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Abstract
Scene Graph Generation (SGG) is a fundamen-
tal task in visual understanding, aimed at provid-
ing more precise local detail comprehension for
downstream applications. Existing SGG meth-
ods often overlook the diversity of predicate rep-
resentations and the consistency among similar
predicates when dealing with long-tail distribu-
tions. As a result, the model’s decision layer
fails to effectively capture details from the tail
end, leading to biased predictions. To address
this, we propose a Noise-Guided Predicate Rep-
resentation Extraction and Diffusion-Enhanced
Discretization (NoDIS) method. On the one hand,
expanding the predicate representation space en-
hances the model’s ability to learn both common
and rare predicates, thus reducing prediction bias
caused by data scarcity. We propose a condi-
tional diffusion model to reconstructs features
and increase the diversity of representations for
same category predicates. On the other hand, in-
dependent predicate representations in the deci-
sion phase increase the learning complexity of
the decision layer, making accurate predictions
more challenging. To address this issue, we in-
troduce a discretization mapper that learns con-
sistent representations among similar predicates,
reducing the learning difficulty and decision am-
biguity in the decision layer. To validate the ef-
fectiveness of our method, we integrate NoDIS
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(a) NoDIS for Discretized Feature Enhancement.

(b) Intra-Class Variance Changes.

Figure 1. (a) Our method enhances the diversity and homogeneity
of representations for predicates within the same category by intro-
ducing diffusion and discretization mapping, effectively mitigating
the scene graph bias problem. (b) Variance change between fea-
ture distributions. A larger variance indicates a greater difference
between the feature distributions.

with various SGG baseline models and conduct
experiments on multiple datasets. The results
consistently demonstrate superior performance.
We have uploaded the code to GitHub: https:
//github.com/gavin-gqzhang/NoDIS.

1. Introduction
Scene graph generation constructs relational representations
for object pairs in an image, which provides essential in-
sights for downstream tasks such as image captioning (Chen
et al., 2020; Zhong et al., 2020), visual question answering
(Hudson & Manning, 2019b; Teney et al., 2017), and image
retrieval (Johnson et al., 2015; Schroeder & Tripathi, 2020),
helping to understand local details within images.

However, the long-tail distribution inherent in datasets poses
significant challenges. Traditional methods for predicate
prediction tend to favor head predicates with shallow seman-
tics while neglecting tail predicates with deeper meanings.
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This leads to meaningless or erroneous triplet generation,
severely impairing the understanding of fine-grained im-
age details in downstream tasks like image captioning and
visual question answering. To address this issue, current
approaches optimize the algorithms from three perspectives:
loss functions (Yan et al., 2020; Kang & Yoo, 2023), sam-
pling strategies (Desai et al., 2021; Li et al., 2021b), and
feature enhancement (Yu et al., 2023). However, these ap-
proaches concentrate exclusively on tail class enhancement
while neglecting information from head classes. Recently,
some methods (Li et al., 2024a; Wang et al., 2023a) have
leveraged VAE (Kingma & Welling, 2022) or GAN (Good-
fellow et al., 2020) for feature augmentation to strengthen
the representation of tail predicates. However, these meth-
ods heavily rely on coarse-grained predicate representations
as latent features and result in highly similar features before
and after enhancement, which limits the effective expansion
of the predicate representation space and fails to increase
the diversity among similar predicates. Moreover, directly
applying these methods for feature enhancement and using
them to fine-tune the final decision layer weights treats each
sample as an independent entity, neglecting the homogene-
ity among similar predicate representations, which increases
the learning difficulty at the decision layer.

To address the above issues, we propose a solution from two
perspectives: 1) Explore new feature enhancement meth-
ods to expand the representation space and improve the
model’s ability to learn generalizable representations. By
increasing the diversity of intra-class predicate representa-
tions, this approach alleviates the model’s underfitting on
rare information, thus enabling better learning of tail-class
information. 2) In the decision phase, we alleviate the learn-
ing difficulty and decision burden caused by the diverse
independent representations of samples by enhancing the
homogeneity among representations of predicates within the
same category. By learning the unified representations of
similar predicates, the decision layer is trained to learn the
differences between predicate representations of different
categories, thereby improving both the learning speed and
decision accuracy of the decision layer.

Based on these ideas, we propose the Noise-Guided Pred-
icate Representation Extraction and Diffusion-Enhanced
Discretization (NoDIS) method. As shown in Figure 1a,
NoDIS introduces the Noise-Guided Predicate Extraction
module, which extracts independent predicate features us-
ing a one-step noise addition and denoising algorithm. To
expand the predicate representation space and enhance the
diversity of predicate features within the same category, a
conditional feature reconstruction diffusion learning method
is proposed. This method significantly increases the diver-
sity of predicate representations within the same category,
leading to a notable rise in intra-class feature distribution
variance (as shown in Figure 1b (I)). This enhancement

aids the model in effectively learning diverse representation
knowledge. Finally, to alleviate the learning difficulty of the
decision layer caused by the independence of sample rep-
resentations, the Feature Discretization Mapping module is
introduced. This module employs a learnable discretization
encoder to learn unified representations among the same
category predicates and aggregates them into an indepen-
dent representation space, which is then used for learning
the independent representation distributions of different cat-
egories in the decision layer. This approach effectively
reduces the differences between similar predicate repre-
sentations, leading to a significant decrease in intra-class
feature distribution variance (as shown in Figure 1b (I)).
Furthermore, by using the aggregated independent predicate
representations to train the decision layer, the distribution
discrepancy between similar predicate representations and
their corresponding class decision weights is effectively
minimized (as shown in Figure 1b (II)). This enables the
decision layer to more effectively learn the aggregated in-
dependent predicate representations, thus minimizing the
impact of heterogeneous predicate representations on the
decision-making process and improving decision accuracy.

We conducted extensive experiments on datasets such as VG
(Krishna et al., 2017), GQA (Hudson & Manning, 2019a)
and OpenImage V6(Kuznetsova et al., 2020), achieving
excellent performance, which demonstrates that our method
effectively performs feature reconstruction and mitigates
the biased predictions caused by long-tail distribution.

In summary, the contributions of this paper are as follows: 1)
We propose the NoDIS method, which enhances the model’s
generalization ability by increasing the diversity of predi-
cate representations within the same category. At the same
time, it strengthens the homogeneity of these representa-
tions to aid the decision layer in learning the differences
between representations of different categories, effectively
mitigating bias prediction issues. 2) We introduce the Fea-
ture Enhancement Based on Diffusion Module, which, for
the first time, applies diffusion techniques to increase the
diversity of predicate representations within the same cat-
egory, expand the representational space, and enhance the
model’s ability to generalize knowledge extraction. 3) We
design a Feature Discretization Mapping module that learns
consistent representations among predicates of the same
category and projects them into independent representation
spaces for training the decision layer. This approach effec-
tively alleviates convergence issues and semantic ambiguity
in the decision layer, thereby improving decision accuracy.
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2. Related Works
2.1. Scene Graph Generation

The long-tailed distribution in datasets often leads to biased
predictions in models. The early methods (Zellers et al.,
2018; Xu et al., 2017; Chiou et al., 2021) aimed to mitigate
this bias by taking advantage of distribution patterns within
the dataset as additional prior knowledge. In recent years,
one-stage Scene Graph Generation models (Cong et al.,
2023) have become the hot issue of research. These models
leverage Transformer-based architectures (Vaswani et al.,
2017) to iteratively refine predicate representations while
simultaneously determining predicates and entities. Addi-
tionally, increasing attention has been paid to the design of
training strategies and loss functions(Kang & Yoo, 2023;
Yan et al., 2020). Techniques such as data resampling (Li &
Vasconcelos, 2019), transfer learning (Liu et al., 2019), and
causal learning (Tang et al., 2019; 2020) have been explored
to alleviate the impact of long-tailed distributions.

2.2. Diffusion Model

Diffusion has become one of the most widely used meth-
ods in generative tasks, such as image generation, super-
resolution, etc. Initially (Ho et al., 2020) introduced the
Denoising Diffusion Probabilistic Model (DDPM), which
simulates the diffusion process and then reverses it to gener-
ate data, achieving promising results. Subsequently, Score-
based Generative Models (Song et al., 2020b) were pro-
posed, adopting a framework similar to the diffusion pro-
cess but using score models to recover the data distribution
in reverse. Latent Diffusion (Rombach et al., 2022) has
established Diffusion as a general framework for generative
tasks, significantly improving its performance and quality in
image generation. Recently, researchers have increasingly
focused on incorporating conditions into diffusion models
(Zhang et al., 2023) to enable more precise control and
higher-quality outputs.

3. Method
3.1. Problem Formulation and Symbolic Representation

We adopt a two-stage architecture for the scene graph gen-
eration task. In the first stage, Faster R-CNN (Ren et al.,
2015) is used for object detection, identifying all entities in
the image. Suppose that there are i entities, their categories
are denoted as O = {O0, O1, ..., Oi}, their bounding boxes
as B = {b0, b1, ..., bi}, and their visual features, extracted
using RoIAlign (He et al., 2017), as E = {e0, e1, ..., ei}.
Additionally, we compute the union visual features for
all entity pairs, denoted as U = {u0, u1, ..., uj}, where
j = i× (i− 1).

In the second stage, we focus on extracting predicate rep-

resentations and predicting predicates between entity pairs
using the entity information obtained in the first stage. To
achieve this, we design an independent Predicate Refine-
ment Module. Assuming that the predicate between the i-th
entity and the j-th entity is rij , the complete set of predicate
categories can be represented as R = {r01, r02, ..., rij},
where j corresponds to the (i− 1)-th entity. Additionally,
we use pre-trained embeddings GloVe (Pennington et al.,
2014) to encode all predicate categories, initializing the
predicate prototype representations P = {p1, p2, . . . , pc},
where c represents the total number of predicate categories.

3.2. Noise-Guided Predicate Representation Extraction

To enhance the independence of predicate representations
and provide effective prior information for subsequent pred-
icate reconstruction, we construct predicate representations
from a node-edge-node structural perspective and decouple
entity-predicate representations from an entity-noise per-
spective. As illustrated in Figure 2(a), the overall process is
divided into two parts: Neighborhood Context Extraction
and Noise-Guided Predicate Refinement, as follows.

Neighborhood Context Extraction: We treat entity pairs
as nodes and construct learnable Query Tokens to represent
edges between entity-pair nodes. By iteratively optimiz-
ing the learning capability of Query Tokens, we achieve
an effective predicate representation construction between
entities.

First, we use entity representations preprocessed by the base
model (Zellers et al., 2018; Vaswani et al., 2017; Zheng
et al., 2023b) to construct entity pair representations Es and
Eo, representing subject and object entity pairs, respectively.
Then, through two distinct cross-attention modules, the two
entity representations alternately serve as Query, enhancing
the uniform expression between entities, as shown in Eq. 2.

Attn(Q,K, V ) = Softmax(
QKT

√
d

)V (1)

Es = Attn(Es, Eo, Eo), Eo = Attn(Eo, Es, Es) (2)

Next, leveraging the cross-attention modules, we employ a
learnable Query Token Qp to extract consistency representa-
tions between entity pairs. This consistency representation
serves as a shared edge structure for entity pairs, represent-
ing the predicate, as illustrated in Eq. 3. Additionally, to
prevent information loss, we introduce a joint visual rep-
resentation U of the entity pairs to refine the constructed
predicate representation. As shown in Eq. 4, we filter the
node information of entity pairs from the joint visual rep-
resentation, suppressing regions with weak correlations to
the nodes of entities while strengthening the intensity of the
representation of the edges between nodes.

Qp = Attn(Qp, [Es, Eo], [Es, Eo]) (3)
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Figure 2. Diagram of the overall structure for the Noise-Guided Predicate Representation Extraction and Diffusion-Enhanced Discretization
(NoDIS) method.

U
′
= Attn(U, [Es, Eo], [Es, Eo]),

U
′
= U − φ(ω([Es, Eo])) · U

′
,

Qp = Attn(Qp, U
′
, U

′
)

(4)

In the above equations, [, ] denotes the concatenation opera-
tion between features. ω represents a learnable parameter
matrix that is used for feature mapping and dimensional
alignment. φ stands for the Sigmoid function, which calcu-
lates feature weights and smoothly maps them to the range
of 0 to 1.

Noise-Guided Predicate Refinement: Based on coarse-
grained predicate representations extracted from the Neigh-
borhood Context Extraction Module, we construct triplet
representations T by incorporating entity pair information
and enhancing them using joint visual features, as shown
in Eq. 5. For the initialized triplet representations, ran-
dom Gaussian noise G is added, with the noise intensity λ
randomly initialized and injected only once during training.

T = [Es, Qp, Eo], T = T + ω(φ(ω(T ))) · U (5)

G ∼ N (0, 1), Tn = T + λ ·G (6)

In the denoising process, the goal is to use the entity pair
representations within the triplet and the added noise as
denoising targets to obtain clean predicate representations.
To achieve this, enhanced entity representations are con-
catenated to construct clean entity pair representations E,
and feature filtering is applied to remove noise effects, as
described in Eq. 7. Subsequently, a cross-attention module
is employed, using the noisy triplet Tn as the Query and
the clean entity pair E as the Key and Value to strengthen
the representation of entity-related regions within the noisy
triplet, as shown in Eq. 8.

E = [Es, Eo], E = E − ω(σ(ω(E))) · E (7)

T
′

n = Attn(Tn, E,E) (8)

In the above equation, σ refers to the ReLU function, which
filters out irrelevant features or noise.

By enhancing the entity representation within the noisy
triplet, we subtract the entity-strengthened triplet representa-
tion T

′

n from the noisy triplet representation Tn, as described
in Eq. 9. Since the noise in the noisy triplet is distributed
across the entire representation space, this subtraction re-
duces the overall noise intensity. By iterating this process
multiple times, both entity-related and noise components
are progressively removed, ultimately yielding independent
and clean predicate representations.

Tn = Tn − φ(ω(E)) · T
′

n (9)

Finally, predicate representations are extracted from the de-
noised triplet representations and filtered, resulting in the
preliminary refinement of the predicate context representa-
tion Cp.

Cp = ω(σ(ω(Tn[1]))) (10)

3.3. Feature Enhancement Based on Diffusion

To expand the visual space of predicate representations and
enhance feature diversity, we propose a Diffusion-based
Feature Reconstruction Enhancement Module. Similar to
existing diffusion models, it adheres to the same training
and testing rules. However, during testing, we construct
a conditional Gaussian distribution for feature reconstruc-
tion instead of using a random Gaussian distribution. As
illustrated in Fig.2(b), the preprocessed predicate represen-
tations are first aligned with the prototype representations.
Using a shared weight matrix, the predicate representations
and prototype representations are mapped into a unified
visual space, followed by refinement through joint visual
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representations, as expressed in Eq.11.{
P

′
= MLP (P ), Cp = MLP (Cp),

U
′
= Attn(U,P

′
, P

′
), Cp = Attn(Cp, U

′
, U

′
)

(11)

During the diffusion process, we use the predicate proto-
types corresponding to the ground-truth categories of all
samples as the target feature distribution Tp. Noise of vary-
ing intensities is then added based on the current timestep,
where the noise schedule follows the same strategy as (Luo
& Hu, 2021). Assuming the timestep is t, the noise intensity
is denoted as γt.{

Tp = P [Gt], Gt = {Gt1, Gt2, ..., Gti}
T

′

p =
√
γt · Tp +

√
(1− γt) ·G

(12)

In the above equations, Gt represents the ground truth pred-
icate category for each sample, while Gt1 and Gti denote
the predicate categories for the 1-th and i-th samples, re-
spectively. G refers to a Gaussian distribution initialized
randomly, which is added as noise to the predicate proto-
types corresponding to the ground truth categories of each
sample.

In the noise prediction process, we introduce a conditional
noise prediction module, as shown in Equation 13. Based
on a Cross-Attention mechanism, the noise-added target dis-
tribution T

′

p is used as the Query, while the current timestep
embedding, prototype representation, and predicate repre-
sentation serve as the Key and Value, respectively, to pro-
gressively enhance effective feature representations. Finally,
a simple linear mapping and bias learning are employed to
refine the enhanced representations and predict irrelevant
regions as noise, as described in Equation 14.{

Et = Embedding(t), T
′

p = Attn(T
′

p, Et, Et),

T
′

p = Attn(T
′

p, Cp, Cp), T
′

p = Attn(T
′

p, Tp, Tp)

(13)
N

′
= ω(T

′

p) · φ(ω(Cp)) + ω(Cp) (14)

Based on the above method, noise prediction for the tar-
get feature distribution with added noise can be effectively
achieved. However, during the reconstruction phase, Gaus-
sian noise with random initialization, which contains no
prior information, is used as input and gradually denoised.
This process may result in reconstructed features deviating
from the target feature distribution. To address this issue,
we introduce a parallel branch during training for feature
reconstruction, further constraining the feature generation
direction. Specifically, Gaussian noise distributions are re-
constructed using the mean and variance of the preprocessed
predicate representations Cp. Reverse diffusion is then ap-
plied to predict the noise and iteratively denoise the features.
By randomly selecting n time steps, noise is predicted it-
eratively and denoised according to the noise intensity γt,

yielding the reconstructed predicate representations Gp, as
shown in Algorithm 1. During testing, all time steps are
used instead of selecting n.

Algorithm 1 Feature Reconstruction Training Process
Based on Diffusion

1: T , n {T: total number of iteration steps, n: randomly
selected step sizes}

2: m = ω(Cp), v = ω(Cp) {Init feature distribution}
3: G

′ ← m+
√
v · N (0, 1) {Init noise input}

4: Gp ← G
′

5: for t in random(T, n) do
6: Et ← Embedding(t) {Initialize time embedding}
7: N

′ ← Attn(Gp, Et, Et) {Conditional diffusion}
8: N

′ ← Attn(N
′
, Cp, Cp) {Conditional diffusion}

9: N
′ ← Attn(N

′
, Tp, Tp) {Conditional diffusion}

10: N
′ ← ω(N

′
) · φ(ω(Cp)) + ω(Cp) {Noise predic-

tion}
11: Gp ←

√
γt−1 · (G

′
−
√
1−γt·N

′

√
γt

) {Single-step denois-
ing}

12: end for
13: if is training then
14: loss←MSELoss(Gp, Tp)
15: return Gp, loss
16: end if
17: return Gp

3.4. Learnable Feature Discretization Mapping Module

We observe that using Diffusion for predicate representa-
tion reconstruction can lead to a discrete distribution where
each sample corresponds to a unique feature, which hin-
ders subsequent predicate classification. To address this,
we propose the introduction of a discrete encoder similar to
that in (Van Den Oord et al., 2017). First, we construct a
learnable parameter matrix Lp and initialize it using prepro-
cessed encoded predicate prototypes P

′
. Next, we calculate

the distance between the reconstructed predicate representa-
tions and the features of each category in Lp. The closest
parameter feature to the reconstructed feature is selected as
the affine-transformed feature Gl, as shown in Eq. 15.{

Lp ∼ P ′, Dis =
√∑

(Gp − Lp)2,

Gl = Lp[argmin(Dis)]
(15)

In the above equation, Gp represents the predicate repre-
sentations reconstructed based on Algorithm 1, and Dis
represents the distance between the reconstructed features
and the discretized prototype features. Assuming the num-
ber of samples is m and the number of predicate categories
is c, the scale of Dis is (m, c). argmin(Dis) denotes the
index of the shortest distance between each reconstructed
sample and the discretized representation.
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Finally, we perform feature mapping on the affine-
transformed feature Gl and aligned predicate prototypes
P

′
from Eq. 11, and compute the similarity between the

discretized affine-transformed features and prototype repre-
sentations. This similarity serves as the final prediction of
the predicate category, as shown in Eq. 16. During training,
the pre-processed aligned predicate prototypes P

′
are not

affected by the gradients from this part, and the computa-
tion graph is disconnected, allowing independent updates
for optimization.{

Gl = MLP (Gl), Pg = MLP (ℶ(P ′
)),

Rd = Gl × Pg

(16)

where ℶ represents the stopping of gradient propagation.

3.5. Loss Function

Noise-Guided Predicate Representation Extraction: In
this module, our loss function consists of three main com-
ponents. we adopt the predicate representation and proto-
type distance metric loss proposed in PENet (Zheng et al.,
2023b) to jointly constrain the predicate representations Qp

and Cp extracted from two subcomponents. The Euclidean
distance is used to compute the distances between Qp, Cp,
and the predicate prototypes, resulting in the losses LQd
and Lcd. These losses enforce minimal intra-class predicate
representation distances and maximal inter-class predicate
representation distances.

Additionally, we introduce a re-weighted cross-entropy loss
function, where the weights are dynamically adjusted based
on the prediction status. Specifically, we construct positive
and negative prediction score tables, Sp and SN , respec-
tively. The prediction score for the true category of each
sample is used as the positive sample weight, while the
prediction scores for other categories serve as negative sam-
ples. We also track the occurrence frequency of each sample
across all categories, denoted as St. The dimensions of Sp,
SN and St are all (c, ), where c is the number of categories.
Then, using a momentum update method, the loss weights
for each category are updated iteratively. The initial weight
for each category Si is set to 1.

Rc = Cp × P
′
, St = St + Pgt,

Sp = Sp +Rc · Pgt, SN = SN +Rc · Pgt,

S = Si · δ + (1− δ) · lg (1 +
SN

St+ξ
Sp

St+ξ+ξ
),

Lace = CE(Rc, Gt, weight = S)

(17)

In the above equation, Pgt represents the one-hot encoded
distribution of the true predicate categories, where the index
of the true category for each sample is set to 1. Pgt denotes
the inverse of the one-hot encoded distribution of the true
predicate categories.

Finally, we incorporate a KL divergence-based feature con-
straint. By calculating the feature distribution between the
extracted predicate representations and the predicate proto-
types, this constraint optimizes the distribution of the ex-
tracted representations to align with the feature distribution
of the prototypes.
mc = ω(Cp),mp = ω(P

′
),

logvc = ω(Cp), logvp = ω(P
′
),

Lkl = − 1
2

∑
(1− elogvc

elogvp
− (mc−mp)

2

elogvp
+ elogvc − elogvp)

(18)

In the above equations, mc and mp share the same weight
matrix, logvc and logvp share the same weight matrix.

Feature Enhancement Based on Diffusion: First, to en-
hance the noise prediction capability of the model, we use
MSE loss to calculate the loss between the predicted noise
N

′
(from Eq. 14) and the initial added noise G (from Eq.

12), thereby optimizing the noise extraction process. Second,
to effectively control the denoising direction, we follow the
computation steps in Algorithm 1, randomly selecting time
steps for noise prediction and iterative denoising. Finally,
the denoised predicate representations Gp is compared with
the predicate prototype Tp corresponding to the sample’s
category (from Eq. 12) by the MSE loss to ensure feature
consistency between the reconstructed representation and
the prototype.

Lrec = ||N
′
−G||2 + ||Gp − Tp||2 (19)

Learnable Feature Discretization Mapping Module:
For discretizing the reconstructed predicate representations,
we adopt the loss function design of (Van Den Oord et al.,
2017) to calculate the quantization loss between features
before and after mapping. Additionally, we supervise the
distance between features to prevent the reconstructed rep-
resentations from being associated with incorrect discrete
encoded features. As shown in Eq. 20, the distance Dis
(defined in Eq. 15) between the reconstructed representa-
tion and the discrete encoded representation is normalized
and constrained by the ground truth labels of the samples.
This ensures that the reconstructed representations remain
homogeneous with the discrete encoded representations of
the same category.

Ldis = ||Gp−ℶ(Gl)||2+ ||ℶ(Gp)−Gl||2+ ||Dis−Pgt||2
(20)

4. Experiments
4.1. Experiment Setting

Dataset: We use the Visual Genome (VG) (Krishna et al.,
2017) and GQA (Hudson & Manning, 2019a) datasets for
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Method PredCls SGCls SGDet
mR@50/100 R@50/100 F@50/100 mR@50/100 R@50/100 F@50/100 mR@50/100 R@50/100 F@50/100

RelTR (Cong et al., 2023) TPAMI’23 21.2/- 64.2/- 31.9/- 11.4/- 36.6/- 17.4/ 10.8/- 27.5/- 15.5/-
HetSGG (Yoon et al., 2023) AAAI’23 32.3/34.5 57.1/ 59.4 41.3/43.6 15.8/17.7 37.6/ 38.5 22.3/24.3 11.5/13.5 30.2/ 34.5 16.7/ 19.4
DCNet (Han et al., 2022a) TCSVT’22 33.4/35.6 57.3/59.1 42.2/44.4 21.2/22.2 36.0/36.8 26.7/27.7 14.3/17.3 28.6/32.9 19.1/22.7
ST-SGG (Kim et al., 2024) ICLR’24 32.7/35.6 52.5/54.3 40.3 / 43.0 21.0/22.4 36.3/37.3 26.6 / 27.9 12.6/15.1 20.7/24.9 15.7 / 18.8
PCPL (Yan et al., 2020) MM’20 35.2/37.8 50.8/52.6 41.6/44.0 18.6/19.6 27.6/28.4 22.2/23.2 9.5/11.7 14.6/18.6 11.5/14.4
HiKER (Zhang et al., 2024) CVPR’24 39.3/41.2 -/- -/- 20.3/21.4 -/- -/- -/- -/- -/-
EGTR (Im et al., 2024) CVPR’24 -/- -/- -/- -/- -/- -/- 14.0/18.3 28.2/31.7 18.7/23.2
VTransE (Zhang et al., 2017) CVPR’17 17.4/18.7 66.0/67.8 27.5/29.3 11.2/12.3 40.3/41.4 17.5/19.0 7.3/8.5 31.4/35.6 11.8/13.7
GCL (Dong et al., 2022) CVPR’22 34.2/36.3 -/- -/- 20.5/21.2 -/- -/- 13.6/15.5 -/- -/-
+NoDIS(ours) 35.68/38.04 57.83/ 59.74 44.13/46.48 20.83/22.14 38.84/39.96 27.12/28.49 13.77/15.83 27.96/31.97 18.45/21.18
Motifs (Zellers et al., 2018) CVPR’18 17.4/19.3 65.7/67.9 27.5/30.0 10.9/12.0 41.3/42.5 17.3/18.8 7.3/8.6 32.0/36.3 11.9/14.0
+DBiased (Han et al., 2022b) TM’22 34.7/36.6 58.8/60.7 43.6/45.7 20.3/21.2 36.5/37.4 26.1/27.1 14.9/ 17.5 29.4/33.9 19.8/ 23.1
+PCL (Tao et al., 2022) TIP’22 33.6/35.8 55.0/57.3 41.7/44.1 18.2/19.1 34.2/35.2 23.8/24.8 14.2/16.6 29.0/33.4 19.1/22.2
+NICE (Li et al., 2022a) CVPR’22 29.9/32.3 55.1/57.2 38.8/41.3 16.6/17.9 33.1/34.0 22.1/23.5 12.2/14.4 27.8/31.8 17.0/19.8
+HML (Deng et al., 2022) ECCV’22 36.3/ 38.7 47.1/49.1/ 41.0/43.3 20.8/22.1 26.1/27.4 23.2/24.5 14.6/ 17.3 17.6/21.0 16.0/19.0
+Inf (Biswas & Ji, 2023) CVPR’23 24.7/30.7 51.5/55.1 33.4/39.4 14.5/17.4 32.2/33.8 20.0/23.0 9.4/11.7 23.9/27.1 13.5/16.3
+LS-KD (Li et al., 2023b) TCSVT’23 34.2/37.9 47.6/50.9 39.8/43.4 18.7/20.9 31.2/32.7 23.4/25.5 13.7/16.6 23.5/27.2 17.3/20.6
+QuatRE (Wang et al., 2023c) TMM’23 15.8/17.1 66.2/ 68.0 25.5/27.3 9.2/9.8 40.3/41.2 15.0/15.8 6.2/7.6 32.5/ 37.4 10.4/12.6
+CFA (Li et al., 2023a) ICCV’23 35.7/ 38.2 54.1/56.6 43.01/45.61 17.0/18.4 34.9/36.1 22.86/24.38 13.2/15.5 27.4 31.8 17.82/20.84
+MEET (Sudhakaran et al., 2023) ICCV’23 25.3/33.5 67.4/ 72.7 36.79/ 45.87 19.0/ 23.7 40.5/ 43.2 25.87/ 30.61 8.5/11.8 27.9/33.3 13.03/17.43
+NoDIS(ours) 33.83/36.48 62.72/64.98 43.95/46.73 22.68/24.35 36.46/37.48 27.96/29.52 13.58/16.35 30.91/35.42 18.87/22.37
Transformer (Vaswani et al., 2017) NIPS’17 21.4/23.7 66.7/68.8 32.4/35.2 12.2/13.3 41.7/ 42.7 18.9/20.3 7.6/9.1 31.6/ 35.9 12.3/14.5
+CogTree (Yu et al., 2020) IJCAI’21 28.4/31.0 38.4/39.7 32.7/34.8 15.7/16.7 22.9/23.4 18.6/19.5 11.1/12.7 19.5/21.7 14.1/16.0
+HML (Deng et al., 2022) ECCV’22 33.3/ 35.9 45.6/47.8 38.5/ 41.0 19.1/ 20.4 22.5/23.8 20.7/ 22.0 15.0/ 17.7 15.4/18.6 15.2/ 18.1
+ALF (Chen et al., 2024) MM’24 35.9/38.4 53.3/55.2 42.9/45.3 21.3/22.6 29.0/30.0 24.6/25.8 14.8/17.5 22.8/26.2 17.9/21.0
+BiC (Yang et al., 2024) TIP’24 34.6/ 37.2 53.4/56.0 42.0/44.7 19.7/ 21.0 33.0/34.0 24.7/26.0 16.7/ 19.1 23.3/27.3 19.5/22.5
+NoDIS(ours) 37.25/39.97 49.96/53.21 42.68/45.65 21.53/23.35 34.42/35.63 26.49/28.21 16.91/19.25 25.26/28.77 20.26/23.07
PE-Net (Zheng et al., 2023b) CVPR’23 31.5/33.8 64.9/ 67.2 42.4/45.0 17.8/18.9 39.4/ 40.7 24.5/25.8 12.4/14.5 30.7/ 35.2 17.7/20.5
+NoDIS(ours) 38.72/41.93 50.13/53.87 43.69/47.16 22.31/23.69 30.65/32.19 25.82/27.29 14.78/17.16 23.16/26.95 18.05/20.97

Table 1. In the VG dataset, we compare the performance of our method with existing methods in the PredCls, SGCls, and SGDet tasks
based on R@K, mR@K and F@K (%) metrics.

model training and evaluation. The VG dataset consists of
108,077 images, and following the decomposition method
in (Xu et al., 2017), we created a dataset containing 150
object categories and 50 relationship categories. Compared
to VG, the GQA dataset GQA dataset includes 200 object
categories and 100 relationship categories. Both VG and
GQA datasets are split using the same method: 70% of the
samples are used for training, 30% for testing, with 5,000
samples selected from the training set for validation.

Additionally, we employed the Open Images (Kuznetsova
et al., 2020) dataset to further evaluate the generalization
capability of our method. Open Images contains approxi-
mately 9 million images, 600 object categories, and 375k
annotated relationships. Open Image V6 extends this to
391k visual relationships and introduces action annotations
and localized narratives, enhancing the diversity of local-
ized understanding. Following the data processing approach
proposed in (Li et al., 2021a; Zheng et al., 2023b; Lin et al.,
2020; Zhang et al., 2019), we used 126,368 images for
training, 1,813 for validation, and 5,322 for testing.

Evaluation Tasks and Metrics: We follow traditional
task evaluation methods (Tang et al., 2019) , training and
evaluating on three tasks: PredCls (Predicate Classification),
SGCls (Scene Graph Classification), and SGDet (Scene
Graph Detection). For performance evaluation, we use
R@K, mR@K, and F@K (Zhang et al., 2022) metrics, with
K set to 20, 50, and 100.

4.2. Comparison with state-of-the-art Methods

We trained and evaluated three tasks on the VG dataset
(Krishna et al., 2017). Considering that additional prior
information or augmentation methods are not available in
real-world scenarios, we did not use any data augmenta-
tion or prior knowledge, relying solely on the existing data
and model structure. As shown in Table 1, our method sig-
nificantly improves the mR@K metric, outperforming the
current state-of-the-art methods. However, our method may
not be optimal in terms of R@K, as mR@K evaluates over-
all accuracy across the head, body, and tail categories, while
R@K focuses more on the performance of local categories.
Additionally, since the Motifs model uses prior knowledge
during training, removing this prior information affected its
representation ability, leading to suboptimal performance.
As illustrated in Figure 3, our method effectively enhances
the basic model’s prediction performance for body and tail
categories while maintaining its accuracy for the head cate-
gory, ultimately improving overall prediction accuracy.

Meanwhile, based on the SGDet experimental setting, we
also conducted experiments on the Open Images V4 and
V6 (Kuznetsova et al., 2020) datasets, as shown in Table
2. We adopted a simple Transformer (Vaswani et al., 2017)
as our baseline model. Compared to VCTree (Tang et al.,
2019) and Motifs (Zellers et al., 2018), the Transformer has
relatively weaker feature extraction capabilities and fewer
parameters, making it less complex overall. However, when
combined with our proposed method, its discriminative
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ability on these datasets is significantly improved, achiev-
ing superior performance across multiple metrics. Specif-
ically, the wmAPrel and wmAPphr metrics intuitively re-
flect the model’s ability to detect predicate categories and
complete triplet phrases, respectively. As shown in Table
2, our method consistently achieves the best performance
in wmAPrel, wmAPphr, and scorewtd on both the Open
Images V4 and V6 datasets. This demonstrates that our
approach not only offers strong generalization capability but
also accurately identifies triplet information.

Figure 3. Recall values for each category with VTransE (Zhang
et al., 2017) and after incorporating NoDIS, with predicate fre-
quencies decreasing from left to right in the dataset.

We further analyze and compare the model parameters, as
shown in Fig. 4. Specifically, we integrate NoDIS with three
representative baseline models: Motifs (Zellers et al., 2018),
VCTree (Tang et al., 2019), and Transformer (Vaswani et al.,
2017), and measure the change in parameter counts. Al-
though incorporating our method leads to an increase of
approximately 40–60M parameters, this growth is relatively
modest compared to other widely adopted methods or struc-
tures (Tang et al., 2020; Suhail et al., 2021; Li et al., 2021a).
Moreover, despite the smaller increase in parameters, our
method yields more significant improvements in model per-
formance. Detailed evaluation and performance comparison
analysis can be found in Appendix B.
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Figure 4. Comparison of Parameter Counts After Integrating
NoDIS with Base Models (Zellers et al., 2018; Tang et al., 2019;
Vaswani et al., 2017).

4.3. Ablation Studies

We conducted ablation studies from four perspectives:
predicate representation extraction, loss function design,
diffusion-based feature enhancement, and discretized fea-
ture aggregation. As shown in Table 3, using only noise-
guided decoupled predicate representation or predicate pro-
totype alignment refinement results in negligible perfor-
mance improvement. However, when both modules are
introduced simultaneously, the performance on mR@100
improves by at least 2.25%. For the loss function, as illus-
trated in Table 4, incorporating only adaptive re-weighted
cross-entropy loss or KL loss individually yields limited
performance gains. When both adaptive re-weighted cross-
entropy loss and KL loss are jointly applied to constrain
predicate representations, the performance significantly im-
proves, with an increase of at least 2.43% on mR@100.

Finally, regarding diffusion-based feature enhancement and
discretized feature aggregation, as shown in Table 5, in-
troducing either module alone does not lead to noticeable
performance improvements and may even result in perfor-
mance degradation. However, when both modules are ap-
plied together for feature enhancement and aggregation,
the performance improves significantly, achieving a 1.34%
increase compared to the baseline without these modules.
Detailed ablation analysis can be found in Appendix C.

4.4. Quantitative and Qualitative Analysis

Quantitative Analysis Based on the distribution variance
of predicate representations within the same category, as
shown in the Figure 1b (I), after applying the Diffusion
method for feature enhancement, the variance of features
within the same category increases. This indicates that the
introduction of the Diffusion method effectively expands
the feature space, enhancing the diversity of predicate rep-
resentations within the same category. After applying the
discretization mapping module, the variance between predi-
cate representations sharply decreases. This suggests that
discretization mapping effectively learns consistent repre-
sentations from the expanded feature space, strengthening
the homogeneity among predicate representations within
the same category.

Analyzing the distribution between predicate representations
and decision head weights, as shown in the Figure 1b (II),
after enhancing the homogeneity of similar predicate repre-
sentations, the distributions of predicate representations and
decision weights within the same category become more
similar. Without NoDIS method, the feature distribution ex-
hibits greater variance. This indicates that the introduction
of the NoDIS module effectively enhances the homogeneity
of similar predicate representations, which aids the decision
layer in making accurate and efficient category predictions.
For further quantitative analysis, please refer to Appendix
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Dataset Method mR@50 R@50 F@50 wmAP rel wmAP phr score wtd

OI V4

RelDN (Zhang et al., 2019) 70.4 75.7 73.0 36.1 39.9 45.2
GPS-Net (Lin et al., 2020) 69.5 74.7 72.0 35.0 39.4 44.7
BGNN (Li et al., 2021a) 72.1 75.5 73.8 37.8 41.7 46.9

Transformer-NoDIS(Ours) 70.34 74.84 72.52 38.21 42.35 47.19

OI V6

DBiased (Han et al., 2022b) 42.1 74.6 53.8 34.3 34.4 42.3
PGSG (Li et al., 2024b) 40.7 62.0 49.1 19.7 27.8 28.7

HOTR (Kim et al., 2021) 40.1 52.7 45.5 19.4 21.5 26.9
PE-Net (Zheng et al., 2023b) 39.3 76.5 51.9 36.6 37.4 44.9

SGTR (Li et al., 2022b) 42.6 59.9 49.8 38.7 37.0 42.3
CSL (Liu et al., 2023b) 41.7 75.4 53.7 34.3 35.4 42.9

BCTR (Hao et al., 2025) 48.8 68.6 57.0 36.0 39.0 43.7
SQUAT (Jung et al., 2023) - 75.8 - 34.9 35.9 43.5

Transformer-NoDIS(Ours) 48.93 74.11 58.94 38.87 38.95 45.95

Table 2. We compared with the state-of-the-art methods on Open Image(Kuznetsova et al., 2020) dataset using the evaluation metrics
proposed in (Li et al., 2021a).

NPR PPA R@50/mR@50 R@100/mR@100
✓ ✗ 59.89/31.76 62.32/34.06
✗ ✓ 47.42/33.19 49.61/36.16
✓ ✓ 54.26/35.76 56.63/38.41

Table 3. Ablation Study on Submodules of the Noise-Guided Pred-
icate Representation Extraction Module. NPR refers to Noise-
Guided Predicate Refinement, and PPA denotes the Predicate-
Prototype Align module.

Lace Lkl R@50/mR@50 R@100/mR@100
✗ ✗ 59.46/31.85 61.89/34.22
✓ ✗ 59.18/33.35 61.60/35.98
✗ ✓ 59.84/32.15 62.24/34.40
✓ ✓ 54.26/35.76 56.63/38.41

Table 4. Ablation Study on the Loss Functions in the Noise-Guided
Predicate Representation Extraction Module.

D.

Qualitative Analysis We conducted a qualitative evalua-
tion of model outputs on the test dataset based on the Pred-
Cls task. As shown in Figure 5, compared to the baseline
model, our method generates more accurate relationships
with richer semantic information, such as ”letter painted on
train” and ”person looking at train.” Additional qualitative
comparisons and analyses are provided in Appendix D.

5. Conclusion
This paper proposes the NoDIS method to address the bias
in prediction from two perspectives: enhancing the diversity
of predicates within the same class and ensuring homo-
geneity among similar predicate representations. First, by

FED Random Condition CGNG FDM R@50/mR@50 R@100/mR@100
✗ ✗ ✗ ✗ ▲ 42.08/34.75 45.34/37.99
✓ ✗ ✗ ✗ ✗ 54.23/35.75 56.60/38.42
✓ ✓ ✗ ✗ ✗ 45.11/36.04 47.95/38.95
✓ ✓ ✗ ✗ ▲ 45.34/36.03 48.13/39.18
✓ ✓ ✓ ✗ ▲ 45.51/36.18 48.31/39.27
✓ ✓ ✓ ✓ ▲ 49.98/36.90 52.44/39.66
✓ ✓ ✓ ✓ ▼ 49.72/36.85 52.21/39.75

Table 5. Ablation Study of the Feature Enhancement Based on Dif-
fusion (FED) Module and Feature Discretization Mapping (FDM)
Module. ”Random” indicates feature reconstruction with ran-
dom time steps, ”Condition” introduces the conditional diffusion
method, ▲ denotes providing prior conditions for Diffusion, and
▼ indicates discretizing the features after Diffusion-based recon-
struction.

Figure 5. Qualitative comparisons are conducted on the test dataset
based on the PredCls task. Black arrows and descriptions indi-
cate correct predicate relationships, red ones represent incorrect
predicate relationships, and green ones signify more accurate and
superior predicate relationships.

introducing a conditional diffusion model, NoDIS expands
the predicate representation space, enabling the model to
better learn underrepresented knowledge from tail classes.
Second, a discretization encoder is designed to seek consis-
tent representations among predicates of the same class and
aggregate them into an independent representation space for
training at the decision layer, thereby alleviating issues of
insufficient learning and decision confusion caused by the
discrete nature of independent samples.
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A. Implementation Details
We use a pre-trained Faster RCNN (Tang et al., 2020; Ren
et al., 2015) for object detection, with the detector frozen
during all three tasks. The training process is divided into
two phases. First, the basic scene graph generation model
(Zellers et al., 2018; Vaswani et al., 2017; Tang et al., 2019)
provides coarse-grained contextual information, which is
used for pretraining the Noise-Guided Predicate Representa-
tion Extraction module. This is done by leveraging the loss
function of the module to constrain the contextual represen-
tation of predicates. Next, based on the extracted predicate
context representations, we begin to train the two feature
enhancement modules. During training, the learning rate is
set to 0.001. In the pre-training phase, the batch size is set to
8, and the number of iterations is 60,000. In the feature en-
hancement phase, the batch size is set to 8, and the number
of iterations is 40,000. All experiments are conducted using
four NVIDIA 3090 GPUs, each with 24GB of memory.

B. Experimental Analysis
We first integrate NoDIS with existing popular SGG models
(Zellers et al., 2018; Zhang et al., 2017; Vaswani et al., 2017;
Zheng et al., 2023b) and conduct extensive experiments on
three tasks from the VG (Krishna et al., 2017) dataset to val-
idate the effectiveness of our method. Existing approaches
often use the frequency of different triplets in the dataset as
additional prior knowledge, which is weighted against the
model’s final prediction scores. However, we recognize that
in real-world scenarios or with unknown data, such prior
information may not be available, potentially affecting the
model’s performance. Therefore, we do not introduce any
prior knowledge or data augmentation techniques during
model training or evaluation, aiming to achieve the most
reliable results with the simplest approach.

As shown in Table 1, compared to the best existing methods,
our approach achieves relatively better results on mR@K
metrics, indicating that our method strikes a better balance
in predicting both head and tail predicates, rather than fa-
voring only the head classes. However, our method may
show lower R@K scores, as R@K reflects local prediction
accuracy, while mR@K represents overall prediction per-
formance. When the model favors head classes, it leads
to improved accuracy for head class predictions, resulting
in a higher R@K. However, this significantly weakens the
model’s ability to predict tail information. As shown in Fig-
ure 6, we can clearly observe that our method significantly
improves the prediction accuracy for body and tail classes
compared to the baseline model, while still maintaining the
baseline model’s ability to predict head classes.

Additionally, for the SGDet task, we compute Recall@100
metrics for head, body, and tail classes. As shown in Table 6,
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existing models tend to have higher accuracy for head class
predictions, as they are biased toward head categories, over-
looking the tail categories with deeper semantic information.
By incorporating NoDIS into the existing baseline model,
we significantly improve the model’s prediction accuracy
for the body and tail category, while maintaining its predic-
tion performance for the head class. As a result, the model
achieves optimal performance in overall mean evaluation.
This demonstrates that our approach effectively mitigates
biased predictions caused by long-tail distributions, while
enhancing the model’s prediction accuracy for the body and
tail predicate categories at minimal cost.

Models Head Body Tail Mean
G-RCNN 28.6 6.5 0.1 11.7
GPS-Net (Lin et al., 2020) 30.4 8.5 3.8 14.2
NBP (Liu et al., 2023a) 31.7 15.0 8.9 18.5
BGNN (Li et al., 2021a) 33.4 13.4 6.4 17.7
GSL (Liu et al., 2023c) 33.6 13.5 8.8 18.6
RelDN (Zhang et al., 2019) 34.1 6.6 1.1 13.9
VTransE (Zhang et al., 2017) 34.5 7.6 1.1 14.4
Motifs (Zellers et al., 2018) 34.2 8.6 2.1 15.0
MSDN (Li et al., 2017) 35.1 5.5 0.0 13.5
VCTrree-TDE(Tang et al., 2020) 24.5 13.9 0.1 12.8
VTransE-NoDIS (ours) 30.05 15.13 10.84 18.67
Transformer-NoDIS (ours) 28.35 19.23 15.16 20.91
PENet-NoDIS (ours) 27.83 19.87 11.03 19.58

Table 6. Under the SGDet configuration, we divided the long-
tail distribution predicate categories in the VG dataset into three
groups: head, body, and tail, and calculated the R@100(%) metric
for each group.

Finally, we conducted experiments on the GQA (Hudson
& Manning, 2019a) dataset across three tasks, as shown in
Table 7. Compared to traditional methods, our approach
achieves strong performance on all three subtasks. How-
ever, we acknowledge that it does not surpass the most
recent state-of-the-art methods (Wang et al., 2023b; Biswas
& Ji, 2023) on this dataset in terms of evaluation metrics.
Nevertheless, considering overall performance, our method
demonstrates consistently strong results on both the VG and
Open Images datasets, and achieves relatively competitive
performance on the GQA dataset as well. This indicates that
our approach is effective across different scenarios and re-
mains robust under varying scene complexities, highlighting
its strong generalization capability.

C. Ablation Studies
We conduct ablation studies from two perspectives. First, we
independently analyze the components and loss functions
of the Noise-Guided Predicate Representation Extraction
module. Then, we separately examine the effects of the
Feature Enhancement Based on Diffusion module and the
Learnable Feature Discretization Mapping module. Our ab-
lation experiments are conducted based on the Transformer
framework (Vaswani et al., 2017), with an ablation analysis

performed for each module of NoDIS.

C.1. Ablation Study of the Noise-Guided Predicate
Representation Extraction Module

First, we perform an ablation analysis of the internal struc-
ture of this module. The overall structure is divided
into three components: Neighborhood Context Extrac-
tion, Noise-Guided Predicate Refinement, and Predicate-
Prototype Align Module. The Neighborhood Context Ex-
traction serves as the foundational predicate context extrac-
tion module, providing basic predicate context representa-
tions and thus cannot be removed. As shown in Table 8,
when the Predicate-Prototype Align module is excluded,
the overall performance remains low regardless of whether
the Noise-Guided Predicate Refinement module is used.
However, introducing the Predicate-Prototype Align mod-
ule leads to varying degrees of performance improvement,
as demonstrated in Rows 3 and 4 of Table 8. This indicates
that the Predicate-Prototype Align module effectively aligns
the extracted predicate context representations with predi-
cate prototypes, significantly enhancing the discriminative
ability of predicates.

Section 3.5 provides a detailed explanation of the loss func-
tions used in the Noise-Guided Predicate Representation
Extraction Module. The basic loss functions LQd and Lcd

serve to constrain predicate representations. When neither
the Noise-Guided Predicate Refinement Module nor the
Predicate-Prototype Align Module is introduced, these basic
loss functions alone are used to constrain predicate extrac-
tion. Therefore, our ablation study focuses on the additional
dynamic weighting loss function Lace and the KL diver-
gence loss function Lkl, which constrains feature distribu-
tions.

As shown in Table 9, when only the base loss functions are
used, the model performs relatively poorly. Introducing the
dynamic weighting loss, as seen in the second row, signifi-
cantly improves performance. When both loss functions are
applied, the model achieves optimal performance. These
findings indicate that while adding either loss function in-
dividually provides slight performance gains, their effects
differ. The dynamic weighting loss focuses on the overall
prediction state, resulting in a noticeable improvement in the
mR metric. In contrast, the KL divergence loss targets local
feature distribution alignment, which may still be influenced
by long-tail distributions, leading to biased predictions.

C.2. Ablation Study on Diffusion Steps and Random
Sampling Steps in the Feature Enhancement
Module

We conducted detailed ablation experiments on the diffusion
step size and random sampling step size used in the Feature
Enhancement Based on Diffusion module. First, for the
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Methods PredCls SGCls SGDet
mR@50/100 F@50/100 mR@50/100 F@50/100 mR@50/100 F@50/100

Motifs (Zellers et al., 2018) 16.4/17.1 26.2/27.2 8.2/8.6 13.2/13.8 6.4/7.7 10.5/12.5
+DC (Han et al., 2022a) 21.4/22.5 31.7/33.1 9.9/10.4 15.2/15.8 9.4/10.7 14.1/16.1
+DHL (Zheng et al., 2023a) 20.4/21.9 -/- 8.4/9.1 -/- 6.6/8.1 -/-
+NICE (Li et al., 2022a) 25.4/27.9 34.9/37.8 -/- -/- -/- -/-
+NICEST (Li et al., 2022a) 24.2/26.8 34.16/37.23 -/- -/- -/- -/-
+NoDIS 31.21/32.64 36.44/38.09 15.92/16.65 19.08/19.90 13.76/15.95 17.23/19.81
VCTree (Tang et al., 2019) 16.6/17.4 26.3/27.5 7.9/8.3 12.8/13.4 6.5/7.4 10.6/12.0
+HTCL (Wang et al., 2023b) 32.6/33.9 41.4/42.9 15.7/16.3 20.3/21.0 14.0/15.8 17.3/19.6
+GCL (Dong et al., 2022) 35.4/36.7 39.5/41.1 17.3/18.0 20.0/20.8 15.6/17.8 16.5/19.1
VTransE (Zhang et al., 2017) 14.0/15.0 22.4/23.8 8.1/8.7 13.0/13.9 5.8/6.6 9.6/10.9
+GCL (Dong et al., 2022) 30.4/32.3 32.8/34.7 16.6/17.4 19.2/20.0 14.7/16.4 15.0/17.2
Transformer (Vaswani et al., 2017) 19.1/20.2 29.5/31.1 9.3/9.7 14.6/15.2 6.7/7.9 10.7/12.6
+DHL (Zheng et al., 2023a) 18.2/20.1 -/- 8.7/9.3 -/- 7.8/8.8 -/-
+NoDIS 31.50/33.44 35.91/37.92 17.23/17.83 20.33/21.05 14.28/16.23 16.73/18.98

Table 7. Comparison with Existing Methods on Three Tasks of the GQA (Hudson & Manning, 2019a) Dataset.

(a) Recall values for each category with Motifs and after incorporat-
ing NoDIS.

(b) Recall values for each category with Transformer and after
incorporating NoDIS.

(c) Recall values for each category with VTransE and after incorpo-
rating NoDIS.

(d) Recall values for each category with PENet and after incorporat-
ing NoDIS.

Figure 6. Recall values for each category on the test dataset before and after incorporating NoDIS, with predicate frequencies decreasing
from left to right in the dataset.

diffusion process, as shown in Table 10, we experimented
with diffusion steps of 50, 100, and 150. Considering the
relatively small size of our dataset, we did not adopt the
commonly used 1000-step setting in traditional diffusion
models (Song et al., 2020a; Chen et al., 2023). During
training, a diffusion step is randomly selected from the
specified range for step embedding. The results show that

using 50 diffusion steps achieves the best performance in
terms of mR@50 and mR@100. Therefore, we adopt 50
steps in all subsequent experiments.

Second, regarding the sampling process in this module, we
conducted ablation studies on four different random sam-
pling step sizes. As the sampling step increases, both train-
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NPR PPA R@50/mR@50 R@100/mR@100
✗ ✗ 52.92/32.53 55.66/35.16
✓ ✗ 59.89/31.76 62.32/34.06
✗ ✓ 47.42/33.19 49.61/36.16
✓ ✓ 54.26/35.76 56.63/38.41

Table 8. Ablation Study on Submodules of the Noise-Guided Pred-
icate Representation Extraction Module. NPR refers to Noise-
Guided Predicate Refinement, and PPA denotes the Predicate-
Prototype Align module.

Lace Lkl R@50/mR@50 R@100/mR@100
✗ ✗ 59.46/31.85 61.89/34.22
✓ ✗ 59.18/33.35 61.60/35.98
✗ ✓ 59.84/32.15 62.24/34.40
✓ ✓ 54.26/35.76 56.63/38.41

Table 9. Ablation Study on the Loss Functions in the Noise-Guided
Predicate Representation Extraction Module.

ing and inference time tend to increase to varying degrees.
As shown in Table 11, when the sampling step is set to 10,
the model achieves favorable performance across multiple
metrics, while maintaining reasonable training and testing
times. This setting effectively balances performance and
efficiency.

diffusion steps R@50/mR@50 R@100/mR@100
50 49.96/37.25 53.21/39.97

100 50.28/36.86 52.74/39.54
150 49.73/36.90 52.18/39.76

Table 10. In the Feature Enhancement based on Diffusion module,
an ablation study is conducted on the number of diffusion steps.
During the diffusion process, step lengths are randomly selected
based on the specified number of steps.

C.3. Ablation Study on Feature Reconstruction
Enhancement and Discretization Mapping Module

We conducted a detailed ablation analysis of the Feature Re-
construction Enhancement Based on Diffusion module and
the Feature Discretization Mapping module. As shown in
Table 12, incorporating only the Feature Discretization Map-
ping module or the Feature Reconstruction Enhancement
Based on Diffusion module leads to a performance drop.
This decline is attributed to the introduction of additional
learnable variable parameters, which fail to converge effec-
tively during training. When using the diffusion model for
feature reconstruction enhancement, we introduced a ran-
dom timestep reconstruction constraint to further regulate
the reconstruction process, resulting in a slight performance
improvement. However, a significant performance boost
was observed when combining the diffusion method with

random steps R@50/mR@50 R@100/mR@100
10 49.96/37.25 53.21/39.97
15 47.51/36.81 50.14/39.88
20 47.63/36.92 50.26/39.99
25 47.54/36.85 50.15/39.92

Table 11. The ablation study further explores the use of randomly
sampled step lengths to constrain the diffusion process. Following
the DDIM-inspired (Song et al., 2020a) design, diffusion steps are
randomly selected for feature reconstruction.

the discretization mapping approach. With the introduction
of a conditional Gaussian noise generator, an additional dif-
fusion constraint is applied, improving the performance to
39.66%. The aforementioned discretization mapper, as a
preprocessing module for the Diffusion reconstruction task,
is designed to perform feature mapping on preprocessed
predicate contexts. When an additional discrete mapping is
applied to the representations reconstructed by Diffusion,
the model achieves optimal performance.

From the experimental analysis above, we conclude that the
performance gain of a simple Diffusion model on feature
reconstruction is not significant. This is because the recon-
structed predicate representations are unstable and exhibit
randomness, which negatively impacts subsequent predicate
category predictions. However, introducing additional con-
straints into the diffusion process effectively enhances the
quality of feature reconstruction, aligning it more closely
with the expected feature distribution. Furthermore, directly
using the reconstructed predicate representations for proto-
type classification can result in instability, as reconstructed
predicate representations within the same category may fail
to converge, hindering prototype optimization. By incorpo-
rating discretization mapping, the alignment between the re-
constructed representations and the prototype representation
space is improved, facilitating stable category predictions.

FED Random Condition CGNG FDM R@50/mR@50 R@100/mR@100
✗ ✗ ✗ ✗ ▲ 42.08/34.75 45.34/37.99
✓ ✗ ✗ ✗ ✗ 54.23/35.75 56.60/38.42
✓ ✓ ✗ ✗ ✗ 45.11/36.04 47.95/38.95
✓ ✓ ✗ ✗ ▲ 45.34/36.03 48.13/39.18
✓ ✓ ✓ ✗ ▲ 45.51/36.18 48.31/39.27
✓ ✓ ✓ ✓ ▲ 49.98/36.90 52.44/39.66
✓ ✓ ✓ ✓ ▼ 49.72/36.85 52.21/39.75

Table 12. Ablation Study of the Feature Enhancement Based on
Diffusion (FED) Module and Feature Discretization Mapping
(FDM) Module. ”Random” indicates feature reconstruction with
random time steps, ”Condition” introduces the conditional diffu-
sion method, ▲ denotes providing prior conditions for Diffusion,
and ▼ indicates discretizing the features after Diffusion-based
reconstruction.
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D. Quantitative and Qualitative Analysis
Quantitative Analysis First, we perform a visual analysis
to evaluate the impact of each module in NoDIS on the
intra-class variance of predicate representations. As shown
in Figures 7a and 7c, the three curves represent the intra-
class variance changes of predicates representation within
the same class after introducing the Feature Enhancement
Based on Diffusion Module and the Feature Discretization
Mapping Module. After introducing the Feature Enhance-
ment Based on Diffusion Module, we observe a significant
increase in intra-class variance across all categories, with
an approximately threefold improvement. This indicates
that applying the diffusion-based feature enhancement and
expanding the visible predicate representation space effec-
tively enhances the diversity of within-class predicate repre-
sentations, aiding the model in learning more comprehensive
representation information. After introducing the Feature
Discretization Mapping module for feature aggregation, the
intra-class variance significantly decreases, even approach-
ing zero. This is because, by applying the discretized feature
mapping, we aggregate all scattered features based on their
categories. By seeking a unified predicate representation,
we group the same- category predicate representations into
a single representation space, effectively controlling intra-
class variance and ensuring the consistency of intra-class
representations. The feature aggregation process enhances
the decision layer’s ability to learn and capture key infor-
mation about the uniqueness of predicates within the same
category. As shown in Figures 7b and 7b, we calculate the
variance between the input features to the decision layer and
the classification weights at the decision layer. After feature
aggregation through discretized mapping, we observe that
the aggregated features closely resemble the weight distri-
bution of the corresponding category in the decision layer,
with a significant reduction in variance. This demonstrates
that the aggregation of features strengthens the effective rep-
resentation of predicates within the same category, which in
turn adjusts the decision layer’s classification weights and
alleviates decision-making difficulty and confusion.

Additionally, we perform a visual analysis of the aggrega-
tion of predicate representations within the same category in
the Feature Discretization Mapping module. In this module,
We design a learnable discretization mapping encoder that
maps predicate features of the same category into a unified
space by calculating the distance between these features and
the encoder’s representations. Figure 8a shows the distance
relationships between 50 randomly selected samples and
the encoder’s representation space. The closer the distance,
the higher the score, and the darker the color. Figure 8b
illustrates the predicate discrete encoder representation as-
signed to each sample. By comparing Figures 8a and 8b, it
is evident that after discretization mapping, each sample is
distinctly assigned to the corresponding predicate category

representation space. This process effectively aggregates
the diversity of predicates within the same category into a
unified space, enhancing the consistency of predicate rep-
resentations within the same category. It also demonstrates
that our discretization encoder can effectively learn valid
predicate representations for each category.

Qualitative Analysis We conducted a visual qualitative
assessment of the model’s prediction results on the PredCls
task using the test dataset. As shown in Figure 9, we per-
formed a comparative analysis between the baseline model
and the predictions obtained after incorporating our method.
Taking the third row of Figure 9 as an example, the baseline
model (PENet(Zheng et al., 2023b), Transformer(Vaswani
et al., 2017)) predicts the relationship between ”tree” and
”hill” as ”on.” While ”on” is a valid predicate between these
two objects, it lacks semantic richness as a head predicate
category and fails to provide deeper insight into their re-
lationship. In contrast, our method successfully generates
more specific and accurate tail predicates, such as ”growing
on” and ”covered in”, with confidence scores exceeding
90%.

Additionally, in examples like the first and second rows
of Figure 9, such as ”bus parked on street” and ”wheel
attached to train,” our method produces more precise and
semantically informative tail predicates for a variety of ob-
ject pairs. It also assigns higher confidence scores to these
predicates. These results demonstrate that our method ef-
fectively understands and identifies the relational states be-
tween objects. Instead of being dominated by generalized
head predicates, it assigns object pairs with tail predicates
that convey more precise semantic information.

E. Limitation Analysis
This paper introduces the Noise-Guided Predicate Repre-
sentation Extraction and Diffusion-Enhanced Discretization
(NoDIS) learning method, which is the first to apply diffu-
sion models for feature enhancement to mitigate the biased
prediction problem caused by long-tail distributions. How-
ever, our experiments reveal that while diffusion models
exhibit strong generative capabilities, they are somewhat
uncontrollable in generating results, especially when used
for feature enhancement. As a result, relying solely on
diffusion models for feature enhancement yields minimal
improvement. To achieve more consistent representations,
additional constraints must be incorporated into the diffu-
sion process to regulate the distribution of generated fea-
tures. However, introducing more constraints significantly
weakens the diffusion model’s generalization ability and
generative performance. Therefore, designing a diffusion
process for feature-level enhancement that retains the ro-
bustness and generalization capacity of the diffusion model
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(a) Intra-class variance variation curves of PENet before and after
introducing the Feature Enhancement Based on Diffusion Module
and Feature Discretization Mapping module.

(b) Variance curves between predicate representations within the
same category and their corresponding decision layer weight distri-
butions in PENet after integrating the NoDIS module.

(c) Intra-class variance variation curves of Transformer before and
after introducing the Feature Enhancement Based on Diffusion
Module and Feature Discretization Mapping module.

(d) Variance curves between predicate representations within the
same category and their corresponding decision layer weight distri-
butions in Transformer after integrating the NoDIS module.

Figure 7. Based on different models, the variance change curves of intra-class variance before and after introducing each module of
NoDIS. A larger variance indicates a greater distributional difference between the features.

(a) Score Determination Between Similar Samples When Aggregat-
ing Predicate Features via Discretized Feature Mapping.

(b) Sample Indexing for Aggregating Predicate Representations of
the Same Category via Discretized Feature Mapping.

Figure 8. Visualization and Evaluation of Distance Metric Scores for Aggregation of Same-Class Predicate Representations in Discretized
Feature Mapping.

will be a key focus of our future work.
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Figure 9. Qualitative comparisons are conducted on the test dataset based on the PredCls task. Black arrows and descriptions indicate
correct predicate relationships, red ones represent incorrect predicate relationships, and green ones signify more accurate and superior
predicate relationships.
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