test 1030

set, respectively. 1031

NQ-Open The NQ-Open dataset is derived from 1032

Natural Question (Kwiatkowski et al., 2019) 7, 1033

6https://huggingface.co/datasets/allenai/sciq
7https://huggingface.co/datasets/google-research-
datasets/nq_open
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which is a QA dataset consisting of real queries1034

issued to the Google search engine. We employ1035

the training and development set of NQ-Open,1036

which contains 87,925 and 3,610 samples respec-1037

tively, to further enhance the UALIGN training1038

and in-doamin test set. Since data construction1039

is highly expensive, we also randomly sample half1040

of the QA pairs from the source training data. We1041

mix the selected training samples to construct the1042

UALIGN dataset, which is further used for U2Align1043

SFT+PPO training.1044

LSQA The LSQA dataset is a multilingual1045

knowledge-intensive QA dataset pertaining to1046

language-dominant knowledge covering specific1047

social, geographical, and cultural language con-1048

texts for the UK & US, France, China, Japan, and1049

Thailand respectively. In this study, we only input1050

the QA pairs in English from each LSQA subset1051

which includes 1,025 samples as the out-of-domain1052

test set.1053

C Evaluation Details1054

Accuracy For closed-book QA evaluation, we1055

observe that simply applying EM may misjudge1056

the correct answers. We compare several variants1057

of EM as in Table 4 and report their successful1058

judgments on responses of 20 selected samples1059

that are misjudged using EM, where PEM, RRM,1060

and PREM indicate Positive-EM, Recall-EM, and1061

Positive-Recall-EM and the mathematical explana-1062

tions are presented in Table 4. Upon human dis-1063

crimination, EMPR exhibits the lowest failure rate1064

and is therefore selected as the evaluation metric1065

for this work.1066

Variant Explanation # Fail
EM y ≡ ŷ 20

PEM y ∈ ŷ 16
REM ŷ ∈ y. 6

PREM y ∈ ŷ ∨ ŷ ∈ y. 2

Table 4: Number of failed judgments by human check
for different EM variants.

Area Under the Receiver Operator Character-1067

istic Curve (AUROC) AUROC assesses the ef-1068

fectiveness of confidence estimation (Filos et al.,1069

2019) by quantifying how likely a randomly chosen1070

correct answer possesses a higher confidence score1071

than an incorrect one, yielding a score within the1072

range of [0, 1], implemented by sklearn toolkit 8. 1073

A higher AUROC score implying higher reliability 1074

is preferred. 1075

D Baseline Details 1076

Prompt-based For all in-context learning meth- 1077

ods, we extract the examples from the respective 1078

training set to mitigate the knowledge distribution 1079

shift between different datasets. For example, the 1080

demonstrated examples in Appendix I are derived 1081

from the TriviaQA training set and are specifically 1082

used when inferring on the TriviaQA validation set. 1083

For LSQA without the training set, we use the same 1084

examples as TriviaQA as their knowledge domains 1085

largely overlap. 1086

• ICL: Few-shot prompts containing m exam- 1087

ples are utilized for answer generation with 1088

temperature T = 0.2 where m is set to 2 as 1089

presented in the Template E. 1090

• ICL-IDK: Two examples are included in the 1091

few-shot prompt while one is selected from 1092

the ICL-used example, and another is an un- 1093

known question whose answer is revised to 1094

“Sorry, I don’t know.” as presented in the Tem- 1095

plate E. 1096

• ICL-CoT: We also employ the Chain-of- 1097

Thought in few-shot examples by recalling 1098

the relevant knowledge piece of LLMs and 1099

incorporating it into thinking steps before an- 1100

swering the question as presented in the Tem- 1101

plate E. 1102

• SFT: The standard supervised fine-tuning 1103

(SFT) is implemented by minimizing the neg- 1104

ative log-likelihood of the ground-truth ŷ con- 1105

ditioned on input question x on model π. 1106

argmin
π

LSFT = −E(xi,ŷi)∼D [log pπ(ŷ|x)]
(8)

1107

• R-Tuning: R-Tuning (Zhang et al., 2024a) is 1108

implemented in the same way as SFT which 1109

only revises the ground-truth label of un- 1110

known questions to the refusal answers. The 1111

unknown questions are determined if all the 1112

sampled responses in the UALIGN dataset are 1113

incorrect. 1114

8https://github.com/scikit-learn/scikit-
learn/blob/main/sklearn/metrics/_ranking.py
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• RL-PPO: Following (Ouyang et al., 2022),1115

we develop the RL-PPO by training a reward1116

model using the LLM-generated incorrect re-1117

sponses as negative samples. Then we con-1118

duct the PPO (Schulman et al., 2017) algo-1119

rithm with the obtained reward model. In1120

other word, the RL-PPO baseline is a variant1121

of UALIGN which discards the uncertainty1122

estimations.1123

• RLKF: Following (Liang et al., 2024), we em-1124

ploy the RLKF baseline by training the reward1125

model on the LLMs’ internal states with the1126

knowledge probes and further conduct PPO1127

using the reward model. The knowledge prob-1128

ing setting and implementations are referred1129

to as Liang et al. (2024).1130

• RL-DPO: All Tian et al. (2024); Lin et al.1131

(2024); Zhang et al. (2024b) focus on long-1132

context generation like biography. We still uti-1133

lize the LLMs’ generated incorrect responses1134

as negative samples to construct the prefer-1135

ence data to conduct the DPO (Rafailov et al.,1136

2023) algorithm.1137

• ITI: We replicate (Li et al., 2023) by training1138

a head probe in the attention layer to inter-1139

vene in the activations to the “truthfulness”1140

direction. To be consistent with the original1141

work, we also train the head on TruthfulQA1142

(Lin et al., 2022b) with our prepared UALIGN1143

dataset to decode in the “truthfulness” direc-1144

tion. Then we further train the LLM using1145

LoRA by SFT to adapt QA tasks. Therefore,1146

the replicated ITI can be regarded as conduct-1147

ing SFT on LLMs with an additional “truth-1148

fulness” head.1149

E Prompt Template1150

ICL Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Answer ###: {demo_answer_2}

### Question ###: {input_question}
### Answer ###:

1151

ICL-IDK Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Answer ###: {refusal}

### Question ###: {input_question}
### Answer ###:

1152

ICL-CoT Prompt

You are an excellent Question-
Answering assistant. Please answer
the following question based on your
knowledge.

### Question ###: {demo_question_1}
### Recall ###: {knowledge_1}
### Answer ###: {demo_answer_1}

### Question ###: {demo_question_2}
### Recall ###: {knowledge_2}
### Answer ###: {demo_answer_2}

### Question ###: {input_question}
### Answer ###:

1153

F Training Setting Details 1154

To conserve memory overhead and accelerate 1155

computation, all the models are quantified using 1156

float16 (fp16) to load and save parameters dur- 1157

ing both the training and inference phases. During 1158

the training stage, the batch sizes for the LLM, un- 1159

certainty estimation models, and reward models are 1160

set at 4, 16, and 16, respectively. The initial learn- 1161

ing rate of 1e-4 is utilized with the 0.05 warm-up 1162

ratio and 0.01 weight decay of the ADAM opti- 1163

mizer. We set the training epoch to 2 and ensure 1164

that all the models can be trained to convergence 1165

by increasing additional training steps if necessary. 1166

The dropout rate is set at 0.05 during all model 1167

updates to reduce overfitting. In the RL phase, all 1168

the hyper-parameters related to PPO algorithm are 1169

default values by the trl PPOConfig recipe 9 ex- 1170

cept the epoch, learning rate, and batch size which 1171

are set at 2, 1e-5, and 2, respectively. 1172

9https://github.com/huggingface/trl/blob/main/trl/trainer/
ppo_config.py
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Figure 7: Illustration of several baselines as in Sec. 3.3.

G Detailed Related Works1173

G.1 Knowledge Boundary1174

Previous works investigate the knowledge bound-1175

ary to identify the known level of a knowledge1176

piece of LLMs by quantifying the confidence or1177

uncertainty estimations like output consistency 1178

(Cheng et al., 2024), prompting methods (Ren et al., 1179

2023) or knowledge probing (Ji et al., 2024). Re- 1180

searchers are examining the limits of parametric 1181

knowledge in LLMs with the objective of delineat- 1182

ing the extent of the LLMs’ knowledge and iden- 1183
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Figure 8: Several uncertainty estimation methods for Generative LLMs.

tifying their capability boundaries. Present stud-1184

ies on the knowledge boundary primarily focus on1185

measuring the knowledge boundaries using con-1186

fidence or uncertainty estimations on specialized1187

tasks. The ambiguity of knowledge boundaries can1188

be attributed to the knowledge distribution learned1189

from the pre-training stage or the influence of exter-1190

nal knowledge leading to knowledge conflict (Xu1191

et al., 2024b) and inconsistency (Xue et al., 2023).1192

G.2 Uncertainty Estimation of LLMs1193

To alleviate over-confidence and enhance the relia-1194

bility of LLMs, reliable uncertainty estimation is1195

essential to determine whether a question is known1196

or not to the LLM (Geng et al., 2023). Both Un-1197

certainty and Confidence estimations can indicate 1198

the reliability degree of the responses generated 1199

by LLMs, and are generally used interchangeably 1200

(Xiao et al., 2022; Chen and Mueller, 2023; Geng 1201

et al., 2023; Lu et al., 2024). In this part, we in- 1202

vestigate several commonly used confidence & un- 1203

certainty estimation methods for generative LLMs 1204

as mentioned in Sec. 5. Specifically, we denote 1205

Conf(x,y) as the confidence score associated with 1206

the output sequence y = [y1, y2, . . . , yN ] given the 1207

input context x = [x1, x2, . . . , xM ]. We also illus- 1208

trate the summarized estimation methods as well 1209

as their disadvantages in Fig. 8. 1210
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Likelihood-based Methods: Following model1211

calibration on classification tasks (Guo et al., 2017),1212

Vazhentsev et al. (2023); Xue et al. (2024); Varsh-1213

ney et al. (2023); Wang et al. (2024) intermediately1214

quantify sentence uncertainty over token probabil-1215

ities. In traditional discriminative models, except1216

likelihood-based methods, confidence estimations1217

also include ensemble-based and Bayesian methods1218

(Lakshminarayanan et al., 2017; Gal and Ghahra-1219

mani, 2016; Xue et al., 2022; Wang and Yeung,1220

2020; Gal et al., 2016; Abdar et al., 2021), and1221

density-based methods (Lee et al., 2018). How-1222

ever, this likelihood-based method requires access1223

to token probabilities and thus being limited to1224

white-box LLMs. The likelihood-based confidence1225

is estimated by calculating the joint token-level1226

probabilities over y conditioned on x. As longer se-1227

quences are supposed to have lower joint likelihood1228

probabilities that shrink exponentially with length,1229

the product of conditional token probabilities of1230

the output should be normalized by calculating the1231

geometric mean by the sequence length (Murray1232

and Chiang, 2018; Malinin and Gales, 2021), and1233

the confidence score can be represented as:1234

Conf(x,y) =

(
N∏
i

p(yi|y<i,x)

) 1
N

(9)1235

Similarly, the arithmetical average of the token1236

probabilities is adopted in Varshney et al. (2023):1237

Conf(x,y) =
1

N

N∑
i

p(yi|y<i,x) (10)1238

Furthermore, a low probability associated with1239

even one generated token may provide more in-1240

formative evidence of uncertainty (Varshney et al.,1241

2023). Hence, the minimum of token probabilities1242

is also employed.1243

Conf(x,y) = min {p(y1|x), . . . , p(yN |y<N ,x)}
(11)

1244

1245

Prompting-based Methods: Recently, LLMs’1246

remarkable instruction-following ability (Brown1247

et al., 2020) provides a view of instructing LLMs1248

to self-estimate their confidence level to previous1249

inputs and outputs including expressing uncertainty1250

in words (Lin et al., 2022a; Zhou et al., 2023; Tian1251

et al., 2023a; Xiong et al., 2024), or instructing the1252

LLM to self-evaluate its correctness on p(True) 1253

(Kadavath et al., 2022). The P (True) confidence 1254

score is implemented by simply asking the model 1255

itself if its first proposed answer y to the question 1256

x is true (Kadavath et al., 2022), and then obtain- 1257

ing the probability p(True) assigned by the model, 1258

which can implicitly reflect self-reflected certainty 1259

as follows. 1260

Conf(x,y) = p(True) = p(y is True?|x) (12) 1261

Another method is to prompt LLMs to linguisti- 1262

cally express tokens of confidence scores in verbal- 1263

ized numbers or words (Lin et al., 2022a; Mielke 1264

et al., 2022; Zhou et al., 2023; Tian et al., 2023b; 1265

Xiong et al., 2024). 1266

The sampling-based method refers to randomly 1267

sampling multiple responses given a fixed input x 1268

using beam search or temperature sampling strate- 1269

gies (Manakul et al., 2023; Xiong et al., 2024; Lyu 1270

et al., 2024). Various aggregation methods are 1271

adopted on sampled responses to calculate the con- 1272

sistency level as the confidence score. Moreover, 1273

some uncertainty quantification methods are used 1274

to calculate the entropy indicating the dispersion 1275

level of multiple outputs (Kuhn et al., 2023; Lin 1276

et al., 2023; Nikitin et al., 2024). 1277

Training-based Methods: For training methods, 1278

an external evaluator trained on specific datasets 1279

is introduced to output a confidence score given 1280

an input and an output. The evaluator can be a 1281

pre-trained NLI model (Mielke et al., 2022), or a 1282

value head connected to the LLM output layer (Lin 1283

et al., 2022a; Kadavath et al., 2022), or the LLM 1284

itself (Han et al., 2024). 1285

However, both self-verbalized and sampling 1286

methods for uncertainty estimations using extrinsic 1287

prompting or aggregation strategies with additional 1288

time costs fail to improve LLMs’ intrinsic capabil- 1289

ity of uncertainty estimation. Recent works investi- 1290

gate confidence learning methods to enhance the re- 1291

liability of LLMs (Han et al., 2024). Li et al. (2023) 1292

introduces Inference-Time Intervention (ITI) to en- 1293

hance the truthfulness of LLMs by shifting model 1294

activations during inference. Yang et al. (2023) 1295

proposes an uncertainty-aware in-context learning 1296

method leveraging uncertainty information to re- 1297

fine the responses but cannot improve uncertainty 1298

estimation. (Zhang et al., 2024a) proposes R-tuning 1299

to instruct LLMs to refuse unknown questions con- 1300

sidering uncertainty estimations as binary indica- 1301
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tors. In contrast, our proposed UALIGN framework1302

not only obtains more reliable uncertainty estima-1303

tions regarding knowledge boundary information1304

but also elicits accurate responses of LLMs.1305

G.3 Factuality Alignment of LLMs1306

Alignment is a standard procedure to improve1307

LLMs’ helpfulness and factuality (Bai et al.,1308

2022a). The main goal of LLM alignment is to1309

guide human preference through Supervised Fine-1310

Tuning (SFT), Reinforcement Learning from Hu-1311

man Feedback (RLHF) (Ouyang et al., 2022; Bai1312

et al., 2022a) or AI feedback (Bai et al., 2022b),1313

which may also guide LLMs to output detailed1314

and lengthy responses (Singhal et al., 2023) but in-1315

evitably encourage hallucination. Therefore, many1316

works explore to apply RL to improve LLMs’ factu-1317

ality through Proximal Policy Optimization (PPO)1318

(Schulman et al., 2017) with the trained reward1319

model (Liang et al., 2024; Xu et al., 2024a) or1320

Direct Preference Optimization (DPO) Rafailov1321

et al. (2023) with the constructed preference dataset1322

(Zhang et al., 2024b; Lin et al., 2024) to align with1323

factuality preferences annotated by human beings.1324

Xu et al. (2024a) encourage LLM to reject un-1325

known questions using the constructed preference1326

data by leveraging knowledge boundary feedback.1327

H Experiments1328

H.1 Experiments of Reliability of Uncertainty1329

Estimations1330

Due to the page limitation in the main part, we1331

present the AUROC performance results of the1332

used confidence and entropy compared with other1333

baseline uncertainty estimations on SciQ, NQ-1334

Open, and LSQA as in Fig. 9, 10, and 11.1335

Figure 9: Results of AUORC↑ across several con-
fidence/uncertainty estimation methods on SciQ on
Llama-3 and Mistral.

Figure 10: Results of AUORC↑ across several confi-
dence/uncertainty estimation methods on NQ-Open on
Llama-3 and Mistral.

Figure 11: Results of AUORC↑ across several con-
fidence/uncertainty estimation methods on LSQA on
Llama-3 and Mistral.

I Few-shot Prompt Examples 1336

10 different few-shot prompts for sampling on Triv- 1337

iaQA are demonstrated in Table 5. 1338
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Examplar ID Examples
1 Q: Which William wrote the novel Lord Of The Flies? A: Golding.
2 Q: Where in England was Dame Judi Dench born? A: York, UK.
3 Q: Neil Armstrong was a pilot in which war? A: Korean.
4 Q: How many home runs did baseball great Ty Cobb hit in the three world series in

which he played? A: None.
5 Q: Who had a big 60s No 1 with Tossin’ and Turnin’? A: Bobby Lewis.
6 Q: Which Disney film had the theme tune A Whole New World? A: ’Ala’ ad Din.
7 Q: In basketball where do the Celtics come from? A: City of Boston.
8 Q: Which element along with polonium did the Curies discover? A: Radium.
9 Q: Who was the Egyptian king whose tomb an treasures were discovered in the Valley

of the Kings in 1922? A: Tutanhamon.
10 Q: Where were the 2004 Summer Olympic Games held? A: Atina, Greece.

Table 5: Demonstrations of 1-shot examples for TriviaQA sampling to construct UALIGN dataset.

Examplar ID Examples
1 Q: What type of organism is commonly used in preparation of foods such as cheese

and yogurt? A: mesophilic organisms.
2 Q: What phenomenon makes global winds blow northeast to southwest or the reverse

in the northern hemisphere and northwest to southeast or the reverse in the southern
hemisphere? A: coriolis effect.

3 Q: Changes from a less-ordered state to a more-ordered state (such as a liquid to a
solid) are always what? A: exothermic.

4 Q: What is the least dangerous radioactive decay? A: alpha decay.
5 Q: Kilauea in hawaii is the world’s most continuously active volcano. very active

volcanoes characteristically eject red-hot rocks and lava rather than this? A: smoke
and ash.

6 Q: When a meteoroid reaches earth, what is the remaining object called? A: meteorite.
7 Q: What kind of a reaction occurs when a substance reacts quickly with oxygen? A:

combustion reaction.
8 Q: Organisms categorized by what species descriptor demonstrate a version of al-

lopatric speciation and have limited regions of overlap with one another, but where
they overlap they interbreed successfully? A: ring species.

9 Q: Alpha emission is a type of what? A: radioactivity.
10 Q: What is the stored food in a seed called? A: endosperm.

Table 6: Demonstrations of 1-shot examples for SciQ sampling to construct UALIGN dataset.
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