GITAR: GENERALIZED IRREGULAR TIME SERIES REGRESSION VIA MASKING AND RECONSTRUCTION PRETRAINING

Anonymous authors

Paper under double-blind review

ABSTRACT

Multivariate time series regression, encompassing forecasting and interpolation, is crucial for numerous real-world applications, particularly in healthcare, climate science, ecology, and others. While recent work has focused on improving modeling for time series regression, two main limitations persist. First, the prevalence of irregularly sampled time series with missing values poses significant challenges. For instance, healthcare applications often involve predicting future or missing observations from irregular data to enable continuous patient monitoring and timely intervention. As current approaches mainly rely on the assumptions of regular time series such as strong periodicity, when applied to irregular ones they exhibit performance degradation. Second, while some state-of-the-art methods (SOTA) do model irregularity and perform regression tasks on irregular data, they are often trained in a fully supervised manner. This limits their ability to generalize easily to different domains (e.g., training and testing datasets with different numbers of variables). To address these challenges, we propose GITaR, a Generalized Irregular Time Series Regression model via masking and Reconstruction pretraining mechanism, aiming to capture the inherent irregularity in time series and learn robust, generalizable representations without supervision for downstream regression tasks. Comprehensive experiments on common real-world regression tasks in healthcare, human activity recognition, and climate science underline the superior performance of GITaR compared to state-of-the-art methods. Our results highlight our model's unique capability to generalize across different domains, demonstrating the potential for broad applicability in various fields requiring accurate temporal prediction and interpolation.

034

037

006

008 009 010

011 012 013

014

015

016

017

018

019

021

023

025

026

027

028

029

031

032

1 INTRODUCTION

038 Multivariate time series regression, i.e., regression tasks that encompass interpolation and forecasting, aim to predict the continuous and numerical values based on their relationship within or beyond 040 the existing time range (Tan et al., 2021). This type of regression is particularly challenging when 041 observation data are unevenly sampled and contain missing values, a common issue in many fields. 042 Modeling irregular time series is essential in various real-world applications, including healthcare 043 monitoring, climate science, ecology and more Shukla and Marlin (2021a). For instance, in inten-044 sive care units (ICUs), patient data is often collected at varying intervals and from multiple sensors, resulting in irregular time series. These sensors typically monitor physiological features such as heart rate, blood pressure, and respiratory rate. Modeling such irregular times in the past 24 hours 046 to predict the subsequent 24 hours is particularly valuable for continuous patient health condition 047 monitoring and inference. 048

While advanced deep learning architectures have significantly improved time series analysis, they
often rely on the assumption of regular spacing between observations, which limits their realistic
applicability to irregular time series data. For example, TS2Vec (Yue et al., 2022) assumes strong
auto-correlation in time series, and PatchTST (Wu et al., 2022) initially segment time series into subservations are continuous without missing. Both methods, however, struggle with irregular time series. As illustrated in Figure 1a, these state-of-the-art (SOTA)

056 057 060

067

068

069

Figure 1: (a) Comparison of MSE between mainstream models on a semi-synthetic irregular dataset with different percentages of irregularity. (b) Irregular time series models cannot be generalized to different domains.

time series modeling methods fail to forecast irregular time series, leading to a significant increase 071 in mean square error (MSE) as irregularity increases. 072

Attempts have been made to better model irregular time series, primarily under supervised settings. 073 Four predominant approaches have emerged, set-based models (Tipirneni and Reddy, 2022a), which 074 include time as an additional feature with values as pairs; ODE-based models(Chen et al., 2019), 075 which leverage differential equations to model irregular and continuous time dynamics; attention-076 based models(Shukla and Marlin, 2021b; Zhang et al., 2019; Chen et al., 2024), which extend 077 Transformer (Vaswani et al., 2023) architectures to capture irregularities in temporal dynamics, and 078 graph-based (Zhang et al., 2022; 2024a), which address intercorrelations in multivariate irregular 079 time series data. Due to their innovative design for encoding irregularities more effectively, these methods outperform traditional time series models that are designed for regular data patterns. However, these methods still face limitations in robustness and generalizability due to their supervised 081 end-to-end (E2E) training. Typically, these models are trained and tested on the same dataset for a specific task (e.g., training on 2-lead ECG data and testing on the same 2-lead ECG dataset for heart 083 rhythm classification). Consequently, they fail to generalize across different domains, as shown in 084 Figure 1b, including i). varying numbers of variables between training and test sets (e.g., training on 085 3-lead ECG data but testing on 2-lead ECG data), or ii). different irregularity ratios or missing data 086 patterns between training and test datasets, which can occur due to domain-specific reasons (e.g., 087 ICU data irregularity(test set A) might be caused by the clinician's availability, while missing data 088 in wearable devices for human activity monitoring often results from device detachment (test set B). 089 These limitations hinder current methods from learning universal and generalized representations 090 that are not biased toward specific domains.

091 Recent advances in self-supervised learning (SSL) have shown promise in modeling time series data 092 without explicit supervision, potentially improving generalization capabilities (Zhang et al., 2024b). 093 However, most SSL approaches still focus on regular time series and cannot be easily adapted to 094 irregular data (Yang et al., 2023; Yue et al., 2022; Zhang et al., 2024b), as we will show in our 095 evaluation. One recent study, Primenet (Chowdhury et al., 2023) targets irregular time series SSL 096 and designs suitable augmentations combined with contrastive learning to learn the characteristics of irregularly sampled data during the pretraining stage. However, its applicability to regression tasks remains less explored. Moreover, PrimeNet still struggles to generalize across different domains 098 due to its modeling of intercorrelations within specific numbers of training variables, limiting its 099 effectiveness beyond the validation datasets used in the study. 100

101 Given these challenges and limitations in existing approaches, we aim to address two critical re-102 search questions:

- 103
- 104

• How can we design a more accurate and robust self-supervised learning framework specifically tailored for irregular time series regression?

105 107

• How can we develop a generalized SSL modeling approach that can adapt to different domains in irregular time series regression?

108 We propose GITaR, an irregular-sensitive reconstruction-based pretraining mechanism to learn 109 more generalizable and robust representations. Among various SSL pretext tasks, masking and 110 reconstruction-based methods have emerged as particularly powerful. These approaches, which 111 primarily focus on reconstructing missing parts of the data, have demonstrated strong predictive 112 capabilities and have been successfully applied in recent large pretrained models (Brown et al., 2020). This approach appears especially suitable for regression tasks, as the underlying principle 113 of masking and reconstruction closely aligns with the interpolation task of predicting missing or 114 future values based on partial data (He et al., 2021; Zhu et al., 2024). Specifically, to leverage the 115 temporal properties of irregular time series, GITaR first introduces an irregular-sensitive masking 116 strategy and time-sensitive patching segmentation. Further, we apply an irregular-temporal encoder 117 that transforms patched segments into latent space representations for learning local and global tem-118 poral dynamics. Specifically, within the encoder, the channel-independent design of our approach 119 caters to domains with varying numbers of variables or irregularity ratios, enhancing its generaliza-120 tion capabilities across different domains.

121

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140 141

142 143

To support the practical evaluation of GITaR, we conduct experiments on 4 naturally occurring irregular and asynchronous time series from healthcare to climate sensing. Our contribution includes:

- We highlight that irregular time series are common and present a significant challenge in real-world applications and find that existing time series modeling algorithms undergo substantial performance degradation when applied to irregular time series regression.
- We propose GITaR, a pioneering pretraining framework uniquely designed for irregular multivariate time series regression. Our approach introduces a novel irregular-sensitive masking and patching technique coupled with an adaptive irregular-temporal encoder, enabling simultaneous learning of local irregularities and global temporal correlations, which is effective for various regression tasks. The results showcase the SOTA performance of GITaR again baselines with an average 5.68% improvement on irregular time series forecasting tasks and an average 6.73% improvement on irregular time series interpolation tasks, demonstrating its effectiveness and robustness to varying irregular patterns.
- GITaR demonstrated remarkable cross-domain generalization capabilities across four diverse real-world datasets, spanning varying numbers of channels, irregular ratios and patterns, temporal resolutions, and domain-specific challenges, establishing GITaR as a versatile foundational model for irregular time series regression. Its adaptability to unseen irregular patterns makes it particularly valuable for real-world applications where data distributions may unexpectedly shift.
- 2 RELATED WORK

Multivariate Time Series Modeling for Regression Tasks. Regression tasks such as forecasting 144 or interpolation aim to predict the unseen or missing observation values in time series (Wen et al., 145 2023; Zhang et al., 2024b). Recent advanced work has shown promising results either trained in 146 a supervised manner or self-supervised manner, such as Informer (Zhou et al., 2021), Crossformer 147 (Zhang and Yan, 2023), PatchTST (Nie et al., 2023) and TS2Vec (Yue et al., 2022). However, these 148 approaches often focus on regular time series forecasting tasks, via modifying the native structure 149 of Transformers to encode temporal dependencies for regular long-term time series forecasting. 150 They neglected the intrinsic characteristics of irregularity and lack of synchronization inherent in 151 multivariate irregular time series data. Therefore, they cannot be readily generalized to multivariate 152 irregular time series analysis.

153 Irregular Time Series Modeling. Irregular time series are characterized by varying time intervals 154 between adjacent observations (Shukla and Marlin, 2021a). Early methods rely on set-based ap-155 proaches, incorporating the time index as an additional feature and using recurrent networks to learn 156 irregular temporal time dynamics (Che et al., 2016; Schirmer et al., 2022). Another line of work 157 leverages ODEs by parameterizing the governing function in ODEs with neural networks. Addi-158 tionally, these methods combine ODEs with recurrent structures to learn the underlying dynamics of time series, inherently addressing irregularity (Chen et al., 2019; Rubanova et al., 2019). Atten-159 tion mechanism in Transformers have also been improved to process irregular time series (Vaswani 160 et al., 2023). For example, mTand (Shukla and Marlin, 2021b) first replaces the positional en-161 coding with fixed continuous time embedding and then maps the irregular input into regular latent 162 space. To account for the inter-channel dependencies in the multivariate time series, graph-based 163 approaches (Zhang et al., 2022; 2024a) have also been explored by treating each variable as a node 164 in the graph and learning the edge weights to capture the multivariate correlation. However, they are 165 primarily trained under fully or semi-supervised paradigms (Tipirneni and Reddy, 2022b; Zhang 166 et al., 2023), requiring large amounts of high-quality labeled or observed data. In contrast, approaches like PrimeNet (Chowdhury et al., 2023) and PATIS (Beebe-Wang et al., 2023) leverage 167 self-supervised settings to learn representations of irregular time series and improve downstream 168 tasks with limited labeled data. However, current SSL methods remain less explored for regression tasks. Moreover, they employ domain-specific model structures by applying channel-dependent 170 structures directly to the input to learn the correlations between multivariates, potentially hindering 171 their adaptability to diverse datasets with different numbers of variables and tasks. 172

In contrast, our work seeks to fill these gaps by designing a generalized SSL pretext task for irregular
 time series regression, not only effectively capturing the intrinsic characteristic in irregular time
 series but also learn more robust and generalizable representations.

176

183

184

177 3 METHODOLOGY

In this section, we present the details of our proposed GITaR, a masking and reconstruction pretrain ing mechanism designed to effectively handle irregularities in real-world time series data and learn
 robust representations that can generalize across various domains.

3.1 PRELIMINARIES

A multivariate irregular time series is denoted as $\mathbf{O} = (O^1, O^2, ..., O^D)$, where O^i represents 185 the i^{th} variable among D variables. Each O^i is a univariate irregular time series represented as $O^i = (o^i_{t_1}, o^i_{t_2}, ..., o^i_{t_{N_i}})$, recorded at time stamp $t_n, n \in [1, N_i]$. Unlike regular time series, the 187 time interval between two consecutive measurements $\Delta t = t_{n+1} - t_n$ is not constant. The number 188 of observations N_i may also vary between different variables. We first synchronize and align the 189 D variables through the upsampling of each O^i to the maximum sample rate, ensuring a consistent 190 number of samples N for each variable. To preserve the irregularity, we simultaneously introduce 191 additional mask variables M and a time index T to account for irregularities. Specifically, each *multivariate irregular time series* can be represented as $\mathbf{O} = (O^1, O^2, ..., O^D) = (\mathbf{T}, \mathbf{X}, \mathbf{M})$ where: 192 193 $\mathbf{T} \in \mathbb{R}^{N \times D}$ represents the union of timestamps at which any of the D variables have been sampled. 194 N denotes the total number of unique timestamps in the series. $\mathbf{X} \in \mathbb{R}^{N \times D}$ constitutes the observation values at the recorded times. $\mathbf{M} \in \{0, 1\}^{N \times D}$ is a binary masking matrix indicating whether 195 196 a variable has an observation at a specific sampled time. In specific, for each variable i at time t_n , if 197 the variable is sampled at time stamp $M_{t_n}^i = 1$, otherwise $M_{t_n}^i = 0$.

198

199 3.2 OVERALL ARCHITECTURE200

201 The overview of GITaR is illustrated in Figure 2. The primary objective of GITaR is to learn a reconstruction model \mathcal{R} that effectively captures the underlying temporal dynamics in irregular time series 202 data while reconstructing masked portions of the input data. The choice of a reconstruction-based 203 approach is grounded in the fundamental concept of masking and prediction, which aligns closely 204 with the goals of time series regression tasks and facilitates learning complex temporal dynamics. 205 GITaR incorporates two key components: an *irregular-sensitive masking and patching* module, and 206 an irregular-temporal encoder module. The first module preserves the original irregular patterns 207 while masking and segments the multivariate time series into synchronized, channel-independent 208 patches. This approach ensures effective learning of local semantics (i.e., irregular patterns) within 209 patches and enhances generalization capability via channel-independent design, reducing process-210 ing complexity, and mitigating long-range information loss. The second module aims to: i) learn 211 the local semantic embeddings for each patch through the *irregular patch encoder*, and ii) capture 212 the global temporal correlations among patches via the global temporal encoder. The irregular 213 patch encoder transforms each irregular patch p into a irregular-aware embedding Z_p^i using continuous time embeddings and irregular time attention mechanisms, leading to a sequence of regularly 214 spaced embeddings. This process ensures local irregularity representation learning. Concurrently, a 215 global temporal encoder captures long-range dependencies among Z_n^i . These embeddings are then

Figure 2: Workflow of GITaR. It consists of two modules: (a) Irregular-sensitve masking and patching is designed to segment the multivariate irregular time series while preserving its irregular and sparse characteristics. (b) Irregular-Temporal encoder will map the irregular data into regular representation learning and learn the local semantic embedding for each patch through irregular patch encoding blocks and global temporal dependencies with global temporal encoding block.

decoded and reconstructed to the original space by predicting the masked data. This design enables
 GITaR to effectively learn the underlying temporal dynamics and semantic information of irregular
 time series at both local and global levels, facilitating generalized time series regression tasks across
 various domains and datasets.

235 236

237

3.3 IRREGULAR-SENSITIVE MASKING AND PATCHING

To design a more accurate masking and reconstruction SSL framework tailored for irregular time series data, we introduce an irregular-sensitive masking and patching strategy to capture the intrinsic irregularity within the time series, deviating from common random masking techniques (He et al., 2021; Huang et al., 2023) that can distort temporal dependencies in irregular data. Our strategy preserved irregularity patterns and applied channel-independent processing, ensuring application ability to various variables and enabling generalization across different domains.

Irregular-sensitive Masking. The irregular-sensitive masking data augmentation aims to maintain the irregular patterns in the original time series. Specifically, recognizing that different regions of the time series may have varying sampling densities, we mask a fixed timespan q_n within each variate rather than a constant number of observations. This approach ensures that in densely sampled regions, more observations are masked, while in sparsely sampled regions, fewer observations are masked. As each variable may have a different sampling frequency and observation gap, we apply the masking strategy independently for each univariate O^i .

251 Time-sensitive Patching. In irregular time series data, due to its sparsity, some regions might have more dense observations while others do not. Therefore, simply mapping the whole time series into 252 latent space might lose such local information. We introduce a time-sensitive patching mechanism 253 during the data processing stage to capture local information. Different from the standard time 254 series patching (Nie et al., 2023) that segments regular time series into equal length of subseries-255 level patches, our approach aims to preserve the synchronization among channels, leading to patches 256 that span fixed time horizons but contain varying numbers of samples. We, therefore, segment 257 each univariate time series into fixed time horizon patches: $O^i = [O^i_p]_{p=1}^{p=P} = (T^i_p, X^i_p, M^i_p)$ for 258 each univariate i, where P is the number of resulting patches. This patching strategy allows us to 259 preserve the temporal structure of the irregular time series, enabling efficient processing and local 260 feature extraction and maintaining synchronization across multiple channels.

261 262

263

3.4 IRREGULAR-TEMPORAL ENCODING

After the masking and patching stage, each univariate irregular time series has been transformed into
 a series of patches. However, the irregularity challenge, i.e., the unevenly sampled observations,
 persists within each chunked patch. To enable the reconstruction model to capture such irregular
 data, we first design the irregular patch encoding mechanism to learn the embeddings that encode
 the local irregularity within each chunked patch effectively. Furthermore, to learn the temporal
 dependencies among these patches, we design the global temporal encoding mechanism to capture
 the correlation across multiple patches.

Irregular Patch Encoding. As each patch is essentially a sub-irregular time series, we employ continuous time embeddings and the irregular-time attention(Shukla and Marlin, 2021b) to encode the patched irregular time series to regular space, aiming to capture the local temporal dynamics. This approach consists of two key components: continuous time embeddings and the irregular-time attention (ITA) mechanism.

Continuous time embeddings function as irregular-aware positional embeddings, which incorporate irregular time points into a fixed vector space by leveraging H embedding functions $\phi_h(t)$, each outputting a representation of size d_r . Specifically, Dimension d of embedding h is defined as:

$$\phi_h(t)[d] = \begin{cases} \omega_{0h} \cdot t + \alpha_{0h}, & \text{if } d = 0\\ \sin(\omega_{dh} \cdot t + \alpha_{dh}), & \text{if } 0 < d < d_r \end{cases},$$
(1)

where ω_{dh} 's and α_{dh} 's are learnable parameters. The linear term, when d = 0, captures non-periodic patterns that evolve over time, and the periodic terms capture periodicity among time series data.

The subsequent ITA mechanism aims to convert each irregular time series patch O_p^i into irregularaware embeddings Z_p^i by comparing the irregular time embeddings $\phi_h(t)$ with regular reference points **r** using an attention mechanism. Specifically, ITA uses the regular reference time points **r** as queries $Q = \phi_h(\mathbf{r})\mathbf{W}_q$, the observed irregular time points T_p^i as keys $K = \phi_h(T_p^i)\mathbf{W}_k$, and the original irregular time series X_p^i as values $V = X_p^i$. The attention mechanism is then employed to obtain the embeddings as follows:

290 291

292 293

294

295

279

280

$$Z_p^i = \text{ITA}(\mathbf{r}, O_p^i) = \sum_{h=1}^{H} \left(\text{softmax} \left(\frac{\phi_h(\mathbf{r}) \mathbf{W}_q [\phi_h(T_p^i) \mathbf{W}_k]^T}{\sqrt{d_k}} \right) X_p^i \right) \mathbf{W}_l$$
(2)

where W_q , W_k are learnable parameter matrices, d_k is the dimension of the key vectors, and W_l is a learnable projection vector.

Finally, the irregular patches will be converted to the regular latent space and capture the more fine-grained local information $\mathbf{Z}^i = [Z_{p|p=1}^i]^P$ for each univariate.

Global Temporal Encoding. While the encoded patches $\mathbf{Z}^{i} = [Z_{1}^{i}, ...Z_{P}^{i}]$ capture local, fine-grained irregularity, learning global temporal correlations between these patches is crucial, especially for time series regression tasks. Therefore, we leverage the transformer multi-head attention mechanism to model the temporal dependency within these patches, where $\mathbf{W} = {\mathbf{W}_{\hat{q}}, \mathbf{W}_{\hat{k}}, \mathbf{W}_{\hat{v}}}$, are learnable parameter matrices.

$$MultiHead(Z^{i}\mathbf{W}_{\hat{q}}, Z^{i}\mathbf{W}_{\hat{k}}, Z^{i}\mathbf{W}_{\hat{v}}) = [head_{1}, ..., head_{h}]\mathbf{W},$$
(3)

309

310

 $\operatorname{minicul}(2, 1, q, 2, 1, k, 2, 1, q) = [\operatorname{minicul}(1, \dots, \operatorname{minicul}(k))]$

head_h = softmax(
$$Z^i \mathbf{W}_{\hat{q}} [Z^i \mathbf{W}_{\hat{k}}]^T / \sqrt{d_k}$$
) (4)

Then output of MultiHead attention mechanism will be fed into projection layers as in vanilla Transformer encoder to get our final embeddings E^i which capture both local irregular and global temporal dependency information.

3.5 RECONSTRUCTION LOSS AND GENERALIZATION

The embeddings $\mathbf{E} = [E^i]_{i=1}^D$ learned from the global temporal encoding will be further decoded by a decoder to reconstruct the original irregular time series $\hat{\mathbf{X}}$. The reconstruction error between the model output $\hat{\mathbf{X}}$ and the target unseen data \mathbf{X} is computed using Mean Squared Error (MSE):

318

$$L = \frac{1}{D} \sum_{i=1}^{D} (X_i - \hat{X}_i)^2 \cdot M_i$$
(5)

This loss function encourages the model to accurately reconstruct the masked portions of the input, thereby learning to capture the underlying patterns and dependencies in the irregular time series data. This pretrained reconstruction model \mathcal{R} will then be fine-tuned for downstream tasks such as forecasting or interpolation on irregular multivariate time series data. To validate its generalization capability, we fine-tune \mathcal{R} across various domains, encompassing different datasets with varying input channels and irregular patterns.

³²⁴ 4 EXPERIMENTS

325 326

Datasets. We perform extensive experiments on 4 datasets that span different domains and tasks.
 Physionet (Silva et al., 2012) consists of 37 time series variables extracted from intensive care unit (ICU) records. MIMIC (Johnson et al., 2016) consists of electronic health records for more than 60,000 patients with 96 variables. Human Activity (Vidulin and Krivec, 2010) has 12 time series variables consisting of irregularly measured 3D positional records. textbfUSHCN (Menne et al.) contains 5 measurements of climate sensing variables. Details are listed in Appendix A.

Experimental Protocols. We conduct extensive experiments on multivariate irregular regression tasks including interpolation and forecasting. Specifically, Interpolation Task aim to predict missing values within a given time series. Forecasting Task im to use the previous data to predict the subsequent future observation values across various variables. Details for are listed in Appendix A.

Baselines. We compare GITaR to SOTA time series methods, encompassing both End-to-End supervised training and Self-supervised training approaches. These methods are categorized into 4 groups: (i) E2E for regular time series (E2E-Re), including PatchTST (Nie et al., 2023) and Cross-former (Zhang and Yan, 2023); (ii) SSL for regular time series data (SSL-Re): TS2Vec (Yue et al., 2022); (iii) E2E for irregular time series (E2E-IR), such as mTAND (Shukla and Marlin, 2021b) and t-PatchGNN (Zhang et al., 2024a); and (iv) SSL for irregular time series data (SSL-IR), exemplified by Primenet (Chowdhury et al., 2023). We provide a detailed description in the Appendix A.

Implementation Details and Metrics. For both tasks, we select hyper-parameters on the held-out validation set using grid search and then apply the best-trained model to the best set. We randomly divide the dataset into training, validation, and test sets using ratios of 60%, 20%, and 20% same as previous studies (Shukla and Marlin, 2021b; Zhang et al., 2024a). To assess the prediction of continuous targets, we use common regression metrics, such as the mean-average error (MAE), mean-squared error (MSE) and root-mean-squared error (RMSE). We provide a detailed description in the Appendix A.

350 351

352 353

354

5 Results

5.1 IRREGULAR TIME SERIES REGRESSION TASKS PERFORMANCE

355 Interpolation Task. Table 1 presents the performance of GITaR in comparison to baselines on 356 the interpolation task using the PhysioNet dataset. The percentage ranging from 50% to 90% indicates the observed ratio of the time series. The results reveal several key insights. First, our method 357 achieves the lowest RMSE values, with improvements ranging from 20.7% to 14.1% compared to 358 the second best method (PrimNet). This consistent outperformance highlights the robustness and ef-359 fectiveness of GITaR in interpolating irregular time series data. Additionally, a clear trend emerges 360 when comparing methods designed for irregular data (e.g., mTand, T-patchGNN, Primnet, and GI-361 TaR) with those developed for regular time series (PatchTST, Crossformer, TS2Vec) for both E2E 362 and SSL. The former generally outperforms the latter, underscoring the importance of tailoring ap-363 proaches to the unique challenges posed by irregular data. In particular, E2E regular methods show 364 higher RMSE values and larger performance variances. This suggests that methods assuming continuous and complete sensing often face challenges when confronted with missing values, as their 366 underlying assumptions are violated in the context of irregular time series. The benefits of SSL are apparent in the results. SSL methods (TS2Vec, Primnet, and GITaR) generally perform well, 367 indicating that leveraging large unlabeled datasets to learn general representations can significantly 368 enhance performance on downstream tasks such as interpolation. Among these SSL approaches, 369 GITaR consistently achieves the best performance across all observed ratios. This superior perfor-370 mance demonstrates GITaR's unique ability to capture and leverage complex patterns in irregular 371 time series data, resulting in more accurate interpolation compared to all other methods, including 372 other state-of-the-art self-supervised approaches. 373

These results highlight the potential of GITaR for real-world applications where irregular and sparse measurements are common, such as in healthcare monitoring or environmental sensing.

376

Forecasting Task. Table 2 presents the forecasting performance of various methods on four datasets: PhysioNet, MIMIC, Human Activity, and USHCN. Our proposed method consistently

Training	Model	50%	60%	70%	80%	90%
E2E-Re	PatchTST Crossformer	$\left \begin{array}{c} 6.92 \pm 0.18 \\ 6.79 \pm 1.43 \end{array} \right $	$\begin{array}{c} 6.95 \pm 0.14 \\ 6.87 \pm 1.35 \end{array}$	$\begin{array}{c} 8.17 \pm 0.05 \\ 7.12 \pm 0.47 \end{array}$	$\begin{array}{c} 8.13 \pm 0.07 \\ 7.48 \pm 0.58 \end{array}$	$\begin{array}{c} 8.47 \pm 0.46 \\ 7.63 \pm 0.78 \end{array}$
E2E-IR	mTAND T-patchGNN	$\left \begin{array}{c} 6.43 \pm 0.11 \\ 5.32 \pm 0.87 \end{array} \right $	$\begin{array}{c} 6.34 \pm 0.45 \\ 5.21 \pm 0.38 \end{array}$	$\begin{array}{c} 6.44 \pm 0.43 \\ 5.04 \pm 0.89 \end{array}$	$\begin{array}{c} 6.64 \pm 0.66 \\ 5.29 \pm 0.44 \end{array}$	$\begin{array}{c} 6.93 \pm 0.66 \\ 5.68 \pm 0.32 \end{array}$
SSL-Re	TS2Vec	$ 7.69 \pm 0.12$	7.83 ± 0.22	8.03 ± 0.15	8.29 ± 0.12	8.39 ± 0.43
SSL-IR	PrimNet	4.78 ± 0.17	$\underline{4.45\pm0.02}$	$\underline{4.97\pm0.02}$	$\underline{5.22\pm0.17}$	$\underline{5.42\pm0.15}$
SSL-IR	GITaR	$\mid \textbf{3.79} \pm \textbf{0.21}$	$\textbf{3.82} \pm \textbf{0.25}$	$\textbf{4.19} \pm \textbf{0.13}$	$\textbf{4.58} \pm \textbf{0.21}$	$\textbf{4.87} \pm \textbf{0.11}$

Table 1: Interpolation performance on the PhysioNet for varying percentages of observed data, evaluated using RMSE (X 10^{-2}), with best and second-best results in **bold** and underlined.

achieves the best performance across all datasets and metrics, demonstrating its effectiveness in handling irregular forecasting task. In specific, our method outperforms all baselines across all datasets, with improvements ranging from 4.4% to 8.7% in MSE and 2.3% to 8.7% in MAE compared to the second-best method (typically T-PatchGNN). The results from forecasting tasks align with those from interpolation tasks, demonstrating the effectiveness of SSL approaches over E2E approaches and highlighting the necessity of tailored designs for irregularity modeling.

To further validate the robustness of our approach, we also evaluate the performance under varying observations and forecast horizons. Specifically, we show GITaR continuously outperform SOTA methods when predict different horizons on Physionet dataset in Table 3. The consistent superior performance across all time horizons underscores GITaR's versatility and robustness in handling various forecasting scenarios, making it a reliable choice for a wide range of temporal prediction tasks in irregular time series data.

Table 2: Forecasting performance on four real-world irregular datasets evaluated using MSE and MAE, with best and second-best results in **bold** and underlined.

406										
407	Training	Model	PhysioNet		MIMIC		Human Activity		USHCN	
408			$MSE \times 10^{-3}$	$MAE \times 10^{-2}$	$MSE \times 10^{-2}$	$MAE \times 10^{-2}$	$MSE \times 10^{-3}$	$MAE \times 10^{-2}$	$MSE \times 10^{-1}$	$MAE \times 10^{-1}$
409	E2E-Re	PatchTST	12.00 ± 0.23	6.02 ± 0.14	3.78 ± 0.03	12.43 ± 0.10	4.29 ± 0.14	4.80 ± 0.09	5.75 ± 0.01	3.57 ± 0.02
410		Crossformer	6.66 ± 0.11	4.81 ± 0.11	2.65 ± 0.10	9.56 ± 0.29	4.29 ± 0.20	4.89 ± 0.17	5.25 ± 0.04	3.27 ± 0.09
411	E2E-IR	mTAND	6.23 ± 0.24	4.51 ± 0.17	1.85 ± 0.06	7.73 ± 0.13	3.22 ± 0.07	3.81 ± 0.07	5.33 ± 0.05	3.26 ± 0.10
412		T-PatchGNN	$\underline{4.98\pm0.21}$	$\underline{3.84\pm0.03}$	$\underline{1.75\pm0.04}$	$\underline{7.43\pm0.09}$	2.97 ± 0.03	$\underline{3.45\pm0.02}$	$\underline{5.00\pm0.04}$	$\underline{3.08\pm0.04}$
413	SSL-Re	TS2Vec	6.04 ± 0.09	4.48 ± 0.05	2.71 ± 0.03	9.53 ± 0.09	3.08 ± 0.05	4.13 ± 0.06	5.35 ± 0.04	3.27 ± 0.09
414	SSL-IR	PrimeNet	5.33 ± 0.62	5.31 ± 0.68	1.87 ± 0.05	9.03 ± 0.29	$\underline{2.94\pm0.04}$	3.56 ± 0.07	5.08 ± 0.02	3.22 ± 0.08
415	SSL-IR	GITaR	$\textbf{4.76} \pm \textbf{0.18}$	$\textbf{3.70} \pm \textbf{0.13}$	$\textbf{1.72} \pm \textbf{0.10}$	$\textbf{7.22} \pm \textbf{0.09}$	$\textbf{2.76} \pm \textbf{0.03}$	$\textbf{3.15} \pm \textbf{0.02}$	$\textbf{4.95} \pm \textbf{0.05}$	$\textbf{3.01} \pm \textbf{0.04}$

5.2 ANALYSIS OF GENERALIZATION CAPABILITIES

To evaluate the generalization ability of our proposed methods, we conducted experiments on cross-domain transfer learning. Specifically, we trained our model on the PhysioNet dataset (37 variables) and tested its performance on three different datasets: MIMIC, Human Activity, and USHCN. This setup allows us to assess how well our model can adapt to new domains with potentially differ-ent data characteristics and variable structures. Table 3 presents the results of our cross-domain generalization experiments. It is important to note that some SOTA baselines are not capable of processing different number of variables and, therefore, cannot generlized to other domains, such as the E2E channel-dependent methods including Crossformer, mTAND and T-patchGNN. The per-formance demonstrates that GITaR consistently outperforms all baselines across all three transfer scenarios. Moreoever, SSL-based methods perform better compared with the E2E training manner, which validates the generalization capability of pertaining mechanism More specifically, the superior generalization capability of GITaR can be attributed to several key design choices that set it apart from existing methods. Unlike PrimeNet, which uses channel-dependent processing, GITaR treats each variable independently during the initial stages of processing. This channel-independent

approach allows our model to learn more general representations that are not biased towards specific inter-variable correlation patterns observed in the training data. As a result, GITaR can more easily adapt to new datasets where the relationships between variables may differ. Furthermore, our method incorporates both local irregular pattern learning within patches and global temporal correlation modeling across patches. This dual-scale approach enables GITaR to capture generalizable patterns at multiple levels of abstraction, contributing to its robust performance across domains.

Model MIMIC		Human Activity	USHCN	
PatchTST	4.15 ± 0.13	4.65 ± 0.26	5.98 ± 0.07	
TS2Vec	3.74 ± 0.21	3.95 ± 0.13	5.67 ± 0.08	
PrimeNet	2.87 ± 0.34	3.25 ± 0.16	5.27 ± 0.05	
GITaR	$\textbf{2.67} \pm \textbf{0.17}$	$\textbf{2.98} \pm \textbf{0.11}$	$\textbf{5.14} \pm \textbf{0.06}$	

Table 3: **Comparison of generalization abilities** among different methods, across PhysioNet \rightarrow MIMIC, or Human Activity or USHCN datasets, indicating training and validation on the former dataset followed by testing on the later dataset.

Figure 3: **Forecasting performance** with various prediction horizons.

5.3 ABLATION STUDY

We evaluate the performance of GITaR and its several variants on all four datasets we used for regression task. **Complete** represents the model without any ablation; **w/o Ir-mask** removes the irregular-senstive masking strategy while using the random making strategy; **w/o Patch** removes patching module; **w/o GE** (global embedding) removed the temporal and global embedding module and **w/o all** is just the simple masked autoencoder framework.

Table 4 presents the results of the model ablation study. As shown, the removal of any component leads to performance degradation. Notably, the w/o IR-mask configuration resulted in a significant performance drop across all datasets, demonstrating the importance of capturing and maintaining the original irregularity when using the masking and reconstruction mechanism. Similarly, the w/o TS-patch configuration confirms that patching with fixed horizons or temporal durations preserves local semantics. Additionally, the absence of a transformer for learning global temporal correlations illustrates the necessity of capturing these correlations during representation learning for effective regression forecasting.

Table 4: Ablation study.

Madal	PhysioNet		MIMIC		Human Activity		USHCN	
Woder	$MSE \times 10^{-3}$	$MAE \times 10^{-2}$	$MSE \times 10^{-2}$	$MAE \times 10^{-2}$	$MSE \times 10^{-3}$	$MAE \times 10^{-2}$	$MSE \times 10^{-1}$	$MAE \times 10^{-1}$
GITaR (Complete)	$\textbf{4.76} \pm \textbf{0.18}$	$\textbf{3.70} \pm \textbf{0.13}$	$\textbf{1.72} \pm \textbf{0.10}$	$\textbf{7.22} \pm \textbf{0.09}$	$\textbf{2.76} \pm \textbf{0.03}$	$\textbf{3.15} \pm \textbf{0.02}$	$\textbf{4.95} \pm \textbf{0.05}$	$\textbf{3.01} \pm \textbf{0.04}$
MAE (w/o all)	7.18 ± 0.18	4.95 ± 0.13	3.95 ± 0.16	12.82 ± 0.21	4.34 ± 0.11	4.94 ± 0.12	5.75 ± 0.01	3.57 ± 0.02
w/o IR-mask	6.81 ± 0.28	4.76 ± 0.19	2.95 ± 0.07	9.85 ± 0.11	3.34 ± 0.38	3.94 ± 0.12	5.33 ± 0.01	3.36 ± 0.02
w/o TS-patch	5.59 ± 0.67	4.32 ± 0.46	2.35 ± 0.56	8.82 ± 0.43	3.76 ± 0.59	4.94 ± 0.32	5.39 ± 0.20	3.18 ± 0.09
w/o GE	5.86 ± 0.45	4.45 ± 0.53	2.63 ± 0.47	9.13 ± 0.33	3.98 ± 0.48	5.12 ± 0.34	5.46 ± 0.29	3.67 ± 0.11

6 CONCLUSIONS

We have presented GITaR, a novel generalized masking and reconstruction pretraining framework
for irregular time series regression. The design of the irregular-sensitive masking and time-patching,
the irregular-time encoder, and the global temporal encoding module has shown promise in capturing the underlying dynamics of irregular time series for effective representation learning. More
importantly, combined with the channel-independent design, our GITaR has demonstrated superior
performance across various domains, effectively leveraging it as a foundational model for multiple tasks or data types involving irregular time series. This work potentially provides a robust and
generalised framework for a range of real-world time series applications.

486 REFERENCES

- Chang Wei Tan, Christoph Bergmeir, François Petitjean, and Geoffrey I. Webb. Time series extrinsic regression: predicting numeric values from time series data. *Data Mining and Knowledge Discovery*, 35:1032–1060, March 2021. ISSN 1384-5810. doi: 10.1007/s10618-021-00745-9.
- 491 Satya Narayan Shukla and Benjamin M. Marlin. A survey on principles, models and methods
 492 for learning from irregularly sampled time series, 2021a. URL https://arxiv.org/abs/
 493 2012.00168.
- Zhihan Yue, Yujing Wang, Juanyong Duan, Tianmeng Yang, Congrui Huang, Yunhai Tong, and
 Bixiong Xu. Ts2vec: Towards universal representation of time series, 2022. URL https:
 //arxiv.org/abs/2106.10466.
- Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition trans formers with auto-correlation for long-term series forecasting, 2022. URL https://arxiv.
 org/abs/2106.13008.
- Sindhu Tipirneni and Chandan K. Reddy. Self-supervised transformer for sparse and irregularly sampled multivariate clinical time-series, 2022a. URL https://arxiv.org/abs/2107. 14293.
- Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary differential equations, 2019. URL https://arxiv.org/abs/1806.07366.
- Satya Narayan Shukla and Benjamin Marlin. Multi-time attention networks for irregularly sampled time series. In *International Conference on Learning Representations*, 2021b. URL https://openreview.net/forum?id=4c0J6lwQ4_.
- Yuan Zhang, Xi Yang, Julie Ivy, and Min Chi. Attain: Attention-based time-aware lstm networks for disease progression modeling. In *Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence, IJCAI-19*, pages 4369–4375. International Joint Conferences on Artificial Intelligence Organization, 7 2019. doi: 10.24963/ijcai.2019/607. URL https://doi.org/10.24963/ijcai.2019/607.
- Yuqi Chen, Kan Ren, Yansen Wang, Yuchen Fang, Weiwei Sun, and Dongsheng Li. Contiformer: Continuous-time transformer for irregular time series modeling, 2024. URL https://arxiv. org/abs/2402.10635.
- Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need, 2023. URL https://arxiv.
 org/abs/1706.03762.
- Xiang Zhang, Marko Zeman, Theodoros Tsiligkaridis, and Marinka Zitnik. Graph-guided network for irregularly sampled multivariate time series, 2022. URL https://arxiv.org/abs/ 2110.05357.
- Weijia Zhang, Chenlong Yin, Hao Liu, Xiaofang Zhou, and Hui Xiong. Irregular multivariate time
 series forecasting: A transformable patching graph neural networks approach. In *Forty-first In- ternational Conference on Machine Learning*, 2024a.
- Kexin Zhang, Qingsong Wen, Chaoli Zhang, Rongyao Cai, Ming Jin, Yong Liu, James Y. Zhang, Yuxuan Liang, Guansong Pang, Dongjin Song, and Shirui Pan. Self-supervised learning for time series analysis: Taxonomy, progress, and prospects. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 46(10):6775–6794, 2024b. doi: 10.1109/TPAMI.2024.3387317.
- Yuzhe Yang, Xin Liu, Jiang Wu, Silviu Borac, Dina Katabi, Ming-Zher Poh, and Daniel McDuff.
 Simper: Simple self-supervised learning of periodic targets, 2023. URL https://arxiv.org/abs/2210.03115.
- Ranak Roy Chowdhury, Jiacheng Li, Xiyuan Zhang, Dezhi Hong, Rajesh K. Gupta, and Jingbo
 Shang. Primenet: Pre-training for irregular multivariate time series. *Proceedings of the AAAI Con- ference on Artificial Intelligence*, 37(6):7184–7192, Jun. 2023. doi: 10.1609/aaai.v37i6.25876.
 URL https://ojs.aaai.org/index.php/AAAI/article/view/25876.

561

567

568

569

570

540	Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
541	wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
542	Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
543	Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz
544	Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec
545	Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learners, 2020. URL
546	https://arxiv.org/abs/2005.14165.

- 547 Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked 548 autoencoders are scalable vision learners, 2021. URL https://arxiv.org/abs/2111. 549 06377. 550
- Jie Zhu, Jiyang Qi, Mingyu Ding, Xiaokang Chen, Ping Luo, Xinggang Wang, Wenyu Liu, Leye 551 Wang, and Jingdong Wang. Understanding self-supervised pretraining with part-aware represen-552 tation learning, 2024. URL https://arxiv.org/abs/2301.11915. 553
- 554 Qingsong Wen, Tian Zhou, Chaoli Zhang, Weiqi Chen, Ziqing Ma, Junchi Yan, and Liang Sun. Transformers in time series: A survey, 2023. URL https://arxiv.org/abs/2202. 555 07125. 556
- Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang. 558 Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021. URL 559 https://arxiv.org/abs/2012.07436. 560
- Yunhao Zhang and Junchi Yan. Crossformer: Transformer utilizing cross-dimension dependency for multivariate time series forecasting. In International Conference on Learning Representations, 562 2023. 563
- 564 Yuqi Nie, Nam H. Nguyen, Phanwadee Sinthong, and Jayant Kalagnanam. A time series is worth 565 64 words: Long-term forecasting with transformers. In International Conference on Learning 566 Representations, 2023.
 - Zhengping Che, Sanjay Purushotham, Kyunghyun Cho, David Sontag, and Yan Liu. Recurrent neural networks for multivariate time series with missing values, 2016. URL https://arxiv. org/abs/1606.01865.
- Mona Schirmer, Mazin Eltayeb, Stefan Lessmann, and Maja Rudolph. Modeling irregular time se-571 ries with continuous recurrent units, 2022. URL https://arxiv.org/abs/2111.11344. 572
- 573 Yulia Rubanova, Ricky T. Q. Chen, and David Duvenaud. Latent odes for irregularly-sampled time 574 series, 2019. URL https://arxiv.org/abs/1907.03907. 575
- Sindhu Tipirneni and Chandan K. Reddy. Self-supervised transformer for sparse and irregularly 576 sampled multivariate clinical time-series. ACM Trans. Knowl. Discov. Data, 16(6), jul 2022b. 577 ISSN 1556-4681. doi: 10.1145/3516367. URL https://doi.org/10.1145/3516367. 578
- 579 Jiawen Zhang, Shun Zheng, Wei Cao, Jiang Bian, and Jia Li. Warpformer: A multi-scale modeling 580 approach for irregular clinical time series. In Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, KDD '23, page 3273-3285, New York, NY, USA, 581 2023. Association for Computing Machinery. ISBN 9798400701030. doi: 10.1145/3580305. 582 3599543. URL https://doi.org/10.1145/3580305.3599543. 583
- 584 Nicasia Beebe-Wang, Sayna Ebrahimi, Jinsung Yoon, Sercan O. Arik, and Tomas Pfister. Paits: Pre-585 training and augmentation for irregularly-sampled time series, 2023. URL https://arxiv. 586 org/abs/2308.13703.
- Po-Yao Huang, Hu Xu, Juncheng Li, Alexei Baevski, Michael Auli, Wojciech Galuba, Florian 588 Metze, and Christoph Feichtenhofer. Masked autoencoders that listen, 2023. URL https: 589 //arxiv.org/abs/2207.06405. 590
- Ikaro Silva, George B. Moody, Daniel J. Scott, Leo Anthony Celi, and Roger G. Mark. Predicting inhospital mortality of icu patients: The physionet/computing in cardiology challenge 2012. 2012 592 Computing in Cardiology, pages 245-248, 2012. URL https://api.semanticscholar. org/CorpusID:8678934.

594 Alistair E. W. Johnson, Tom J. Pollard, Lu Shen, Li wei H. Lehman, Mengling Feng, Moham-595 mad Mahdi Ghassemi, Benjamin Moody, Peter Szolovits, Leo Anthony Celi, and Roger G. 596 Mark. Mimic-iii, a freely accessible critical care database. Scientific Data, 3, 2016. URL 597 https://api.semanticscholar.org/CorpusID:33285731. 598 Lustrek Mitja Kaluza Bostjan Piltaver Rok Vidulin, Vedrana and Jana Krivec. Local-UCI Machine Learning Repository, 2010. DOI: ization Data for Person Activity. 600 https://doi.org/10.24432/C57G8X. 601 602 M.J. Menne, C.N. Williams, Jr., and R.S. Vose. Long-term daily and monthly climate records from 603 stations across the contiguous united states (u.s. historical climatology network). doi: 10.3334/ 604 CDIAC/CLI.NDP019. URL https://www.osti.gov/biblio/1394920. 605 Marin Biloš, Johanna Sommer, Syama Sundar Rangapuram, Tim Januschowski, and Stephan 607 Günnemann. Neural flows: Efficient alternative to neural odes, 2021. URL https://arxiv. 608 org/abs/2110.13040. 609 610 611 APPENDIX Α 612 613 A.1 DATASETS 614 • **Physionet** (Silva et al., 2012) consists of 37 time series variables extracted from intensive 615 care unit (ICU) records. Each record contains sparse and irregularly spaced measurements 616 from the first 48 hours after admission to ICU. The dataset includes 4000 labeled instances 617 and 4000 unlabeled instances, totaling 8000 instances. We follow the procedures outlined 618 in mTand (Shukla and Marlin, 2021b) for data preprocessing and preparation. 619 • MIMIC (Johnson et al., 2016) consists of electronic health records for more than 60,000 620 critical care patients. We follow the procedures of Neural Flow (Biloš et al., 2021) and 621 extract 96 time series variables for 48 hours. The datasets include 23418 instances. 622 • Human Activity (Vidulin and Krivec, 2010) has 12 time series variables consisting of 623 irregularly measured 3D positional records from 4 different sensors worn in the waist, 624 check, and ankles. The dataset includes 5 individuals performing various human activities, 625 including walking, sitting, etc. 626 • USHCN (Menne et al.) contains 5 measurements of climate sensing variables over 150 627 years. We follow the previous work (Biloš et al., 2021) and extract 111,4 station data with 628 a four-year observation period. 630 • Semi-synthetic dataset. we create the semi-synthetic forecasting dataset based on ETTh1 631 where we introduce irregularity by random dropping data. 632 633 A.2 EXPERIMENTAL PROTOCOLS 634 **Interpolation Task:** For the interpolation task on the PhysioNet dataset, we aim to predict missing 635 values within a given time series. In specifically, we use 8000 data cases. To evaluate the model's 636 performance under different conditions, we vary the number of observed points used for prediction. 637 Specifically, we test scenarios where 50% to 90% of available data points are used to predict the 638 remaining values, during the test phase. 639

Forecasting Task: For the forecasting task, we aim to use the previous data to predict the subsequent
future observation values across various variables. Specifically, during the test time, for Physionet
and MIMIC, we use the first 24 hours to predict the next 24 hours. For Human Activity, we use the
first 3000 milliseconds to predict the next 1000 milliseconds. For USHCN, we use two years of data
to predict the following year.

- 645 646 A.3 B.
- 647
- A.3 BASELINES:

We employ the following state-of-the-art time series modeling algorithms for comparison.

 PatchTST: (Nie et al., 2023) enhances the original Transformer architecture by introducing subseries level patching and channel-independence, effectively capturing cross-time dependencies for time series forecasting.

651
 652
 653
 654
 654
 654
 655
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654
 654

mTAND: (Shukla and Marlin, 2021b) introduces an irregular time series attention mechanism. This
 method replaces traditional positional embedding with continuous-time embedding, learning correlations between observed data and continuous-time steps to map irregular data onto a fixed, regular
 representation space.

T-patchGNN: (Zhang et al., 2024a) tackles irregular time series forecasting through a multi-step approach. It first employs a transformable patching strategy to segment irregular time series data into uniform temporal resolutions. Subsequently, it utilizes a transformable time-aware convolution network to map the irregular data to a latent space, and finally leverages a graph neural network to learn inter-channel correlations.

TS2Vec: (Yue et al., 2022) performs hierarchical contrastive learning over augmented context views,
 which enables a robust contextual representation for each timestamp. The method is for regular time
 series classification, regression and anomaly detection task.

PrimeNet: (Chowdhury et al., 2023) propose time-sensitive contrastive learning and data recon struction to learn from data irregularity patterns. The method is for irregular time series classification and interpolation.

670 671 672

A.4 IMPLEMENTATION DETAILS

673 Our implementation consists of two primary stages: representation learning and task-specific fine-674 tuning. During the representation learning stage, we pretrain the model using mask and reconstruc-675 tion tasks to develop robust representations applicable to various downstream tasks. For each dataset 676 and task, we utilize the entire training set to train the representation model. Subsequently, we fine-677 tune this model based on the specific task and dataset requirements before evaluating it against the 678 test set to obtain the final representation. To optimize performance, we conduct a comprehensive grid search over key hyperparameters. The batch size is varied among [32, 64, 128], while the learning 679 rate is tested at [0.01, 0.001, 0.0001]. For the model architecture, we explore different configura-680 tions: the number of heads (H) in mTAND is varied among [1, 2, 3], and the number of Transformer 681 encoder layers is tested at [2, 4, 6]. To preserve the irregularity within each univariate time series, 682 we implement a masking strategy controlled by the timespan parameter qn. This parameter, varied 683 among [2, 3, 4], ensures that the masking ratio for each univariate series remains between 30% and 684 50%. The choice of patch value, critical for handling data sparsity, is selected from [32, 64, 128] 685 based on the temporal density characteristics of the data. All experiments are run 5 times and the 686 results are reported with mean and standard deviation. All models are implemented using PyTorch, 687 and the experimental evaluations are conducted on NVIDIA A100-SXM-80GB GPUs.

688 689 690

691 692

693

694

696 697

B SUPPLEMENTARY INFORMATION

B.1 DATASET STATISTICS

In this section, we provide the updated statistics of our training dataset, as shown in Table 5.

Dataset	PhysioNet	MIMIC-III	Human Activity	USHCN
Variable Number	37	96	12	5
Missing rate	79.6%	89.1%	75%	70.4%
Sampling interval	1 hour	1 hour	100 seconds	1 month

699 700

Table 5: Overview of datasets and their characteristics.

702 B.2 VISUALIZATION

In this section, we provide updated visualization of attention weights, as shown in Figure 4

B.3 HYPER-PARAMETER DETAILS

In this section, we provide the details of hyperparameter selections as shown in table 6

Dataset	Patch Size (P)	Masking Ratio (M)	Final Selection
Physionet	[1, 2, 4, 8, 12]	[0.1, 0.2, 0.3, 0.4, 0.5]	P = 4, M = 0.3
MIMIC-III	[1, 2, 4, 8, 12]	[0.1, 0.2, 0.3, 0.4, 0.5]	P = 4, M = 0.2
Human Activity	[50, 100, 200, 300, 400, 500]	[0.1, 0.2, 0.3, 0.4, 0.5]	P = 200, M = 0.4
USHCN	[1, 2, 4, 8, 12]	[0.1, 0.2, 0.3, 0.4, 0.5]	P = 2, M = 0.2

Table 6: Patch size and masking ratio configurations across datasets.

