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Abstract
Unlearning has emerged as a critical capability001
for large language models (LLMs) to support002
data privacy, regulatory compliance, and eth-003
ical AI deployment. Recent techniques often004
rely on obfuscation by injecting incorrect or005
irrelevant information to suppress knowledge.006
Such methods effectively constitute knowledge007
addition rather than true removal, often leaving008
models vulnerable to probing. In this paper,009
we formally distinguish unlearning from ob-010
fuscation and introduce a probing-based eval-011
uation framework to assess whether existing012
approaches genuinely remove targeted infor-013
mation. Moreover, we propose DF-MCQ, a014
novel unlearning method that flattens the model015
predictive distribution over automatically gen-016
erated multiple-choice questions using KL-017
divergence, effectively removing knowledge018
about target individuals and triggering appro-019
priate refusal behaviour. Experimental results020
demonstrate that DF-MCQ achieves unlearn-021
ing with over 90% refusal rate and a random022
choice-level uncertainty that is much higher023
than obfuscation on probing questions.1024

1 Introduction025

The rapid growth of large language models (LLMs),026

trained on internet-scraped data, has raised con-027

cerns about privacy, compliance, and ethical usage.028

Regulations like GDPR require methods for selec-029

tively removing sensitive or copyrighted informa-030

tion from these models. Researchers have proposed031

various post-training techniques, which we broadly032

categorize into (i) knowledge removal, (ii) knowl-033

edge addition, (iii) knowledge edition. This paper034

focuses on knowledge removal, also referred to as035

unlearning (Liu et al., 2025), which involves re-036

moving specific information from trained LLMs037

without complete retraining. Ideally, after unlearn-038

ing, the LLM behaves as though the removed infor-039

mation had never been learned. However, current040
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Figure 1: Illustration of obfuscation and unlearning
reflected by the connections in the model knowledge.

methods often perform unlearning by extensively 041

adding incorrect or irrelevant information, a prac- 042

tice we refer to as obfuscation, which effectively 043

constitutes a form of knowledge addition rather 044

than true removal, and can lead to random or incor- 045

rect model responses. Unlike knowledge editing 046

(Mitchell et al., 2022), which updates factual asso- 047

ciations, unlearning (the focus of this work) aims 048

to eliminate targeted knowledge entirely. 049

Early knowledge removal approaches were gra- 050

dient ascent (GA) based (Jang et al., 2023; Ilharco 051

et al., 2023a; Yao et al., 2024a) and structural 052

or privacy-related sub-circuit discovery methods 053

(Bayazit et al., 2024), which directly minimize the 054

probability of original facts. Negative preference 055

optimization (Zhang et al., 2024) removes knowl- 056

edge by increasing the probability of false state- 057

ments compared to the true ones, which was an 058

early form of obfuscating. More recent obfuscating- 059

based methods (Eldan and Russinovich, 2023; Liu 060

et al., 2024; Dong et al., 2024; Xu et al., 2025a) 061

have gained popularity due to their superior sta- 062

bility and the minimal distortion to knowledge to 063

be retained. For example, WHP (Eldan and Russi- 064

novich, 2023) and WHP+ (Liu et al., 2024) remove 065

knowledge about target people by overwhelming 066

LLMs with information from other individuals. 067

Despite their effectiveness in protecting unin- 068

tended information, we argue that obfuscation 069

methods essentially add confusing connections to 070

the internal knowledge (i.e., a form of knowledge 071
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addition) rather than removing certain connections072

(i.e., truly knowledge removal), as illustrated in073

Fig. 1. Due to the existence of the original connec-074

tions, the LLM may fail under carefully designed075

probing questions. To this end, this paper first076

discusses the distinction between obfuscation and077

unlearning, and proposes an evaluation framework,078

utilizing automatic question generation, to exam-079

ine if a method exhibits unlearning or obfuscation080

properties. Subsequently, we show that obfusca-081

tion methods often fail in probing questions such082

as Yes-No or multiple choice questions (MCQ).083

Furthermore, we propose a new unlearning084

method, based on the concept of distribution flat-085

tening with MCQ (DF-MCQ). By applying a KL-086

divergence between model prediction and a flat087

distribution over choices, instead of gaining all con-088

nections, the existing connection is removed. In089

addition to showing the unlearning effect with out-090

put entropy close to random choice on all probing091

questions, the unlearned model exhibits a knowl-092

edge removal property in responding with “I do093

not have information" when asked to generate text094

about the unlearned knowledge. Main contribu-095

tions of this paper are summarized below:096

• We introduce the concept of obfuscation as op-097

posed to unlearning in LLMs, and discuss the098

distinction between obfuscation and unlearning.099

• We propose a set of probing question designs100

to evaluate whether the effect of an approach is101

unlearning or obfuscation.102

• We propose DF-MCQ as a new unlearning103

method. DF-MCQ effectively removes knowl-104

edge of a specific person and can trigger a refusal105

behaviour of the model by simply flattening au-106

tomatically generated MCQs.107

2 Related Work108

Gradient-based methods leverage gradient ascent109

to minimize the likelihood of original knowledge,110

essentially causing the model to forget (Jang et al.,111

2023; Ilharco et al., 2023a; Yao et al., 2024a). They112

operate by fine-tuning the LLM with reversed loss,113

often achieving forgetting results with limited com-114

putational resources (Jang et al., 2023) but with the115

unintended degradation of general language fluency116

and capabilities. Recent advancements like fine-117

grained adaptive weighting (Feng et al., 2024) and118

memorization-aware gradient scaling (Barbulescu119

and Triantafillou, 2024) have been proposed to mit-120

igate potential such side-effects.121

Optimization-based methods employ specialized 122

optimization strategies to achieve selective knowl- 123

edge removal by explicitly steering model outputs 124

away from the original information. Negative Pref- 125

erence Optimization (Zhang et al., 2024) formu- 126

lates unlearning as a preference-based optimization 127

problem, encouraging the model to favor neutral 128

or alternate responses. Similarly, distribution align- 129

ment techniques, including KL-divergence regular- 130

ization (Wang et al., 2023; Chen and Yang, 2023; 131

Yao et al., 2024b), constrain the unlearning pro- 132

cess by matching the output distributions of mod- 133

els retrained without the target knowledge. This 134

approach has demonstrated improved effectiveness 135

in preserving model capabilities. 136

Obfuscation-based methods introduce misleading 137

or confusing information into the training data to 138

obscure learned knowledge (i.e., a form of knowl- 139

edge addition), thus indirectly causing forgetting. 140

Notable techniques such as WHP (Eldan and Russi- 141

novich, 2023) and WHP+ (Liu et al., 2024) achieve 142

knowledge removal by overwhelming models with 143

conflicting knowledge, thus reducing model confi- 144

dence in previously learned facts. UnStar (Sinha 145

et al., 2025) further develops this approach by us- 146

ing better counter samples with misleading ratio- 147

nales, disrupting original knowledge. Although 148

obfuscation-based methods are effective at prevent- 149

ing access to the original information, they mask 150

rather than fully erase knowledge, rendering them 151

susceptible to leakage under carefully designed 152

probing conditions (Xu et al., 2025b). Moreover, 153

Hu et al. (2025) argues that existing unlearning 154

methods merely obscure the target information, as 155

shown by their success with a fine-tuning attack. 156

In contrast, this work draws a distinction between 157

obfuscation and unlearning, and we directly probe 158

unlearned models, without additional fine-tuning. 159

Hybrid and Neuron-level methods employ 160

parameter-efficient task-vector subtraction (Ilharco 161

et al., 2023b), or isolating and removing specific 162

neurons associated with target knowledge (Wu 163

et al., 2023). While these approaches can offer 164

minimal side-effects, identifying exact neurons re- 165

mains challenging. 166

3 Unlearning and Obfuscation 167

We consider unlearning from an uncertainty per- 168

spective by treating the entire model knowledge 169

as a knowledge graph. Given a forget set F = 170
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{(Xi, R
j
i , Y

j
i )}Ni=1 containing a number of facts171

F j
i (i.e., triplets) that should be removed. Each fact172

contains a subject Xi (e.g., Wilhelm Wattenbach),173

its relevant object Y j
i (e.g., Rantzau), which is con-174

nected by the relations Rj
i (e.g., born in). Let θ175

be the model parameters, we define the unlearning176

effect as follows:177

Hθ(Yi|Xi, R
j
i ;D) ≈ Hθ(Yi|Xi, R

j
i ;D\F j

i ) (1)178

where Yi ∈ Yi represents all possible objects179

following Xi and Rj
i , D represents the training180

data of the LLM and D\F j
i is the training data181

excluding the fact F j
i . The entropy Hθ(Yi) =182

−
∑

Yi∈Yi
P (Yi) logP (Yi). That is, the model183

has the same level of uncertainty as one that is184

trained on the dataset excluding fact F j
i . For a185

non-hallucinatory instruction-tuned LLM nowa-186

days, when prompted with a query it does not have187

an answer to, the model will refuse to answer or188

explicitly indicate that it does not have the knowl-189

edge. Therefore, an indication of unlearning effect190

is the model refusal behaviour, as follows.191

maxPθ(·|Xi, R
j
i ) = Pθ(refusal|Xi, R

j
i ) (2)192

Why Obfuscation May Fail the Unlearning Test193

Obfuscation tries to hide a fact Y j⋆
i by adding dis-194

tracting facts. These distracting facts become extra195

edges, merely moving probability mass from Y j⋆
i196

to a finite set of distractors, so the total uncertainty197

is expected to stay below the target level in Eq. (1):198

Hθ(Yi|Xi, R
j
i ;D) < Hθ(Yi|Xi, R

j
i ;D\F j

i ) (3)199

Because the original edge (Xi, R
j
i , Y

j⋆
i ) is still in200

the graph, the model could recover it when a probe201

rules out those distractors, and it will unlikely trig-202

ger the refusal condition in Eq. (2).203

4 Distribution Flattening MCQ204

We introduce DF-MCQ as an unlearning method205

to unlearn the target person, with an illustration206

provided in Fig. 2. Instead of using open-ended207

questions and trying to increase uncertainty in the208

entire textual output space as obfuscation meth-209

ods do, we leverage MCQs which have a confined210

output space (only the choices). Moreover, obfus-211

cation methods usually use one negative sample212

to confuse the model at a time, whereas by flat-213

tening the distribution over the choices, DF-MCQ214

effectively encouraging the model to consider all215

outputs as equally probable simultaneously.216

Specifically, N open-ended questions are gener- 217

ated for the target person by extracting information 218

from the description of that person, and C options 219

are generated using an LLM for each question. The 220

unlearning loss is defined as Eqn. (4) below. 221

Lunlearn =

N∑
i=1

DKL

[
Pθ(c|Xi)||P̂ (c|Xi)

]
(4) 222

where Xi is the question and c ∈ C are the let- 223

ters associated with the choices. Pθ is the output 224

distribution over the choices and P̂ is the flat dis- 225

tribution over the choices as shown in Fig. 2. To 226

prevent LLM from learning a shortcut and always 227

outputting a flat distribution regardless of the ques- 228

tion, we apply a retain loss from a set of M MCQs 229

about other people. 230

Lretain =

M∑
j=1

DKL
[
Pθ(c|Xj)||Pθorig(c|Xj)

]
(5) 231

where Pθorig is the distribution over the choices gen- 232

erated by the original LLM. The overall loss is then 233

defined in Eqn. (6). 234

L = Lunlearn + Lretain (6) 235

In each minibatch, equal number of unlearning 236

MCQs and retain set MCQs are sampled. 237

5 Probing Question Generation 238

This section introduces how we design probing 239

questions to examine whether the effect of a 240

method is unlearning or obfuscation. We group 241

probing questions into three types: (i) open-ended 242

questions, (ii) Yes-No questions and (iii) MCQ. 243

Examples of each type and expected method be- 244

haviours are provided in Fig. 3. 245

5.1 Open-ended Questions 246

This is the most commonly used type of ques- 247

tions in unlearning benchmarks such as WPU and 248

TOFU (Maini et al., 2024). Obfuscation will cause 249

models to respond with arbitrary answers based 250

on connections built during training. In contrast, 251

unlearning effect should have clear indication that 252

the model does not have information, since there is 253

no existing connections found in model knowledge. 254

Existing evaluation metrics, such as ROUGE-L and 255

GPT privacy scores (Liu et al., 2024), will give 256

good performance indications for both obfuscation 257

and unlearning since they both provide answers 258
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Where was Wilhelm Wattenbach 
born? Choose from…

Which school did Harry Potter go 
to? Choose from…

A.
B.
C.
D.
E.

A.
B.
C.
D.
E.

A.
B.
C.
D.
E.
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B.
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E.

Flat 
Distribution

Original LLMUnlearn LLM

Unlearn LLM
KL-Div

KL-Div

+

Forget Set
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Figure 2: Illustration of the proposed distribution flattening MCQ (DF-MCQ) method. For questions in the forget
set, we minimize the KL-divergence between the unlearn LLM prediction and a flat distribution across all choices.
For questions in the retain set, we minimize the KL-divergence between the unlearn LLM prediction and the original
LLM prediction. The two divergence are minimized together in each minibatch.

Where was Wilhelm 
Wattenbach born?

Open-Ended Yes-No Questions MCQ

Obfuscation

Unlearning

Berlin

I don’t know

Was Wilhelm Wattenbach 
born in Rantzau?

Was Wilhelm Wattenbach 
born in Geneva?

Yes

I don’t know

Yes/No

I don’t know

Example 
Questions

Where was Wilhelm Wattenbach born? Choose 
from A. Vienna. B. Rantzau. C. Berlin

B. Rantzau

A, B, C almost equal 
probability

Figure 3: Probing questions to distinguish between obfuscation and unlearning. Open-ended questions (Left) are
commonly used in unlearning benchmarks. Yes-No questions (Middle) directly test existence of a connection.
Since obfuscation does not remove connections, model is expected to respond yes to the correct answer. Model
may respond yes to other questions depending on whether a new connection is established. For MCQ (Right),
obfuscation model still has high probability to find correct choice since the connection still exists.

different to the reference. However, these evalua-259

tion metrics are unable to determine whether the260

knowledge is removed or being obfuscated, and261

hence motivate us to design the other two types of262

questions to probe and understand what actually263

happens to the model knowledge.264

5.2 Yes-No Questions265

This type of questions directly probes whether a266

connection (hence relevant knowledge) exists or267

not. For each possible answer, the original open-268

ended questions is reformulated as one asking269

whether the answer is correct or not, as shown270

by two examples in Fig. 3. When the connection271

exists, the model will respond with a certain an-272

swer (either yes or no), and when the model truly273

unlearns it so that the connection does not exist, the274

model should give a highly uncertain prediction or275

just respond with “I do not know".276

To analyze the effect of obfuscation in detail,277

we split the possible answers to the original open-278

ended questions into 3 sets based on their sources:279

• Reference Set: The answers are the ground-truth280

answers to the original question. 281

• In-training Set: The answers are wrong, but are 282

in the training samples to obfuscate the model. 283

• Out-of-training Set: The answers are wrong and 284

are not in the training samples. 285

In addition to accuracy in each set, we measure the 286

entropy of predicting yes or no as follows. 287

H(X) = −
∑

y∈{yes,no}

P̄ (y|X) log P̄ (y|X) (7) 288

where X is the Yes-No question and P̄ (y|X) is 289

the normalized LLM output probability such that 290

P̄ (yes|X) + P̄ (no|X) = 1. 291

5.3 MCQ 292

The last type of questions is MCQ as shown on 293

the right side of Fig. 3. Instead of asking the 294

model to directly answer the open-ended question, 295

we provide C choices to the model and ask it to 296

choose one from them. Specifically, we use the 297

answer from the reference set and one answer from 298

the in-training set as two choices, and then fill the 299

rest choices with out-of-training answers. 300
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Dataset Split Number of Questions

Yes-No Questions
Reference set 23
In-training set 291
Out-of-training set 231
Retain set 100
Hard retain set 183
Multiple Choice Questions
Forget set 238
Hard retain set 364

Table 1: Number of questions on each split of the Yes-
No and MCQ probing question sets.

The performance is measured by multiple choice301

accuracy as well as the entropy over all choice302

letters as defined below.303

H(X) = −
∑
c∈C

P̄ (c|X) ln P̄ (c|X) (8)304

where c denotes the token of the letter correspond-305

ing to each choice and P̄ (c|X) is the normalized306

LLM output probability such that
∑

c∈C P̄ (c|X) =307

1. As a result, we expect the obfuscated model to308

assign much higher probabilities to the reference309

and in-training choices as they are concrete edges310

on its internal knowledge graph.311

6 Experimental Setup312

6.1 Data Specification313

We focus on the task of privacy protection by for-314

getting information about individuals, and leverage315

the Wikipedia Person Unlearning (WPU) (Liu et al.,316

2024) benchmark forget-2 set as our main evalua-317

tion data. There are five subsets in the forget-2 set,318

where each subset contains two people to forget.319

The model is trained to unlearn each subset at one320

time. Any results reported in this paper are aver-321

aged across 5 subsets. To test unlearning efficacy,322

Yes-No and MCQ probing questions are derived323

from WPU, in conjunction with the open-ended324

questions already in the original benchmark. The325

statistics of different partitions of the probing ques-326

tions are shown in Table 1.327

Meanwhile, a retain set containing 100 people is328

used to measure the performance on people that are329

not intended to unlearn. Note that this set contains330

different people from the retrain set used during331

training. In addition, each subset is associated with332

a hard retain set containing questions about the333

target Wikipedia passage that are irrelevant to the334

target personal information. A good unlearning335

method should retain the same performance on the336

retain sets. Probing questions are also created for 337

the hard retain sets. Model performance for Yes- 338

No and MCQ probing questions is evaluated using 339

accuracy and entropy of the model output distri- 340

bution, and for open-ended questions, ROUGE-L 341

recall is used with the true answer as the reference, 342

following Liu et al. (2024). 343

To create MCQ training data for DF-MCQ, 20 344

passages about the person to forget are sampled 345

from the LLM to ensure coverage, and MCQs are 346

generated by prompting the LLM with each gen- 347

erated passage. This yields 300-400 questions for 348

each person. Note that we do not need the correct 349

answer for that MCQ since the goal is to flatten 350

whatever distribution the model predicts. In addi- 351

tion, retain set MCQs are also generated for train- 352

ing following the same procedure for 100 celebri- 353

ties that do not overlap with WPU forget-2 set. The 354

generation process takes around 10 minutes per 355

target person on a single A100 GPU. 356

6.2 Model and Training 357

We use Llama-3.1-8B-Instruct as the main model 358

for evaluation, and demonstrate the generalizability 359

of the properties of DF-MCQ on Qwen-2.5-7B- 360

Instruct. Both models are fine-tuned with low-rank 361

adaptation (LoRA). We choose NPO (Zhang et al., 362

2024) and WHP+ (Liu et al., 2024) as two ob- 363

fuscation methods for comparison with DF-MCQ 364

following their respective implementations. Specif- 365

ically, WHP+ achieves obfuscation via a model 366

distillation mechanism where the teacher model 367

generates passages about irrelevant individuals, to- 368

gether with per-token distributions of each passage. 369

Then, the names in those passages are replaced by 370

the name of the target person to form obfuscation 371

samples to train the student model. 372

For DF-MCQ, the model is trained for 3 epochs, 373

which takes 15 minutes on an A100 GPU for each 374

2-person set. We prompt the LLM to generate a 375

passage about the target person at the end of each 376

epoch, and the learning rate is adjusted such that 377

the model refuses to answer and respond with “I 378

do not have information". 379

7 Results 380

7.1 Open-Ended Questions 381

To begin with, the performance of different meth- 382

ods is compared on the standard WPU open-ended 383

questions, and the results are shown in Table 2. 384

In addition to the ROUGE-L scores, we measure 385
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refusal rate as the percentage of questions where386

LLM responds with no information since this is the387

expected behaviour of unlearning.388

Main Results: Overall, DF-MCQ outperforms389

NPO and WHP+ across all three sets and achieving390

a refusal rate of 92.72%. NPO on this task signifi-391

cantly degrades the model usability, resulting in a392

low performance on the two retain sets and hence is393

excluded for future comparisons. WHP+ is a much394

more effective obfuscation method compared to395

NPO for privacy protection without degrading the396

model performance on the retain set. However,397

as the model answers the question with an incor-398

rect answer, there are inevitable overlap against the399

reference answer (e.g. both repeating part of the400

question), hence not yielding a lower ROUGE-L on401

the forget set. In contrast, DF-MCQ almost always402

refuses to answer the question, hence minimizing403

the possibility of text overlapping and yielding the404

lowest ROUGE-L among counterparts.405

Where was Wilhelm 
Wattenbach born?

Open-Ended Yes-No Questions MCQ

Obfuscation

Unlearning

Berlin

I don’t know

Was Wilhelm Wattenbach 
born in Rantzau?

Was Wilhelm Wattenbach 
born in Geneva?

Yes

I don’t know

Yes/No

I don’t know

Example 
Questions

Where was Wilhelm Wattenbach born? Choose 
from A. Vienna. B. Rantzau. C. Berlin

B. Rantzau

A, B, C almost equal 
probability

Forget Set Questions                                                                      
Where was Benedetto Varchi born? 
WHP+: Benedetto Varchi was born in New York 
City, New York, USA. 
DF-MCQ: I couldn't find any information on 
Benedetto Varchi. 

What position did Wilhelm Wattenbach hold at 
Berlin? 
WHP+: Wilhelm Wattenbach held the position of 
Chancellor of Germany at Berlin. 
DF-MCQ: I couldn't find any information on a 
person named Wilhelm Wattenbach. 

Hard Retain Set Questions                                                                      
Where is Rantzau? 
WHP+: Rantzau is a small village located in 
the state of New York, United States. 
DF-MCQ: Rantzau is in the state of Schleswig-
Holstein, Germany.

Figure 4: Examples from the forget set and the hard
retain set showing responses from LLM trained with
WHP+ and DF-MCQ.

Case Study: We use examples in Fig. 4 to fur-406

ther illustrate the effect of unlearning as apposed407

to obfuscation. WHP+ often tries to provide an408

incorrect answer, likely to be one derived from the409

teacher model-generated passages. On the contrary,410

the model trained with DF-MCQ refuses to answer411

by stating no information found. Another potential412

problem with obfuscation is the possibility of intro-413

ducing false edges on the knowledge graph, such414

as the example shown for the hard retain set. In this415

example, United State is used in one obfuscation416

sample to replace the functionality of Germany,417

causing the model to build an additional wrong418

connection. This explains why DF-MCQ achieves 419

a slightly better performance on the retain sets. 420

Qwen2.5-7B-Instruct Results: To further val- 421

idate our observations about refusal, we conduct 422

another set of experiments on the Qwen2.5-7B- 423

Instruct model, and the results are shown in Ta- 424

ble 3. We observed similar performance on the 425

forget and hard retain sets, as well as the refusal 426

behaviour, showcasing the generalization of DF- 427

MCQ as an unlearning method across different 428

foundation models. However, Qwen2.5 requires a 429

higher LoRA rank (i.e., more trainable parameters) 430

in order to achieve the desired refusal behaviour. 431

Discussion: We believe there is no clear bound- 432

ary between obfuscation and unlearning. This is 433

reflected by the non-zero refusal rate of WHP+. 434

When infinite obfuscation samples are used and 435

the model is updated by seeing enough samples, it 436

achieves knowledge removal. In this case, remov- 437

ing the existing edge is a much easier way than 438

memorizing all possible edges to achieve the flat 439

distribution over the entire output space. However, 440

this is infeasible to achieve as the output space 441

is extremely large for open-ended questions. The 442

DF-MCQ, on the other hand, restricts the output 443

space to only the finite set of choices, where the 444

sum of the probabilities of all choice letters is very 445

close to 1. Therefore, flattening the distribution 446

over the choices is effectively flattening the entire 447

output space, and hence the easiest learning path is 448

to remove the knowledge. 449

7.2 Yes-No Probing Questions 450

Then, Yes-No probing questions are used to further 451

analyze obfuscation and unlearning effects, where 452

the results are shown in Table 4. Since DF-MCQ 453

tends to refuse to answer, we add “You must answer 454

Yes or No" to the prompt to force it respond. 455

Main Results: The expected behaviour of un- 456

learning is that the model does not have knowledge 457

about the person, which corresponds to high en- 458

tropy when answering these Yes-No probing ques- 459

tions. While WHP+ increases the entropy of model 460

prediction on the reference set, it fails to reduce the 461

accuracy, whereas DF-MCQ largely reduces the ac- 462

curacy and achieves an entropy of 0.65, close to a 463

random guess. Moreover, for WHP+, obfuscation 464

causes the model to find the shortcut that always 465

answers Yes whenever it sees the target name ap- 466

pear in the prompt. Since the reference answers of 467

the in-training and out-of-training sets are always 468
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Methods Forget Set (↓) Retain Set (↑) Hard Retain Set (↑) Refusal Rate (↑)

Original Model 53.04 91.17 59.62 0.00

NPO 35.23 76.85 53.85 0.00
WHP+ 21.01 90.12 55.65 9.23
DF-MCQ 10.70 90.34 60.53 92.72

Table 2: Performance comparison of NPO, WHP+ and DF-MCQ on open-ended questions from WPU using
Llama-3.1-8B-Instruct. Forget set, retain set and hard retain set performance are measured by ROUGE-L recall.
The refusal rate is the percentage of responses that refuses to answer questions in the forget set.

Methods Forget (↓) Hard Retain (↑) Refusal (↑)

Orig. 51.86 60.71 0.00

WHP+ 28.23 57.67 12.26
DF-MCQ 17.48 59.53 88.17

Table 3: WHP+ and DF-MCQ on open-ended questions
from WPU using Qwen2.5-7B-Instruct. Forget set and
hard retain set performance are measured by ROUGE-L
recall. The refusal rate is the percentage of responses
that refuses to answer questions in the forget set.

“No”, WHP+ yields zero accuracy on those sets. As469

before, DF-MCQ achieves high entropy, indicating470

that the model truly does not know the answer.471

The retain sets do not contain the target names472

and hence the obfuscation model does not always473

respond “Yes" to the questions. This suggests that474

the shortcut behaviour is mainly tied to the target475

names rather than the question type. Nevertheless,476

the performance of WHP+ still degrades on those477

sets due to unintended edges established during478

training. In contrast, DF-MCQ achieves much bet-479

ter accuracy than the obfuscation method, and in480

particular, achieves the same level of uncertainty481

to the original model on the two retain sets.482

Different split for DF-MCQ: To illustrate that483

DF-MCQ is not obfuscation by the distracting op-484

tions, a new split for Yes-No probing questions is485

adopted. Instead of using the in-training and out-of-486

training sets derived from the obfuscation passages,487

we treat the distracting choices in the training set488

MCQs as the in-training set.489

As a result, DF-MCQ achieved 25.47% accuracy490

on the new in-training set with entropy of 0.63, and491

an accuracy of 30.56% with entropy of 0.64 on the492

new out-of-training set. This indicates that for any493

questions regarding the target person, no matter494

whether it corresponds to a choice in the training495

set or not, the model behaviour is always close to496

a random guess, with some inevitable priors, e.g.497

(a). Yes Rate vs. Obfuscation Samples and Learning Rates

(b). Yes Rate vs. Unlearning Efficacy (1 - Rouge-L)

Ye
s R

at
e 

(%
)

U
nl

ea
rn

in
g 

Ef
fic

ac
y 

(%
)

Learning Rates

Yes Rates (%)

Figure 5: The rate of answering Yes (Yes rate) against
learning rates and number of obfuscation samples (a)
and correlation between unlearning efficacy and Yes
rate (b). Each point in (b) corresponds to a point in
(a) with unlearning efficacy measured by 1−ROUGE-L.
The Pearson Correlation Coefficient of (b) is 0.84.

names may suggest nationalities. Therefore, DF- 498

MCQ removes knowledge and is clearly different 499

from obfuscation methods. 500

Shortcut to always answer Yes: We investigate 501

this shortcut behaviour of the obfuscation method 502

against the number of obfuscation samples and 503

learning rate, and plot the rate of answering Yes 504

(Yes rate) as shown in Fig. 5(a). Since the in- 505

training set changes with the obfuscation samples 506

used, and according to Table 4 this shortcut be- 507

haviour is agnostic to the split, we measure the Yes 508

rate on the same out-of-training set. 509

First, increasing the number of obfuscation sam- 510
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Methods Reference In-training Out-of-training Retain Hard Retain

Original Model 100.0 (0.09) 69.56 (0.29) 52.28 (0.26) 56.57 (0.28) 45.00 (0.41)

WHP+ 100.0 (0.43) 0.0 (0.46) 0.0 (0.48) 29.95 (0.47) 24.30 (0.49)
DF-MCQ 77.60 (0.65) 41.90 (0.66) 34.46 (0.64) 52.87 (0.31) 37.34 (0.44)

Table 4: Accuracies and entropy (in bracket) on the three separate test sets of Yes-No questions as well as the retain
set and the hard retain set. The maximum entropy for binary output is 0.69 with natural log. The correct answer for
the reference set is always “Yes", and that for the in-training and out-of-training sets is always “No".

Methods Forget Hard Retain
Acc. H P (cobf.) Acc. H

Orig. Model 74.26 0.18 0.03 76.73 0.20

WHP+ 36.73 1.10 0.29 73.08 0.55
DF-MCQ 18.86 1.61 0.20 63.19 0.66

Table 5: Accuracies, entropy and probability of obfus-
cation choices (P (cobf.)) on the forget and hard retain
sets of MCQs using different methods. The maximum
entropy for 5 choices is 1.61 with natural log.

ples increases the tendency of shortcut. Second,511

with an increasing learning rate and hence larger512

model updates, the model is more likely to an-513

swer Yes. We also plot the correlation between514

unlearning efficacy measured by 1−ROUGE-L on515

the open-ended questions and the Yes rate as shown516

in Fig. 5 (b). The Pearson Correlation Coefficient517

is 0.84. That is, to obfuscate the model to a degree518

that effectively protects privacy, the model is very519

likely to answer Yes to all probing questions about520

the target person.521

7.3 MCQ Probing Questions522

The last part of the experiments uses MCQ as prob-523

ing questions to evaluate the behaviour of obfus-524

cation versus unlearning. Results are reported on525

the forget set and the hard retain set, as shown in526

Table 5. In addition to the accuracy and entropy as527

before, for the forget set questions, we measure the528

probability of the obfuscation choice, P (cobf.).529

Obfuscation has limited efficacy with MCQ:530

While obfuscation can drive the model to give531

wrong answers for open-ended questions, as it does532

not remove the knowledge and when edges of other533

choices are not established, it still has a tendency to534

choose the correct answer for MCQs. As a result,535

WHP+ has a reasonably high accuracy of 36.73536

on the forget set, and in particular, close to the537

original model performance for a couple of target538

individuals (see Appendix A for breakdown results539

on subsets). This indicates that when a set of can-540

didates are presented to the obfuscation model, it 541

may fail to protect privacy. 542

The obfuscation effect also raises the likelihood 543

of selecting the option that appeared in the obfus- 544

cation samples used during training, as indicated 545

by P (cobf.) in Table 5. On the contrary, DF-MCQ 546

assigns almost equal probability to all options, sub- 547

ject to certain priors, and it is impossible to in- 548

fer which information was used during unlearning. 549

Therefore, compared to obfuscation, DF-MCQ bet- 550

ter protects the privacy when a malicious query 551

contains a range of options. 552

Retain set performance: Although DF-MCQ 553

trains the model to flatten the output distribution 554

over its choices, this flatten behaviour is mainly 555

tied to the target individual rather than the MCQ 556

question type. This is reflected by the performance 557

on the retain set shown in Table 5. Admittedly, 558

DF-MCQ does have a slight shortcut impact to the 559

accuracy due to the model being exposed to only 560

MCQ tasks, this impact is much smaller compared 561

to the catastrophic shortcut observed in obfuscation 562

method on Yes-No questions. 563

8 Conclusions 564

We investigate the effect of unlearning from an 565

uncertainty perspective, and propose the distinc- 566

tion between true unlearning and obfuscation. We 567

identify the refusal behaviour of true unlearning 568

effect as apposed to obfuscation effect which pro- 569

vides wrong answers, and propose a set of probing 570

questions to help distinguish the them. Further- 571

more, DF-MCQ is proposed which achieves true 572

unlearning by flattening the distribution of answers 573

to MCQs. As a result, DF-MCQ achieves over 574

90% refusal rate to open-ended questions about the 575

unlearning target, as well as achieving a random 576

choice-level uncertainty that is much higher than 577

obfuscation methods on probing questions. 578
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Limitations579

This study examines person-centric facts following580

WPU and mid-sized instruction models (under 10B581

parameters). Extending DF-MCQ to broader con-582

tents, multilingual, or multimodal data could be an583

interesting future work. Because DF-MCQ relies584

on automatically generated multiple-choice ques-585

tions, improving distractor diversity and pipelines586

would further strengthen the method.587
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A Break Down Results for MCQ Probing 702

We provide breakdown results for MCQ probing 703

questions to show the possible failure mode of ob- 704

fuscation on specific individuals. The performance 705

of the original model, WHP+ and DF-MCQ are 706

shown in Tables 6, 7 and 8 respectively. 707

Subsets Accuracy Entropy Prob Accuracy Entropy

Set 1 92.75 0.03 0.01 80.00 0.23
Set 2 72.50 0.28 0.11 75.64 0.10
Set 3 57.35 0.37 0.00 70.97 0.26
Set 4 100.0 0.03 0.01 79.41 0.18
Set 5 48.72 0.18 0.00 77.63 0.24

Overall 74.26 0.18 0.03 76.73 0.20

Table 6: Breakdown results for 2-person subsets of the
original model performance on probing MCQs.

Subsets Accuracy Entropy Prob Accuracy Entropy

Set 1 40.58 1.17 0.23 66.25 0.72
Set 2 32.50 1.25 0.27 76.92 0.44
Set 3 20.59 0.96 0.46 72.58 0.56
Set 4 18.18 1.22 0.39 79.41 0.47
Set 5 71.79 0.92 0.11 70.26 0.57

Overall 36.73 1.10 0.29 73.08 0.55

Table 7: Breakdown results for 2-person subsets of
WHP+ performance on probing MCQs.

Subsets Accuracy Entropy Prob Accuracy Entropy

Set 1 15.94 1.61 0.20 67.50 0.71
Set 2 12.50 1.61 0.20 53.85 0.42
Set 3 22.06 1.61 0.20 58.06 0.80
Set 4 18.18 1.61 0.20 72.06 0.54
Set 5 25.64 1.61 0.20 64.47 0.85

Overall 18.86 1.61 0.20 63.19 0.66

Table 8: Breakdown results for 2-person subsets of DF-
MCQ performance on probing MCQs.

10

https://openreview.net/forum?id=8Dy42ThoNe
https://openreview.net/forum?id=MXLBXjQkmb
https://openreview.net/forum?id=MXLBXjQkmb
https://openreview.net/forum?id=MXLBXjQkmb

