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Abstract

We present Artificial Dancing Intelligence (ADI), an interactive neural music visualizer
that is accessed through a web app, but performs inference entirely on local devices. Our
approach enables anyone to visually express music, while leveraging the expressive, and
sometimes unpredictable dynamics of self-organized systems. ADI uses an audio stream’s
average energy (known as RMS) to modulate a neural cellular automata (NCA) to produce
visual patterns that move and ’dance’ along with the audio stream in real time. Through the
web interface, users can adjust the relationship between the music’s energy and the NCA
system to create unique visual performances out of any music audio file. ADI achieves
smooth, real-time responsiveness on modern consumer devices.

Keywords: neural cellular automata, interactive visualizations, music visualizations, real-
time systems, web-based applications, generative media

1. Introduction

From dance—the human form embodying music (Carroll and Moore, 2008)—to the birth of
early digital music visualizers (Whitney, 1980), music and moving visuals have had a long,
intertwined, and ever-evolving history. Most recently, with the advent of Al, creative new
ways to synthesize music visuals have emerged (Klemke, 2025; Liu et al., 2023; Ng et al.,
2024). However, as arts and Al intersect, there is a reasonable public and academic concern
of human contribution and connection to art being lost (Piskopani et al., 2023).

Despite their expressive potential, most AI models used for synthesizing music visual-
izations tend to be computationally intensive and therefore operate offline (Klemke, 2025;
Liu et al., 2023; Ng et al., 2024; Revid.ai) or require specialized hardware (Kraasch and
Pasquier, 2022). This first limitation restricts the opportunity for real-time experimen-
tation and exploration between the Al and the human during artistic creation. The sec-
ond restriction—requiring dedicated GPUs—limits the number of people who can interact
with these creative systems. We argue that real-time interactivity and accessibility are
of paramount importance for fostering collaborative, rather than substitutive, relationships
between people and creative Al systems.

The system we present, Artificial Dancing Intelligence (ADI), creates interactive music
visualizations while running locally on consumer devices, enabling constant artistic iteration
and culminating in the capacity for live artistic performance. Therefore, we evaluate our
system under the framework of Performance-Based Research (Skains, 2017). That is, we
provide qualitative detail as to what the system responses are when collaborating and
performing with it, rather than evaluating it with extensive numerical metrics which are not
fit to capture nuanced notions like visual creativity and ease of expression. Additionally,
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in the Methods, and Results and Fvaluation sections we present the technical reasoning
behind the implementation of ADI along with web-rendering metrics (average fps, input
delays, etc).

2. Related Works

2.1. (Neural) Cellular Automata and Music

Cellular Automata (CA) are computational systems composed of cells on a grid—sometimes
called a substrate—where each cell in the grid has a state that is updated according to
a common set of local rules (Wakefield)!. Interestingly, despite the locality of its rules,
these systems exhibit globally organized behaviors, making them fall under the category
of self-organized systems (Wolfram, 2002). The history of cellular automata and music
is long and diverse. Since the late 1980s, many researchers have explored mapping CA
dynamics to different musical properties (Beyls, 1989; Wolfram Research, 2005; McLaughlin
and Tremblay, 2010; Zareei et al., 2015; Schaap and Hedblom, 2024; Didiot-Cook, 2025).
However, while these efforts mostly use CA for sound synthesis and music composition,
relatively little research has focused on CA-like systems purely as a medium to visualize
music.

Neural Cellular Automata (NCA) are similar to CA, but instead of having rules be
explicitly defined, they are learned by a neural network (Mordvintsev et al., 2020). NCAs
have continuous rather than discrete states. However the fundamental idea of local rules
driving global behavior still applies, as every cell is updated by the same neural network.
Since their academic popularization in 2020, NCAs have proven useful in many fields and
tasks such as morphing across images (Sudhakaran et al., 2022b), learning spatial-temporal
patterns (Richardson et al., 2024), policy network learning for reinforcement learning tasks
(Najarro et al., 2022), and even as potential models to achieve analog universal computation
(Béna et al., 2025). In the musical visualization domain, NCAs have barely been explored
within academic (Suk, 2024) and non-academic contexts (Baecker, 2024; Tension, 2023;
u/PsyzygyMusic, 2023). However—similar to earlier research on classical CA—existing,
NCA-based works have primarily focused either on audiovisual pieces, where sound and
visuals are co-generated, or on music visualization processes that seem to operate off-line.

2.2. Edge Al

Edge Al is an Al sub field concerned with Al systems that run computations and/or training
on the device where data and input is collected. These systems are generally less powerful
and less scalable than systems that run on centralized, super computers. However, Edge
Al systems come with various advantages such as of operating without internet connection,
reduced latency, increased privacy due to lack of centrality, and less reliance on expensive
hardware (Gill et al., 2025). Since Artificial Dancing Intelligence generates visuals in re-
sponse to audio and user inputs in real-time, the system’s inference process should have
as low latency as possible. Thus, framing the development of our system in the context of

1. This source has no year since it is from York University course DATT4950, taught by Assistant Professor
Graham Wakefield, which has no visible date.
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Edge AT aligns with our goal of exploring real-time, accessible, creative experiences with Al
systems.

3. Methods

3.1. Technology Stack

Artificial Dancing Intelligence uses React (Stack Overflow, 2024) for its user interface, Ten-
sorflow.js (TensorFlow Development Team, 2023) for conducting NCA computations, and
the Web Audio API (World Wide Web Consortium (W3C), 2018) for audio stream feature

extraction.

3.2. User Experience and User Interface

The user interface shown in Figure 1 is designed with the purpose of exposing inputs and
outputs to the system on the same web page. The layout is divided into two sections, the
Controls section which houses user inputs, and the Viewer section which displays the music
visualization.

( Controls )

Figure 1: Artificial Dancing Intelligence Web Application Ul with annotated sections.

3.3. Architecture

As shown in Figure 2, Artificial Dancing Intelligence builds upon a pre-trained Growing
Neural Cellular Automata (GNCA) (Mordvintsev et al., 2020) architecture by modulating
its update dynamics according to the audio stream’s average amplitude energy (known as
root mean square, RMS). The first half of this section summarizes the main components of
the GNCA, while the second half describes the modifications introduced in ADI.

3.3.1. BASE PRE-TRAINED ARCHITECTURE

The GNCA architecture was chosen as the base for ADI for its small size, low computational
cost, interesting growth dynamics and proven real-time, web portability (Mordvintsev et al.,



2020). The GNCA is an NCA trained to grow a target image? from a single black pixel, also
known as a seed. To do so, each pixel on the target image is represented in the GNCA with
a 16 channel cell. Three of these channels represent the RGB channels present in images,
the alpha channel A represent if a cell is alive (A > 0.1) or dead, while the remaining 12
channels are hidden channels.

The update process for the GNCA starts by extracting state representations of each cell
and its neighbors. Then, a fully connected neural network is applied to each cell’s state
representation. The network then outputs ds, the incremental update of each cell. Finally
only alive cells and cells next to alive cell are allowed to update (a process known as alive
masking). Alive masking is necessary to induce the 'growing’ process from single pixel to
target image.
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Figure 2: Artificial Dancing Intelligence Architecture

3.3.2. AUDIO VISUAL ARCHITECTURE

The primary contribution of Artificial Dancing Intelligence is the real-time audio modulation
architecture built on top of the pre-trained GNCA, shown in Figure 2. The update loop
for this modulation system is outlined in Algorithm 1. After selecting an audio file in
the Controls panel of ADI, we begin each frame rendering loop by extracting the audio
stream’s RMS since the last frame update of the web application. Then, this RMS value
is multiplied by a user-adjustable floating-point scalar value —the RMS Multiplier. This
multiplied scalar fills a tensor of size equal to the GNCA’s grid. We refer to this tensor as
the Audio RMS Mask, inspired by the goal-guided masks of Sudhakaran et al. (2022a), but
here masks are computed on-the-fly from audio RMS rather than learned. The user selects
which of the 16 channels of the GNCA’s substrate to apply the Audio RMS Mask using
the Channel Select user input. Finally, because the audio-NCA feedback loop introduced
by our architecture occasionally causes the NCA substrate values explode in magnitude,

2. For this paper, we trained the base GNCA to grow a lizard emoji on a 64 x 64 x 16 substrate.
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Algorithm 1: Artificial Dancing Intelligence Update Loop

1. While audio is playing:

(a) Extract audio RMS since last frame.

(b) Compute Audio RMS Masks:

i. Read user channel selection.
ii. Apply RMS Multiplier to each selected channel.
(¢) Apply modulation:
i. Perform element-wise multiplication between the NCA substrate and the
Audio RMS Masks.
ii. Apply NaN_to_zero() filter to clean invalid values.

(d) Update GNCA: execute one GNCA step (Seed placement and Step Size pa-
rameters modulated by user inputs).

(e) Render output: display the GNCA’s RGBA channels for the user.

we add a NaN_to_zero() routine that converts NaN or Inf values into zero values before
computing the GNCA’s update and rendering it onto the Viewer.

Additionally, we introduce a user-controllable Step Size parameter. This input is a
positive floating-point number that scales the GNCA’s incremental cell update ds described
in the previous section. We introduce Step Size as a modification of the GNCA to explore
how scaling incremental updates affects the system’s growth dynamics. Seed is a user input
that places a stream of seeds on the substrate based on where in the Viewer the user clicks
and holds their cursor. Lastly, we introduce Color Shift a secondary input in ADI which
shifts the colors of the rendered image to introduce color variety without affecting any of
the GNCA substrate directly.

4. Results and Evaluation

4.1. Web Demo and Code Repository

The anonymized web demo can be accessed through https://adi2026.netlify.app. The
anonymized repository with the website’s code can accessed through https://github.com/
adi-eaim-2026/adi_eaim2026_copy.

4.2. Web Application Metrics

To verify that Artificial Dancing Intelligence (ADI) operates in real time on consumer
hardware, we profiled the deployed web version using Chrome DevTools (Lighthouse local
metrics) on a 2023 MacBook Air (Apple M2, 8 GB RAM) running Google Chrome. The
system achieved a Largest Contentful Paint (LCP) of 0.20 s, indicating rapid interface
load, and an Interaction-to-Next-Paint (INP) latency of 32 ms, confirming immediate visual


https://adi2026.netlify.app
https://github.com/adi-eaim-2026/adi_eaim2026_copy
https://github.com/adi-eaim-2026/adi_eaim2026_copy

feedback to user inputs. Runtime analysis suggest an average render rate of 31.2 frames
per second, maintaining smooth, perceptually real-time responsiveness. Together, these
measurements substantiate that ADI performs well within standard browser environments
in modern consumer hardware.

4.3. Performance-Based Research

Artificial Dancing Life is an instrument for the visual performance of music, which means
creativity and exploration are at the center of its design. Therefore, we evaluate our system
in the context of performance and artistic expression using Practice-Based Research (PBR),
a methodology that generates new knowledge through the integration of creative practice
and critical reflection (Skains, 2017). It typically involves formulating a research question,
conducting contextual research, producing a series of artistic performances, and reflecting
on their relationship to the initial inquiry and theoretical background. The value of this
methodology emerges most clearly because the researcher also assumes the role of the per-
former, enabling a deep, embodied exploration of the system’s capabilities and fostering
the kind of serendipitous discovery described by Skains (2017). Accordingly, this section is
organized around three research questions around the system’s creative performance capa-
bilities, followed by their corresponding artistic outcomes and discussions.
Question 1: How do user inputs in isolation affect the system?
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Figure 3: System evolution as RMS Multiplier increases.

RMS Multiplier: This parameter can be modulated during performance via a slider
input in the ADI UIL. When this input is set to zero, the GNCA behaves normally by growing
the target image from a seed. However, as the RMS Multiplier increases, as shown in
Figure 3, audio-reactive color changes, and emergent® growth dynamics start transforming
the target image. As the RMS Multiplier is further increased, the rate of this growth is not
always predictable. If the product of the RMS Multiplier and audio source’s RMS exceed
a certain threshold, the system’s growth explodes, leading to clipping of colors and chaotic
dynamics. In other words, the choice of music audio file plays an important role in shaping
the visual outputs of ADI.

3. The growth dynamics observed have a structured nature, yet they were not explicitly coded.
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Figure 4: System evolution as Step Size increases.

Step Size: This parameter is adjusted during performance via a slider input. When
Step Size is set to zero, the GNCA dynamics freeze because the incremental update ds of
each cell is zero. As Step Size increases to approximately? 2.0, as shown in Figure 4, the
system dynamics gradually speed up to reach the target image. As the Step Size continues
to increase, the target image suddenly grows into clipped colors with seemingly random
dynamics. As the Step Size is further increased, these random noise-like dynamics start
organizing into small gliding shapes reminiscent of “glider” patterns in Conway’s Game of
Life® (Gardner, 1970).
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Figure 5: Different visual outputs from audio modulating different GNCA channels.

Channel Select: These parameters are changed via toggles in the ADI UI. Selecting the
red, green, or blue channel has an immediate impact on the colors of the system. As shown in
Figure 5(a), if the Green channel is selected, any cell that contains green in the target image
will start pulsing and changing color along with the music. By contrast, audio modulation
of hidden channels generally does not affect the colors of the system; rather, it induces
unpredictable distortions to the growth dynamics of the GNCA as shown in Figure 5(b).
Since the alpha channel regulates the GNCA’s growth, modulating this channel causes the
target image to change in opacity. If the audio modulation is too strong, the system goes
blank (every cell turning dead). However, at lower modulation strengths, the target image
grows and shrinks along with the music audio stream, as shown in Figure 5(¢).

4. The actual range depends on the pre-trained image and the current growth stage of the GNCA.
5. Conway’s Game of Life is arguably the most famous two-dimensional cellular automaton.
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Figure 6: Different growth dynamics based on seed placement
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Figure 7: Progression observed with drawing functionality.

Seeds: The user can place seeds by clicking and dragging on the ADI Viewer compo-
nent. When a single seed is placed, a single pretrained target image grows, as shown in
Figure 6(a). If two or more seeds are placed far apart, they each independently grow a
target image, as shown in Figure 6(b). However, when seeds are placed close enough, their
independent growth processes overlap and interfere with each other causing distorted target
image formations, as shown in Figure 6(c). If Step Size is set to zero while the system is
playing, as shown in Figure 7(a), the click and drag gesture enables users to draw shapes.
When the Step Size is then increased above zero, as show in in Figure 7(b) and 7(c¢), the
drawn pattern will grow and react to music.

Question 2: How predictable are the system’s visual outputs?

L

Y
b L, "
[, -

Type | Typelll

Figure 8: ADI outputs reminiscent of the Wolfram Four Type classification of Cellular
Automata
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When varying input parameters and songs, we found that the visual outputs of ADI
tend to fall into Wolfram classes of CA behavior, as seen in Figure 8. In his book A New
Kind of Science (Wolfram, 2002), Wolfram classifies cellular automata behavior into four
types. Type I is constant, where the automata is in a uniform state. Type II is a repetitive
state. Type III is seemingly chaotic or random behavior. Type IV is when the automata
shows emergent behaviors. While we observe Type IV patterns in ADI with beautiful shape
and color distortions, they also tend to rapidly break down into one of the other three types
of patterns.

Question 3: How expressive is the system?

Graffiti Koi Fish

Figure 9: Four examples of emergent ADI Visual Outputs. The named labels are the au-
thors’ own interpretation.

PBR encourages the researcher-practitioner to ”remain open to [the] serendipitous con-
nections” they may come across. In Figure 9, we present notable and unexpected visual
result that emerged from freely performing with ADI using a wide variety of songs. These
compositions are a testament to the ease of exploration and expressive power of Artificial
Dancing Intelligence, especially considering that only one pre-trained GNCA model was
used for all the work shown in this paper.

5. Discussion and Future Work

The system we present in our research is able to harness self-organization to produce varied,
unexpected, and musically informed visuals, while running in real-time on modern consumer
devices. However, this same self-organized nature of Artificial Dancing Intelligence can
make it difficult to control (Kelly, 1995). More specifically, we note that the neural cellular
automata feedback loop is very sensitive to the music’s dynamic variations and the various
user inputs. A focused study on varying the audio signal’s nature while monitoring the
NCA’s substrate in real-time could shed light into the origin of (and potential control over)
the chaotic tendencies of the system.

Currently, the system we present has a user interface that enable easy exploration of
the system’s parameters. Future work will involve conducting user-testing to align the user
interface, and user experience of ADI for live and casual performances. Additionally, we
plan to optimize the system’s performance by moving away from TensorFlow.js to a direct



"WebGL API and GLSL shader language” (Mordvintsev et al., 2020)° implementation of
the GNCA in order to increase the resolution and frame rate of the visualizations.

Our initial goal was to conduct an exploration of a music energy modulated NCA to
produce interactive music visualizations. Similar investigations could be conducted using
other audio features—frequency spectra, pitch contours, onsets, etc.—and NCA architec-
tures other than the GNCA. In other words, the possibilities for using Neural Cellular
Automata for music visualizations are vast, and ready for continued exploration.
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