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ABSTRACT

Recently, several point-based image editing methods (e.g., DragDiffusion, Free-
Drag, DragNoise) have emerged, yielding precise and high-quality results based
on user instructions. However, these methods often make insufficient use of se-
mantic information, leading to less desirable results. In this paper, we proposed a
novel mask-free point-based image editing method, AdaptiveDrag, which pro-
vides a more flexible editing approach and generates images that better align
with user intent. Specifically, we design an auto mask generation module using
super-pixel division for user-friendliness. Next, we leverage a pre-trained diffu-
sion model to optimize the latent, enabling the dragging of features from handle
points to target points. To ensure a comprehensive connection between the input
image and the drag process, we have developed a semantic-driven optimization.
We design adaptive steps that are supervised by the positions of the points and the
semantic regions derived from super-pixel segmentation. This refined optimiza-
tion process also leads to more realistic and accurate drag results. Furthermore,
to address the limitations in the generative consistency of the diffusion model, we
introduce an innovative corresponding loss during the sampling process. Building
on these effective designs, our method delivers superior generation results using
only the single input image and the handle-target point pairs. Extensive exper-
iments have been conducted and demonstrate that the proposed method outper-
forms others in handling various drag instructions (e.g., resize, movement, exten-
sion) across different domains (e.g., animals, human face, land space, clothing).
The code is provided in the supplementary materials.

1 INTRODUCTION

Benefiting from the huge amount of training data and the computation resource, diffusion models
developed extremely fast and derived plenty of applications. For example, the text-to-image(T2I)
diffusion model Saharia et al. (2022) attempts to generate images with the input text prompt con-
dition. However, constraining the generation process in this way is often unstable, and the text
embedding may not fully capture the user’s intent for image editing.

In order to realize fine-grained image editing, previous works are usually based on GANs meth-
ods Abdal et al. (2019) with latent space, such as the StyleGAN utilizes the editable W space.

Input EasyDrag Ours Input DragDiffusion Ours

Figure 1: Existing methods face two main issues: (a) ‘Drag missing’ (left): EasyDrag fails to
guide the succulent to the target points because the point search is ineffective during long-scale drag
instructions. (b) ‘Feature maintenance failure’ (right): DragDiffusion fails to maintain the feature in
the middle part of the mountain when the peak is dragged to a higher position.
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Recently, DragGAN Pan et al. (2023) introduced a point-to-point dragging scheme to edit images,
providing a way to achieve fine-grained content change.

Due to the shortcomings of GAN methods Abdal et al. (2019) in terms of generalization and im-
age quality, the diffusion model Ho et al. (2020) was proposed, offering improved stability and
higher-quality image generation. DragDiffusion Shi et al. (2024b) first adopts the point-to-point
drag scheme from DragGAN Pan et al. (2023) on the diffusion model. It employs LoRA Hu et al.
(2021) to maintain the consistency between the original image and results, then optimizes the la-
tent via motion supervision and point tracking steps. However, the update strategy for point-based
drags in DragDiffusion has several limitations, making it challenging to achieve satisfactory editing
results. Firstly, users must use a brush to draw a mask, defining the area they wish to adjust. This
not only increases the operational complexity of image editing but also makes the results sensitive
to the mask region. EasyDrag Hou et al. (2024) simplifies the operation by generating the mask area
via the normalized gradients over the threshold g. However, the gradients of the entire image are not
directly related to the user’s edit points, and more critically, the disappearance or cumulative error of
these gradients might often result in significant distortions. Another weakness is the fixed step and
feature updating region strategy in the latent optimization. For varying dragging distances, the fixed
number of iterations cannot effectively optimize the latent representation to reach the target points,
leading to the issue of ‘Drag Missing’ (left side of Fig. 1). As mentioned in Liu et al. (2024), when
the feature differences in the neighboring areas are minimal, the ‘Feature maintenance failure’ oc-
curs. However, fixed feature updating regions inevitably blend with surrounding features together,
leading to increased similarity with adjacent areas. As a result, in the right part of Fig. 1, existing
methods fail to preserve the features at the center of the mountains during long-scale editing.

In this paper, we introduce a novel point-based image editing approach called AdaptiveDrag to
address the aforementioned issues. (1) Auto Mask Generation. We propose an auto-mask genera-
tion scheme that integrates both image content and drag point positions. To better align the image
content with the mask, inspired by Mu et al. (2024), we get the image elements by the Simple
Linear Iterative Clustering (SLIC) Achanta et al. (2012). It segments the image into patches on the
feature space of the Segmentation Anything Model 2 (SAM 2) Ravi et al. (2024). Next, We propose
a line-searching strategy to generate the final mask, informed by the positions of the handle points
and target points. Ultimately, this process automates the generation of a mask that precisely cov-
ers the area to be edited and aligns with the user’s intent. (2) Semantic-Driven Optimization. We
incorporate semantic relative information into our latent optimization. Specifically, we designed a
position-supervised backtracking strategy to enable adaptive step iteration, effectively handling dif-
ferent drag lengths. For feature region selection, we use segmentation patches from the SLIC results,
providing a more precise area for motion supervision and point tracking steps. (3) Correspondence
Sample. To address the instability of the sampling process, our method incorporates a corresponding
loss function between the regions of handle points and target points. Finally, our proposed method
can effectively generate high-quality images based on a variety of user drag instructions.

In summary, our contributions to this paper are as follows:

• We propose a mask-free drag method, called Auto Mask Generation, via semantic-driven
segmentation to automatically generate a precise mask area. It offers users an easy-to-
operate but accurate approach to image editing without explicitly drawing the user mask.

• We design an adaptive strategy for the latent optimization process, called Semantic-Driven
Optimization. It employs a semantics-driven automated process for managing drag steps,
update regions, and update radius. Coupled with the adaptive strategy, this approach yields
drag results that are more aligned with the semantic features of the input image and com-
patible with the target points.

• We propose Correspondence Sample to improve the generation stability of the diffusion
process, encouraging the semantic consistency between regions of handle and target points.

Extensive experiments have been conducted, demonstrating that our AdaptiveDrag outperforms ex-
isting approaches in handling a variety of drag instructions (e.g., resize, movement, extension) and
across different domains (e.g., animals, human face, land space, clothing).
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2 RELATED WORK

2.1 GAN-BASED IMAGE EDITING

Interactive image editing involves modifying an input image based on specific user instructions. Ex-
isting control methods, which rely on text instructions Brooks et al. (2023); Lyu et al. (2023); Meng
et al. (2021) and region masks Lugmayr et al. (2022), suffer from precision issues, while image-
based referencing methods Chen et al. (2024b); Yang et al. (2023) fall short in terms of control
flexibility. Point-based image editing employs a series of user-specified handle-target point pairs
to adjust generative image content, aligning with target point positions. For instance, Endo Endo
(2022) introduces a latent transformer to learn the connection between two latent codes using Style-
GAN Mokady et al. (2022). DragGAN Pan et al. (2023) proposes an updating scheme involving
”point tracking” and ”motion supervision” within the feature map to align handle points with their
corresponding target points. However, GAN-based methods often struggle with complex instruc-
tions and yield unsatisfactory results due to their limited model capacity.

2.2 DIFFUSION-BASED IMAGE EDITING

Recently, the impressive generative capabilities of large-scale text-to-image diffusion models have
led to the development of numerous methods based on these models Rombach et al. (2022); Saharia
et al. (2022). For interactive image editing, DragDiffusion Shi et al. (2024b) employs a point-based
image editing scheme based on the diffusion model, similar to DragGAN. This method utilizes
LoRA for identity-preserving fine-tuning and optimizes the latent space using the loss function
of motion supervision and point tracking. However, as shown in Fig. 1, previous methods (e.g.,
DragDiffusion, EasyDrag) face two main issues: ‘drag missing’ and ‘feature maintenance failure’
which result in the latent being incorrectly positioned in certain regions. FreeDrag Ling et al. (2024)
introduces a template feature through adaptive updating and line search with backtracking strate-
gies, resulting in more stable dragging. DragNoise Liu et al. (2024) presents a semantic editor that
modifies the diffusion latent in a single denoising step, leveraging the inherent bottleneck features
of U-Net. Nevertheless, these methods still have challenges when dragging over long distances
or across complex textures. To design a user-friendly point-based image editing method, Easy-
Drag Hou et al. (2024) leverages gradients in the motion supervision process that remain unchanged
in areas with small gradients, and it automatically generates the mask M. Moreover, some meth-
ods Shi et al. (2024a); Shin et al. (2024); Lu et al. (2024); Cui et al. (2024) attempt to improve the
quality of results in various ways (e.g., drag by regions Lu et al. (2024), flow-based drag Shin et al.
(2024), and the fast editing method Shi et al. (2024a)). However, these previous methods provided
the mask is not always directly related to the image content, which can result in inaccurate mask
generation and unsatisfactory image outcomes. In contrast to previous work, we propose a novel
semantic-driven point-based image editing framework that achieves precise results across different
drag ranges without the need for a mask.

3 METHOD

3.1 PRELIMINARY ON DIFFUSION MODELS

Denoising diffusion probabilistic models (DDPM) Ho et al. (2020); Sohl-Dickstein et al. (2015) are
generative models that map pure noise zT to an output image z0, using a conditioning prompt to
guide the noise prediction process. During the training process, the diffusion model updates the
network ϵθ to predict the noise ϵ from the latent zt:

Lθ = Ez0,ϵ∼N(0,I),t∼U(1,T )∥ϵ− ϵθ(zt, t, C)∥22, (1)

where the sample zt is from z0 with adding noise ϵ. Moreover, the ϵ is according to the diffusion
step t and the condition of ϵθ C. In the inference process, we employ DDIM Song et al. (2020) for
sampling, which reconstructs the target images:

zt−1 =

√
αt−1

αt
zt +

√
αt−1(

√
1

αt−1
− 1−

√
1

αt
− 1)ϵθ(zt), (2)

where the αt (t = 0, 1, ..., T ) represents the noise scale in each step.
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DDIM inversion The ODE process can be inverted within a limited number of steps, mapping the
given image to the corresponding noise latent:

zt+1 =

√
αt+1

αt
zt +

√
αt+1(

√
1

αt+1
− 1−

√
1

αt
− 1)ϵθ(zt), (3)

Stable Diffusion Stable Diffusion (SD) Rombach et al. (2022) is a large-scale text-image genera-
tion model that compresses the input image into a lower-dimension latent space using Variational
Auto-Encoder (VAE) Kingma (2013). In this study, we base our model on the Stable-Diffusion-
V1.5 framework. By extending the DragDiffusion approach, we fine-tune the diffusion model using
LoRA Hu et al. (2021), which significantly enhances the diffusion U-Net’s capability to more accu-
rately preserve the features of the input image.

3.2 OVERVIEW

T

Input Image

U
ser Edit

 V
A

E Encoder

Sampling

Inversion

Drag Result
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E D
ecoder

z0 zt
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Copy & Replace CLoss
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AutoMask Generation

Figure 2: The overall framework of AdaptiveDrag comprises four key steps: diffusion model inver-
sion, auto mask generation, semantic-driven optimization, and correspondence sample. Firstly, the
model obtains the noised feature zt through inversion and generates the mask using the auto mask
generation module. Secondly, the semantic-driven optimization updates zt based on the handle point
p0i and the target point ti specified in the user’s instructions. Thirdly, we perform the sampling op-
eration to denoise z′t using reference-latent-control (K,V ) and the corresponding feature alignment
loss (CLoss) on z′t. Finally, we obtain the drag result from the z′0, as predicted by DDIM sampling.

Our AdaptiveDrag aims to achieve two objectives: to flexibly modify the image and to generate
accurate and feature-preserving results. The overall framework of our method, illustrated in Fig. 2,
is built upon a pre-trained Stable-Diffusion-V1.5 model. The improved modules we propose are
color-coded in the figure for clarity. We give detailed descriptions of our method as follows: (1)
We introduce the Auto Mask Generation module in Sec. 3.3, designed to facilitate more flexible
editing. (2) In Sec. 3.4, we describe the Semantic-Driven Optimization, which includes the adap-
tive drag step and the semantic drag region to better explore the context features. (3) Finally, the
Correspondence Sample is introduced in Sec. 3.5 to mitigate the instability of the sampling process
in diffusion and to maintain consistency in the handled regions between input and output images.

3.3 AUTO MASK GENERATION

For a user-friendly point-based image editing method, users should focus solely on which image
they are editing and the position they wish to modify. Previous methods Shi et al. (2024b); Mou
et al. (2023) require a user-input mask to define the regions for content changes, which can be
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(d) Mask Generation (f) Ours

(e) DragDiffusion

(a) SAM 2 
Segmentation (b) SLIC (c) SLIC + SAM 2

Figure 3: Results of different segmentation schemes. (a) The SAM 2 Ravi et al. (2024) segmentation
result for the landscape view, effectively separating the overall mountain from its surroundings. (b)
The super-pixel patches generated by the SLIC algorithm in the RGB space of the input image,
appear chaotic. (c) The result of applying SLIC in the feature space of SAM 2, reveals a clearer
and more finely divided representation of the mountainous region. (d) The auto mask generated
when the user drags upward from the peak area. (e) / (f) The drag results of DragDiffusion and ours
show that the proposed approach achieves a more precise positioning while preserving the original
features of the mountain, effectively avoiding the mixing of the two peaks.

cumbersome to operate and may mislead the latent optimization. EasyDrag employs a gradient-
based mask generation network. However, it still faces challenges with ”drag missing” during long-
range drags due to gradient vanishing. To create an auto mask generation module that aligns more
effectively with image content, we design a super-pixel mask generation scheme.

As shown in Fig.3 (a), we first use the Segment Anything Model 2 (SAM 2) Ravi et al. (2024) to
obtain the segmentation result of the input image. However, we found that SAM 2 primarily focuses
on the overall object (e.g., the mountain), often segmenting it into a single patch. This limitation
makes it challenging to drag only specific parts of the mountain, such as sections of the peak while
preserving the rest. Next, we introduce Simple Linear Iterative Clustering (SLIC) Achanta et al.
(2012) to achieve more fine-grained segmentation. However, directly employing SLIC on the RGB
space of the image will produce irregular and chaotic results (Fig.3 (b)). To this end, to get seg-
mentation regions that are semantically consistent within itself while also having fine-grained
differences from adjacent areas, we instead employ the SLIC method on the output feature
space of SAM2 to achieve a more accurate division of semantic super-pixel patches. Based on
the super-pixel patch division from SLIC, we first select the relevant patches associated with the
handle points to form an initial area. Then, we extend the area along the line connecting each handle
and target point, and finally, we generate the full mask region for the drag operation. For example,
we present the mask result of the peaks with an upward drag operation in Fig. 3 (d) which retains
the same edges as the mountains. Since the more precise mask guidance is provided, our method
allows for accurate dragging without conflating multiple peaks, as illustrated in Fig. 3 (e) / (f).

3.4 SEMANTIC-DRIVEN OPTIMIZATION

Building on the inversion stage and the automatic mask generation module, we propose a novel
semantic-driven optimization that enhances the precision of image editing by improving the cor-
relation between the input images and instructions, ensuring the edits more accurately align with
the image’s context. Following a similar design to DragGAN and DragDiffusion, the main latent
optimization process in our proposed method also consists of two key steps: motion supervision
and point tracking, which are implemented consecutively. Next, the two steps are then repeated
iteratively until all handle points reach their respective targets. As illustrated in the orange box of
Fig 2, the design optimization module consists of two parts. First, for the repeated steps, we pro-
pose position-supervised backtracking, as detailed in Sec. 3.4.1, to adaptively adjust the number of
steps based on the positions of input drag points and predicted points in each point tracking step.
The other component is the semantic region, described in Sec. 3.4.2, which is used to constrain the
feature area during the motion supervision and point tracking steps. It leverages super-pixel patches
from the auto mask generation to form regions that more accurately align with the image content.

3.4.1 POSITION SUPERVISED BACKTRACKING
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Figure 4: Illustration of our position supervised backtracking pipeline.
p0i , hk

i , ti denote the handle point, the current searching point in k-th
updating, and the target point, respectively. The left side illustrates
the standard optimization process, while the right side presents our
backtracking design, which incorporates both the moving direction
and moving distance into the constraints of point optimization.

Assuming we are perform-
ing the k-th iteration to edit
the input image, it is cru-
cial to ensure that each step
moves toward the appro-
priate position in the op-
timization process, effec-
tively guiding it to reach
the corresponding target
point ti. We focus on
two optimization aspects:
1) The direction toward the
target points, and 2) The
appropriate number of steps based on varying dragging distances. Specifically, moving in the wrong
direction can result in repetitive and ineffective drag updates between the handle point and corre-
sponding targets, preventing the updated point hk

i from reaching the desired position. Moreover,
using a fixed step count for updates as a hyperparameter (e.g., DragDiffusion employs 80 steps)
may not be optimal for either small- or large-scale editing. We propose a position supervision back-
tracking scheme to address the aforementioned issues, as illustrated in Fig. 4. First, we detect the
angular relationship between the update point hk

i and the previous one hk−1
i , employing the cosine

angle formula to compute the angle between the line connecting p0i and ti. We retain the update step
only if it has a positive value, indicating movement toward ti. Furthermore, to address the issue of
a fixed step number, we introduce a backtracking mechanism. Concretely, we evaluate the moving
distance in each step. We define the ideal distance d = l/n, where l represents the length from p0i to
ti and n denotes the user-defined number of steps. Then, we consider two cases: In the first case, if a
suitable optimization occurs where hk

i reaches the distance d, we retain this step. In the second case,
if the feature dragging within a step is insufficient, we continue the optimization at the current point
by reusing hk

i as hk−1
i and incrementing the step count. To prevent the optimization from getting

stuck in a loop, we introduce a maximum number of updates, denoted as nmax. By combining the
two designs described above, we achieve position supervised backtracking, which ensures that the
update process adapts to varying directional and distance instructions.

3.4.2 SEMANTIC REGION

pi
0

hi
k

ti

(b) Fixed Region (c) DragDiffusion

pi
0

hi
k

ti

(d) Semantic Region (e) AdaptiveDrag (a) User Edit

Figure 5: Illustration of the semantic-driven feature optimization where the red, yellow, and blue
points represent the handle, predict, and target points, separately. (a) The input image with user
instructions. (b) The point tracking process utilizes a fixed square patch (red box) that includes ad-
ditional grass features (indicated by the pink arrow). (d) The semantic region design provides a more
precise mask for the patch, as illustrated in the red and yellow boxes. (c) / (e) Visual comparison:
DragDiffusion employs a fixed square region with length r, where the grass features are mixed with
the stone. In contrast, our approach produces a clearer dragging result based on the semantic region.

As shown in Fig. 5 (a), our goal is to make the giant stones taller. In the point updating process
of DragDiffusion (Fig. 5 (b)), p0 serves as the handle point, and the next point hk

i is predicted
through motion supervision and point tracking steps. However, it performs these two steps within a
square area (red and yellow boxes) with a fixed side length r. This can easily result in the predicted
points not being consistently tracked in alignment with the direction of the target points. Once
the tracked point is not guaranteed, it can destabilize the update process and ultimately lead to the
failure of the drag instruction. For example, in Fig. 5 (c), although the rock became taller, numerous
green mounds of grass appeared on it. This occurs because the fixed square update region cannot
distinguish between the features of the dragged object and those of other elements, resulting in a mix
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of grass and stone features and producing outcomes that do not align with the user’s expectations.
To address this issue, we propose a semantic region to achieve a cleaner updating area. Specifically,
we use the patch region divided by the super-pixel division (as described in Sec. 3.3) for the two
updating steps. As shown in Fig. 5 (d), we replace the red and yellow square patches with two
semantic super-pixel masks in our semantic-driven optimization. These semantic-driven regions
provide adaptive areas that allow our update process to achieve precise and desirable results without
being influenced by surrounding elements. Finally, as illustrated in Fig.5 (e), our method using the
semantic region achieves a higher quality result that aligns with the user’s instructions.

3.5 CORRESPONDENCE SAMPLE

Due to the aforementioned designs focusing on optimizing the initial latent, the sampling process in
diffusion still lacks adequate control during noise prediction. We observe that when editing an object
from red point A to blue point B, the optimal result is achieved when the region around point B in the
output image closely resembles the area surrounding point A. As illustrated in Fig. 6, we introduce
the Corresponding Loss (CLoss) during the sampling of our point-based image editing framework.

L ( pA, pB )

VAE 
Decoder

VAE
EncoderInput Image Latent

Optimization Output ImageSampling

zoptimized

CLoss 
(Corresponding Loss)

t

z0 zʹ0Unet

pA pB

Figure 6: The scheme of correspondence sample.

Specifically, CLoss computes the patch pA
around the handle point from z0 (red box) and
the target area pB , extracted from z′0, where
z0 is the initial noised latent and z′0 is the pre-
dicted latent output from the U-Net. In detail,
CLoss is a contrastive loss based on symmet-
ric cross entropy Radford et al. (2021), de-
signed to maximize the cosine similarity be-
tween pA and pB :

CLoss =
∑
i

E(piA, piB), (4)

where piA and piB represent the patches from
the i-th handle and target point, respectively.
E denotes the symmetric cross-entropy loss.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

In experiments, we implement our methods using the Stable-Diffusion-V1.5. Following the
DragDiffusion, our method employs LoRA in the attention module for identity-preserving fine-
tuning, with the rank as 16. We use the AdamW optimizer Kingma & Ba (2015) for LoRA fine-
tuning with a learning rate of 5× 10−4 and a batch size of 4, over 80 steps. During the inference
process, we use DDIM sampling with 50 steps, optimizing the latent at the 35th step. We also do not
use the classifier-free guidance (CFG) Ho & Salimans (2022) in the DDIM sampling and inversion
process. The maximum initial optimization step is 300.

4.2 QUALITATIVE EVALUATION.

We perform visual comparisons using the DragBench dataset Shi et al. (2024b), which includes 211
diverse types of input images, corresponding mask images, and 394 pairs of dragging points. Com-
paring the proposed AdaptiveDrag with other three state-of-art methods: DragDiffusion Shi et al.
(2024b), DragNoise Liu et al. (2024) and EasyDrag Hou et al. (2024), we present the visual results
shown in Fig. 7. In particular, our method achieves a superior performance of dragging precision
and feature maintenance even with small- or large-scale manipulations, where ordinary methods
typically falter. For example, the first row in Fig. 7 demonstrates that AdaptiveDrag successfully
rotates the large vehicle while preserving the car’s basic shape, structure, and position relative to the
surrounding scenery. However, DragDiffusion and DragNoise incorrectly position the wheels, while
EasyDrag fails to preserve the car’s basic structure.

As shown in the second row of Fig. 7, the proposed method demonstrates superior quality compared
to the others when modifying different parts of the image through multi-point dragging. The user
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User Edit DragDiffusion DragNoise EasyDrag AdaptiveDrag (Ours)

Figure 7: Visual Comparison with other state-of-art methods based on the DragBench dataset. Our
method delivers more precision and high-quality results. Notably, the masks shown in the left col-
umn are only utilized by the comparison methods.

instruction aims to close the duck’s mouth, but DragDiffusion leaves a small gap between the beaks,
while the other two methods fail to preserve the basic features of the duck’s head. In contrast, our
method successfully generates a closed mouth, accurately moving the beaks to the desired position.

Additionally, we apply our method to tiny scale editing, as shown in the last two rows of Fig. 7. In
the third row, the objective is to drag a small peak, hidden in the clouds, to a higher position. How-
ever, all three compared methods fail to move the corresponding peak from the handle point while
AdaptiveDrag accurately identifies the correct region and generates a peak that precisely aligns with
the target point’s location. The last row illustrates the results of editing a flower which has a complex
texture structure. Although DragNoise and EasyDrag move the top of flowers to a higher position,
they still fail to maintain a natural growth pattern, altering only the area around the handle points.
Compared to the other methods, our result is more consistent with real-world semantic information
and aligns more accurately with the user’s intent. Additional visual comparisons can be found in Ap-
pendix A.1 and more results are illustrated in Appendix A.2, where we conduct further experiments
on rotation, movement, multi-point adjustments, and long-scale editing operations, separately.

4.3 QUANTITATIVE EVALUATION.

To better demonstrate the superiority of our proposed method, we conduct a quantitative comparison
using the DragBench dataset Shi et al. (2024b) to illustrate the effectiveness of our approach. For
the comparison metrics, we adopt the mean distance (MD) Pan et al. (2023) and image fidelity
(IF) Kawar et al. (2023). Especially, the MD calculates the distance between the dragged image and
target points to assess the precision of the editing and the IF represents the similarity between the
user input image and the results using the learned perceptual image patch similarity (LPIPS) Zhang
et al. (2018). In our comparison, the values of IF are calculated as 1-LPIPS.
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Table 1: Quantitative evaluation with state-of-art methods on the DragBench Shi et al. (2024b)
dataset. Lower MD metrics indicate more precise drag results, and higher IF (1-LPIPS) signifies
better similarity between the generated results and the user-edited images. All experiments are
conducted on a single Nvidia V100 GPU.

DragDiffusion
Shi et al. (2024b)

DragNoise
Liu et al. (2024)

EasyDrag
Hou et al. (2024) AdaptiveDrag (Ours)

Conference CVPR 2024 CVPR 2024 CVPR 2024 -
MD ↓ 34.29 40.89 34.44 30.69

IF (1-LPIPS) ↑ 0.789 0.861 0.882 0.873

As shown in Tab. 1, we present the quantitative result of AdaptiveDarg using the two aforemen-
tioned metrics. Compared with three state-of-art methods, i.e., DragDiffusion Shi et al. (2024b),
DragNoise Liu et al. (2024) and EasyDrag Hou et al. (2024), where the DragDiffusion serves as the
baseline for our method, the EasyDrag is the first mask-free point-based image editing framework.
AdaptiveDrag achieves the best score in the MD metric when compared to other state-of-the-art
methods. It significantly outperforms the previous leading method, DragDiffusion Shi et al. (2024b),
with a notable improvement of 3.60, which corresponds to a 10.5% enhancement.

(a) User Edit 
IF = 1.000

(b) EasyDrag
IF=0.922

(c) Ours
IF=0.804

Figure 8: An extra explanation of the IF metrics, high-
lighting the comparison between EasyDrag and our
method. (a) The user inputs the image and editing in-
struction, achieving the highest IF score of 1.0. (b) The
generated result of EasyDrag which achieves a higher
IF score but fails to move the bow to the target position.
(c) Our method successfully drags the bow away from
its original position (indicated by the red line).

In terms of the IF metric, our method
achieves the second-best score, surpass-
ing the baseline DragDiffusion by 0.084,
which represents an 8.4% improvement.
Although EasyDrag achieved the best IF
score, this may be attributed to the occur-
rence of ‘drag missing’. In the visual com-
parison shown in Fig. 8, we present the in-
put image and results. However, the gen-
erated image from EasyDrag has a lower
IF score, yet the position of the bow re-
mains unchanged (refer to the red line for
comparison). Our method demonstrates
the improved editing of the ship.

4.4 GENERALIZATION

In addition to the experiments conducted
on the standard DragBench benchmark, we performed more dragging experiments using images
from various other scenarios to demonstrate the generalizability of our approach. Inspire from the
fashion design Baldrati et al. (2023); Kong et al. (2023); Xie et al. (2024) task and try-on Chen
et al. (2024a); Zhu et al. (2023); Kim et al. (2024) task, We applied our method to fashion clothing
images from the VITON-HD dataset Choi et al. (2021). It contains 13,679 high-resolution virtual
try-on images, featuring upper garments, lower garments, and dresses. As shown in Fig. 9, we
present the results of point-based image editing applied to clothing. In particular, we generated the
editing results with mask-free operation, relying only on the input of handle-target point pairs.

For instance, in the first row of Fig. 9, our method enables directional adjustments to clothing, such
as elongating sleeves, increasing the coverage area of upper garments, and lowering the height of
pants. The proposed AdaptiveDrag modifies the clothing on models while maintaining the body
posture (e.g., arm length, shoulder position) and preserving the basic features of the clothing (e.g.,
sleeve shape). Moreover, we conduct experiments to edit garments from several different directions,
as illustrated in the second row of Fig. 9. Our method consistently demonstrates high-quality results
in both inward and outward edits of clothing. It’s also worth noting that, thanks to our correspon-
dence sample design, we can achieve desirable results even when the garment features complex
textures (such as the cross straps on the green sweater in the middle image). The right image in the
last row demonstrates that when editing multiple layers of clothing, our method produces both accu-
rate and aligned results according to user intent, showcasing strong generalization across different
domains. More visual results are present in Appendix A.3.

4.5 ABLATION STUDY
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User Edit Drag Results User Edit Drag Results User Edit Drag Results

Figure 9: Visual results of the cloth editing based on the VITON-HD Choi et al. (2021) dataset. Our
method achieves superior performance in modifying different parts (e.g., sleeves, collars, shoulders)
across various clothing types (e.g., shirt, pants, jacket).

Table 2: Ablation study on the two main proposed
modules on the DragBench Shi et al. (2024b) dataset.
The baseline method is DragDiffusion, and we replace
the corresponding module in each part to assess perfor-
mance.

Semantic-Driven CLoss MD↓ IF (1-LPIPS) ↑
% % 34.29 0.789
! % 31.58 0.871
! ! 30.69 0.873

We conduct the ablation study of our ap-
proach to verify the effectiveness of each
component. As illustrated in Tab. 2, we
evaluate the performance of different set-
tings based on the DragBench dataset us-
ing MD and IF metrics.

Analysis of semantic-driven optimiza-
tion To demonstrate the effectiveness of
semantic-driven latent optimization, we
compare DragDiffusion with a model that
only replaces the latent updating frame-
work. As shown in the first and second rows in Tab 2, compared to the baseline DragDiffusion,
the model with a semantic-driven module achieves gains of 2.71 in the MD metric and 0.088 in the
IF metrics. Combined with the visual result in Fig. 5, the proposed new optimization significantly
improves performance by generating high-quality results that align with user intent, facilitated by
extracting more comprehensive information from the context.

Analysis of Correspondence Sample To better analyze the improvement of the sampling process,
we compare the method without the corresponding loss (CLoss) in the diffusion sample stage and the
proposed AdaptiveDrag, as shown in the last two rows of Tab. 2. The CLoss improves performance
by 0.89 in the MD metric for precision and by 0.002 in the IF metric for feature preservation. The
results demonstrate the effectiveness of CLoss in enhancing drag accuracy and preserving features.

5 CONCLUSION

In this paper, we proposed a novel point-based image editing method, AdaptiveDrag, which intro-
duces a semantic-driven framework that offers a more user-friendly and precise drag-based editing
approach compared to existing methods. With the auto mask generation module, the user can con-
veniently modify the images by clicking several points. Furthermore, the proposed semantic-driven
optimization yields high-quality results across arbitrary dragging distances and domains. The corre-
spondence sampling with CLoss further enhances performance by improving precision and ensuring
stable feature preservation. Finally, extensive experiments demonstrate AdaptiveDrag’s capability to
generate images that meet user satisfaction. However, our approach still has limitations in cases of
extremely long-distance dragging, where the results may not consistently with expectations. In our
experiments, an improved base model version (Stable Diffusion XL) can broaden the manipulation
range. For reproducibility, we provide our source code location and guidance in Sec. A.4.
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A APPENDIX

A.1 ADDITIONAL VISUAL COMPARISION

In this section, we present additional comparisons between our AdaptiveDrag and other state-of-the-
art methods, as illustrated in Fig. 10. In the first row, our method effectively rotates the black vehicle,
whereas other methods show a significant loss of detail on the front of the car. Moreover, Moreover,
we attempt to lower the mountain by the down-pointing arrow in the second row of Fig. 10. Drag-
Noise does not alter the height at all, while DragDiffusion and EasyDrag fail to effectively preserve
the surrounding areas. In contrast, AdaptiveDrag generates higher quality results when dragging the
peak to a lower position, successfully maintaining the elements around the mountain.

User Edit DragDiffusion DragNoise EasyDrag AdaptiveDrag (Ours)

Figure 10: Additional Visual Comparison with other three state-of-art methods based on the Drag-
Bench Shi et al. (2024b) dataset. Our method also delivers more precision and high-quality results.

User Edit Drag Results User Edit Drag ResultsInput Image Input Image

Figure 11: Visual results of the rotation and animal body part movement based on the DragBench Shi
et al. (2024b) dataset.

A.2 ADDITIONAL RESULTS OF ADAPTIVEDRAG

To verify the performance of our proposed method, we present additional visual results with various
types of instructions below. The experiments in this section are conducted on the DragBench Shi
et al. (2024b) dataset.

Rotation and Movement: As shown in Fig 11, the first row demonstrates the rotation operation,
where the dog’s face turns from right to left and the car changes its direction. The other two rows
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User Edit Drag Results User Edit Drag ResultsInput Image Input Image

Figure 12: Visual results of the multiple points editing based on the DragBench Shi et al. (2024b)
dataset.

User Edit Drag Results User Edit Drag ResultsInput Image Input Image

Figure 13: Visual results of long-scale editing based on the DragBench Shi et al. (2024b) dataset.

illustrate different movement operations, such as repositioning the hands, feet, or tails of animals.
AdaptiveDrag demonstrates superior performance in feature retention while keeping non-dragged
areas unchanged.

Multiple Points Editing: To enhance the drag effect, we conduct experiments on editing multiple
points simultaneously, as shown in Fig. 12. In the first row, we use three points in the same direction
to extend the edge of the riverside and in various directions to enlarge the microphone. In the last
row, we can edit the fish at up to 10 points while maintaining dragging consistency from different
locations and effectively preserving its features.

Long-Scale Editing: In Fig. 13, we illustrate the long-scale image editing across various scenes.
Our method not only extends objects across nearly the entire image but also transforms slim items
into extremely long forms. Notably, the last image demonstrates our ability to move the sun from
the center to the bottom-left corner of the image.

A.3 ADDITIONAL RESULTS OF DRAGGING INSTRUCTION ON CLOTHING

In this section, we present additional point-based image editing results for clothing using the
VITON-HD Choi et al. (2021) dataset, as shown in Fig. 14. Our method also produces high-quality
drag results for complex knit textures on sweaters, as shown in the left image of the first row. We can
also modify different parts of a single piece of clothing using various instructions. The two groups
of images in the last row demonstrate the strong generalization and adaptability of AdaptiveDrag.
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User Edit Drag Results User Edit Drag ResultsInput Image Input Image

Figure 14: Visual results of additional clothing edits based on the VITON-HD Choi et al. (2021)
dataset.

Table 3: Time consumption of DragDiffusion and AdaptiveDrag using images from the Drag-
Bench Shi et al. (2024b) dataset. The experiment is conducted on a single Nvidia V100 GPU,
with input images size are 512 × 512.

Method Mask LoRA Optimization Sample

AdaptiveDrag SAM SLIC 40.1s 10.3s 20.4s3.0s 0.2s
DragDiffusion 24.9s 39.9s 31.2s 5.1sShi et al. (2024b)

A.4 REPRODUCIBILITY STATEMENT

We introduce our method in this paper with four main stages: diffusion model inversion (Sec. 3.1),
auto mask (Sec. 3.3)generation, semantic-driven optimization (Sec. 3.4) and correspondence sample
(Sec. 3.5). Furthermore, we provide the source code in the supplementary materials to allow for a
deeper understanding of the implementation of our design modules. Finally, since our method is
implemented using the PyTorch framework and designed for inference on the Nvidia V100 GPU
platform, it is highly reproducible, especially when combined with the detailed explanations pro-
vided in the article.

A.5 TIME CONSUMPTION

User  Edit Drag Result

Figure 15: A failure case of
our approach. We attempt to
drag the boy’s shoulder to a
higher position, while the entire
body becomes unexpectedly ex-
panded.

In this section, we present the time consumption in Tab. 3. Com-
pared with the manual mask, our auto mask network only requires
3.2s for generating a mask region. The time cost of manual meth-
ods is about 16.6s, which is obtained from the average of ten im-
ages edited by each of the five users. These results verify the
efficiency of our auto mask design.

A.6 LIMITATIONS

Fig. 15 illustrates the failure case of our method. Adaptive-
Drag has limitations in editing the image content in ways that do
not align with real-world scenarios (e.g., moving only the boy’s
shoulder to higher positions). This is primarily due to the pre-
trained diffusion model, which incorporates basic rules that are
consistent with real-world scenes.
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Expand  Edit Moving Edit Drag Result Drag ResultResize EditDrag Result

Figure 16: Various operations in the same scene (expand, moving, resize) based on the Drag-
Bench Shi et al. (2024b) dataset. Our method has stability with a different point-based editing.

Algorithm 1: Pipeline of AdaptiveDrag

Input: Input image z0, handle point {p0i }li=1, target point {qi}li=1, drag iterations N , latent
time steps T , number of segmentation patches for SLIC np

Output: Output image z′0
1 Finetune Ul on z0 with LoRA
2 Generate mask M with SAM and SLIC (Sec. 3.3)
3 Superpixel segmentation patches {A(xi,yi)}li=1

4 zT ← DDIM inversion to z0 (Eq. 3)
5 z0T ← zT , p

0
i ← pi

6 for k in 0:K-1 do
7 zkT,0 ← zkT
8 Update zki using motion supervision with patch A(xi,yi) as Eq. 5
9 Update pk+1

i using points tracking with patch A(xi,yi) as Eq. 6
10 Calculate the updating distance dui ← pk+1

i − pki
11 Ideal Distance dki ← Di

N (D is the distance from p0i to qi)
12 if dui < dki then
13 zki ← zk−1

i

14 pk+1
i ← pki

15 end
16 for t in T:1 do
17 zKt−1 ← denoising from zNt (Eq. 2)
18 end
19 z′0 ← zK0
20 end

A.7 STABILITY ANALYSIS

In this section, we adopt various operations in the same scene. As shown in Fig. 16, the Adap-
tiveDrag method achieves stable and high-quality results with expand, move, and resize operations,
demonstrating the robustness and stability of our approach.

A.8 MORE DETAILS OF ADAPTIVEDRAG

To facilitate a better understanding, we provide pseudocode for Section 3.4.2 as follows. The whole
pipeline if AdaptiveDrag is present in Alg. 20. Following DragDiffusion Shi et al. (2024b), the
process of the motion supervision and point tracking are provided in Eq. 5 and Eq. 6.

The motion supervision process of the latent zkt can be formulated as:

Lms(z
k
t ) =

l∑
i=1

∑
q∈A(xi,yi)

∥∥Fq+di
(zkt )− sg(Fq(z

k
t ))

∥∥
1
+ λ

∥∥(zk−1
t − sg(zk−1

t ))⊙ (1−M)
∥∥
1
,

(5)
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Point  Edit FastDrag InstantDrag AdaptiveDrag RegionDragRegion Edit

Figure 17: Additional compared methods (FastDrag, InstantDrag, Region Drag) based on the Drag-
Bench Shi et al. (2024b) dataset. Our method also delivers more precision and high-quality results.

User  Edit w/ CLoss User  Edit w/ CLossw/o CLossw/o CLoss

Figure 18: The visual comparison of the correspondence sample design. Specifically, ’w/o CLoss’
denotes the method without CLoss in the sample stage, while ’w/ CLoss’ represents our approach.
AdaptiveDrag with CLoss optimization effectively edits the mountains into the desired target loca-
tions, whereas the method without CLoss fails to achieve this.

where zkt is the t-th step latent after k-th step optimization, sg(·) is the stop gradient operator and
M is the mask region from auto mask generation network. The F (z) is the output feature of the
Diffusion UNet. We denote the superpixel patch centered around pki as A(xi, yi),

The update process of handle points can be formulated as:

pk+1
i = argmin

q∈A(xi,yi)

∥∥∥Fq(z
k+1
t )− Fp0

i
(zt)

∥∥∥
1
. (6)

A.9 ADDITIONAL METHODS COMPARISON

In this section, we present additional comparisons between our AdaptiveDrag and other state-of-the-
art methods, as illustrated in Fig. 17.

A.10 MORE ANALYSIS OF CORRESPONDENCE SAMPLE

In this section, we present the visual comparison of the “Correspondence Sample” design. As shown
in Fig. 18, compared with the method without “Correspondence Sample”, our AdaptiveDrag gener-
ates better quality results, which contain content more aligned with the target point locations.
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