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ABSTRACT

Recent advances in multimodal large language models (MLLMs) have opened
new opportunities for embodied intelligence, enabling multimodal understanding,
reasoning, and interaction, as well as continuous spatial decision-making. Nev-
ertheless, current MLLM-based embodied systems face two critical limitations.
First, Geometric Adaptability Gap: models trained solely on 2D inputs or with
hard-coded 3D geometry injection suffer from either insufficient spatial informa-
tion or restricted 2D generalization, leading to poor adaptability across tasks with
diverse spatial demands. Second, Embodiment Constraint Gap: prior work of-
ten neglects the physical constraints of real robots, resulting in task plans that are
theoretically valid but practically infeasible.To address these gaps, we introduce
OmniEVA – an embodied versatile planner that enables advanced embodied rea-
soning and task planning through two pivotal innovations: (1) a Task-Adaptive
3D Grounding mechanism, which uses a gated router to dynamically inject 3D
features based on task context, enabling selective geometric reasoning. (2) an
Embodiment-Aware Reasoning framework that incorporates task goals and phys-
ical constraints into the reasoning loop, ensuring executable plans. Extensive ex-
periments show that OmniEVA achieves state-of-the-art performance on 7 of 8
embodied reasoning benchmarks and excels in downstream tasks such as object
navigation and mobile manipulation. Evaluations on proposed benchmarks con-
firm its robust and versatile planning capabilities. Project page.

1 INTRODUCTION

The rapid progress in multimodal large language models (MLLMs) has significantly enhanced AI’s
ability to interpret and reason across text, images, and video. This shift has opened new avenues
to embodied intelligence (Reed et al., 2022; Ahn et al., 2022; Driess et al., 2023), capable of per-
ceiving, reasoning, and acting in physical environments. Spatial reasoning serves as a core bridge
between perception and action, transforming sensory inputs into structured representations that sup-
port long-horizon planning and rational decision-making.

Early vision–language models addressed spatial reasoning primarily in two dimensions. Spa-
tialVLM (Chen et al., 2024a) introduced large-scale synthetic VQA grounded in real imagery, while
RoboPoint (Yuan et al., 2024a), RoboSpatial (Song et al., 2025), and RoboRefer (Zhou et al., 2025)
incorporated fine-grained spatial grounding by predicting coordinates or bounding boxes from lan-
guage prompts. RoboBrain (Ji et al., 2025; Team et al., 2025a) further unified high-level planning
with low-level spatial pointing, outperforming general MLLMs on embodied benchmarks. More
recently, 3D LLMs have extended reasoning beyond 2D perception by incorporating point clouds,
voxel grids, or 3D position embeddings into MLLMs (Huang et al., 2023c; Zhu et al., 2024a; Hong
et al., 2023; Zheng et al., 2025; Huang et al., 2025).
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responding author. zhuangyuzheng@huawei.com
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Figure 1: Performance Comparison across 2D and 3D Embodied Reasoning Benchmarks.

Despite recent progress, two core challenges remain. First, the geometric adaptability gap: mod-
els trained solely on 2D inputs struggle with tasks that require strong spatial reasoning, such as
object stacking, occlusion handling, or navigation in cluttered 3D scenes. This limitation arises
from the absence of explicit 3D structural encoding, which restricts generalization in geometry-rich
environments. Existing 3D-LLM approaches (Zhu et al., 2024a; Zheng et al., 2025; Huang et al.,
2025) often depend on hard-coded 3D injection strategies that ignore task relevance, resulting in
unnecessary computation and noisy embeddings when 3D inputs are incomplete or nonessential.
Second, the embodiment constraint gap: current methods often rely on labeled web-scale image
or video datasets, or on rule-based synthetic simulations. Models trained on such data frequently
overlook the constraints and capabilities of real robots, producing plans that may appear valid in
theory but are infeasible in practice. In particular, neglecting object affordances, workspace lim-
itations, and kinematic feasibility leads to action sequences that cannot be executed on physical
platforms. Furthermore, the absence of embodied long-horizon planning benchmarks that explicitly
incorporate embodiment constraints makes it difficult to systematically evaluate the unique chal-
lenges they pose. To address these limitations, we introduce OmniEVA (Embodied Versatile Plan-
ner), a novel architecture that pioneers Task-Adaptive 3D Grounding and Embodiment-aware
Reasoning. OmniEVA is the first framework to dynamically integrate 2D and 3D inputs via task-
conditioned feature selection, enabling versatile and executable embodied reasoning through two
key innovations:

• Task-Adaptive 3D Grounding: We introduce a gated routing mechanism that dynamically
modulates the infusion of 3D features into the visual-language backbone based on contextual
task requirements. This allows for explicit, selective geometric grounding only when spatially
essential, avoiding the drawbacks of static 3D fusion and enabling robust performance across
both 2D and 3D reasoning tasks.

• Embodiment-Aware Reasoning: Moving beyond passive scene understanding, OmniEVA
jointly incorporates task goals, environmental context, and physical constraints into its reasoning
process. Through post-training with our proposed Task- and Embodiment-aware GRPO (TE-
GRPO) algorithm, the model learns to generate plans that respect object affordances, workspace
boundaries, and kinematic limits, significantly improving executability on real robots.

We evaluate OmniEVA on 8 public benchmarks spanning 2D, 3D, and video-based reasoning. As
shown in Figure 1, OmniEVA achieves SOTA performance on 7 benchmarks and tops leaderboards
in object navigation (HM3D, MP3D). To further probe embodiment awareness, we contribute four
primitive benchmarks—Where2Go, Where2Grasp, Where2Approach, and Where2Fit—each target-
ing a core skill for long-horizon planning. OmniEVA outperforms existing models across all primi-
tives, demonstrating strong generalization to downstream tasks like mobile manipulation.

2 RELATED WORK

MLLMs for Embodied Reasoning Multimodal large language models (MLLMs) have recently
improved spatial reasoning via synthetic datasets and spatially grounded visual question answering
(VQA). SpatialVLM (Chen et al., 2024a) introduced large-scale spatial QA on real-world images.
Building on this, models such as RoboPoint (Yuan et al., 2024a), Robospatial (Song et al., 2025)
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and RoboRefer (Zhou et al., 2025) introduced fine-grained spatial outputs, including coordinate
prediction and bounding box localization. RoboBrain (Ji et al., 2025; Team et al., 2025a) further
advanced this line by integrating high-level planning with low-level spatial pointing, outperforming
general-purpose MLLMs on embodied reasoning benchmarks. To assess reasoning and planning in
dynamic or large-scale environments, several video-based benchmarks have also emerged, such as
VSI-Bench (Yang et al., 2025b) and EgoPlan (Chen et al., 2023). However, despite these develop-
ments, most embodied reasoning models remain limited by their reliance on 2D inputs, lacking the
capacity to fully interpret environments with complex 3D geometric structures.

3D Large Language Models Efforts to extend LLMs to 3D modalities have explored represen-
tations such as point clouds (Huang et al., 2023c; Zhu et al., 2024b; Chen et al., 2024d) and voxel
grids (Hong et al., 2023; Zhang et al., 2025). More rencent approaches inject 3D positional in-
formation into visual tokens, enabling pretrained MLLMs to perform spatial reasoning in three di-
mensions (Zhu et al., 2024a; Zheng et al., 2025; Huang et al., 2025). While these methods have
achieved state-of-the-art results on several 3D benchmarks, the hard-coded 3D injection methods
can be problematic when 3D inputs are noisy, incomplete, or irrelevant to the task.

3 METHODOLOGY

3.1 OVERVIEW

OmniEVA builds on pretrained MLLMs which typically comprises three principal components: 1)
A vision transformer encoder Eimg that converts each RGB image into a sequence of discrete visual
tokens, 2) a lightweight network that maps visual embeddings into the language model’s latent space
for seamless cross-modal interaction and 3) an autoregressive text decoder T that generates output
tokens. The model accepts a natural language instruction T , a sequence of RGB images or video
frames (I1, I2, . . . , IN ), and optionally, depth maps (D1, D2, . . . , DN ) for each view. To support
cross-view spatial understanding, the model also ingests camera intrinsic parameters K and extrinsic
poses Mi corresponding to each frame.

Conventional MLLMs such as QwenVL and InternVL split each frame into Hp × Wp patches,
augment them with 2D positional encodings, and feed the flattened sequence into Eimg. For N

frames, the encoder outputs V I ∈ RN×Hp×Wp×dv , where dv denodes the embedding dimension.
While effective for many vision-language tasks, this approach omits direct 3D information—depth
values or world coordinates—which is critical for complex geometric reasoning. Recent 3D LLMs,
such as 3DRS(Huang et al., 2025), rely on static architecture to integrate 3D features, limiting their
flexibility in tasks where such features are unnecessary. OminiEVA introduces a Task-Adaptive
Gated Router (TAGR) to dynamically fuse 3D features and a two-stage training paradigm to enable
Embodiment-aware Planning.

3.2 TASK-ADAPTIVE GATED ROUTER

The module of Task-Adaptive Gated Router (TAGR) is illustrated in Figure 2. TAGR serves as a
dynamic mediator between task demands and spatial complexity, selectively regulating the injection
of 3D positional encodings. We will introduce the details of the framework in the following sections.

Patch-Level 3D Positional Encoding Each depth image Di ∈ RH×W is projected into a world
coordinate matrix Pi ∈ RH×W×3 using the camera parameters. The 3D coordinates Pi is then
partitioned into patches aligned with the patch size of the RGB image processed by the ViT Encoder.
For each patch, the 3D coordinates of all pixels are averaged, producing a patched coordinate matrix
P

′

i ∈ RHp×Wp×3. Finally, a sinusoidal encoding is applied to the 3D coordinates of each patch,
mapping them into vectors of dimension dv . For N frames, this process yields the 3D positional
encoding features denoted as V p ∈ RN×Hp×Wp×dv .

Dynamic 3D Injection via Gated Routing Rather than applying 3D positional encoding uni-
formly for all tasks, we propose a Task-Adaptive Gated Router (TAGR) that selectively integrates
3D information based on task-specific requirements. TAGR determines whether to inject 3D posi-
tional priors based on two conditioning signals: 1) the task condition, reflecting the nature of the
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Figure 2: Model Architecture of OmniEVA. Left: The overall architecture of OmniEVA, featuring a novel
task-adaptive gated router that dynamically incorporates 3D positional embeddings. Middle: Detailed imple-
mentation of the gated router module. Right: Illustrative examples of the gated router’s activation state across
different tasks.

task to be performed, and 2) the scene condition, reflecting the structural complexity of the visual
input. For task conditioning, a lightweight sentence transformer (Reimers & Gurevych, 2019) en-
codes the instruction T into a latent vector V T ∈ Rdst . For scene conditioning, the vision encoder
output V I ∈ RN×Hp×Wp×dv is aggregated via average pooling to obtain a global scene descriptor
V I

avg ∈ Rdv :

V T = SentenceTransformer(T ) (1)

V I
avg =AvgPooling(V I , dim = 0, 1, 2) (2)

The concatenated vector [V T , V I
avg] is passed through a multi-layer perceptron (MLP) module to

produce gate logits V g ∈ R2, which represent the probabilities corresponding to the activation and
deactivation of the gate module.

V g = MLPψ(Concatenate([V T , V I
avg])) ∈ R2 (3)

To preserve the amplitude of sinusoidal encodings V p—whose distortion can lead to significant
performance degradation—we avoid soft-weighting and instead employ hard gating via Gumbel-
Softmax (Jang et al., 2016) to enable end-to-end gradient propagation, where τ is the temperature.
When g = 1 the model augments 3D features with 3D cues; when g = 0 the model uses only 2D
visual features. This is equivalent to a Mixture-of-Experts (MoE) between pure visual tokens V I

and the fused tokens (V I +V p), as shown in Equation 5. The resulting hybrid visual tokens and the
text tokens are then passed to the LLM backbone F llm

θ (·) to generate the response tokens o.

g = GumbelSoftmax(V g, τ) ∈ {0, 1} (4)

V I
hybrid = V I + g · V p =(1− g)V I + g(V I + V p) (5)

o = F llm
θ (T , V I

hybrid) (6)

The TAGR module is optimized using cross-entropy loss to align the predicted output o with the
ground truth label olabel. To stabilize and regularize gating behavior, we add a KL divergence term
between the predicted gate distribution and a Bernoulli(0.5) prior,

Ltotal
ψ,θ = LCE

ψ,θ(o
label, o) + α · LKL

ψ (V g||Pprior) (7)

3.3 EMBODIMENT-AWARE TRAINING STRATEGY

To unify perception, reasoning, and execution across heterogeneous embodied tasks, we introduce a
clear, sequential three-stage training pipeline: (1) Task-Adaptive Gated Router (TAGR) Pretraining
(detailed in Section 3.2), (2) Supervised Fine-Tuning (SFT), and (3) Task- and Embodiment-aware
Reinforced Finetuning (RFT). This cascaded approach progressively enables the model to evolve
from foundational spatial understanding to sophisticated, executable plan generation.
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Figure 3: Training Paradigm of OmniEVA. The two-stage cascade progressively enhances embodied intelli-
gence: Stage 1 builds a broad reasoning foundation, while Stage 2 grounds it in physical reality—culminating
in robust task execution across diverse real-world scenarios.

3.3.1 STAGE 1: TASK-ADAPTIVE GATED ROUTER PRETRAINING

In this initial stage, the task-adaptive gated router is pretrained to learn dynamic 3D feature inte-
gration gating behavior, utilizing the optimization objective defined in Equation 7. The training
incorporates a combination of depth-aware spatial reasoning datasets, including scene data from
ScanNet, Matterport3D, 3RScan, and ArkitScenes (detailed in Appendix D). To facilitate effective
learning of the TAGR module, we apply a differentiated learning rate strategy: a small rate (5e−7)
for the LLM backbone to preserve pretrained knowledge, and a larger rate (1e−4) for the TAGR pa-
rameters to accelerate adaptation. Upon completion of pretraining, the TAGR parameters are frozen
for use in subsequent stages, while the fine-tuned LLM backbone parameters are discarded to avoid
interference.

3.3.2 STAGE 2: SUPERVISED FINE-TUNING FOR GENERAL EMBODIED REASONING

This stage takes the TAGR-pretrained model as its input to establish a robust foundation for gen-
eral embodied reasoning. We curate a hybrid dataset comprising: (1) General Embodied Reasoning
Data: Multimodal sources (2D images, video, 3D) for tasks like spatial relation referring and scene
captioning, building omni-dimensional spatial cognition (holistic scene understanding). (2) Custom
Embodied Task Data: Navigation and manipulation tasks that foster initial embodiment-aware rea-
soning (basic physical interaction awareness). The model resulting from the SFT stage is designated
as OmniEVA-Base. Details of the dataset usage in this stage are provided in Appendix D.

3.3.3 STAGE 3: TASK- AND EMBODIMENT-AWARE REINFORCED FINETUNING

This final stage uses OmniEVA-Base as its starting point to ground reasoning in physical reality.
While prior methods have largely focused on improving semantic fidelity, they often neglect the
physical feasibility of generated plans. TE-GRPO seeks to bridge this gap by promoting outputs
that are not only semantically aligned with task objectives but also executable within the constraints
of robotic embodiment. Building on GRPO (Shao et al., 2024), we keep the format reward rformat

to encourage the “think-answer” reasoning structure. To further guide the model toward generating
both task-directed and physically feasible plans, we introduce two additional reward components:

rtask
i (q, oi) = EvalTask(q, oi) ∈ [0, 1], rembod

i (q, oi) = EvalExec(q, oi) ∈ {0, 1} (8)
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where q is the user prompt and oi the i−th model response. EvalTask(·) measures semantic task
satisfaction independent of embodiment (e.g., fraction of points placed inside a target region for
a pointing task). In contrast, EvalExec(·) verifies embodiment feasibility by checking kinematics,
reachability, and environment constraints in simulation. These two reward components reflect dis-
tinct optimization objectives: rtask

i emphasizes performance on offline evaluation benchmarks, while
rembod
i targets end-to-end execution success in real-world robotic deployments.

Progressive Embodiment Curriculum To accelerate convergence and promote physically
grounded reasoning, we employ a curriculum learning-inspired reward scheduling strategy. This
approach gradually transitions the model’s optimization focus from semantic correctness to embod-
iment feasibility. At training step t, the composite accuracy reward racc

i,t (q, oi) is defined as,

racc
i,t (q, oi) = rtask

i (q, oi) ·
(
λt · rembod

i (q, oi) + (1− λt)
)

(9)

where λt ∈ [0, 1] is a scheduling coefficient that increases over time, gradually shifting the model’s
focus from task completion to embodiment feasibility. Early in training, λt ≈ 0, allowing the model
to receive positive reward even when embodiment constraints are only partially satisfied. As training
progresses, λt → 1, enforcing stricter compliance with physical constraints. The final reward for
the i-th response is then computed as:

ri,t(q, oi) = rformat
i (oi) + racc

i,t (q, oi) (10)

Policy updates follow the original GRPO objective. See Appendix A.3 for detail. The model result-
ing from this RFT stage is designated as OmniEVA-ER (ER for Embodiement-aware Reasoning).

4 EXPERIMENTAL RESULTS

This section presents a comprehensive evaluation of OmniEVA to validate its effectiveness and an-
swer two pivotal questions: (1) How does the proposed dynamic 3D-grounding mechanism enhance
multimodal reasoning? (2) To what extent does the embodiment-aware reasoning framework im-
prove task success rates under physical constraints?

To ensure clarity, we evaluate two distinct model checkpoints: OmniEVA-Base (after Stage 2
SFT), which is equipped with strong general reasoning capabilities, and OmniEVA-ER (after Stage
3 RFT), which is optimized for physical feasibility. OmniEVA-Base’s results are in Tables 2-4;
OmniEVA-ER’s are in Figure 5. Implementation details are provided in Appendix A.

4.1 BENCHMARKS FOR EVALUATION

Embodied Reasoning Benchmarks with 2D Inputs To assess the model’s embodied reasoning
capabilities across visual modalities, we employ four established benchmarks: Where2Place (Yuan
et al., 2024a), VSI-bench (Yang et al., 2025b), PACO-LVIS (Ramanathan et al., 2023), and Ro-
boRefit (Lu et al., 2023). 1 These datasets span both static images and dynamic video inputs,
enabling comprehensive evaluation of spatial and temporal understanding and multimodal reason-
ing. Furthermore, we introduce four specialized benchmarks targeting fundamental embodied rea-
soning skills: Where2Go for next-best view selection under partial observability, Where2Fit for
free-space prediction with collision constraints, Where2Approach for occlusion-aware navigation,
and Where2Grasp for object-centric recognition. These primitive benchmarks form the founda-
tion for complex downstream tasks like mobile manipulation. Detailed descriptions are provided in
Appendix E.

Embodied Reasoning Benchmarks with 3D Inputs To evaluate 3D spatial reasoning we use
SQA3D (Ma et al., 2022), ScanQA (Azuma et al., 2022), Scan2Cap (Chen et al., 2021), and Scan-
Refer (Chen et al., 2020). These benchmarks probe open-ended QA, captioning, and 3D visual
grounding in richly structured environments, stressing depth and geometry beyond planar views.

1Since the annotations in RoboRefit and PACO-LVIS lack VQA pairs, we built a VLM evaluation set based
on image distribution, object categories, and part categories. The evaluation code aligns with Where2Place.
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End-to-End Online Evaluation within Simulators To bridge the gap between high-level plan-
ning and low-level robotic execution, we run end-to-end experiments in simulators on composite
tasks: Large-Space Object Seeking and Mobile Manipulation. These tasks combine the primitive
skills above to measure holistic embodied reasoning and execution.

4.2 TASK-ADAPTIVE 3D-GROUNDING: VALIDATION ACROSS MULTIMODAL BENCHMARKS

Effectiveness of the Task-Adaptive Gated Router To rigorously evaluate the efficacy of our ap-
proach, we compared it against several baselines: (1) Hard-coded 3D integration, which statically
fuses 3D features into visual tokens across all tasks—a common strategy in prior 3D LLMs; (2)
Without 3D integration, effectively reducing the model to a traditional 2D MLLM; and (3) Cross-
attention-based fusion, implemented using either separate or interleaved visual and 3D tokens (see
Appendix and Figure 10 for detail), to assess implicit feature weighting. As summarized in Ta-
ble 1, the proposed dynamic 3D integration approach not only surpasses cross-attention variants but
also outperforms state-of-the-art 2D/3D fusion baselines, achieving an average performance gain of
1.2%. Notably, cross-attention methods result in a substantial performance drop—approximately
6 points on SQA3D and a striking 50-point decrease on Scan2Cap. This pronounced degradation
highlights the limitations of naive cross-attention for 3D fusion, which doubles the input sequence
length and compels the model to learn cross-modal interactions from scratch, thereby compromis-
ing both efficiency and generalization. We further analyzed a soft-gating alternative that injects
3D positions via continuous sigmoid weighting. This method consistently underperformed on all
benchmarks, as it compromises the numerical stability of the positional encodings crucial for spatial
reasoning. The inferior performance of soft-gating validates the superiority of our strategy, which
offers a more stable and adaptive solution for geometric integration.

Table 1: Results of Different 3D-Integration Methods. To ensure a fair comparison and isolate the impact of
3D integration, models were trained exclusively on the training splits of the SQA3D, ScanQA, Scan2Cap, and
ScanRefer datasets. This experimental setup is consistent with prior work like Video-3D-LLM and 3DRS.

Methods Benchmark Results

SQA3D ScanQA Scan2Cap ScanRefer Average

Indivisual 3D Input
Cross-Attention (seperate vision & 3d tokens) 55.1 27.5 43.3 4.5 32.6
Cross-Attention (interleaved vision & 3d tokens) 55.8 27.5 42.0 3.6 32.2

Direct 2D/3D Fusion Methods
Hard-coded 3D Integration 61.2 31.5 95.5 41.2 57.3
Without 3D Integration 61.2 30.7 75.5 4.3 42.9

Dynamic 3D Integration, Soft Gating 60.6 30.7 85.6 26.9 51.0
Dynamic 3D Integration, Hard Gating (Ours) 62.6 30.8 97.9 43.1 58.7

When Is the TAGR Module Activated? We analyze the activation behavior of the task-adaptive
gated router (TAGR) by clustering prompts based on semantic categories. As shown in Figure 4,
prompts are embedded using a lightweight sentence transformer and grouped by semantic similar-
ity. The activation probabilities vary considerably across categories: shape-related prompts trigger
the highest activation (76.9%), followed by action/activity (50.9%) and visibility occlusion (33.0%),
indicating that 3D reasoning is strongly invoked by geometric, dynamic, and occlusion-related cues.
In contrast, categories such as state condition (6.3%), counting (9.0%), and material texture (19.4%)
result in much lower activation, suggesting limited reliance on 3D features for descriptive or numer-
ical tasks. A detailed case study is included in Appendix B.1.

Comparison Between OmniEVA and State-of-the-Art Models on 2D/3D Benchmarks Ta-
ble 2 reports OmniEVA-Base’s results on four 2D embodied reasoning benchmarks (Where2Place,
VSI-Bench, PACO-LVIS, RoboRefit) spanning images and video. Despite its compact 8B pa-
rameter size, OmniEVA-Base attains state-of-the-art performance across all benchmarks, sur-
passing much larger models and yielding an average gain of +10.45 over the previous SOTA
(Robobrain2.0-32B (Team et al., 2025a)). Furthermore, OmniEVA-Base demonstrates robust gener-
alization across four additional primitive benchmarks (Where2Go, Where2Fit, Where2Approach,
Where2Grasp), showing its versatility and superiority in diverse embodied tasks. See Appendix F
for qualitative examples.
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Figure 4: 3D Activation Analysis by Prompt Clustering: Prompts are embedded using a lightweight sentence
transformer and clustered into semantic groups. The chart shows the 3D activation probability per category.

Table 2: 2D General Reasoning Benchmarks and In-house Benchmarks. [1] Hurst et al. (2024),[2] Team et al.
(2025b),[3] Zhang et al. (2024b),[4] Li et al. (2024),[5] Zhu et al. (2025),[6] Bai et al. (2025),[7] Yuan et al. (2024a),[8] Azzolini et al.
(2025),[9] Luo et al. (2025),[10] Yang et al. (2025a),[11] Team et al. (2025a)

Models / Benchmarks Public Embodied Benchmarks In house Embodied Benchmarks

Where2Place VSI-bench PACO-LVIS RoboRefit Where2Go Where2Fit Where2Approach Where2Grasp

General Models
GPT-4o [1] 20.41 43.60 2.09 9.96 50.72 37.15 0.17 6.38
Gemini-2.5-Pro [2] 28.60 48.83 3.14 17.91 55.07 41.82 3.50 27.00
Llava-Next-Video 7B [3] 4.76 35.62 1.44 1.18 31.88 61.34 0.10 0.89
Llava-OneVision 7B [4] 5.87 32.57 2.18 9.48 0.00 63.32 1.98 6.87
InternVL3-8B [5] 12.68 42.89 4.57 13.76 41.06 33.07 2.08 8.63
InternVL3-78B [5] 21.74 48.48 3.49 21.48 51.69 41.16 1.04 11.80
Qwen2.5-VL-7B [6] 10.99 37.51 3.21 1.21 38.16 38.59 1.50 12.75
Qwen2.5-VL-72B [6] 39.92 39.41 4.06 32.58 49.76 41.49 0.00 30.50

Embodied Models
RoboPoint [7] 46.80 - 9.21 47.83 - 56.64 2.46 35.97
Cosmos-Reason1-7B [8] 5.51 25.64 2.58 14.42 40.10 38.86 0.00 6.70
VeBrain-8B [9] 11.34 26.30 0.89 4.00 28.98 28.47 0.00 0.00
Magma-8B [10] 10.89 12.65 3.23 4.95 0.00 28.45 0.00 13.50
RoboBrain2.0-7B [11] 63.59 36.10 11.38 62.74 38.64 32.99 2.85 63.24
RoboBrain-2.0-32B [11] 73.59 42.69 16.23 69.98 41.06 59.23 4.35 67.60

OmniEVA-Base 74.95 57.17 21.01 91.19 86.96 78.14 7.37 73.91

Extending to 3D embodied reasoning, we evaluated OmniEVA-Base on SQA3D, ScanQA,
Scan2Cap, and ScanRefer, which encompass 3D question answering, captioning, and 3D visual
grounding tasks. As shown in Table 3, OmniEVA-Base leads on three out of four benchmarks,
outperforming state-of-the-art specialized 3D LLMs such as Video-3D-LLM (Zheng et al., 2025)
and 3DRS (Huang et al., 2025) with notable improvements of +2.3, +0.3, and +8.5, respectively.
While it slightly trails in 3D visual grounding (ScanRefer), OmniEVA-Base attains 55.8 accuracy
(IoU@0.25) using only text I/O, without external detectors or task-specific heads, substantially ex-
ceeding the previous best of 44.4 and showcasing strong end-to-end 3D grounding ability.

In addition to general embodied reasoning, OmniEVA-Base demonstrates strong performance in
downstream tasks such as Object Navigation, evaluated on the HM3D (Ramakrishnan et al., 2021)
and MP3D (Chang et al., 2017) datasets. Here, the model is tasked to predict a 3D subgoal location
to guide exploration toward a target object. As shown in Table 4, OmniEVA-Base outperforms the
state-of-the-art navigation model UniNavid (Zhang et al., 2024a) in both success rate (SR) and path
efficiency (SPL), achieving a notable +5.4 improvement in SPL. Qualitative examples of exploration
trajectories are provided in Appendix F.2.
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Table 3: 3D Reasoning Benchmarks. [1] Hong et al. (2023),[2] Zhu
et al. (2024b),[3] Huang et al. (2023c),[4] Chen et al. (2024d),[5] Zhang
et al. (2025),[6] Wang et al. (2025),[7] Huang et al. (2023b),[8] Huang
et al. (2023a),[9] Chen et al. (2024c),[10] Zhu et al. (2024a),[11] Yu et al.
(2025),[12] Deng et al. (2025),[13] Zheng et al. (2025),[14] Huang et al. (2025)

Models SQA3D ScanQA Scan2Cap ScanRefer

EM EM CIDEr w.a. w/o.a.

Baseline Models
3D-LLM(Flam) [1] – 20.3 – – 21.2
3D-LLM(blip2) [1] – 20.5 – – 30.3
PQ3D [2] 47.1 – 57.0 –
LEO [3] 50.0 21.5 72.4 – –
G-3D-LLM [4] – – 70.6 47.9 –
SceneLLM [5] 53.6 27.2 – – –
S-3D-LLM [6] 46.2 – 72.2 – 44.3
ChatScene [7] 54.6 21.6 77.1 55.5 –
Chat-3D v2 [8] 54.7 – 63.9 42.5 –
LL3DA [9] – – 62.9 – –
LLaVA-3D [10] 55.6 27.0 79.2 54.1 –
Inst3D-LMM [11] – 24.6 79.7 57.8 –
3D-LLaVA [12] 54.5 – 62.9 – –
V-3D LLM[13] 58.6 30.1 83.8 58.1 –
3DRS [14] 60.6 30.3 86.1 62.9 –

OmniEVA-Base 62.9 30.6 94.6 – 55.8

Table 4: ObjNav Benchmarks [1] Wijmans et al.
(2019),[2] Zhou et al. (2023),[3] Wu et al. (2024),[4] Yokoyama et al.
(2024),[5] Huang et al. (2024),[6] Yin et al. (2024),[7] Yu et al.
(2023),[8] Yin et al. (2025),[9] Ramrakhya et al. (2022),[10] Long et al.
(2024),[11] Yadav et al. (2023b),[12] Yadav et al. (2023a),[13] Shah et al.
(2023),[14] Ramrakhya et al. (2023),[15] Zhang et al. (2024a),

Methods HM3D MP3D

SR SPL SR SPL

Baseline Methods
DD-PPO [1] 27.9 14.2 – –
ESC [2] 39.2 22.3 28.7 14.2
VoroNav [3] 42.0 26.0 – –
VLFM [4] 52.5 30.4 36.4 17.5
GAMap [5] 53.1 26.0 – –
SG-Nav [6] 54.0 24.9 40.2 16.0
L3MVN [7] 54.2 25.5 – –
UniGoal [8] 54.5 25.1 41.0 16.4
Habitat-Web [9] 57.6 23.8 31.6 8.5
InstructNav [10] 58.0 20.9 – –
OVRL [11] 62.0 26.8 28.6 7.4
OVRL-v2 [12] 62.8 28.1 – –
LFG [13] 68.9 36.0 – –
PIRLNav [14] 70.4 34.1 – –
UniNavid [15] 73.7 37.1 – –

OmniEVA-Base 74.2 42.5 59.1 26.2

4.3 EMBODIMENT-AWARE REASONING: PERFORMANCE UNDER PHYSICAL CONSTRAINTS

Effectiveness Across Diverse Embodied Tasks We evaluate the impact of task- and embodiment-
aware reasoning by comparing models trained with and without rtask and rembod. Experiments span
primitive skill benchmarks (Where2Approach, Where2Fit, Where2Grasp) and downstream tasks
requiring physical execution (Mobile Placement and Mobile Pickup).

Where2Fit Where2Approach Where2Grasp Mobile Placement
(Easy)

Mobile Placement
(Hard)

Mobile Pickup
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Model Performance on Different Benchmarks
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Figure 5: Ablation Results of the proposed TE-GRPO Method on Local Mobile-Manipulation Tasks

As shown in Figure 5, OmniEVA-ER—jointly optimized with rtask and rembod —demonstrates sub-
stantial performance gains over OmniEVA-Base and naive RL training across all evaluated tasks.
Where2Approach and Where2Fit exhibit accuracy surges of 28.95% and 34.28%, respectively, while
Mobile Placement achieves notable success rate improvements of 43% (Easy) and 50% (Hard). Al-
though each reward component provides individual benefits, their synergistic combination yields
optimal results. These consistent advancements across primitive and composite tasks confirm that
embodiment-aware reasoning significantly strengthens performance robustness in diverse embodied
scenarios.

Generalization Across Diverse Embodiments To assess the adaptability of embodiment-aware
reasoning, we conduct experiments varying a key robot parameter—arm length—as a representa-
tive embodiment factor. While other dynamic parameters warrant further exploration, arm length
directly impacts workspace constraints and thus serves as a suitable initial testbed for evaluating
physical generalization. We generate different embodiments by scaling the same base robot arm
model, producing lengths from 72cm to 110cm. Models are trained on arm lengths of 75cm, 88cm,
and 110cm, and tested on both seen and unseen configurations (72cm, 80cm, 84cm, 92cm, 96cm,
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Table 5: Results of Different Embodiment Execution Success Rate.

Models / Embodiments Average (SR) Seen Arm Length (cm) Unseen Arm Length (cm)

75 88 110 Seen Avg 72 80 84 92 96 100 105 Unseen Avg

RoboBrain2.0-7B 18.37 7.69 12.82 38.88 19.29 0 7.69 12.82 17.94 20.51 33.33 38.88 17.97
OmniEVA-Base 43.30 51.28 41.02 44.44 45.61 35.89 48.71 43.58 41.02 51.28 36.11 38.88 42.32
OmniEVA-ER w/o rembod 65.35 69.23 71.79 69.44 70.17 41.02 64.10 66.66 61.53 69.23 72.22 69.44 63.29

OmniEVA-ER 81.89 87.17 82.05 86.11 85.08 56.41 87.17 84.61 79.48 82.05 88.88 86.11 80.52

105cm). The model is prompted with embodiment specifications (e.g., “The robot arm length is
72cm”) to enable dynamic adaptation.

OmniEVA-ER consistently outperforms OmniEVA-Base and the ablated variant (without rembod),
achieving an average improvement of 15% on seen arm lengths. Moreover, it generalizes robustly
to unseen lengths, attaining an 80.5% success rate—a 17% gain over the baseline. These results
confirm that embodiment-aware reasoning facilitates not only task-level adaptation but also effec-
tive generalization across previously unseen physical configurations, highlighting its utility for real-
world deployment in diverse robotic systems.

Real World Deployment To emphasize the generalizability of our approach, we conduct real-
world experiments on two off-the-shelf wheeled mobile robots with inherently different dual 6-DoF
arm designs: one platform has a 75 cm arm span, while the other (Galaxea R1) has a more con-
strained 70 cm arm span. As shown in Table 6, OmniEVA-ER demonstrates consistent performance
improvements across both embodiments, particularly excelling in manipulation tasks. It achieves
near-perfect performance (9/10) in Cluttered Place tasks and maintains robust navigation capabil-
ities. The results confirm that embodiment-aware reasoning enhances real-world robustness, with
OmniEVA-ER showing better adaptation to the more constrained 70cm arm span configuration.

Table 6: Real World Performance on Different Tasks and Embodiments. Both embodiments are wheeled
mobile robots with dual 6-DoF arms. Embodiment 1 has 75cm arm span, Embodiment 2 has 70cm arm span.

Models / Tasks Cluttered Pick Cluttered Place Constrained Navigation

Embodiment 1 Embodiment 2 Embodiment 1 Embodiment 2 Embodiment 1 Embodiment 2

OmniEVA-Base 6 / 10 5 / 10 6 / 10 5 / 10 9 / 10 8 / 10
OmniEVA-ER 8 / 10 7 / 10 9 / 10 9 / 10 8 / 10 8 / 10

5 LIMITATION AND FUTURE WORK

While OmniEVA demonstrates strong performance across various benchmarks, we acknowledge
two key limitations. First, the scene-level gating mechanism in TAGR may lead to suboptimal 3D
feature integration in heterogeneous environments, as evidenced by unexpected low activation for
tasks involving spatial relationships in our activation analysis. Second, embodiment-aware planning
may face challenges with unmodeled physical constraints, such as arm degrees of freedom or instal-
lation height, which could impact robustness in dynamic scenarios. For future work, we will explore
patch-level gating strategies to enable finer-grained 3D adaptation and integrate broader physical
parameters to enhance overall adaptability.

6 CONCLUSION

This work presents OmniEVA, a versatile embodied planner that delivers robust cross-dimensional
reasoning across a wide range of tasks. By introducing a dynamic routing mechanism for 3D ground-
ing, OmniEVA adapts effectively to varying spatial demands and improves reasoning performance.
Its embodiment-aware fine-tuning strategy closes the gap between high-level reasoning and low-
level robotic execution, enabling plans that are both logically sound and physically executable.
Taken together, OmniEVA takes a strong step toward building general-purpose embodied agents
that can reason, plan, and act in complex environments.
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REPRODUCIBILITY STATEMENT

We provide implementation details in Appendix A, including model architecture and training con-
figurations. Source code and benchmark datasets will be released upon acceptance.
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APPENDIX

A IMPLEMENTATION DETAILS

A.1 MODEL ARCHITECTURE AND TRAINING CONFIGURATIONS

Our experiments are built upon the pretrained InternVL3-8B model (Zhu et al., 2025), which serves
as the foundational backbone for our multimodal large language models (MLLMs). To encode user
instructions within the task-adaptive gated routing (TAGR) module, we utilize the all-MiniLM-L6-
v2 (Reimers & Face, 2021), chosen for its efficiency and semantic fidelity. Instruction embeddings
are further processed through a lightweight two-layer multilayer perceptron (MLP) with a hidden
dimension of 256, enabling compact yet expressive representation learning.

For video-based inputs, we uniformly sample 16 frames during training and 32 frames during in-
ference, striking a balance between temporal granularity and computational efficiency. To handle
3D spatial information, we voxelize both point clouds for positioning and 3D bounding boxes using
a fixed voxel size of 0.1 meters. This discretization facilitates consistent spatial reasoning across
diverse environments and tasks. Detailed hyper-parameters as given in Table 7

TAGR Pretraining During TAGR pretraining, we freeze the sentence transformer and train the
MLP encoder with a learning rate of 1e− 4. The ViT encoder is frozen, while the LLM backbone is
updated with a reduced learning rate of 5e − 7 to prioritize learning within the TAGR module. We
apply cosine decay for learning rate scheduling and use exponential decay to control the Gumbel-
softmax temperature τ , defined as τinit · exp(−4.5·steps

max_steps ).

Supervised Finetuning For For supervised finetuning, the ViT encoder remains frozen. We fine-
tune the LLM parameters using a learning rate of 1e− 5 with cosine decay.

Reinforced Finetuning In the reinforcement stage, we continue finetuning the LLM with a learn-
ing rate of 1e− 5. Each training group generates 8 candidate outputs.

Complete hyperparameter settings for all training stages are provided in Table 7.

Table 7: OmniEVA Training Hyper-parameter Configuration

Hyper-parameters TAGR Pretraining Supervised Finetuning Reinforced Finetuning

epochs 1 1 1
batch size 256 256 128

learning rate (LLM) 5e-7 1e-5 1e-5
learning rate (TAGR) 1e-4 - -
learning rate (ViTs) - - -

lr schedular cosine cosine -
τinit (gumbel softmax) 1.0 1e-6 1e-6
τmin (gumbel softmax) 0.05 1e-6 1e-6

τ schedular τinit · exp(−4.5·steps
max_steps ) - -

weight decay 0.1 0.1 0.1
gradient clipping 1.0 1.0 1.0

use bf16 true true true
use fp16 false false false

warmup ratio 1e-3 1e-3 0.0
optimizer AdamW AdamW AdamW

image resolution 448×448 448×448 448×448
video frames (training) 16 16 16

video frames (inference) 32 32 32
3D voxel size 0.1m 0.1m 0.1m

A.2 INPUT MODALITIES AND OUTPUT REPRESENTATIONS

OmniEVA is designed to accommodate a wide range of input modalities and output formats, en-
abling versatile interaction across visual and textual domains. Below, we detail the supported con-
figurations.
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A.2.1 VISUAL INPUT MODALITIES

Single Image Ideal for static or minimally dynamic environments, single-frame inputs support
2D spatial reasoning tasks such as object recognition, scene description, and basic grounding. This
modality is particularly effective when temporal context is unnecessary and spatial relationships are
confined to a single viewpoint.

Multi-View Images or Video By aggregating information across multiple viewpoints or temporal
frames, this modality facilitates both spatial and temporal reasoning. It is well-suited for dynamic
or large-scale environments where understanding motion, continuity, or cross-frame object relation-
ships is essential—such as in navigation, tracking, or multi-step manipulation tasks.

RGB-D Video This modality integrates RGB visual data with depth information to reconstruct
full 3D scene geometry. It is indispensable for tasks requiring occlusion-aware reasoning, volumet-
ric understanding, or precise spatial manipulation. To enable accurate position embedding in world
coordinates, users must provide the intrinsic camera matrix and corresponding extrinsic poses for
each frame. These parameters allow the model to transform depth maps into structured 3D repre-
sentations, forming the foundation for geometry-aware decision-making.

A.2.2 TEXTUAL AND COORDINATE-BASED OUTPUTS

OmniEVA accommodates a range of textual and spatial formats for both input queries and output
responses, enabling flexible interaction across semantic and geometric dimensions.

Natural Language Queries and Responses Natural language serves as the primary interface for
user interaction, supporting expressive queries and interpretable model responses. This format aligns
with standard benchmarks in VQA and facilitates rich semantic engagement, allowing users to spec-
ify tasks in intuitive, human-readable form.

2D Spatial Annotations For tasks such as 2D visual grounding and image captioning, inputs
and outputs can be expressed using normalized pixel coordinates within the range [0, 1000]. This
format enables precise object localization and descriptive annotation within a single image frame.
Examples:

• Question: Describe the object located at <point>(24, 312)</point>.
Answer: It is a brown book next to a pencil.

• Question: Locate the apple on the left side of the book.
Answer: <point>(122, 213)</point>.

3D Spatial Annotations For tasks involving 3D spatial reasoning—such as object captioning,
grounding, and navigation—users may specify coordinates manually or allow the model to infer
them from RGB-D inputs. Coordinates are discretized using a 0.1-meter grid to ensure consistency
and precision across scenes.

• Question: What is the object located at <3dbox>(61,217,26,5,7,3)</3dbox>?
Answer: It is a brown wooden chair located at the center of the room.

• Question: Locate the second chair next to the table.
Answer: <3dbox>(74,213,123,10,8,8)</3dbox>.

This format empowers OmniEVA to reason about partially occluded objects and those outside the
current frame, enabling robust interpretation and interaction within complex 3D environments.huozh

A.3 IMPLEMENTATION DETAIL OF EMBODIMENT-AWARE REASONING

Given a reward for the i-th response:

ri,t(q, oi) = rformat
i (oi) + racc

i,t (q, oi) (11)
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For a group of responses with group size G, the normalized advantages of the i-th response at
training step t is calculated as:

Ai,t =
ri,t −mean({r0,t, r1,t, · · · , rG,t})

std({r0,t, r1,t, · · · , rG,t})
(12)

The final policy update objective is,

Jt(θ) = E
[
1

G

G∑
i=1

(
min

(
πθ(oi|q)
πθold(oi|q)

Ai,t, clip
(

πθ(oi|q)
πθold(oi|q)

, 1− ϵ, 1+ ϵ

)
Ai,t

)
−βDKL(πθ|πθold)

]
(13)

where β is a regularization coefficient that restricts the deviation degree between the current policy
πθ and the reference policy πθold during optimization; ϵ is a positive coefficient that limits the mag-
nitude of policy updates, preventing training instability caused by excessive updates. Through this
embodiment-aware training pipeline, OmniEVA evolves from perceptual understanding to physi-
cally grounded execution, enabling generalizable planning and reliable performance across diverse
real-world scenarios.

A.4 MULTI-DIMENSIONAL DATA MIXED TRAINING

To enable mixed training of text-only, image-text, and RGB-D data within mini-batches, we pre-
process the data to ensure uniform tensor dimensions (as described in Listing 1. For image-only
samples, we add a 3D data placeholder. A binary depth flag associated with each sample indicates
the presence of valid 3D data; during training, this flag acts as a zero mask to ignore the 3D compo-
nent for samples that lack it. See Listing 2 for detail.

def preprocess_sample(sample: dict) -> dict:
# 1) Load and transform frames -> pixel_values: (T, C, H, W)
frames = load_frames(sample)
pixel_values = stack([transform(img) for img in frames])
pixel_values = pixel_values.to(bfloat16)
T, C, H, W = pixel_values.shape

# 2) Process depth data based on sample type
if sample.get("video-rgbd"): # RGB-D video

# Obtain 3D world coordinates from preprocessor
world_coords = preprocessor.get_world_coords(sample)
depth_flags = tensor([True] * T, dtype=bool)

else: # Pure RGB (image or video without depth)
# Fill with zeros and mark as no-depth
world_coords = zeros((T, H, W, 3), dtype=bfloat16)
depth_flags = tensor([False] * T, dtype=bool)

# 3) Return dictionary for model input
return {

"pixel_values": pixel_values,
"world_coords": world_coords,
"depth_flags": depth_flags,
...

}

Listing 1: RGB-D and RGB Data Processing

class OmniEVAModel(nn.Module):
def __init__(self):

super().__init__()
self.vision_encoder = ...
self.llm = ...
self.mlp_proj = ...
# the following modules are introduced by OmniEVA
self.position_3d_encoder = ...
self.lang_encoder = SentenceTransformer(...)
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self.gate_module = ...

def forward(self, pixel_values, input_ids, world_coords,
depth_flags, lang_instr, **kwargs):

# 1) Extract vision features and project to LLM space
vit_feats = self.vision_encoder(pixel_values) # (B*T, N, D_vit)
vit_embeds = self.mlp_proj(vit_feats) # (B*T, N, D_llm)

# 2) Compute 3D positional encoding from world coordinates
if world_coords is not None:

pe3d = self.position_3d_encoder(world_coords)
else:

pe3d = 0

# 3) Hard gating: pool vision features for gate control
h = w = int(vit_embeds.shape[1] ** 0.5)
# Reshape: (BT, N, D) -> (B, T, h, w, D)
vit_pooled = vit_embeds.detach().view(B, T, h, w, -1)
# Flatten spatial-temporal: (B, T, h, w, D) -> (B, T*h*w, D)
vit_pooled = vit_pooled.flatten(start_dim=1, end_dim=3)
# Average pool: (B, T*h*w, D) -> (B, D)
vit_pooled = vit_pooled.mean(dim=1, keepdim=False)

# Compute gate mask from language and pooled vision features
lang_embeds = self.lang_encoder.encode(lang_instr) # (B, D_lang)
gate_logits = self.gate_module(lang_embeds, vit_pooled) # (B, 2)
gate_mask = gumbel_softmax(gate_logits, tau=tau, hard=True)[:, 1]
gate_mask = gate_mask.view(B, 1, 1).expand(B, T, 1).view(BT, 1,

↪→ 1)

# 4) Apply depth flag mask
depth_mask = depth_flags.view(BT, 1, 1)
vit_embeds = vit_embeds + pe3d * gate_mask * depth_mask

# 5) Merge vision tokens into language embeddings
input_embeds = self.llm.get_input_embeddings()(input_ids)
img_token_mask = (input_ids == self.img_context_token_id)
input_embeds[img_token_mask] = vit_embeds.flatten(0, 1)

# 6) Forward through LLM
outputs = self.llm(inputs_embeds=input_embeds, **kwargs)

# 7) Compute auxiliary gating loss (KL divergence with soft
↪→ labels)

if self.training:
soft_labels = get_soft_labels()
aux_loss = kl_div(log_softmax(gate_logits), soft_labels)
return outputs, aux_loss

# 8) Replace placeholders in input_tokens with visual tokens.
...

Listing 2: Forward Pass of OmniEVA

A.5 IMPLEMENTATION DETAIL OF EMBODIMENT-AWARE REINFORCED FINETUNING

B CASE STUDY

B.1 CASE STUDY OF THE ACTIVATION STATE OF THE TAGR MODULE

We illustrate this behavior through qualitative case studies (Figure 6). In the first two examples,
querying the shape of a table and a desk activates the 3D gate with differing probabilities: 0.73 for
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Algorithm 1 Embodied Task Learning with Embodiment Constraints

1: Input: Task parameters θ, Embodiment constraints E
2: Output: Optimized policy parameters θ∗
3: Initialize policy network πθ
4: Initialize task reward model Rtask
5: Initialize embodiment constraint handler Rembod
6: for episode = 1 to N do
7: Reset environment and get initial observation o0
8: Initialize episode trajectory τ ← ∅
9: for t = 0 to T do

10: Sample action at ∼ πθ(·|ot)
11: Execute action and get next observation ot+1

12: Task Reward Computation:
13: Given instruction q and observation ot
14: rtask ← CVModel(q, ot) + RuleBasedMethod(q, ot)
15: Get corresponding mask Mt for RGB image ot
16: rtask ← I[MaskIndicatesSuccess(Mt)] {1 if success, 0 otherwise}
17: Embodiment Constraint Reward:
18: Inflate objects in ritask: Minflated ← InflateObjects(Mt)
19: Compute intersection riinter: Mintersect ←Mt ∩Minflated
20: Random sample points from Mintersect: P ← RandomSample(Mintersect)
21: Initialize riembod ← riinter {Start with original task reward}
22: for each point pj ∈ P do
23: Execute MoP at pj
24: if execution failed then
25: riembod ← 0 {Set to 0 if any point fails}
26: break
27: end if
28: end for
29: Accuracy Reward:
30: racc ← rtask · (λt · rembod + (1− λt))
31: Store transition (ot, at, racc, ot+1) in τ
32: end for
33: Policy Optimization:
34: Update θ using GRPO with trajectory τ
35: end for
36: return Optimized parameters θ∗
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the rectangular table, indicating ambiguity between “square” and “rectangular” and thus a reliance
on 3D cues; and 0.52 for the round table, suggesting sufficient 2D visual information. In contrast,
object counting and color identification in the two right-hand examples leave the 3D gate inactive,
demonstrating the TAGR module’s ability to omit 3D features when spatial reasoning is unnecessary.

I am sitting on … What shape
is the table I am sitting at?...

I am …, shape of desk behind me
round, square or rectangular? ...

Images

Prompt

Answer rectangular. round.

Gate Activated Activated

Prob. 0.73 0.52

… How many monitors are
on the desk in front of me? ...

three.

Dectivated

0.39 0.38

… armchairs on … Is all the
seating the same color? ...

yes.

Dectivated

Figure 6: Case Study of Gate Activation State. Selected examples from the validation dataset illustrate the
most prominently activated and deactivated words within the input prompts, highlighting the model’s sensitivity
to specific language cues.

B.2 CASE STUDY OF EMBODIMENT-AWARE REASONING

We compare outputs from models trained with and without it for the same task, as shown in Figure 7.
Results show that both models effectively identify unoccupied areas on the tabletop, indicating sat-
isfactory task-level performance. However, the placement locations proposed by the model without
TE-GRPO training frequently fall outside the operational range of the robotic arm or exhibit sub-
optimal execution efficiency. In contrast, OmniEVA trained with TE-GRPO consistently identifies
vacant areas that are both feasible and executable, demonstrating enhanced alignment with physical
and task constraints.

w/o. TE-GRPO. w. TE-GRPO. w/o. TE-GRPO. w. TE-GRPO.

Figure 7: Comparison of responses w/o and w embodiment-aware reasoning.

B.3 ROBUSTNESS IN DYNAMIC ENVIRONMENTS

While compatible with existing temporal embedding techniques like MRoPE used in Qwen2.5VL,
OmniEVA’s architecture exhibits strong emergent robustness in dynamic environments, despite not
being specifically designed for them. This capability is evaluated through scenarios involving mov-
ing pedestrians, as shown in Figure 8. In the first experiment, the model is tasked with locating a
table opposite to the fridge that is initially occluded by a pedestrian. After a change in the agent’s
viewpoint causes the pedestrian to move away, OmniEVA successfully identifies the newly revealed
table. In a more challenging second experiment, the model accurately detects a microwave despite a
pedestrian continuously moving within the field of view. These results demonstrate that OmniEVA’s
design inherently handles the visual uncertainty posed by both transient and persistent dynamic
obstructions.
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Figure 8: OmniEVA’s Performance with Dynamic Obstructions. (Top) Sequence showing successful detec-
tion of a table after an occluding pedestrian moves away. (Bottom) Accurate detection of a microwave despite
continuous pedestrian motion.

B.4 HOW DOES OMNIEVA ADAPT TO PHYSICAL AND EMBODIMENT CONSTRAINTS?

To further understand the model’s embodiment awareness, we analyze the output of OmniEVA-ER
trained with TE-GRPO. As illustrated in Figure 9, OmniEVA-ER initiates reasoning with task-level
analysis, including scenario interpretation, commonsense spatial analysis, and textual localization of
vacant areas. It then incorporates physical constraints—such as reachability and workspace bound-
aries—to refine its predictions. Through such embodiment-aware slow thinking processes and re-
ward reinforcement, the final output is a placement region that satisfies all constraints. A compar-
ative study (Appendix B.2) highlights the impact of embodiment-aware reasoning. For real-world
validation, OmniEVA is deployed on a wheeled dual-arm robot, demonstrating reliable performance
converting user instructions into executable plans across diverse physical settings (Appendix G).

Prompt: Locate some free space for me, please.
Response: <think>1. Describing the Image: a table with various objects, including a cup
... 2. Common-Sense Considerations: Free space refers to areas on the table that are not
occupied ... 3. Relevant Factors: Object Dimensions: ... Table Dimensions: ... 4. Embod-
iment Awareness: For optimal performance, we should place the robot near the bottom of
the table to ensure it can access its entire intended work area. 5. Answering the Question:
free space on the right side of the table near the edge... </think><answer>Locations are
<point>(450, 346), (455, 348), (467, 352) </point>.</answer>

Figure 9: Case study illustrating OmniEVA’s reasoning process under embodiment-aware constraints.

C ABLATION STUDY IMPLEMENTATION DETAILS

C.1 IMPLEMENTATION OF CROSS-ATTENTION BASED 3D FUSION

To rigorously evaluate the necessity of our proposed gated router, we implemented two variants of
cross-attention-based 3D fusion as strong baselines. The objective was to assess whether standard
attention mechanisms could achieve adaptive feature fusion without an explicit gating module. The
architectural details are illustrated in Figure 10.

• Separate Tokens Arrangement: In this variant, the sequences of visual tokens (V I ) and
3D positional encoding tokens (V P ) are kept entirely separate. They are concatenated
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along the sequence dimension, effectively doubling the input length presented to the trans-
former backbone. A standard cross-attention layer is then employed to enable interaction
between these two modalities.

• Interleaved Tokens Arrangement: In this variant, tokens are grouped and sequenced
by the source image. Specifically, for a batch of N input images, the token sequence
is structured as: [V P

1 , V I
1 , V P

2 , V I
2 , ..., V P

N , V I
N ]. That is, for each image, all its 3D

tokens are placed first, followed by all its visual tokens, and this pattern repeats for the next
image. This arrangement maintains the total sequence length but structures it to preserve
intra-image modality groupings, relying on the self-attention mechanism to learn the cross-
modal dependencies.

As discussed in Section 4.2, both cross-attention variants led to significant performance drops com-
pared to our gated fusion. We attribute this to the inefficient learning burden placed on the attention
mechanism—it must either handle a doubled sequence length (Separate) or learn to associate inter-
leaved modality-specific groups (Interleaved) from scratch. In contrast, our TAGR module performs
explicit, lightweight routing before the backbone, leading to more stable and efficient integration.

Figure 10: Architectural diagrams of the cross-attention-based 3D fusion baselines. (a) Separate Tokens:
Visual and 3D tokens are processed as separate sequences. (b) Interleaved Tokens: Tokens are sequenced by
grouping all 3D tokens and all visual tokens for each image consecutively. Both approaches introduce learning
inefficiencies absent in our gated fusion.

C.2 GATE ACTIVATION ANALYSIS BY SEMANTIC CLUSTERING

We introduce a more robust analysis based on semantic clustering of the entire prompt. This method
leverages a language model encoder (e.g., a lightweight Sentence Transformer) to capture the overall
meaning of a prompt before categorizing it. The detailed procedure is outlined in Algorithm 2. The
example prompts used for clustering are listed in Table 8.

D TRAINING DATASET

D.1 DATASET OVERVIEW

Figure 11 presents a comprehensive breakdown of the training dataset utilized by OmniEVA. De-
signed to support omni-multimodal and cross-dimensional reasoning, the dataset integrates three
major categories: general data, image-based reasoning data, and 3D reasoning data. This diverse
composition enables OmniEVA to develop robust capabilities across a wide spectrum of tasks, from
basic object recognition to complex spatial and semantic understanding.

In total, the dataset comprises approximately 5.2 million samples. Detailed descriptions and distri-
butions of each data category are provided in the subsequent sections.

D.2 EMBODIED REASONING DATA

General Visual Question Answering To maintain the foundational visual reasoning capabilities
and generalization strength of the vision-language model (VLM), we integrated a diverse set of gen-
eral visual question answering (VQA) datasets. Notably, LLaVA-665K (Liu et al., 2023) contributes
a broad spectrum of tasks, including VQA, optical character recognition (OCR), region localization,
and instruction-following. To further enrich the dataset, we incorporated academic datasets such as
GQA (Hudson & Manning, 2019), OKVQA (Marino et al., 2019), and A-OKVQA (Schwenk et al.,
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Algorithm 2 Semantic-based Gate Activation Analysis

Require: Prompts P = {p1, p2, ..., pn}, Gate logits G = {g1, g2, ..., gn}
Require: Semantic templates T = {T1, T2, ..., Tk} for k categories
Require: Similarity thresholds τhigh = 0.4, τlow = 0.25

1: // Step 1: Encode templates
2: for each category c ∈ {1, ..., k} do
3: Ec ← SentenceTransformer(Tc) {Encode templates}
4: end for
5: // Step 2: Batch encode all prompts
6: EP ← SentenceTransformer(P ) {Shape: n× d}
7: // Step 3: Vectorized similarity computation
8: for each category c ∈ {1, ..., k} do
9: Sc ← CosineSimilarity(EP , Ec) {Shape: n× |Tc|}

10: Mc ← max(Sc, axis = 1) {Max similarity per prompt}
11: end for
12: M ← [M1,M2, ...,Mk] {Similarity matrix: n× k}
13: // Step 4: Assign categories
14: for each prompt i ∈ {1, ..., n} do
15: Ci ← {c |M [i, c] > τhigh} {High confidence match}
16: if Ci = ∅ then
17: c∗ ← argmaxcM [i, c]
18: Ci ← {c∗} if M [i, c∗] > τlow else {other}
19: end if
20: end for
21: // Step 5: Compute activation statistics
22: for each prompt i with categories Ci do
23: is_activatedi ← (gi[1] > gi[0]) {Binary gate decision}
24: for each category c ∈ Ci do
25: if is_activatedi then
26: Countactive[c]← Countactive[c] + 1
27: else
28: Countinactive[c]← Countinactive[c] + 1
29: end if
30: end for
31: end for
32: // Step 6: Compute activation rates
33: for each category c do
34: Ratec ← Countactive[c]

Countactive[c]+Countinactive[c]

35: end for
36: return {Ratec}kc=1

2022), which emphasize compositional reasoning and external knowledge grounding. OCR-focused
datasets like OCR-VQA (Mishra et al., 2019), TextVQA (Singh et al., 2019), and ScienceQA (Saikh
et al., 2022) enhance the model’s ability to interpret embedded textual content. Additionally, region-
level vision-language understanding is supported through RefCOCO (Yu et al., 2016) and Visual
Genome (Krishna et al., 2017), which provide fine-grained spatial and semantic annotations. To bol-
ster language fluency and multimodal dialogue coherence, we also included approximately 40,000
pure text instruction samples from ShareGPT (Chen et al., 2024b).

2D Visual Grounding To endow OmniEVA with robust object detection and geometric localiza-
tion capabilities, we incorporated the LVIS (Gupta et al., 2019) dataset—a comprehensive bench-
mark for large-vocabulary instance segmentation. LVIS offers approximately 164,000 images anno-
tated with nearly 2 million high-quality segmentation masks, spanning over 1,000 entry-level object
categories such as “chair” and “plate.” Its rich diversity and precise annotations make it an ideal
foundation for training models in spatially grounded object recognition. We utilize 140K samples
from LVIS to train the 2D visual grounding module.
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Table 8: Semantic Category Templates for Gate Activation Analysis

Category Template Examples Category Template Examples

Shape What shape is it?
Square, rectangular, round
Cylindrical, spherical
Triangular, oval

Spatial Location Where is the object?
Position and location
Left, right, above, below

State Condition Is it open or closed?
The current state
Empty, full, broken

Appearance What does it look like?
Describe appearance
Visual characteristics

Counting How many objects?
Count the number
Several items present

Identification What is this object?
Identify the item
What type of thing

Spatial Relation What is next to it?
Between which objects
Closest to what

Direction Which direction facing?
The orientation
Pointing towards

Material Texture What is it made of?
Wood, metal, plastic
Smooth, rough surface

Visibility Can you see it clearly?
Visible or hidden?
Partially blocked

Color What color is it?
The color of object
Red, blue, green

Existence Is there any object?
Does it exist?
Something present or not

Semantic Cat. What category?
Type of furniture
Classification of objects

Distance Depth How far is it?
Distance from camera
Near or far away

Action Activity What is it doing?
The action or activity
Walk, run, throw, placing

Other Uncategorized or low-similarity
prompts (sim. < 0.25)

General Data

12.7%

Image Rsn.
Data

30.3%

Video Rsn.
Data

5.7%

3D Rsn.
Data

51.3%

665K

511K

530K

408K

281K

1.4M

1.1M

5.2M

Dataset Components
General: 665K
Object Reference: 511K
Free Space Localization: 530K
Object Part Recognition: 408K
2D Visual Grounding: 140K
Spatial Understanding: 281K
Active Exploration: 18K
3D Visual Question Answering: 1.4M
3D Visual Grounding: 1.1M
3D Subgoal Prediction: 113K
3D Scene Imagination: 45K
3D Captioning: 37K

Figure 11: Overview of the Training Data used by OmniEVA

Object Reference Object reference data plays a crucial role in enabling OmniEVA to associate
linguistic instructions with specific visual regions. We curated three complementary datasets to sup-
port this capability. (1) Osprey-724K (Yuan et al., 2024b) is a large-scale instruction tuning dataset
specifically constructed to achieve pixel-level vision-language alignment. Designed to overcome the
limitations of traditional multimodal models—which primarily operate at the image-level or bound-
ing box-level—it incorporates regional masks linked with precise language descriptions to enhance
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model performance in fine-grained visual understanding tasks. (2) Robopoint Object Reference-
347K (Yuan et al., 2024a) involves locating keypoints within a given reference object in an image.
For example: “In the image, an object is marked with a red box. Please indicate several points
located in the area below this object.” The model’s response would be in the form of normalized
coordinates such as [(0.56, 0.69), ...]. Such data helps the model learn to accurately identify target
positions that have spatial relationships with reference objects, making it suitable for applications
like robotic grasping or object association scenarios. (3) RoboRefIt (Lu et al., 2023) specifically de-
signed for visual grounding tasks in robot interaction. It aims to enhance robots’ ability to recognize
and locate target objects based on language instructions in real-world scenarios. The dataset com-
prises 10,872 real RGB-D images collected from cluttered indoor environments in daily life. Each
image is annotated with referring expressions (instruction sentences), totaling 50,758 entries, which
describe object features or locations in a robot-oriented language style. Approximately half of the
images contain similar or distracting objects, increasing recognition difficulty to simulate challenges
in real-world grasping scenarios. Together, these datasets provide 511K training samples for object
reference grounding.

Object Part Recognition Part recognition data is primarily used to visually highlight specific
functional parts of objects in images, as referred to by corresponding linguistic instructions. These
datasets include: (1) AGD20K (Luo et al., 2022) is constructed by collecting and labeling over
20K images from 36 affordance categories, such as sit on, type on, and drink etc. Affordance
grounding aims to locate objects’ “action possibilities” regions, an essential step toward embodied
intelligence. (2) HANDAL (Guo et al., 2023) is used for category-level object pose estimation
and affordance prediction. Unlike previous datasets, it is focused on robotics-ready manipulable
objects that are of the proper size and shape for functional grasping by robot manipulators, such as
pliers, utensils, and screwdrivers. The dataset consists of 308k annotated image frames from 2.2k
videos of 212 real-world objects in 17 categories. It focus on hardware and kitchen tool objects
to facilitate research in practical scenarios in which a robot manipulator needs to interact with the
environment beyond simple pushing or indiscriminate grasping. (3) PACO (Ramanathan et al.,
2023) is a large-scale dataset constructed for fine-grained image understanding tasks, designed to
support object- and part-level instance segmentation as well as attribute recognition. It contains
57,643 images with 1,644,461 annotated object instances spanning 270 distinct categories (e.g.,
"body", "rim", "handle"). The dataset can be used for object detection, semantic segmentation, and
instance segmentation tasks, and supports conversion from instance masks to semantic masks or
bounding boxes for diverse downstream applications. In total, we utilize 408K samples from these
datasets.

Free Space Location Free space location data is primarily used to visually mark vacant place-
ment areas in images, as indicated by corresponding linguistic instructions. These datasets include:
(1) Robopoint Free Space Reference-320K (Yuan et al., 2024a) In this dataset, the language in-
structions require the model to identify keypoints in free space near a reference object—despite
the absence of clear visual cues. For example: “Indicate several points in the empty space to the
left of the pizza box.” This type of data enables the model to understand “where is a suitable re-
gion to perform an action, even if no object is visually present,” making it highly applicable to
robotic navigation or assisted placement tasks. (2) RefSpatial 3D Vacant (Zhou et al., 2025) Ref-
Spatial is a large-scale dataset created to support Visual Language Models (VLMs) in performing
3D multi-step reasoning for spatial referencing tasks. It aims to enhance models’ ability to under-
stand complex spatial instructions in real-world environments. The dataset contains approximately
20 million (20M) question-answer (QA) pairs, covering 31 spatial relation categories, and supports
multi-step reasoning of up to 5 steps. It includes locate empty space: define a point in an empty
area on a surface based on its spatial relationships with surrounding objects, and ask to confirm this
empty location (e.g., “Please provide a point in the vacant area on the desktop that simultaneously
satisfies the following spatial conditions: ...”). (3) Open-X-Embodiment (O’Neill et al., 2024) In
current datasets involving actions performed by robots/robotic arms, skills typically include "pick,"
"pick and place," and more. We extract keyframes and manipulated objects from the correspond-
ing trajectory data to construct object placement data. For example: RT-1 (Brohan et al., 2022)
dataset comprises over 130,000 real-world robotic demonstrations (episodes), covering more than
700 different tasks. These were collected by 13 robots over a period of 17 months. The trained
actions include diverse skills such as grasping/placing objects, opening/closing drawers, extracting
items, standing objects upright, knocking them over, pulling tissues, and opening jars. BridgeData
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V2 (Walke et al., 2023) dataset contains 60,096 trajectories spanning 24 different environments,
including toy kitchens, sinks, microwaves, desktops, washing machines, toolboxes, and other di-
verse settings. It encompasses 13 types of manipulation skills, ranging from basic pick-and-place,
pushing/pulling, and sweeping, to more complex tasks such as stacking blocks, folding cloth, and
manipulating granular media. Together, these datasets provide 530K training samples.

Video-based Spatial Reasoning Despite the emergence of benchmarks such as OpenEQA (Ma-
jumdar et al., 2024) and VSI-Bench (Yang et al., 2025b), large-scale training datasets for video-based
spatial reasoning remain limited. To bridge this gap, we construct a comprehensive dataset by har-
nessing high-fidelity indoor scene sources from ScanNet (Dai et al., 2017), Matterport3D (Chang
et al., 2017), and 3RScan (Wald et al., 2019). From these sources, we extract egocentric video
sequences and generate question–answer pairs aligned with the task taxonomy defined in VSI-
Bench (Yang et al., 2025b), encompassing: (1) object count, (2) relative distance, (3) appearance
order, (4) relative direction, (5) object size, (6) absolute distance, (7) room size, and (8) route plan-
ning. Each QA pair is produced through a hybrid pipeline combining automated template genera-
tion with manual verification to ensure spatial coherence and semantic precision. For route planning
tasks, we first convert point clouds into x-y navigation mesh maps. Navigable waypoints are selected
based on three independently defined anchors: the start object, its orientation, and the end object.
Using the A* algorithm, we compute the shortest path while merging trajectory points of adjacent
objects belonging to the same entity. Steering directions are then derived from angular changes
along the path, enabling fine-grained spatial reasoning. We use 281K samples for training.

Active Exploration Prior approaches typically assume fully observable environments, limiting
their applicability to real-world scenarios. We propose a novel task that enhances spatial reasoning
under partial observability. Given multiple images from an indoor scene, the model must select the
most informative view to locate a specified object. For instance: “From the provided visual input,
identify the most informative image frame that offers the best chance of locating the bed. Format
your response as: Frame ID: [Selected Frame ID].” This task strengthens the model’s decision-
making in incomplete environments and is crucial for downstream embodied tasks such as object
navigation. To support this, we curated 18K training samples from HM3D (Ramakrishnan et al.,
2021) and MP3D (Chang et al., 2017), covering 6 and 21 object categories respectively.

3D Visual Question Answering To advance spatial reasoning in 3D environments, we inte-
grate three complementary datasets, each contributing unique challenges and perspectives. (1)
SQA3D (Azuma et al., 2022): This dataset emphasizes situational awareness, requiring agents to
interpret their position, orientation, and context within a 3D scene before answering questions. It
simulates real-world embodied cognition, where understanding one’s spatial state is a prerequisite
for reasoning. We collected approximately 79K samples, covering diverse indoor layouts and object
configurations. (2) ScanQA (Ma et al., 2022): Focused on general spatial understanding, ScanQA
includes questions about object alignment, relative direction, and localization. It challenges models
to parse nuanced spatial relationships from textual queries and visual cues. Our training set includes
23K samples, offering a rich variety of spatial scenarios. (3) MMScan-QA (Lyu et al., 2024): As
the largest and most comprehensive resource, MMScan provides over 1.28M QA samples built on
ScanNet (Dai et al., 2017), Matterport3D (Chang et al., 2017), 3RScan (Wald et al., 2019), and
Arkitscenes (Baruch et al., 2021). It features hierarchical grounded language annotations spanning
object-level and region-level semantics, enabling multi-granular reasoning. In total, we utilize ap-
proximately 1.4M samples for 3D VQA training.

3D Captioning In this task, the model generates descriptive captions for objects given a 3D po-
sition or bounding box, detailing attributes such as color, shape, and spatial relations. For instance,
“Question: Describe the object located at (155,72,23,15,13,3). Answer: It is a light brown, wooden
chair, located in front of a white table in the room.” This task bridges geometric localization with
natural language generation. We train on the Scan2Cap dataset (Chen et al., 2021), which comprises
37K annotated samples across diverse indoor scenes.

3D Visual Grounding As the inverse of 3D captioning, this task requires the model to localize
objects in 3D space based on natural language descriptions. It poses a significant challenge for
MLLMs, which often struggle to generate accurate 3D bounding boxes without priors from off-the-
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shelf 2D or 3D detectors. For example, “Question: Detect the bounding box of a chair in the corner
of the room, opposite to a brown desk. Answer: (78, 23, 135, 5, 5, 7)”. We leverage ScanRefer (Chen
et al., 2020) and MMScan-VG (Lyu et al., 2024), totaling 1.1M samples.

3D Scene Imagination To push the boundaries of spatial reasoning, we introduce a task set in
partially observable environments—where some objects are occluded or outside the agent’s field of
view. The model must infer the contents of unobserved regions based on contextual cues and spatial
layout, given a 3D location within the scenario. For example, “Question: Based on the currently
observed environment, when the agent walks to position (384, 42, 15), what new objects might
become visible? Only consider objects not currently seen. Answer: You may see various cookers,
cabinets, kitchen counters, kettles, ...”. This task probes the model’s understanding of object co-
occurrence and spatial regularities. We collect 45K samples using the Habitat simulator (Puig et al.,
2023), drawing from MP3D (Chang et al., 2017) and HM3D (Ramakrishnan et al., 2021) with a
randomized walk policy to ensure diverse and unbiased scene coverage.

3D Subgoal Prediction Existing spatial reasoning methods for large-scale navigation—image-
based pointing Yuan et al. (2024a), marker selection, or direct command outputs (e.g., “move for-
ward” or “turn left”) —often struggle in complex, occlusion-heavy scenes under partial observ-
ability. To overcome these limitations, we introduce a 3D-aware planning framework that ingests
sequential RGB-D observations and directly generates subgoals in continuous 3D coordinate space.
By formulating intermediate objectives as 3D waypoints, the model leverages the geometric struc-
ture of the environment, avoids local optima caused by relying on single image views, and supports
explicit long-term trajectory planning rather than making only myopic action predictions. More-
over, it accounts for occluded or unseen regions, enabling the agent to propose subgoals that guide
exploration around obstacles and through partially observed areas. Our training set includes approx-
imately 113K samples, supporting robust learning of spatial planning under uncertainty.

E BENCHMARKS FOR EVALUATION

E.1 EMBODIED REASONING BENCHMARKS

Embodied Reasoning Benchmarks with 2D Inputs To assess the model’s embodied reasoning
capabilities across visual modalities, we employ four established benchmarks: Where2Place (Yuan
et al., 2024a), VSI-bench (Yang et al., 2025b), PACO-LVIS (Ramanathan et al., 2023), and RoboR-
efit (Lu et al., 2023). 2 These datasets span both static images and dynamic video inputs, enabling
comprehensive evaluation of spatial and temporal understanding and multimodal reasoning.

To further evaluate the model’s capacities in versatile embodied tasks with physical constraints, we
introduce four benchmarks that connect the primitive embodied capabilities with composite down-
streamed tasks: Where2Go, Where2Fit, and Where2Approach, Where2Grasp. Compared to
simulator-based online evaluation, this VQA-style approach substantially reduces evaluation over-
head. Detailed examples and description can be found in Appendix E.3.

• Where2Go: The agent must select the most informative next view from multiple images to
locate a target object in partially observable environment. The setting closely aligns with the
Large Space Object Seeking tasks, where agents must infer spatial layouts and make decisions
under uncertainty.

• Where2Fit: The agent must identify the free space on the table by predicting a set of 2D points.
Physical constraints, including object location, size, collision potential, must be considered,
making this task highly relevant to the Mobile Placement (Easy) tasks.

• Where2Approach: The agent must identify free space on the table that is not obstructed by
any chairs. This task demands reasoning under occlusion as well as handling locomotion and
manipulation constraints, making it closely aligned with the Mobile Placement (Hard) tasks in
geometrically challenging scenarios.

2Since the original data annotations of RoboRefit and PACO-LVIS lack VQA pairs, we constructed a min-
imal evaluation set suitable for VLM based on image distribution, object category, part category, etc. The
evaluation code is consistent with Where2Place.
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• Where2Grasp: The agent must identify objects based on their color, size, location, and cate-
gory. This task emphasizes object-centric recognition and directly aligns with the requirements
of the Mobile Pick-up tasks.

The relationship between primitive embodied capabilities and composite downstream tasks is
demonstrated in Section 4.3 .

Embodied Reasoning Benchmarks with 3D Inputs To extend evaluation into three-dimensional
spatial contexts, we adopt four 3D benchmarks: (Ma et al., 2022), ScanQA (Azuma et al., 2022),
Scan2Cap (Chen et al., 2021) and ScanRefer (Chen et al., 2020). These datasets challenge the
model’s capacity for open-ended question answering, scene captioning, and 3D visual grounding
within richly structured 3D environments. By incorporating depth and geometry, they serve as
critical tests of the model’s ability to reason beyond planar representations.

E.2 END-TO-END ONLINE EVALUATION WITHIN SIMULATORS

While previous works often evaluate the performance of the MLLMs on offline dataset, we also
perform end-to-end evaluation to bridge the gap between planning and robot execution within sim-
ulators, on the following 3 introduced benchmarks. The benchmark is built based on a 3000m2

office environment containing 8 core operation scenarios and 95 object categories representative of
common workplace items. We categorize the benchmark into three progressive evaluation stages:

• Large-Space Object Seeking: It is also referred as object navigation in prior work. This task
evaluates the agent’s capability to locate a given object in large space.

• Local Mobile Manipulation: This evaluation set comprises over 30 representative scenarios
featuring diverse background configurations, varing initial robot poses, and a range of object
types, sizes, and locations. The Mobile Pick-up task involves grasphing various objects across
diverse scenes and tabletop configurations. The Moile Placement is divided into two difficulty
tiers based on environment complexity. In the easy tier, the robot only needs to consider the
immediate table surface condition (e.g., object occlusion) to determine the optimal placement
location, as done in Where2Fit, before placing the object. For the hard tier tasks, the robot
must fist determine the optimal chassis poses while accounting for environmental constraints
imposed by the spatial arrangements of tabletop objects and surrounding chairs (same setting as
Where2Approach). The evaluation involves navigating to target poses, followed by assessing
trajectory planning for safe mug placement on the table, with success rates calculated based on
task completion accuracy. A comprehensive description of scenario design and task categoriza-
tion is provided in AppendixE.4.

• End-to-End Delivery: This task evaluates the integration of embodied skills by requiring the
robot to complete end-to-end object-delivery tasks across the entire office environment. We
select two metrics, the overall success rates and the average task completion times, to evaluate
the effectiveness of the pipeline.

E.3 EXAMPLES OF THE IN-HOUSE PRIMITIVE EMBODIED BENCHMARKS

E.3.1 WHERE2GO

The Where2Go benchmark is constructed using the validation splits of the HM3D (Chang et al.,
2017) and MP3D (Chang et al., 2017) datasets. Each sample presents a partially observable en-
vironment in which the model must select the most informative view to locate a specified target
object. A frame is designated as the ground truth if it contains a visible segment of the shortest nav-
igable path from the agent’s current position to the target object. In total, the benchmark comprises
207 samples, forming a diverse and challenging validation set for evaluating view selection under
uncertainty.
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Prompt: From the provided visual input, identify the most informative image frame (with
IDs starting from 1) that offers the best chance of locating the sofa. Format your response
as: Frame ID: [Selected Frame ID]
Ground Truth: Frame ID: 5, 6

Prompt: From the provided visual input, identify the most informative image frame (with
IDs starting from 1) that offers the best chance of locating the tv monitor. Format your
response as: Frame ID: [Selected Frame ID]
Ground Truth: Frame ID: 4
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Prompt: From the provided visual input, identify the most informative image frame (with
IDs starting from 1) that offers the best chance of locating the plant. Format your response
as: Frame ID: [Selected Frame ID]
Ground Truth: Frame ID: 1, 2, 4

E.3.2 WHERE2FIT

The Where2Fit Benchmark addresses the task of identifying free space on tables by predicting a set
of 2D points. These tables are drawn from a variety of real-world scenes—such as offices, confer-
ence rooms, pantries, and workstations—and exhibit different levels of clutter, ranging from blank
and sparse to densely occupied. The benchmark systematically increases the number of objects
across these clutter conditions, presenting a progressive challenge. In addition, it incorporates crit-
ical physical constraints, including object dimensions, fit within the available space, and collision
avoidance with other objects. The entire benchmark consists of 464 samples, including 200 genera-
tion tasks that require the model to output corresponding points, and 264 judgment tasks where the
model must determine whether a given point would cause a collision.

Prompt: Locate some free space for me on the table.
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Prompt: Find me an empty spot on the table, thanks!

Prompt: Would you be able to place the red plug on the conveyor belt?

Prompt: Could you help me find a vacant area on the table?

E.3.3 WHERE2APPROACH

The Where2Approach benchmark is required to identify unobstructed free space on a table while
accounting for potential occlusions caused by surrounding chairs. The testbed features a long table
cluttered with objects and encircled by randomly arranged chairs, simulating geometrically complex
and occlusion-rich environments. This task necessitates advanced spatial reasoning under substan-
tial visual occlusion, as well as the integration of locomotion and manipulation constraints. Specif-
ically, the agent must determine feasible chassis positions that offer sufficient unobstructed area
for successful placement operations. These requirements closely align with the challenges posed
by Mobile Placement (Hard) tasks, which emphasize operation in highly constrained and visually
disordered scenarios. The entire test set consists of 200 samples, each covering completely different
perspectives, robot positions, tabletop object configurations, and chair arrangements.
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Prompt: Find the nearest free space on the table with no chairs around.

Prompt: Locate the closest empty spot on the table that isn’t surrounded by chairs.

Prompt: Look for the nearest available area on the table where no chairs are placed nearby.

Prompt: Search for a nearby open space on the table that has no chairs in its vicinity.

E.3.4 WHERE2GRASP

The Where2Grasp benchmark requires the identification of objects based on key attributes including
color, size, location, and category. The evaluation set consist 200 samples and encompasses over
40 common object categories sourced from a variety of household and office environments, with
diverse backgrounds. This task emphasizes object-centric cognitive capabilities, focusing on the
perception and interpretation of object characteristics under real-world conditions.
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Prompt: Locate the orange on the counter.

Prompt: Please locate the glasses.

Prompt: Locate the cola bottle on the table.

Prompt: Find the junction box on the conveyor belt.

E.4 DOWNSTREAM TASK DESCRIPTION

E.4.1 MOBILE PLACEMENT EASY

For the Mobile Placement Easy benchmark, we constructed scenes with 8 tables in an office envi-
ronment, with various items randomly scattered on the tabletops. There are a total of 40 types of
items to enhance the diversity of the scenes. The robot’s initial position is 1 to 1.5 meters away from
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the edge of the table, with an angular deviation of -15 to 15 degrees, to observe the environment and
objects. The scenes are divided into three levels based on the number of randomly scattered items
on the tabletop: no-objects, sparse, and dense, with 0, 4, and 8 objects on the tabletop, respectively.
The model’s performance is evaluated in 200 simulation scenes, with 50 no-object scenes, 50 sparse
scenes, and 100 dense scenes. We use the success rate of placing objects as the evaluation metric.

E.4.2 MOBILE PLACEMENT HARD

In the Mobile Placement Hard benchmark, we construct a long-table environment with chairs posi-
tioned around the perimeter and varied objects distributed on the table surface. The robot is required
to identify approachable regions unobstructed by chairs or densely placed tabletop items. The table
periphery is systematically divided into 12 candidate zones (three per long side, one per short side,
and four corners), each classified as either occupied (by chairs or dense objects, excluding corners)
or vacant (clear spaces or sparse-object areas permitting approach). We additionally distribute ran-
dom objects in the central table area, which improves visual realism and increases scene diversity.

Each simulation scenario involves randomized assignment of occupancy states to candidate regions,
with objects sampled from a 70-category office inventory (e.g., monitors, books, mugs). The robot
is initialized 0.9 to 1.5 meters from the table edge (±15 deg angular deviation) to observe the table
and surroundings. The evaluation requires the model to predict feasible placement points, followed
by robot execution attempts. Performance is assessed in 100 simulated scenarios, where we measure
the success rates of planning placement trajectories.
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E.4.3 MOBILE PICKUP

For the Mobile Pick-up benchmark, we constructed scenes with 8 tables in an office environment,
with various items randomly scattered on the tabletops. The objects to be picked up include: pen
holders, cans, bottles, coffee cups, oranges, pears, apples, and lemons. There are a total of 40
background objects to enhance the diversity of the scenes. The robot’s initial position is 1 to 1.5
meters away from the edge of the table, with an angular deviation of -15 to 15 degrees, to observe the
environment and objects. The scenes are divided into three levels based on the number of randomly
scattered items on the tabletop: easy, medium, and hard. In the easy level, only the objects to be
picked up are on the tabletop, while in the medium and hard levels, there are 3 and 7 additional
objects besides the ones to be picked up. The model’s performance is evaluated in 150 simulation
scenes, with 60 easy scenes, 50 medium scenes, and 40 hard scenes. We use the success rate of
picking up objects as the evaluation metric.

F QUALITATIVE RESULTS OF OMNIEVA

Here we present sample inference results generated by OmniEVA, including 2D visual grounding,
object reference, object part recognition, free space location, activate exploration, 3d questionn
answering, 3d captioning, 3d visual grounding and 3d scene imagination. All examples shown were
not included in the training dataset.

F.1 QUALITATIVE RESULTS ON 2D SPATIAL REASONING TASKS
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2D Visual Grounding

Prompt: In the photo, where can I find the
shirt?
Response: You can find the shirt at
<point>(457, 117), (428, 125)</point>.

Prompt: Highlight the location of the tarp.
Response: Highlighted region:
<point>(331, 219), (248, 215) </point>.

Prompt: Locate the scarf in this image.
Response: The scarf is found at
<point>(336,425),(331,450) </point>.

Prompt: Please specify the coordinates
for the handbag.
Response: Specifying coordinates:
<point>(331, 409), (256, 490) </point>.

Object Reference

Prompt: Please hand me the orange on the
left.
Response: Points are <point>(302, 271),
(343, 260)</point>.

Prompt: I would like to grab the teddy
bear in shirt.
Response: Center points are <point>(347,
241), (374, 245) </point>.
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Prompt: The image features an item
encased within a red rectilinear shape
and another item surrounded by a green
rectangular boundary. Pinpoint several
spot son any item situated between the
objects framed by these rectangles.
Response: Locations are <point>(250,
212), (199, 214), (179, 226) </point>.

Prompt: What object is in <point>(213,
261), (218, 239), (216, 220)</point>?
Response: Scissors.

Object Part Recognition

Prompt: Can you locate the frame on this
mirror?
Response: Points are <point>(301, 140),
(318, 140)</point>.

Prompt: How do you interact with the
strainers?
Response: By interacting with the
<point>(1310, 880)</point>.

Prompt: If I wanted to interact with the
base of this glass, where would I find it?
Response: You should interact with
it on the <point>(249, 458), (272,
456)</point>area.

Prompt: Could you point out the page of
the book?
Response: <point>(556, 254)</point>.
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Free Space Location

Prompt: In the image, there’s a region
outlined by a red rectangle. Locate sev-
eral points within the vacant area on this
marked surface.
Response: Locations are <point>(396,
435), (380, 440)</point>.

Prompt: Point to a free spot behind white
textured radiator at lower right.
Response: Points are <point>(394, 345)
</point>.

Prompt: Point to a free spot in front of
white painted wood chest of drawers at
center.
Response: Points are <point>(196,
439)</point>.

Prompt: What is the location of a free
spot to the right of wooden trolley at left?
Please provide its 2D coordinates.
Response: Points are <point>(173,
258)</point>.

Active Exploration

Prompt: From the provided visual input, identify the most informative image frame (with IDs
starting from 1) that offers the best chance of locating the fireplace. Format your response
as: Frame ID: [Selected Frame ID]
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Ground Truth: Frame ID: 5, 6
Prediction: Frame ID: 5

Prompt: From the provided visual input, identify the most informative image frame (with
IDs starting from 1) that offers the best chance of locating the sofa. Format your response
as: Frame ID: [Selected Frame ID]
Ground Truth: Frame ID: 3, 5
Prediction: Frame ID: 5

Prompt: From the provided visual input, identify the most informative image frame (with
IDs starting from 1) that offers the best chance of locating the sink. Format your response
as: Frame ID: [Selected Frame ID]
Ground Truth: Frame ID: 2, 3
Prediction: Frame ID: 1
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Prompt: From the provided visual input, identify the most informative image frame (with
IDs starting from 1) that offers the best chance of locating the gym equipment. Format your
response as: Frame ID: [Selected Frame ID]
Ground Truth: Frame ID: 5
Prediction: Frame ID: 5

F.2 QUALITATIVE RESULTS ON 3D SPATIAL REASONING TASKS

3D Question Answering

Prompt: I am using the clothes dryer
under another clothes dryer. What object is
beneath the table to my left? ...
Ground Truth: box
Prediction: box

Prompt: I am sitting on a chair while facing
the whiteboard and there is a chair on the
same side of the table on my left. What is
the shape of the table in front of me? ...
Ground Truth: rectangular
Prediction: rectangular
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Prompt: What color is the tool box to the
left of the piano? Answer the question sim-
ply.
Ground Truth: red green
Prediction: red

Prompt: Where is the bathroom vanity lo-
cated? Answer the question simply.
Ground Truth: to right of bathroom door
below window
Prediction: left of toilet

Prompt: I am making some copies and
there are some pictures on my left. What is
brown and square to my left? ...
Ground Truth: table
Prediction: table

Prompt: I am throwing trash with a chair
on my right within reach. What is the color
of the chair that is within reach on my
right? ...
Ground Truth: black
Prediction: black

Prompt: I am opening the window with
the shoe rack on my right. What is on top
of shelf behind me that I can place on my
back? ...
Ground Truth: bag
Prediction: pillow

Prompt: I am standing by the poster printer
and there is a table behind me. Can I see
the box if I turn around? ...
Ground Truth: no
Prediction: yes
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3D Captioning (red box: 3D box given in prompt)

Prompt: Given an object located at
<3dbox>(150,155,51,5,10,5)</3dbox>,
describe ...
Ground Truth: The coffee table is white.
The coffee table is in front of the orange
couch.
Prediction: The coffee table is in the middle
of the room. The coffee table is a white
rectangle.

Prompt: Given an object located at
<3dbox>(132,151,54,7,6,7)</3dbox>, de-
scribe ...
Ground Truth: The chair is the color black.
It is facing the table along with other chairs.
It is spaced beside other chairs.
Prediction: This is a black chair. It is at the
corner of the table.

Prompt: Given an object located at
<3dbox>(153,152,55,8,7,6)</3dbox>...
Ground Truth: The chair is red and green.
It is to the right of the black chair.
Prediction: This is a chair with no arms. It
is in front of a desk.

Prompt: Given an object located at
<3dbox>(140,166,58,4,5,4)</3dbox>...
Ground Truth: A black computer with a
blue screen. It’s located on a wooden desk
with a wooden chair in front of it.
Prediction: This is a black laptop. It is on
a desk.
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Prompt: Given an object located at
<3dbox>(137,158,51,4,4,5)</3dbox>...
Ground Truth: The black backpack is di-
rectly in front of the nightstand. The back-
pack is also directly to the left of the bed.
Prediction: The backpack is black. It is on
the floor, to the left of the bed.

Prompt: Given an object located at
<3dbox>(159,133,53,6,7,9)</3dbox>...
Ground Truth: This is a sturdy chair, made
of wood and with green cushioning. It is in
contact with a wall surface and a brown ta-
ble. It is oriented about 120 degrees in rela-
tion to the viewer.
Prediction: The chair is the one closest to
the door. the chair has a green seat and four
legs.

3D Visual Grounding (red Box: ground truth; green box: prediction)

Prompt: ... There is a black office chair.
placed in the side of the wall.
Response: <3dbox>(130, 155, 55, 6, 5,
4)</3dbox>.
Result: Success

Prompt: ... It is next to the tall floor lamp.
it is a snack machine and it is full of tasty
snacks. it is over by the door ...
Response: <3dbox>(143, 135, 59, 10, 8,
17)</3dbox>.
Result: Success
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Prompt: ... In the corner of the room are
boxes. the first two book shelves in the cor-
ner to the right of the boxes are the book-
shelves we are looking for.
Response: <3dbox>(127, 139, 61, 4, 21,
20)</3dbox>
Result: Success

Prompt: ... The keyboard is sitting on top of
the desk. it is in front of the left-side moni-
tor.
Response: <3dbox>(141, 125, 59, 9, 1,
20)</3dbox>
Result: Success

Prompt: ... This is a green tool box. . the
green tool box is in front of a red tool box on
the floor next to a piano.
Response: <3dbox>(147, 127, 52, 5, 3,
3)</3dbox>.
Result: Success

Prompt: ... This is a black trash can. it is
under the counter top.
Response: <3dbox>(159, 143, 51, 3, 4,
4)</3dbox>.
Result: Success

Prompt: ... This is a black leather loveseat
in a library. if you were sitting in it, the
long, short bookshelf would be on your
right and the tall book shelf, opposite you
across the room.
Response: <3dbox>(145, 168, 57, 15, 9,
7)</3dbox>.
Result: Fail

Prompt: ... The black chair, in front of the
chair with a brown table, on the right has
2 black chairs. on the left is a black chair
with the left to right it is the first chair.
Response: <3dbox>(154, 159, 54, 5, 6,
10)</3dbox>.
Result: Fail
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3D Scene Imagination (from HM3D and MP3D validation set)

Prompt: ..., when the agent walks to
position <3dbox>(122,129,21,10,10,10)
</3dbox>, what new objects might become
visible? ...
Ground Truth: You may see various
pictures, chairs, vases, trays, plates, coffee
mugs, washing machines, lamps, curtains,
rugs, vents, balustrades, sensors, tables,
books, candlesticks, and pillows.
Prediction: You may see various lamps,
ventilations, and cabinets.

Prompt: ..., when the agent walks
to position <3dbox>(153,164,26,10,10,10)
</3dbox>, what new objects might become
visible? ...
Ground Truth: You may see a few motion
detectors, blinds, wall toilet papers, bath-
room towels, trashcans, toilets, decorations,
decorative plants, and bathroom shelves.
Prediction: You may see various lamps, pic-
tures, and beds.

Prompt: ..., when the agent walks
to position <3dbox>(146,157,21,10,10,10)
</3dbox>, what new objects might become
visible? ...
Ground Truth: You may see various bath-
room cabinets, pillows, benches, handbags,
seats, and pictures.
Prediction: You may see various lamps,
cabinets, pillows, and beds.

Prompt: ..., when the agent walks
to position <3dbox>(125,155,49,10,10,10)
</3dbox>, what new objects might become
visible? ...
Ground Truth: You may see various boxes,
pictures, lamps, ceiling lamps, drawers,
stools, appliances, beds, fire alarms, pil-
lows, fireplace walls, racks, and tables.
Prediction: You may see various pictures,
chairs, tables, and plants.
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Prompt: ..., when the agent walks to
position <3dbox>(130,100,34,10,10,10)
</3dbox>, what new objects might become
visible? ...
Ground Truth: : You may see various
shelves, tables, mirrors, decorations, chairs,
sinks, faucets, liquid soaps, door windows,
TVs, curtains, carpets, wine racks, closet
areas for hanging clothes, clothes, bath-
tubs, bath towels, shower soap shelves,
soap bottles, shower walls, shower floors,
shower glasses, shower mats, towel bars,
towels, shower handles, ceiling lamps, and
shower doors.
Prediction: You may see various pictures,
tables, chairs, plants, cabinets, counters,
sinks, and towels.

Prompt: ..., when the agent walks to
position <3dbox>(166,186,24,10,10,10)
</3dbox>, what new objects might become
visible? ...
Ground Truth: You may see various
ceiling lamps, smoke alarms, doorposts,
headboards, wall lamps, nightstands,
radios, lounge chairs, pillows, dog beds,
window curtains, bathtubs, shower doors,
bathroom cabinets, baskets, stair steps, and
towels.
Prediction: You may see various shelves,
cabinets, tables, chairs, flower vases,
lamps, pictures, curtain rails, curtains, and
carpets.

Object Navigation in Partially Observable Environments (examples are sampled from
HM3D validation set): green box–predicted 3D subgoal at each planning step; red line: past
trajectory; red box: target object to be found

Prompt: Based on the currently observed environment, determine the best position to go to
find the toilet.
Exploration Trajectory: OmniEVA first explored the doorway of the room in the upper
right corner. After mistakenly entering the kitchen area, it quickly adjusted its path, selected
a new area to explore, and directly located the sofa in the living room.
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Prompt: Based on the currently observed environment, determine the best position to go to
find a bed.
Exploration Trajectory: The model first moves to the hallway at the intersection of multiple
rooms to gather more comprehensive environmental information. It then determines that the
room in the lower right corner is more likely to be a bedroom, proceeds to that location, and
ultimately finds the bed.

Prompt: Based on the currently observed environment, determine the best position to go to
find the chair.
Response: The model first walks to the center of the corridor, sees the sofa in the upper left,
then heads to that room area and finds the chair.

F.3 EXAMPLES OF EMBODIMENT-AWARE REASONING

Embodiment-aware Reasoning

Prompt: Could you help me find a vacant area on the table?
Response: <think>1. **Describing the Image**: The image shows a wooden table with
various objects placed on it, including a mug, a highlighter, a small fruit, a notebook, a
white object resembling a bottle, and a chair positioned nearby. The table has some visible

49



Published as a conference paper at ICLR 2026

empty spaces, but the objects occupy certain areas.2. **Common-Sense Considerations**:
- The goal is to identify free space on the table where additional objects can be placed with-
out causing collisions or instability. - Free space should be large enough to accommodate
typical objects like the ones present on the table. - The placement should avoid overlap-
ping with existing objects or causing them to tip over.3. **Relevant Factors**: - **Object
Dimensions**: The size of the objects already on the table should be considered when de-
termining free space. - **Table Dimensions**: The overall dimensions of the table should
be taken into account to ensure that the identified free space is realistic. - **Collision Avoid-
ance**: Any suggested free space should not interfere with the existing objects or lead to
potential collisions with the chair or other furniture.4. **Free Space Identification**: - The
bottom-left corner of the table appears to have some free space, as there are no objects oc-
cupying that area. - The top-right corner also seems to have some free space, though it is
farther than the bottom-left. - The middle-right section of the table has limited free space due
to the presence of the notebook and the white bottle.5. **Embodiment Awareness**: The
operational range of the robot necessitates that it be positioned as close as practicable to the
table’s bottom edge.6. **Answer Formulation**: - Based on the analysis, the bottom-left
corner of the table is the most suitable for placing additional objects, as it offers the largest
and most unobstructed free space.</think><answer>Locations are <point>(66, 359), (56,
360), (76, 357)</point>.</answer>

Prompt: Find the nearest free space on the table with no chairs around.
Response: <think>To answer the question, we need to analyze the image comprehen-
sively:1. **Describing the Image**: The image shows a large wooden table in a room
with multiple chairs placed around it. The table is cluttered with various objects, including
books, containers, tools, and other miscellaneous items. There are also some empty spaces
on the table.2. **Common-Sense Considerations**: - The question asks for "nearest free
space" on the table, meaning we need to identify areas that are not occupied by objects and
are close to the center of the table. - Free space should be large enough to place something
without causing a collision with existing objects. - The table’s edges and corners are
potential candidates for free space, but they may not be ideal due to limited usable area.3.
**Relevant Factors**: - Identify all objects currently occupying the table. - Determine the
table’s layout and identify any visible gaps or open areas. - Assess the proximity of these
gaps to the center of the table. - Ensure the identified space is large enough to accommodate
a new object.4. **Analysis**: - The table has several visible gaps, particularly near the
center-left and top-right sections of the table. - These gaps appear to have enough space to
place small to medium-sized objects without causing a collision with existing items. - The
center area of the table is less cluttered than the top-right edges, but is obscured by chairs
in front.5. **Embodiment Awareness**: To ensure the robot can cover its entire potential
work area, placement near the top-right edge of the table is critical.6. **Conclusion**: -
The nearest free space on the table can be identified as the central-left section of the table,
specifically around the coordinates (460, 250) to (470, 250), which is a relatively clear area
with no objects obstructing it.</think><answer>Points are <point>(467, 249), (458, 249),
(478, 249) </point>. </answer>
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Prompt: Could you help me find a vacant area on the table?
Response: <think> ..., 1. Describing the Image: The image shows a table with ... 2.
Common-Sense Considerations: - A vacant area must not overlap any existing objects ...
large enough to accommodate ... avoid edges or corners where objects might fall off. 3.
Vacant Area Identification: The left side of the table appears to have some empty space,
particularly around the yellow cup and the green plate. 4. Embodiment Awareness: Consid-
ering the range of the robot’s executable area, it should be placed as close to the bottom edge
of the table as possible. 5. Output: - Based on the analysis: ... </think> <answer> Points
are <point>(319, 416), (317, 404), (328, 398), (329, 410)</point>.</answer>

G REAL WORLD DEPLOYMENT EXAMPLES

Figure 12: Example for Deployment of OmniEVA on Real World Robots. Prompt: Place the paper cup in
the empty space on the table at the back right.
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Figure 13: Example for Deployment of OmniEVA on Real World Robots. Prompt: Place the cup on the
long table next to the meeting room.

H USE OF LARGE LANGUAGE MODELS

In accordance with the ICLR 2026 policy on LLM usage, we disclose that Large Language Models
(specifically, DeepSeek-R1 (Guo et al., 2025)) were employed during the writing process of this
paper. Their usage was limited to aiding in the correction of grammatical errors of the manuscript.
All scientific ideas, experiments, and analyses were conducted solely by the authors.
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