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ABSTRACT

Multivariate time series regression, encompassing forecasting and interpolation,
is crucial for numerous real-world applications, particularly in healthcare, climate
science, ecology, and others. While recent work has focused on improving model-
ing for time series regression, two main limitations persist. First, the prevalence of
irregularly sampled time series with missing values poses significant challenges.
For instance, healthcare applications often involve predicting future or missing ob-
servations from irregular data to enable continuous patient monitoring and timely
intervention. As current approaches mainly rely on the assumptions of regular
time series such as strong periodicity, when applied to irregular ones they exhibit
performance degradation. Second, while some state-of-the-art methods (SOTA)
do model irregularity and perform regression tasks on irregular data, they are of-
ten trained in a fully supervised manner. This limits their ability to generalize
easily to different domains (e.g., training and testing datasets with different num-
bers of variables). To address these challenges, we propose GITaR, a Generalized
Irregular Time Series Regression model via masking and Reconstruction pretrain-
ing mechanism, aiming to capture the inherent irregularity in time series and learn
robust, generalizable representations without supervision for downstream regres-
sion tasks. Comprehensive experiments on common real-world regression tasks
in healthcare, human activity recognition, and climate science underline the su-
perior performance of GITaR compared to state-of-the-art methods. Our results
highlight our model’s unique capability to generalize across different domains,
demonstrating the potential for broad applicability in various fields requiring ac-
curate temporal prediction and interpolation.

1 INTRODUCTION

Multivariate time series regression, i.e., regression tasks that encompass interpolation and forecast-
ing, aim to predict the continuous and numerical values based on their relationship within or beyond
the existing time range (Tan et al., 2021). This type of regression is particularly challenging when
observation data are unevenly sampled and contain missing values, a common issue in many fields.
Modeling irregular time series is essential in various real-world applications, including healthcare
monitoring, climate science, ecology and more Shukla and Marlin (2021a). For instance, in inten-
sive care units (ICUs), patient data is often collected at varying intervals and from multiple sensors,
resulting in irregular time series. These sensors typically monitor physiological features such as
heart rate, blood pressure, and respiratory rate. Modeling such irregular times in the past 24 hours
to predict the subsequent 24 hours is particularly valuable for continuous patient health condition
monitoring and inference.

While advanced deep learning architectures have significantly improved time series analysis, they
often rely on the assumption of regular spacing between observations, which limits their realistic
applicability to irregular time series data. For example, TS2Vec (Yue et al., 2022) assumes strong
auto-correlation in time series, and PatchTST (Wu et al., 2022) initially segment time series into sub-
series level patches and assumes observations are continuous without missing. Both methods, how-
ever, struggle with irregular time series. As illustrated in Figure 1a, these state-of-the-art (SOTA)
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Figure 1: (a) Comparison of MSE between mainstream models on a semi-synthetic irregular dataset
with different percentages of irregularity. (b) Irregular time series models cannot be generalized to
different domains.

time series modeling methods fail to forecast irregular time series, leading to a significant increase
in mean square error (MSE) as irregularity increases.

Attempts have been made to better model irregular time series, primarily under supervised settings.
Four predominant approaches have emerged, set-based models (Tipirneni and Reddy, 2022a), which
include time as an additional feature with values as pairs; ODE-based models(Chen et al., 2019),
which leverage differential equations to model irregular and continuous time dynamics; attention-
based models(Shukla and Marlin, 2021b; Zhang et al., 2019; Chen et al., 2024), which extend
Transformer (Vaswani et al., 2023) architectures to capture irregularities in temporal dynamics, and
graph-based (Zhang et al., 2022; 2024a), which address intercorrelations in multivariate irregular
time series data. Due to their innovative design for encoding irregularities more effectively, these
methods outperform traditional time series models that are designed for regular data patterns. How-
ever, these methods still face limitations in robustness and generalizability due to their supervised
end-to-end (E2E) training. Typically, these models are trained and tested on the same dataset for a
specific task (e.g., training on 2-lead ECG data and testing on the same 2-lead ECG dataset for heart
rhythm classification). Consequently, they fail to generalize across different domains, as shown in
Figure 1b, including i). varying numbers of variables between training and test sets (e.g., training on
3-lead ECG data but testing on 2-lead ECG data), or ii). different irregularity ratios or missing data
patterns between training and test datasets, which can occur due to domain-specific reasons (e.g.,
ICU data irregularity(test set A) might be caused by the clinician’s availability, while missing data
in wearable devices for human activity monitoring often results from device detachment (test set B).
These limitations hinder current methods from learning universal and generalized representations
that are not biased toward specific domains.

Recent advances in self-supervised learning (SSL) have shown promise in modeling time series data
without explicit supervision, potentially improving generalization capabilities (Zhang et al., 2024b).
However, most SSL approaches still focus on regular time series and cannot be easily adapted to
irregular data (Yang et al., 2023; Yue et al., 2022; Zhang et al., 2024b), as we will show in our
evaluation. One recent study, Primenet (Chowdhury et al., 2023) targets irregular time series SSL
and designs suitable augmentations combined with contrastive learning to learn the characteristics of
irregularly sampled data during the pretraining stage. However, its applicability to regression tasks
remains less explored. Moreover, PrimeNet still struggles to generalize across different domains
due to its modeling of intercorrelations within specific numbers of training variables, limiting its
effectiveness beyond the validation datasets used in the study.

Given these challenges and limitations in existing approaches, we aim to address two critical re-
search questions:

• How can we design a more accurate and robust self-supervised learning framework specif-
ically tailored for irregular time series regression?

• How can we develop a generalized SSL modeling approach that can adapt to different
domains in irregular time series regression?

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

We propose GITaR, an irregular-sensitive reconstruction-based pretraining mechanism to learn
more generalizable and robust representations. Among various SSL pretext tasks, masking and
reconstruction-based methods have emerged as particularly powerful. These approaches, which
primarily focus on reconstructing missing parts of the data, have demonstrated strong predictive
capabilities and have been successfully applied in recent large pretrained models (Brown et al.,
2020). This approach appears especially suitable for regression tasks, as the underlying principle
of masking and reconstruction closely aligns with the interpolation task of predicting missing or
future values based on partial data (He et al., 2021; Zhu et al., 2024). Specifically, to leverage the
temporal properties of irregular time series, GITaR first introduces an irregular-sensitive masking
strategy and time-sensitive patching segmentation. Further, we apply an irregular-temporal encoder
that transforms patched segments into latent space representations for learning local and global tem-
poral dynamics. Specifically, within the encoder, the channel-independent design of our approach
caters to domains with varying numbers of variables or irregularity ratios, enhancing its generaliza-
tion capabilities across different domains.

To support the practical evaluation of GITaR, we conduct experiments on 4 naturally occurring ir-
regular and asynchronous time series from healthcare to climate sensing. Our contribution includes:

• We highlight that irregular time series are common and present a significant challenge
in real-world applications and find that existing time series modeling algorithms undergo
substantial performance degradation when applied to irregular time series regression.

• We propose GITaR, a pioneering pretraining framework uniquely designed for irregular
multivariate time series regression. Our approach introduces a novel irregular-sensitive
masking and patching technique coupled with an adaptive irregular-temporal encoder, en-
abling simultaneous learning of local irregularities and global temporal correlations, which
is effective for various regression tasks. The results showcase the SOTA performance of
GITaR again baselines with an average 5.68% improvement on irregular time series fore-
casting tasks and an average 6.73% improvement on irregular time series interpolation
tasks, demonstrating its effectiveness and robustness to varying irregular patterns.

• GITaR demonstrated remarkable cross-domain generalization capabilities across four di-
verse real-world datasets, spanning varying numbers of channels, irregular ratios and pat-
terns, temporal resolutions, and domain-specific challenges, establishing GITaR as a ver-
satile foundational model for irregular time series regression. Its adaptability to unseen
irregular patterns makes it particularly valuable for real-world applications where data dis-
tributions may unexpectedly shift.

2 RELATED WORK

Multivariate Time Series Modeling for Regression Tasks. Regression tasks such as forecasting
or interpolation aim to predict the unseen or missing observation values in time series (Wen et al.,
2023; Zhang et al., 2024b). Recent advanced work has shown promising results either trained in
a supervised manner or self-supervised manner, such as Informer (Zhou et al., 2021), Crossformer
(Zhang and Yan, 2023), PatchTST (Nie et al., 2023) and TS2Vec (Yue et al., 2022). However, these
approaches often focus on regular time series forecasting tasks, via modifying the native structure
of Transformers to encode temporal dependencies for regular long-term time series forecasting.
They neglected the intrinsic characteristics of irregularity and lack of synchronization inherent in
multivariate irregular time series data. Therefore, they cannot be readily generalized to multivariate
irregular time series analysis.

Irregular Time Series Modeling. Irregular time series are characterized by varying time intervals
between adjacent observations (Shukla and Marlin, 2021a). Early methods rely on set-based ap-
proaches, incorporating the time index as an additional feature and using recurrent networks to learn
irregular temporal time dynamics (Che et al., 2016; Schirmer et al., 2022). Another line of work
leverages ODEs by parameterizing the governing function in ODEs with neural networks. Addi-
tionally, these methods combine ODEs with recurrent structures to learn the underlying dynamics
of time series, inherently addressing irregularity (Chen et al., 2019; Rubanova et al., 2019). Atten-
tion mechanism in Transformers have also been improved to process irregular time series (Vaswani
et al., 2023). For example, mTand (Shukla and Marlin, 2021b) first replaces the positional en-
coding with fixed continuous time embedding and then maps the irregular input into regular latent
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space. To account for the inter-channel dependencies in the multivariate time series, graph-based
approaches (Zhang et al., 2022; 2024a) have also been explored by treating each variable as a node
in the graph and learning the edge weights to capture the multivariate correlation. However, they are
primarily trained under fully or semi-supervised paradigms (Tipirneni and Reddy, 2022b; Zhang
et al., 2023), requiring large amounts of high-quality labeled or observed data. In contrast, ap-
proaches like PrimeNet (Chowdhury et al., 2023) and PATIS (Beebe-Wang et al., 2023) leverage
self-supervised settings to learn representations of irregular time series and improve downstream
tasks with limited labeled data. However, current SSL methods remain less explored for regression
tasks. Moreover, they employ domain-specific model structures by applying channel-dependent
structures directly to the input to learn the correlations between multivariates, potentially hindering
their adaptability to diverse datasets with different numbers of variables and tasks.

In contrast, our work seeks to fill these gaps by designing a generalized SSL pretext task for irregular
time series regression, not only effectively capturing the intrinsic characteristic in irregular time
series but also learn more robust and generalizable representations.

3 METHODOLOGY

In this section, we present the details of our proposed GITaR, a masking and reconstruction pretrain-
ing mechanism designed to effectively handle irregularities in real-world time series data and learn
robust representations that can generalize across various domains.

3.1 PRELIMINARIES

A multivariate irregular time series is denoted as O = (O1, O2, ..., OD), where Oi represents
the ith variable among D variables. Each Oi is a univariate irregular time series represented as
Oi = (oit1 , o

i
t2 , ..., o

i
tNi

), recorded at time stamp tn, n ∈ [1, Ni]. Unlike regular time series, the
time interval between two consecutive measurements ∆t = tn+1 − tn is not constant. The number
of observations Ni may also vary between different variables. We first synchronize and align the
D variables through the upsampling of each Oi to the maximum sample rate, ensuring a consistent
number of samples N for each variable. To preserve the irregularity, we simultaneously introduce
additional mask variables M and a time index T to account for irregularities. Specifically, each mul-
tivariate irregular time series can be represented as O = (O1, O2, ..., OD) = (T,X,M) where:
T ∈ RN×D represents the union of timestamps at which any of the D variables have been sampled.
N denotes the total number of unique timestamps in the series. X ∈ RN×D constitutes the obser-
vation values at the recorded times. M ∈ {0, 1}N×D is a binary masking matrix indicating whether
a variable has an observation at a specific sampled time. In specific, for each variable i at time tn, if
the variable is sampled at time stamp M i

tn = 1, otherwise M i
tn = 0.

3.2 OVERALL ARCHITECTURE

The overview of GITaR is illustrated in Figure 2. The primary objective of GITaR is to learn a recon-
struction model R that effectively captures the underlying temporal dynamics in irregular time series
data while reconstructing masked portions of the input data. The choice of a reconstruction-based
approach is grounded in the fundamental concept of masking and prediction, which aligns closely
with the goals of time series regression tasks and facilitates learning complex temporal dynamics.
GITaR incorporates two key components: an irregular-sensitive masking and patching module, and
an irregular-temporal encoder module. The first module preserves the original irregular patterns
while masking and segments the multivariate time series into synchronized, channel-independent
patches. This approach ensures effective learning of local semantics (i.e., irregular patterns) within
patches and enhances generalization capability via channel-independent design, reducing process-
ing complexity, and mitigating long-range information loss. The second module aims to: i) learn
the local semantic embeddings for each patch through the irregular patch encoder, and ii) capture
the global temporal correlations among patches via the global temporal encoder. The irregular
patch encoder transforms each irregular patch p into a irregular-aware embedding Zi

p using contin-
uous time embeddings and irregular time attention mechanisms, leading to a sequence of regularly
spaced embeddings. This process ensures local irregularity representation learning. Concurrently, a
global temporal encoder captures long-range dependencies among Zi

p. These embeddings are then
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Figure 2: Workflow of GITaR. It consists of two modules: (a) Irregular-sensitve masking and
patching is designed to segment the multivariate irregular time series while preserving its irregular
and sparse characteristics. (b) Irregular-Temporal encoder will map the irregular data into regular
representation learning and learn the local semantic embedding for each patch through irregular
patch encoding blocks and global temporal dependencies with global temporal encoding block.
decoded and reconstructed to the original space by predicting the masked data. This design enables
GITaR to effectively learn the underlying temporal dynamics and semantic information of irregular
time series at both local and global levels, facilitating generalized time series regression tasks across
various domains and datasets.

3.3 IRREGULAR-SENSITIVE MASKING AND PATCHING

To design a more accurate masking and reconstruction SSL framework tailored for irregular time
series data, we introduce an irregular-sensitive masking and patching strategy to capture the intrinsic
irregularity within the time series, deviating from common random masking techniques (He et al.,
2021; Huang et al., 2023) that can distort temporal dependencies in irregular data. Our strategy
preserved irregularity patterns and applied channel-independent processing, ensuring application
ability to various variables and enabling generalization across different domains.

Irregular-sensitive Masking. The irregular-sensitive masking data augmentation aims to maintain
the irregular patterns in the original time series. Specifically, recognizing that different regions
of the time series may have varying sampling densities, we mask a fixed timespan qn within each
variate rather than a constant number of observations. This approach ensures that in densely sampled
regions, more observations are masked, while in sparsely sampled regions, fewer observations are
masked. As each variable may have a different sampling frequency and observation gap, we apply
the masking strategy independently for each univariate Oi.

Time-sensitive Patching. In irregular time series data, due to its sparsity, some regions might have
more dense observations while others do not. Therefore, simply mapping the whole time series into
latent space might lose such local information. We introduce a time-sensitive patching mechanism
during the data processing stage to capture local information. Different from the standard time
series patching (Nie et al., 2023) that segments regular time series into equal length of subseries-
level patches, our approach aims to preserve the synchronization among channels, leading to patches
that span fixed time horizons but contain varying numbers of samples. We, therefore, segment
each univariate time series into fixed time horizon patches: Oi = [Oi

p]
p=P
p=1 = (T i

p, X
i
p,M

i
p) for

each univariate i, where P is the number of resulting patches. This patching strategy allows us to
preserve the temporal structure of the irregular time series, enabling efficient processing and local
feature extraction and maintaining synchronization across multiple channels.

3.4 IRREGULAR-TEMPORAL ENCODING

After the masking and patching stage, each univariate irregular time series has been transformed into
a series of patches. However, the irregularity challenge, i.e., the unevenly sampled observations,
persists within each chunked patch. To enable the reconstruction model to capture such irregular
data, we first design the irregular patch encoding mechanism to learn the embeddings that encode
the local irregularity within each chunked patch effectively. Furthermore, to learn the temporal
dependencies among these patches, we design the global temporal encoding mechanism to capture
the correlation across multiple patches.
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Irregular Patch Encoding. As each patch is essentially a sub-irregular time series, we employ
continuous time embeddings and the irregular-time attention(Shukla and Marlin, 2021b) to encode
the patched irregular time series to regular space, aiming to capture the local temporal dynamics.
This approach consists of two key components: continuous time embeddings and the irregular-time
attention (ITA) mechanism.

Continuous time embeddings function as irregular-aware positional embeddings, which incorporate
irregular time points into a fixed vector space by leveraging H embedding functions ϕh(t), each
outputting a representation of size dr. Specifically, Dimension d of embedding h is defined as:

ϕh(t)[d] =

{
ω0h · t+ α0h, if d = 0

sin(ωdh · t+ αdh), if 0 < d < dr
, (1)

where ωdh’s and αdh’s are learnable parameters. The linear term, when d = 0, captures non-periodic
patterns that evolve over time, and the periodic terms capture periodicity among time series data.

The subsequent ITA mechanism aims to convert each irregular time series patch Oi
p into irregular-

aware embeddings Zi
p by comparing the irregular time embeddings ϕh(t) with regular reference

points r using an attention mechanism. Specifically, ITA uses the regular reference time points r
as queries Q = ϕh(r)Wq , the observed irregular time points T i

p as keys K = ϕh(T
i
p)Wk, and the

original irregular time series Xi
p as values V = Xi

p. The attention mechanism is then employed to
obtain the embeddings as follows:

Zi
p = ITA(r, Oi

p) =

H∑
h=1

(
softmax

(
ϕh(r)Wq[ϕh(T

i
p)Wk]

T

√
dk

)
Xi

p

)
Wl (2)

where Wq, Wk are learnable parameter matrices, dk is the dimension of the key vectors, and Wl

is a learnable projection vector.

Finally, the irregular patches will be converted to the regular latent space and capture the more
fine-grained local information Zi = [Zi

p]
P
p=1 for each univariate.

Global Temporal Encoding. While the encoded patches Zi = [Zi
1, ..Z

i
P ] capture local, fine-grained

irregularity, learning global temporal correlations between these patches is crucial, especially for
time series regression tasks. Therefore, we leverage the transformer multi-head attention mecha-
nism to model the temporal dependency within these patches, where W = {Wq̂,Wk̂,Wv̂}, are
learnable parameter matrices.

MultiHead(ZiWq̂, Z
iWk̂, Z

iWv̂) = [head1, ..., headh]W, (3)

headh = softmax(ZiWq̂[Z
iWk̂]

T /
√

dk) (4)

Then output of MultiHead attention mechanism will be fed into projection layers as in vanilla Trans-
former encoder to get our final embeddings Ei which capture both local irregular and global tempo-
ral dependency information.

3.5 RECONSTRUCTION LOSS AND GENERALIZATION

The embeddings E = [Ei]Di=1 learned from the global temporal encoding will be further decoded
by a decoder to reconstruct the original irregular time series X̂. The reconstruction error between
the model output X̂ and the target unseen data X is computed using Mean Squared Error (MSE):

L =
1

D

D∑
i=1

(Xi − X̂i)
2 ·Mi (5)

This loss function encourages the model to accurately reconstruct the masked portions of the input,
thereby learning to capture the underlying patterns and dependencies in the irregular time series
data. This pretrained reconstruction model R will then be fine-tuned for downstream tasks such as
forecasting or interpolation on irregular multivariate time series data. To validate its generalization
capability, we fine-tune R across various domains, encompassing different datasets with varying
input channels and irregular patterns.
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4 EXPERIMENTS

Datasets. We perform extensive experiments on 4 datasets that span different domains and tasks.
Physionet (Silva et al., 2012) consists of 37 time series variables extracted from intensive care unit
(ICU) records. MIMIC (Johnson et al., 2016) consists of electronic health records for more than
60,000 patients with 96 variables. Human Activity (Vidulin and Krivec, 2010) has 12 time series
variables consisting of irregularly measured 3D positional records. textbfUSHCN (Menne et al.)
contains 5 measurements of climate sensing variables. Details are listed in Appendix A.

Experimental Protocols. We conduct extensive experiments on multivariate irregular regression
tasks including interpolation and forecasting. Specifically, Interpolation Task aim to predict miss-
ing values within a given time series. Forecasting Task im to use the previous data to predict the
subsequent future observation values across various variables. Details for are listed in Appendix A.

Baselines. We compare GITaR to SOTA time series methods, encompassing both End-to-End su-
pervised training and Self-supervised training approaches. These methods are categorized into 4
groups: (i) E2E for regular time series (E2E-Re), including PatchTST (Nie et al., 2023) and Cross-
former (Zhang and Yan, 2023); (ii) SSL for regular time series data (SSL-Re): TS2Vec (Yue et al.,
2022); (iii) E2E for irregular time series (E2E-IR), such as mTAND (Shukla and Marlin, 2021b) and
t-PatchGNN (Zhang et al., 2024a); and (iv) SSL for irregular time series data (SSL-IR), exemplified
by Primenet (Chowdhury et al., 2023). We provide a detailed description in the Appendix A.

Implementation Details and Metrics. For both tasks, we select hyper-parameters on the held-out
validation set using grid search and then apply the best-trained model to the best set. We randomly
divide the dataset into training, validation, and test sets using ratios of 60%, 20%, and 20% same
as previous studies (Shukla and Marlin, 2021b; Zhang et al., 2024a). To assess the prediction of
continuous targets, we use common regression metrics, such as the mean-average error (MAE),
mean-squared error (MSE) and root-mean-squared error (RMSE). We provide a detailed description
in the Appendix A.

5 RESULTS

5.1 IRREGULAR TIME SERIES REGRESSION TASKS PERFORMANCE

Interpolation Task. Table 1 presents the performance of GITaR in comparison to baselines on
the interpolation task using the PhysioNet dataset. The percentage ranging from 50% to 90% indi-
cates the observed ratio of the time series. The results reveal several key insights. First, our method
achieves the lowest RMSE values, with improvements ranging from 20.7% to 14.1% compared to
the second best method (PrimNet). This consistent outperformance highlights the robustness and ef-
fectiveness of GITaR in interpolating irregular time series data. Additionally, a clear trend emerges
when comparing methods designed for irregular data (e.g., mTand, T-patchGNN, Primnet, and GI-
TaR) with those developed for regular time series (PatchTST, Crossformer, TS2Vec) for both E2E
and SSL. The former generally outperforms the latter, underscoring the importance of tailoring ap-
proaches to the unique challenges posed by irregular data. In particular, E2E regular methods show
higher RMSE values and larger performance variances. This suggests that methods assuming con-
tinuous and complete sensing often face challenges when confronted with missing values, as their
underlying assumptions are violated in the context of irregular time series. The benefits of SSL
are apparent in the results. SSL methods (TS2Vec, Primnet, and GITaR) generally perform well,
indicating that leveraging large unlabeled datasets to learn general representations can significantly
enhance performance on downstream tasks such as interpolation. Among these SSL approaches,
GITaR consistently achieves the best performance across all observed ratios. This superior perfor-
mance demonstrates GITaR’s unique ability to capture and leverage complex patterns in irregular
time series data, resulting in more accurate interpolation compared to all other methods, including
other state-of-the-art self-supervised approaches.

These results highlight the potential of GITaR for real-world applications where irregular and sparse
measurements are common, such as in healthcare monitoring or environmental sensing.

Forecasting Task. Table 2 presents the forecasting performance of various methods on four
datasets: PhysioNet, MIMIC, Human Activity, and USHCN. Our proposed method consistently

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Table 1: Interpolation performance on the PhysioNet for varying percentages of observed data,
evaluated using RMSE (X 10−2), with best and second-best results in bold and underlined.

Training Model 50% 60% 70% 80% 90%

E2E-Re PatchTST 6.92 ± 0.18 6.95 ± 0.14 8.17 ± 0.05 8.13 ± 0.07 8.47 ± 0.46
Crossformer 6.79 ± 1.43 6.87 ± 1.35 7.12 ± 0.47 7.48 ± 0.58 7.63 ± 0.78

E2E-IR mTAND 6.43 ± 0.11 6.34 ± 0.45 6.44 ± 0.43 6.64 ± 0.66 6.93 ± 0.66
T-patchGNN 5.32 ± 0.87 5.21 ± 0.38 5.04 ± 0.89 5.29 ± 0.44 5.68 ± 0.32

SSL-Re TS2Vec 7.69 ± 0.12 7.83 ± 0.22 8.03 ± 0.15 8.29 ± 0.12 8.39 ± 0.43

SSL-IR PrimNet 4.78 ± 0.17 4.45 ± 0.02 4.97 ± 0.02 5.22 ± 0.17 5.42 ± 0.15

SSL-IR GITaR 3.79 ± 0.21 3.82 ± 0.25 4.19 ± 0.13 4.58 ± 0.21 4.87 ± 0.11

achieves the best performance across all datasets and metrics, demonstrating its effectiveness in han-
dling irregular forecasting task. In specific, our method outperforms all baselines across all datasets,
with improvements ranging from 4.4% to 8.7% in MSE and 2.3% to 8.7% in MAE compared to
the second-best method (typically T-PatchGNN). The results from forecasting tasks align with those
from interpolation tasks, demonstrating the effectiveness of SSL approaches over E2E approaches
and highlighting the necessity of tailored designs for irregularity modeling.

To further validate the robustness of our approach, we also evaluate the performance under varying
observations and forecast horizons. Specifically, we show GITaR continuously outperform SOTA
methods when predict different horizons on Physionet dataset in Table 3. The consistent superior
performance across all time horizons underscores GITaR’s versatility and robustness in handling
various forecasting scenarios, making it a reliable choice for a wide range of temporal prediction
tasks in irregular time series data.

Table 2: Forecasting performance on four real-world irregular datasets evaluated using MSE and
MAE, with best and second-best results in bold and underlined.

Training Model PhysioNet MIMIC Human Activity USHCN

MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1

E2E-Re PatchTST 12.00 ± 0.23 6.02 ± 0.14 3.78 ± 0.03 12.43 ± 0.10 4.29 ± 0.14 4.80 ± 0.09 5.75 ± 0.01 3.57 ± 0.02

Crossformer 6.66 ± 0.11 4.81 ± 0.11 2.65 ± 0.10 9.56 ± 0.29 4.29 ± 0.20 4.89 ± 0.17 5.25 ± 0.04 3.27 ± 0.09

E2E-IR mTAND 6.23 ± 0.24 4.51 ± 0.17 1.85 ± 0.06 7.73 ± 0.13 3.22 ± 0.07 3.81 ± 0.07 5.33 ± 0.05 3.26 ± 0.10

T-PatchGNN 4.98 ± 0.21 3.84 ± 0.03 1.75 ± 0.04 7.43 ± 0.09 2.97 ± 0.03 3.45 ± 0.02 5.00 ± 0.04 3.08 ± 0.04

SSL-Re TS2Vec 6.04 ± 0.09 4.48 ± 0.05 2.71 ± 0.03 9.53 ± 0.09 3.08 ± 0.05 4.13 ± 0.06 5.35 ± 0.04 3.27 ± 0.09

SSL-IR PrimeNet 5.33 ± 0.62 5.31 ± 0.68 1.87 ± 0.05 9.03 ± 0.29 2.94 ± 0.04 3.56 ± 0.07 5.08 ± 0.02 3.22 ± 0.08

SSL-IR GITaR 4.76 ± 0.18 3.70 ± 0.13 1.72 ± 0.10 7.22 ± 0.09 2.76 ± 0.03 3.15 ± 0.02 4.95 ± 0.05 3.01 ± 0.04

5.2 ANALYSIS OF GENERALIZATION CAPABILITIES

To evaluate the generalization ability of our proposed methods, we conducted experiments on cross-
domain transfer learning. Specifically, we trained our model on the PhysioNet dataset (37 variables)
and tested its performance on three different datasets: MIMIC, Human Activity, and USHCN. This
setup allows us to assess how well our model can adapt to new domains with potentially differ-
ent data characteristics and variable structures. Table 3 presents the results of our cross-domain
generalization experiments. It is important to note that some SOTA baselines are not capable of
processing different number of variables and, therefore, cannot generlized to other domains, such
as the E2E channel-dependent methods including Crossformer, mTAND and T-patchGNN. The per-
formance demonstrates that GITaR consistently outperforms all baselines across all three transfer
scenarios. Moreoever, SSL-based methods perform better compared with the E2E training manner,
which validates the generalization capability of pertaining mechanism More specifically, the su-
perior generalization capability of GITaR can be attributed to several key design choices that set it
apart from existing methods. Unlike PrimeNet, which uses channel-dependent processing, GITaR
treats each variable independently during the initial stages of processing. This channel-independent
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approach allows our model to learn more general representations that are not biased towards spe-
cific inter-variable correlation patterns observed in the training data. As a result, GITaR can more
easily adapt to new datasets where the relationships between variables may differ. Furthermore, our
method incorporates both local irregular pattern learning within patches and global temporal corre-
lation modeling across patches. This dual-scale approach enables GITaR to capture generalizable
patterns at multiple levels of abstraction, contributing to its robust performance across domains.

Figure 3: Forecasting performance
with various prediction horizons.

Model MIMIC Human Activity USHCN

PatchTST 4.15 ± 0.13 4.65 ± 0.26 5.98 ± 0.07

TS2Vec 3.74 ± 0.21 3.95 ± 0.13 5.67 ± 0.08

PrimeNet 2.87 ± 0.34 3.25 ± 0.16 5.27 ± 0.05

GITaR 2.67 ± 0.17 2.98 ± 0.11 5.14 ± 0.06
Table 3: Comparison of generalization abilities among
different methods, across PhysioNet → MIMIC, or Hu-
man Activity or USHCN datasets, indicating training and
validation on the former dataset followed by testing on the
later dataset.

5.3 ABLATION STUDY

We evaluate the performance of GITaR and its several variants on all four datasets we used for
regression task. Complete represents the model without any ablation; w/o Ir-mask removes the
irregular-senstive masking strategy while using the random making strategy; w/o Patch removes
patching module; w/o GE (global embedding) removed the temporal and global embedding module
and w/o all is just the simple masked autoencoder framework.

Table 4 presents the results of the model ablation study. As shown, the removal of any component
leads to performance degradation. Notably, the w/o IR-mask configuration resulted in a significant
performance drop across all datasets, demonstrating the importance of capturing and maintaining
the original irregularity when using the masking and reconstruction mechanism. Similarly, the w/o
TS-patch configuration confirms that patching with fixed horizons or temporal durations preserves
local semantics. Additionally, the absence of a transformer for learning global temporal correlations
illustrates the necessity of capturing these correlations during representation learning for effective
regression forecasting.

Table 4: Ablation study.

Model
PhysioNet MIMIC Human Activity USHCN

MSE×10−3 MAE×10−2 MSE×10−2 MAE×10−2 MSE×10−3 MAE×10−2 MSE×10−1 MAE×10−1

GITaR (Complete) 4.76 ± 0.18 3.70 ± 0.13 1.72 ± 0.10 7.22 ± 0.09 2.76 ± 0.03 3.15 ± 0.02 4.95 ± 0.05 3.01 ± 0.04

MAE (w/o all) 7.18 ± 0.18 4.95 ± 0.13 3.95 ± 0.16 12.82 ± 0.21 4.34 ± 0.11 4.94 ± 0.12 5.75 ± 0.01 3.57 ± 0.02
w/o IR-mask 6.81 ± 0.28 4.76 ± 0.19 2.95 ± 0.07 9.85 ± 0.11 3.34 ± 0.38 3.94 ± 0.12 5.33 ± 0.01 3.36 ± 0.02
w/o TS-patch 5.59 ± 0.67 4.32 ± 0.46 2.35 ± 0.56 8.82 ± 0.43 3.76 ± 0.59 4.94 ± 0.32 5.39 ± 0.20 3.18 ± 0.09
w/o GE 5.86 ± 0.45 4.45 ± 0.53 2.63 ± 0.47 9.13 ± 0.33 3.98 ± 0.48 5.12 ± 0.34 5.46 ± 0.29 3.67 ± 0.11

6 CONCLUSIONS

We have presented GITaR, a novel generalized masking and reconstruction pretraining framework
for irregular time series regression. The design of the irregular-sensitive masking and time-patching,
the irregular-time encoder, and the global temporal encoding module has shown promise in captur-
ing the underlying dynamics of irregular time series for effective representation learning. More
importantly, combined with the channel-independent design, our GITaR has demonstrated superior
performance across various domains, effectively leveraging it as a foundational model for multi-
ple tasks or data types involving irregular time series. This work potentially provides a robust and
generalised framework for a range of real-world time series applications.

9
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A APPENDIX

A.1 DATASETS

• Physionet (Silva et al., 2012) consists of 37 time series variables extracted from intensive
care unit (ICU) records. Each record contains sparse and irregularly spaced measurements
from the first 48 hours after admission to ICU. The dataset includes 4000 labeled instances
and 4000 unlabeled instances, totaling 8000 instances. We follow the procedures outlined
in mTand (Shukla and Marlin, 2021b) for data preprocessing and preparation.

• MIMIC (Johnson et al., 2016) consists of electronic health records for more than 60,000
critical care patients. We follow the procedures of Neural Flow (Biloš et al., 2021) and
extract 96 time series variables for 48 hours. The datasets include 23418 instances.

• Human Activity (Vidulin and Krivec, 2010) has 12 time series variables consisting of
irregularly measured 3D positional records from 4 different sensors worn in the waist,
check, and ankles. The dataset includes 5 individuals performing various human activities,
including walking, sitting, etc.

• USHCN (Menne et al.) contains 5 measurements of climate sensing variables over 150
years. We follow the previous work (Biloš et al., 2021) and extract 111,4 station data with
a four-year observation period.

• Semi-synthetic dataset. we create the semi-synthetic forecasting dataset based on ETTh1
where we introduce irregularity by random dropping data.

A.2 EXPERIMENTAL PROTOCOLS

Interpolation Task: For the interpolation task on the PhysioNet dataset, we aim to predict missing
values within a given time series. In specifically, we use 8000 data cases. To evaluate the model’s
performance under different conditions, we vary the number of observed points used for prediction.
Specifically, we test scenarios where 50% to 90% of available data points are used to predict the
remaining values, during the test phase.

Forecasting Task: For the forecasting task, we aim to use the previous data to predict the subsequent
future observation values across various variables. Specifically, during the test time, for Physionet
and MIMIC, we use the first 24 hours to predict the next 24 hours. For Human Activity, we use the
first 3000 milliseconds to predict the next 1000 milliseconds. For USHCN, we use two years of data
to predict the following year.

A.3 BASELINES:

We employ the following state-of-the-art time series modeling algorithms for comparison.
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PatchTST: (Nie et al., 2023) enhances the original Transformer architecture by introducing sub-
series level patching and channel-independence, effectively capturing cross-time dependencies for
time series forecasting.

Crossformer: (Zhang and Yan, 2023) modifies the vanilla Transformer architecture by implement-
ing Cross-Time Attention and Cross-Dimension Attention, enabling it to capture both temporal-wise
and channel-wise correlations in forecasting tasks.

mTAND: (Shukla and Marlin, 2021b) introduces an irregular time series attention mechanism. This
method replaces traditional positional embedding with continuous-time embedding, learning corre-
lations between observed data and continuous-time steps to map irregular data onto a fixed, regular
representation space.

T-patchGNN: (Zhang et al., 2024a) tackles irregular time series forecasting through a multi-step
approach. It first employs a transformable patching strategy to segment irregular time series data
into uniform temporal resolutions. Subsequently, it utilizes a transformable time-aware convolution
network to map the irregular data to a latent space, and finally leverages a graph neural network to
learn inter-channel correlations.

TS2Vec: (Yue et al., 2022) performs hierarchical contrastive learning over augmented context views,
which enables a robust contextual representation for each timestamp. The method is for regular time
series classification, regression and anomaly detection task.

PrimeNet: (Chowdhury et al., 2023) propose time-sensitive contrastive learning and data recon-
struction to learn from data irregularity patterns. The method is for irregular time series classification
and interpolation.

A.4 IMPLEMENTATION DETAILS

Our implementation consists of two primary stages: representation learning and task-specific fine-
tuning. During the representation learning stage, we pretrain the model using mask and reconstruc-
tion tasks to develop robust representations applicable to various downstream tasks. For each dataset
and task, we utilize the entire training set to train the representation model. Subsequently, we fine-
tune this model based on the specific task and dataset requirements before evaluating it against the
test set to obtain the final representation. To optimize performance, we conduct a comprehensive grid
search over key hyperparameters. The batch size is varied among [32, 64, 128], while the learning
rate is tested at [0.01, 0.001, 0.0001]. For the model architecture, we explore different configura-
tions: the number of heads (H) in mTAND is varied among [1, 2, 3], and the number of Transformer
encoder layers is tested at [2, 4, 6]. To preserve the irregularity within each univariate time series,
we implement a masking strategy controlled by the timespan parameter qn. This parameter, varied
among [2, 3, 4], ensures that the masking ratio for each univariate series remains between 30% and
50%. The choice of patch value, critical for handling data sparsity, is selected from [32, 64, 128]
based on the temporal density characteristics of the data. All experiments are run 5 times and the
results are reported with mean and standard deviation. All models are implemented using PyTorch,
and the experimental evaluations are conducted on NVIDIA A100-SXM-80GB GPUs.

B SUPPLEMENTARY INFORMATION

B.1 DATASET STATISTICS

In this section, we provide the updated statistics of our training dataset, as shown in Table 5.

Dataset PhysioNet MIMIC-III Human Activity USHCN
Variable Number 37 96 12 5
Missing rate 79.6% 89.1% 75% 70.4%
Sampling interval 1 hour 1 hour 100 seconds 1 month

Table 5: Overview of datasets and their characteristics.
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B.2 VISUALIZATION

In this section, we provide updated visualization of attention weights, as shown in Figure 4

Figure 4: ITA Mapping

B.3 HYPER-PARAMETER DETAILS

In this section, we provide the details of hyperparameter selections as shown in table 6

Dataset Patch Size (P) Masking Ratio (M) Final Selection
Physionet [1, 2, 4, 8, 12] [0.1, 0.2, 0.3, 0.4, 0.5] P = 4, M = 0.3
MIMIC-III [1, 2, 4, 8, 12] [0.1, 0.2, 0.3, 0.4, 0.5] P = 4, M = 0.2
Human Activity [50, 100, 200, 300, 400, 500] [0.1, 0.2, 0.3, 0.4, 0.5] P = 200, M = 0.4
USHCN [1, 2, 4, 8, 12] [0.1, 0.2, 0.3, 0.4, 0.5] P = 2, M = 0.2

Table 6: Patch size and masking ratio configurations across datasets.
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