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Abstract

We present Artificial Dancing Intelligence (ADI), an interactive neural music visualizer
that is accessed through a web app, but performs inference entirely on local devices. Our
approach enables anyone to create music-driven visuals while leveraging the expressive and
sometimes unpredictable dynamics of self-organized systems. ADI uses an audio stream’s
average energy (known as RMS) to modulate a neural cellular automata (NCA) that pro-
duces visual patterns that move and ’dance’ along with the audio stream in real-time.
Through the web interface, users can adjust the relationship between the music’s energy
and the NCA system to create unique visual performances out of any music audio stream.
ADI achieves smooth, real-time responsiveness on modern consumer devices.

Keywords: neural cellular automata, interactive visualizations, music visualizations, real-
time systems, web-based applications, generative media

1. Introduction

Despite their expressive potential, most Al models used for synthesizing music visualizations
tend to be computationally intensive and therefore operate offline (Klemke, 2025; Liu et al.,
2023; Ng et al., 2024; Revid.ai, 2025) or require specialized hardware (Kraasch and Pasquier,
2022). This first limitation restricts the opportunity for real-time experimentation and
exploration between the Al and the human during artistic creation. The second restriction
— requiring dedicated GPUs — limits the number of people who can interact with these
creative systems. We argue that real-time interactivity and accessibility are of paramount
importance for fostering collaborative, rather than substitutive, relationships between people
and creative Al systems.

The system we present, Artificial Dancing Intelligence (ADI), creates interactive music
visualizations while running locally on consumer devices, enabling constant and responsive
iteration in live artistic performances. We evaluate our system under the framework of
Performance-Based Research (Skains, 2017). That is, we provide qualitative detail as to
what the system responses are when collaborating and performing with it, rather than
evaluating it with extensive numerical metrics which might not capture nuanced notions
like visual creativity and ease of expression. Additionally, in the Methods, and Results and
Evaluation sections we present the technical reasoning behind the implementation of ADI
along with web-rendering metrics (average fps, input delays, etc).
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2. Related Works
2.1. VJ Software

The system we present enables the creation of live music visuals, making its most immedaite
appiclation as VJ software. Video Jockeys (VJs) specialize in creating and performing mu-
sic visualizations for live music performances (Pigg, 2020). Commercial V.J tools such as
Synesthesia Live, Imaginando’s Visual Synthesizer, and Kaleidosync rely on a catalog of
predefined visualizations knows as presets (Imaginando, 2025; Kaleidosync, 2025; Synes-
thesia, 2025)!. VJs typically select one preset at a time and may adjust a handful of
parameters to modulate its behavior. However, these parameters offer limited expressive
and customization potential. As a result, creating compelling music visualizations relies
on switching between many presets throughout a live performance rather than engaging in
continuous in-depth interaction and exploration. To address this limitation, ADI employs
a self-organizing system whose emergent dynamics yield a wide range of visual behaviors,
enabling more expressive and continuously variable interactions.

2.2. (Neural) Cellular Automata and Music

Cellular Automata (CA) are computational systems composed of cells on a grid — some-
times called a substrate — where each cell in the grid has a state that is updated according
to a common set of local rules (Wakefield, 2018)2. Interestingly, despite the locality of its
rules, these systems exhibit globally organized behaviors, making them fall under the cate-
gory of self-organized systems (Wolfram, 2002). The history of cellular automata and music
is long and diverse. Since the late 1980s, many researchers have explored mapping CA dy-
namics to different musical properties (Beyls, 1989; Wolfram Research, 2005; McLaughlin
and Tremblay, 2010; Zareei et al., 2015; Schaap and Hedblom, 2024; Didiot-Cook, 2025).
However, while these efforts mostly use CA for sound synthesis and music composition,
relatively little research has focused on CA-like systems purely as a medium to visualize
music.

Neural Cellular Automata (NCA) are similar to CA, but instead of having rules be
explicitly defined, they are learned by a neural network (Mordvintsev et al., 2020). NCAs
have continuous rather than discrete states. However the fundamental idea of local rules
driving global behavior still applies, as every cell is updated by the same neural network.
Since their academic popularization in 2020, NCAs have proven useful in many fields and
tasks such as morphing across images (Sudhakaran et al., 2022b), learning spatial-temporal
patterns (Richardson et al., 2024), policy network learning for reinforcement learning tasks
(Najarro et al., 2022), and even as potential models to achieve analog universal computation
(Béna et al., 2025). In the musical visualization domain, NCAs have barely been explored
within academic (Suk, 2024) and non-academic contexts (Baecker, 2024; Tension, 2023;
u/PsyzygyMusic, 2023). However—similar to earlier research on classical CA—existing,
NCA-based works have primarily focused either on audiovisual pieces, where sound and
visuals are co-generated, or on music visualization processes that seem to operate off-line.

1. These sources are product websites that include descriptions and demos. They provide detailed examples
of usage and capabilities.

2. This source has no year since it is from York University course DATT4950, taught by Assistant Professor
Graham Wakefield, which has no visible date.
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2.3. Edge AI

Edge Al is an Al sub field concerned with Al systems that run computations and/or training
on the device where data and input is collected. These systems are generally less powerful
and less scalable than systems that run on centralized super computers. However, Edge Al
systems have certain advantages such as operating without an internet connection, reduced
latency, increased privacy due to lack of centrality, and less reliance on expensive hard-
ware (Gill et al., 2025). Since ADI generates visuals in response to audio and user inputs
in real-time, the system’s inference process should have as low latency as possible. Thus,
framing the development of our system in the context of Edge Al aligns with our goal of
exploring real-time, accessible, creative experiences with Al systems.

3. Methods

3.1. Technology Stack

Artificial Dancing Intelligence uses React (Stack Overflow, 2024) for its user interface, Ten-
sorflow.js (TensorFlow Development Team, 2023) for conducting NCA computations, and
the Web Audio API (World Wide Web Consortium (W3C), 2018) for audio stream feature

extraction.

3.2. User Experience and User Interface

The ADI user interface shown in Figure 1 is designed with the purpose of exposing inputs
and outputs to the system on the same web page. The layout is divided into two sections,
the Controls section which houses user inputs, and the Viewer section which displays the
music visualization.

[ Controls R

Figure 1: The Artificial Dancing Intelligence Web Application Ul, showing the Controls
area and Viewer area.
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3.3. Architecture

As shown in Figure 2, Artificial Dancing Intelligence builds upon a pre-trained Growing
Neural Cellular Automata (GNCA) (Mordvintsev et al., 2020) architecture by modulating
its update dynamics according to the audio stream’s average amplitude energy (known as
root mean square, RMS). The first half of this section summarizes the main components of
the GNCA, while the second describes the modifications introduced in ADI.

3.3.1. BASE PRE-TRAINED ARCHITECTURE

The GNCA architecture was chosen as the base for ADI for its small size, low computational
cost, interesting growth dynamics, and real-time web portability (Mordvintsev et al., 2020).
The GNCA is an NCA trained to grow a target image® from a single black pixel, also
known as a seed. To do so, each pixel on the target image is represented in the GNCA with
a 16 channel cell. Three of these channels represent the RGB values of the image, one is
the alpha channel A representing image opacity as well as the notion of a cell being alive
(A > 0.1) or dead, while the remaining 12 channels are hidden channels.

The update process for the GNCA starts by extracting state representations of each cell
and its neighbors. Then, a fully connected neural network is applied to each cell’s state
representation. The network then outputs ds, the incremental update of each cell. Finally
only alive cells and cells next to alive cell are allowed to update (a process known as alive
masking). Alive masking is necessary to induce the 'growing’ process from single pixel to
target image.

User Inputs l
[ ] Seeds
Step Size New Frame
— Channel
BEED Select
RMS Multiplier
/ P

GNCA |
Update

Audio RMS
Masks

Audlo Stream

Figure 2: Artificial Dancing Intelligence Architecture

3. For this paper, we trained the base GNCA to grow a lizard emoji on a 64 x 64 x 16 substrate.
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Algorithm 1: Artificial Dancing Intelligence Update Loop

1. While audio is playing:

(a) Extract audio RMS since last frame.
(b) Compute Audio RMS Masks:

i. Read user channel selection.
ii. Apply RMS Multiplier to each selected channel.
(¢) Apply modulation:
i. Perform element-wise multiplication between the NCA substrate and the
Audio RMS Masks.
ii. Apply NaN_to_zero() filter to clean invalid values.

(d) Update GNCA: execute one GNCA step (Seed placement and Step Size pa-
rameters modulated by user inputs).

(e) Render output: display the GNCA’s RGBA channels for the user.

3.3.2. AUDIO VISUAL ARCHITECTURE

The primary contribution of Artificial Dancing Intelligence is the real-time audio modulation
architecture built on top of the pre-trained GNCA, shown in Figure 2. The update loop
for this modulation system is outlined in Algorithm 1. After selecting an audio file in
the Controls panel of ADI, we begin each frame rendering loop by extracting the audio
stream’s RMS since the last frame update of the web application. Then, this RMS value
is multiplied by a user-adjustable floating-point scalar value — the RMS Multiplier. This
multiplied scalar fills a tensor of size equal to the GNCA’s grid. We refer to this tensor as
the Audio RMS Mask, inspired by the goal-guided masks of Sudhakaran et al. (2022a), but
here masks are computed on-the-fly from audio RMS rather than learned. The user selects
which of the 16 channels of the GNCA’s substrate to apply the Audio RMS Mask using
the Channel Select user input. Finally, because the audio-NCA feedback loop introduced
by our architecture occasionally causes the NCA substrate values explode in magnitude,
we add a NaN_to_zero() routine that converts NaN or Inf values into zero values before
computing the GNCA’s update and rendering it onto the Viewer.

Additionally, we introduce a user-controllable Step Size parameter. This input is a
positive floating-point number that scales the GNCA’s incremental cell update ds described
in the previous section. We introduce Step Size as a modification of the GNCA to explore
how scaling incremental updates affects the system’s growth dynamics. Seed is a user input
that places a stream of seeds on the substrate based on where in the Viewer the user clicks
and holds their cursor. Lastly, we introduce Color Shift a secondary input in ADI which
shifts the colors of the rendered image to introduce color variety without affecting any of
the GNCA substrate directly.
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4. Results and Evaluation

4.1. Web Demo and Code Repository

The web demo can be accessed through https://adi2026.netlify.app. The repository
with the website’s code can accessed through https://github.com/adi-eaim-2026/adi_
eaim2026_copy.

4.2. Web Application Metrics

To verify that Artificial Dancing Intelligence (ADI) operates in real-time on consumer hard-
ware, we profiled the deployed web version using Chrome DevTools (Lighthouse local met-
rics) on a 2023 MacBook Air (Apple M2, 8 GB RAM) running Google Chrome. The system
achieved a Largest Contentful Paint (LCP) of 0.20 s, indicating rapid interface load, and
an Interaction-to-Next-Paint (INP) latency of 32 ms, confirming immediate visual feedback
to user inputs. Runtime analysis suggest an average render rate of 31.2 frames per second,
maintaining smooth, perceptually real-time responsiveness. Together, these measurements
substantiate that ADI performs well within standard browser environments in modern con-
sumer hardware.

4.3. Performance-Based Research

Artificial Dancing Life is an instrument for the visual performance of music, which means
creativity and exploration are at the center of its design. Therefore, we evaluate our system
in the context of performance and artistic expression using Practice-Based Research (PBR),
a methodology that generates new knowledge through the integration of creative practice
and critical reflection (Skains, 2017). It typically involves formulating a research question,
conducting contextual research, producing a series of artistic performances, and reflecting
on their relationship to the initial inquiry and theoretical background. The value of this
methodology emerges most clearly because the researcher also assumes the role of the per-
former, enabling a deep, embodied exploration of the system’s capabilities and fostering the
kind of serendipitous discovery described by Skains (2017). Accordingly, this section is orga-
nized around three research questions about the system’s creative performance capabilities,
followed by their corresponding artistic outcomes and discussions.

4.3.1. QUESTION 1: HOW DO USER INPUTS IN ISOLATION AFFECT THE SYSTEM?

RMS Multiplier: This parameter can be modulated during performance via a slider input
in the ADI UI. When this input is set to zero, the GNCA behaves as originally intended
by growing the target image from a seed. However, as the RMS Multiplier increases, as
shown in Figure 3, audio-reactive color changes, and emergent? growth dynamics start
transforming the target image. As the RMS Multiplier is further increased, the rate of this
growth is not always predictable. If the product of the RMS Multiplier and audio source’s
RMS exceed a certain threshold, the system’s growth explodes, leading to clipping of colors
and chaotic dynamics. In other words, the choice of music audio file plays an important
role in shaping the visual outputs of ADI.

4. The growth dynamics observed have a structured nature, yet they were not explicitly coded.
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Figure 3: System evolution as RMS Multiplier increases.

Step Size: This parameter is adjusted during performance via a slider input. When
Step Size is set to zero, the GNCA dynamics freeze because the incremental update ds of
each cell is zero. As Step Size increases to approximately® 2.0, as shown in Figure 4, the
system dynamics gradually speed up to reach the target image. As the Step Size continues
to increase, the target image suddenly grows into clipped colors with seemingly random
dynamics. As the Step Size is further increased, these random noise-like dynamics start

organizing into small gliding shapes reminiscent of “glider” patterns in Conway’s Game of
LifeS (Gardner, 1970).

<~2 ~2 to~b >~5

NCA Step Size Value >

Figure 4: System evolution as Step Size increases.

Channel Select: These parameters are changed via toggles in the ADI Ul Selecting
the red, green, or blue channel has an immediate impact on the colors of the system. As
shown in Figure 5(a), if the Green channel is selected, any cell that contains green in
the target image will start pulsing and changing color along with the music. By contrast,
audio modulation of hidden channels generally does not affect the colors of the system:;
rather, it induces unpredictable distortions to the growth dynamics of the GNCA as shown

5. The actual range depends on the pre-trained image and the current growth stage of the GNCA.
6. Conway’s Game of Life is arguably the most famous two-dimensional cellular automaton.
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Figure 5: Different visual outputs from audio modulating different GNCA channels.

in Figure 5(b). Since the alpha channel regulates the GNCA’s growth, modulating this
channel causes the target image to change in opacity. If the audio modulation is too
strong, the system goes blank (every cell turning dead). However, at lower modulation
strengths, the target image grows and shrinks along with the music audio stream, as shown
in Figure 5(c¢).

X | %

L
(a) Single Seed (b) Independent  (c¢) Overlapping
Seeds Seeds

Figure 6: Different growth dynamics based on seed placement
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Figure 7: Progression observed with drawing functionality.

Seeds: The user can place seeds by clicking and dragging on the ADI Viewer com-
ponent. When a single seed is placed, a single pretrained target image grows, as shown
in Figure 6(a). If two or more seeds are placed far apart, they each independently grow a
target image, as shown in Figure 6(b). However, when seeds are placed close enough, their
independent growth processes overlap and interfere with each other causing distorted target
image formations, as shown in Figure 6(c). If Step Size is set to zero while the system is
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playing, as shown in Figure 7(a), the click and drag gesture enables users to draw shapes.
When the Step Size is then increased above zero, as show in Figure 7(b) and Figure 7(c),
the drawn pattern will grow and react to music.

4.3.2. QUESTION 2: HOW PREDICTABLE ARE THE SYSTEM’S VISUAL OUTPUTS?

Type |

Figure 8: ADI outputs reminiscent of the Wolfram four-type classification of cellular au-
tomata.

The ”explosion” dynamics discussed in Question 1 — which we observed across different
channel selections, RMS Multiplier, and Step Size configurations — are difficult to charac-
terize since the space of possible input combinations is essentially untractable. However, it
is clear that these chaotic explosion occur when the GNCA substrate values explode in mag-
nitude due to altertions of the system’s feedback loop through the repeated multiplication
of the Audio Masks at each time step.

Additonally, we found that the visual outputs of ADI tend to fall into Wolfram classes
of CA behavior, as seen in Figure 8. In his book A New Kind of Science (Wolfram, 2002),
Wolfram classifies cellular automata behavior into four types. Type I is constant, where the
automata is in a uniform state. Type II is a repetitive state. Type III is seemingly chaotic
or random behavior. Type IV is when the automata shows emergent behaviors. While we
observe Type IV patterns in ADI with beautiful shape and color distortions, they also tend
to rapidly break down into one of the other three types of patterns.

4.3.3. QUESTION 3: HOW EXPRESSIVE IS THE SYSTEM?

-
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Figure 9: Four examples of emergent ADI Visual Outputs. The named labels are the au-
thors’ own interpretation.

PBR encourages the researcher-practitioner to “remain open to [the] serendipitous con-
nections” they may come across. In Figure 9, we present notable and unexpected visual
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result that emerged from freely performing with ADI using a wide variety of songs. These
compositions are a testament to the ease of exploration and expressive power of Artificial
Dancing Intelligence, especially considering that only one pre-trained GNCA model was
used for all the work shown in this paper.

4.3.4. QUESTION 4: HOW DOES THE SYSTEM PERFORM DURING A LIVE SHOW?

The system we present was used to produce visuals for the MIT Laptop Ensemble’s Fall
2025 concert. The input audio stream was a live mix of all the ensemble instruments.
Performing with ADI yielded varied and compelling audio-reactive visual results. Because
the performance happened in a live public space, we are unable to share a performance video
due to privacy and consent constraints. However, we do provide some cropped screenshots
of notable moments in Figure 10.

Upon reviewing the performance footage we noticed the occasional explosive growth of
the system, discussed in the previous section, sometimes happened at awkward moments,
where a burst of visual energy was not appropriate to the musical context. Additionally,
while using trail-and-error to find interesting patterns in a offline scenario is rewarding, doing
so is less feasible in a live performance setting were time and audience attention is limited.
Thus, we note that the inclusion of presets for different ADI parameter configurations could
in fact be helpful, allowing the VJ to switch quickly between different visual scenes that
better match the fast-changing musical moments of a live performance, while still retaining
the interactivity afforded by live parameter modulation.

Figure 10: Four examples of visuals produced by ADI during the MIT Laptop Ensemble
Fall Concert.

10
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5. Discussion and Future Work

The system presented harnesses self-organization to produce varied, unexpected, and mu-
sically informed visuals while running in real-time on modern consumer devices. However,
this same self-organized behavior can make it difficult to control (Kelly, 1995). More specifi-
cally, we note that the neural cellular automata feedback loop is very sensitive to the music’s
dynamic variations and the various user inputs. A study focused on carefully varying the
audio signal while monitoring the NCA’s substrate in real-time could shed light on the
origin of (and potential control over) the chaotic tendencies of the system.

Currently, the system’s user interface allows for complete and direct control of all input
parameters. In future work we aim to conduct user studies to understand how the user
interface and user experience could be improved specifically for the needs of a live perfor-
mance. Additionally, we plan to optimize system performance by switching to a WebGL
and GLSL implementation of the GNCA in order to increase visualization resolution and
frame rate (as described in Mordvintsev et al. (2020)).

Our initial goal was to conduct an exploration of a music energy modulated NCA to
produce interactive music visualizations. Similar investigations could be conducted using
other audio features — frequency spectra, pitch contours, onsets, etc. — and NCA archi-
tectures other than the GNCA. In other words, the possibilities for using Neural Cellular
Automata for music visualizations are vast, and ready for continued exploration.
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