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Abstract

We propose an embarrassingly simple method — instance-aware repeat factor sam-
pling (IRFS) to address the problem of imbalanced data in long-tailed object
detection. Imbalanced datasets in real-world object detection often suffer from a
large disparity in the number of instances for each class. To improve the generaliza-
tion performance of object detection models on rare classes, various data sampling
techniques have been proposed. Repeat factor sampling (RFS) has shown promise
due to its simplicity and effectiveness. Despite its efficiency, RFS completely ne-
glects the instance counts and solely relies on the image count during re-sampling
process. However, instance count may immensely vary for different classes with
similar image counts. Such variation highlights the importance of both image
and instance for addressing the long-tail distributions. Thus, we propose IRFS
which unifies instance and image counts for the re-sampling process to be aware of
different perspectives of the imbalance in long-tailed datasets. Our method shows
promising results on the challenging LVIS v1.0 benchmark dataset over various
architectures and backbones, demonstrating their effectiveness in improving the
performance of object detection models on rare classes with a relative +50% aver-
age precision (AP) improvement over counterpart RFS. IRFS can serve as a strong
baseline and be easily incorporated into existing long-tailed frameworks.

1 Introduction

Real-world datasets are often imbalanced and follow a long-tail distribution where few object classes
dominates the distribution resulting in the heavy tail for rare classes|Liu et al.| (2019); Gupta et al.
(2019); Zhao et al.|(2022); |Liu and Yaman|(2022). This poses a significant challenge in many real-
world applications, especially in computer vision tasks such as image recognition, object detection,
and semantic segmentation |Gupta ef al.|(2019). Without addressing this issue, models tend to be
biased towards the majority classes, making it difficult to achieve good performance in the rare
classes |Tan et al.|(2020);|Chang ef al.| (2021)); |/Alexandridis ef al.|(2022); Hu et al.|(2022). However,
performing well on rare classes is crucial for applications like autonomous driving, video surveillance,
automated optical inspection, and medical imaging systems, where anomalies or unusual events can
have significant implications. Therefore, addressing the long-tail distribution of real-world visual
data is crucial for achieving reliable performance in many real-world applications.

The problem of data imbalance with a long-tail distribution has been approached in two major
directions. The first direction involves data augmentation with class-balanced sampling \Gupta ef al.
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Figure 1: We illustrate the importance of instance count in addressing long-tail distributions. Figure
a) shows image and instance counts for the LVIS v1.0 data distribution across three main categories,
namely rare, common, and frequent. Figure b) demonstrates a representative case from the rare
categories with the same image count but varying instance counts. It is observed that RFS, which
ignores the instance count, assigns the same re-sampling factor to all classes with the same image
count. In contrast, figure c) depicts the IRFS approach, which incorporates the instance count in the
re-sampling process, resulting in a +50% relative improvement compared to RFS on rare categories
and a better overall performance.

(2019); |Chang et al.|(2021)); Zhang et al.|(2021)). While up-sampling the minor classes through data
augmentation and down-sampling the major classes may appear promising, such an approach may
lead to performance bias towards the largely augmented minor classes. The utilization of object-
centric sampling and class-balanced sampling can mitigate this issue by exploiting available data and
achieving better performance on minor classes. However, significant imbalance between major and
minor classes may require much larger up-sampling and down-sampling ratios that under-represent
major classes and make training biased. The second direction involves modifying the loss function
to handle the effect of large class imbalance |Li et al.|(2020); Tan ef al.|(2021); |Alexandridis et al.
(2022)). Adaptive weighting of the classes in the loss function is one such solution that adds more
weight to the minor class predictions. Grouping the predictions and loss functions according to the
available samples of each class is another promising solution. Despite considerable improvement
of performance with these approaches, the larger imbalance of the dataset can significantly under-
represent the minor classes that suffer from similar challenges.

While class-based sampling approaches have focused on the imbalance in terms of the number of
images in the dataset, instance level imbalance remains unaddressed. As a result, current class
balanced sampling approaches assign the same oversampling ratio to all categories with the same
number of images, despite the immense amount of imbalance in terms of instances (see Fig. [I)).
Thus, long-tailed datasets are not only imbalanced in terms of images but also instances. Therefore,
disregarding instance count while addressing the long-tail distributions may be costly and lead to
suboptimal results, especially for rare categories. To address this issue, we propose a novel instance-
aware repeat factor sampling (IRFS) method that incorporates the instance count and fuses it with
image count to determine the repeat factor for each category. Our main contributions are threefold.

* We propose an incredibly simple method to address long-tail distributions by incorporating
the instance count in the re-sampling process.

* Our proposed approach can be used as a standalone replacement for current repeat factor
sampling (RFS) approaches or combined with other re-weighting approaches.

* We conduct extensive experiments on challenging LVIS v1.0 benchmark. Our proposed
instance-aware re-sampling approach provides significant performance improvement over
RFS, and it achieves the state-of-the-art performance in both overall accuracy and accuracy
of rare classes.

2 Related Works

Long-Tailed Challenges. In the realm of computer vision, long-tail distribution poses a persistent
challenge that has yet to be fully resolved |Yang et al.|(2022). Such distribution patterns are common
in real-world datasets, wherein a small subset of categories dominate the majority of instances, and
each category’s importance does not necessarily follow a power-law decayed distribution. Achieving



balanced performance for each category in this highly skewed distribution remains an open problem,
particularly in the context of object detection, which is a more complex task than image recognition
due to the presence of multiple classes in a single image. Various methods have been proposed to
address long-tailed image classification, including assigning balanced weights for each class in the
loss functions or adjusting the sampling rate for each class in the data loader|Cui et al.|(2019); [Kim ez
al.|(2020); Hong ef al.| (2021); Alshammari ef al.|(2022). However, applying these solutions to object
detection is more challenging due to the nature of the task.

Re-sampling in Long-Tailed Detection. The state-of-the-art re-sampling technique in long-tailed
detection — repeat factor sampling, was introduced in |Gupta ef al.|(2019)). This technique involves
increasing the sampling rate of images that contain rare class objects, thereby improving the balance
of the dataset. While RFS has proven to be effective, it fails to consider the object numbers factor
jointly. In response to this limitation, the authors proposed re-sampling at object-level (OCS)|Chang
et al.| (2021), which leverages a memory bank to replay the necessary objects in an image. The
authors in|Chang et al.| (2021)) further proposed using RFS together with OCS to achieve a balanced
sampling in both image and object levels. We note that this approach does not modify or integrate
instance count into the image re-sampling process. Instead, it utilizes the features of rare categories
from the memory bank when computing the loss. Applying data augmentation strategies is another
type of re-sampling technique. It has also shown promising results in addressing the long-tailed
problem in object detection. For example, simple copy-and-paste techniques |Ghiasi et al.| (2021)
have been used to randomly mix objects from different images, leading to improved performance in
long-tailed instance segmentation tasks.

Re-weighting in Long-Tailed Detection. Recently, the research community has shifted its focus
towards inventing new re-weighting techniques to tackle the long-tailed detection problem. Equal-
ization loss (EQL) Tan ez al.|{ (2020} 2021} was proposed to alleviate discouraging gradients for rare
categories during parameter updating, thus improving the learning of better features for rare classes.
Li et al. |Li et al.| (2020) proposed a balanced group softmax (BAGS) module that formulates a novel
type of group-wise training. This module separates the tail and head classes, thus improving the
learning of similar numbers of instances within each group. Observing that the classifier’s weight
norm can cause imbalance and make long-tailed detection challenging, the authors in (Wang et al.
(2022)) proposed a C2AM loss, which enforces the margin between two categories to be proportional
to the ratio of their classifiers’ weight norms. Cho et al. [Hyun Cho and Krihenbiihl| (2022)) took
a theoretical approach to derive a bound for object detection performance metric using classical
margin-based binary classification theory. They proposed a surrogate objective named effective
class-margin (ECM) loss. Specifically for instance segmentation, seesaw loss |Wang et al.| (2021)
and Gumbel optimized loss |Alexandridis ef al.| (2022) were proposed. The former dynamically
re-balances gradients of positive and negative samples for each category, while the latter better aligns
the distribution of the activation function with the long-tail distribution.

3 Methods

3.1 Repeat Factor Sampling

In this section, we introduce the Repeat Factor Sampling (RFS) method for training object detection
models. RFS is a simple and effective approach that balances the class distribution by oversampling
images containing rare classes |Gupta ez al.|(2019). Specifically, RFS increases the occurrence rate of
tail categories by repeating the images that contain them during training. This method has shown to
be effective in addressing long-tail distribution challenges in object detection and has demonstrated
promising results in improving the performance of models on rare categories.

For each category c, let f. be the fraction of training images that contain at least one instance of c.
Accordingly, a category-level repeat factor . is defined as

Te = max(la t/fc)a (D

where t is a hyper-parameter that intuitively controls the point at which oversampling begins. If f. is
greater than or equal to ¢, then there is no oversampling for that category. Additionally, as each image
may contain different categories, an image-level repeat factor r; is defined for each image ¢, which is
determined as

7i = IMax e, 2)
cer



where ¢ € ¢ denotes the categories labeled in the -th image. During training, each image is repeated
according to its repeat factor r;.

3.2 Proposed Instance-Aware Repeat Factor Sampling

Class-balanced sampling through RFS has significantly improved performance, but exclusion of
instances can lead to suboptimal results, especially for rare classes. Figure[Th) shows the image count
and instance count for the three main categories. In addition to imbalance in image count, there exists
a visibly significant further imbalance in terms of instance counts. Despite the varying instance count
(Figure[Ib)), classes with the same image count are assigned the same re-sampling factor which might
lead to suboptimal results (Figure[Ik)). Therefore, the f, parameter in RFS may not be representative
enough to handle long-tail distributions, especially if there is an additional imbalance layer between
the number of images and the number of bounding boxes.

In order to address the challenges faced by RFS and to ensure that rare classes are properly prioritized
during the sampling process, we propose an instance-aware repeat factor sampling (IRFS) method that
takes both images and bounding box instances into account. To be more specific, we propose using
both the image and bounding box instances to define f.. Let f(; .y and f(; .y denote the fractions of
images and bounding boxes in the training set that contain instances of category c¢. We define f, as
the mean of f; ) and f(; ). For a geometric mean case, the Eq. can be reformulated as

re = max(1, \/t/ ftie)y X fiv,e))- &)

Once instance-aware category-level repeat factor is calculated in Eq. [3] Eq. [2]is used to compute the
image-level repeat factor.

4 Experiments

4.1 Dataset

In our experiments, we evaluate the proposed IRFS approach on the LVIS v1.0 dataset Gupta et al.
(2019). LVIS contains 1.3 million object instances across 120K images and includes 1203 categories.
This dataset is known for its heavy long-tail distribution and has been categorized into three groups:
frequent, common, and rare, based on the frequency of occurrence. Rare categories are defined as
those appearing in fewer than 10 images, common categories appear in more than 10 but less than
100 images, and frequent categories appear in over 100 images. The dataset is split into 100K training
images and 20K validation images, and we perform our experiments on this split.

4.2 Implementation Details

We conducted all experiments using MMdetection (Chen et al.|(2019), a popular open-source library
for object detection and instance segmentation. For our experiments, we utilized Mask R-CNN He et
al|(2017), a state-of-the-art framework for object detection and instance segmentation. We trained
Mask R-CNN with ResNet-50 and ResNet-101 backbones |[He ef al.| (2016)) and Feature Pyramid
Network (FPN) Lin et al.| (2017). We also performed experiments on ATSS |Zhang ef al|(2020),
a one-stage detector. We followed the standard LVIS setup and hyperparameters for the models.
Specifically, we trained the models using SGD with 0.9 momentum and a batch size of 16 on 4 GPUs
(NVIDIA Tesla V100 with 32 GB VRAM), with an initial learning rate of 0.02 and weight decay
of 10~%. The training and inference images were resized to a shorter and longer image edge of 800
and 1333 pixels, and we only used horizontal flipping for data augmentation unless stated otherwise.
We trained all models for 12 epochs (1x schedule), with decay at the 8th and 11th epochs. We train
the RFS models with the reported optimal value of t = 107>, We use IRFS with geometric mean
and t = 1073 unless stated otherwise. In addition to RFS and IRFS, we report the performance of
training without any sampling, i.e. ¢ = 0, and denote it in the Tables as “w/o sampling”.

4.3 Evaluation Metric

We evaluated our models using the LVIS metrics. The metrics include mean average precision
(mAP), average precision (AP) with intersection over union (IoU) of 50% (APs(), AP with ToU of



Table 1: LVIS v1.0 validation set results using Mask R-CNN and Cascade Mask R-CNN frameworks
with ResNet-50/ResNet-101 backbones on 1x schedule. RFS and IRFS are trained with ¢ = 1073
and w/o sampling is trained with ¢t = 0.

Framework Backbone Detection mAPyp,,, APsy AP7s AP, AP, APy
w/o sampling  16.9 28.1 177 0.0 123 29.6
Mask R-CNN ResNet-50  RFS 22.7 373 239 92 213 300
IRFS 24.4 39.8 258 141 228 30.7
w/o sampling  18.6 300 196 00 142 316
Mask R-CNN ResNet-101 RFS 24.9 40.0 265 119 238 32.0
IRFS 26.4 41.8 283 169 24.7 325
w/o sampling  20.1 295 213 03 16.1 333
Cascade Mask R-CNN  ResNet-50  RFS 26.6 38.5 28.1 127 257 33.7
IRFS 28.8 414 306 191 274 344
w/o sampling  21.8 31,5 231 0.2 184 350
Cascade Mask R-CNN  ResNet-101 RFS 29.1 41.6  31.1 170 284 353
IRFS 30.0 428 321 191 29.0 359
Framework Backbone Segmentation mAP.,, APs9 APz;s AP, AP. APy
w/o sampling  16.2 260 170 0.0 125 273
Mask R-CNN ResNet-50  RFS 21.9 348 232 104 21.1 278
IRFS 23.7 371 251 149 228 285
w/o sampling 17.6 27.9 18.7 0.0 142 29.0
Mask R-CNN ResNet-101 RFS 23.8 37.0 253 123 233 293
IRFS 25.3 39.2 269 172 243 299
w/o sampling  17.8 276 190 0.2 14.8 29.0
Cascade Mask R-CNN  ResNet-50 RES 23.8 36.3 254 123 233 294
IRFS 25.6 388 274 173 248 30.1
w/o sampling 19.3 295 206 0.2 16.8 30.6
Cascade Mask R-CNN  ResNet-101 RFS 26.0 392 278 159 256 30.8
IRFS 26.8 403 285 177 263 313

75% (AP75), AP on rare classes (AP,.), AP on common classes (AP.), and AP on frequent classes
(APy). For Mask R-CNN, we reported both detection and segmentation metrics, which are denoted
as mAPyy,, and mAP;,,, respectively.

4.4 Main Results

Table [T]illustrates the performance of IRFS with respect to counterpart RFS method.

Object Detection. In all frameworks, training without a balanced sampling results in the lowest
AP. Due to the heavy-tailed distribution, the w/o sampling approach suffers greatly for rare class
detection. While RFS provides a significant improvement over the w/o sampling approach, the
proposed IRFS achieves the best performance with a significant improvement over RFS across all
metrics. In particular, for Mask R-CNN with a ResNet-50 backbone, our proposed IRFS provides
a relative +50% improvement over RFS for rare categories. Moreover, the superior performance
of IRFS for rare classes does not result in degraded results for common and frequent classes. In
fact, it relatively improves the performance of common and frequent categories by +7% and +2%,
respectively, compared to RFS. For Mask R-CNN with a ResNet-101 backbone, IRFS outperforms
the RFS by 5.0 AP (+40%) for rare categories and 1.5 mAP (+5%) for overall classes. We achieve
similar consistent results with the more advanced Cascade Mask R-CNN |Ca1 and Vasconcelos| (2018))
framework across ResNet-50 and ResNet-101 backbones.

Instance Segmentation. Similar to object detection, IRFS exhibits significant improvement over
RFS in instance segmentation. Particularly, for Mask R-CNN with ResNet-50 backbone, IRFS
achieves a mAP of 23.7%, resulting in a +8% improvement over RFS. For rare categories, IRFS
achieves a 14.9% AP, which is a +43% improvement over RFS. Consistently, IRFS outperforms RFS



Table 2: Comparison of the combination of RFS and IRFS with ECM loss, using Mask R-CNN
framework with a ResNet-50 backbone, on the LVIS v1.0 validation set.

Detection \ Segmentation
Method mAPyp.. AP, AP, AP‘f ‘ mAPsegm AP, AP, APf
ECM 24.8 133 233 31.6 | 24.6 1477 241 29.6
ECM+RFS  26.8 165 262 319 | 264 1877 262 30.0
ECM+IRFS 27.6 194 265 324 | 27.0 20.6 264 30.6
RFS 22.7 92 213 300 | 219 104 21.1 27.8
IRFS 24.4 141 228 30.7 | 23.7 149 228 285

Table 3: Comparison of RFS and IRFS using a single-stage detector ATSS with different backbones
on the LVIS v1.0 validation set.

Framework Backbone Method mAPy,, AP, AP. APy

RFS 193 75 172 267
ATSS ResNet-50  1pps 197 95 172 269

RFS 209 88 190 284
ATSS ResNet-101 yprg 2200 107 204 28.6

for common and frequent categories. With the ResNet-101 backbone and Cascade Mask R-CNN
framework, IRFS maintains its superior performance compared to RFS across all cases.

Table 2] presents a comparison of the impact of class and instance balanced sampling approaches on the
state-of-the-art weighted loss function. It is observed that ECM without any class balanced sampling
achieves a better overall bounding box and mask AP compared to RFS and IRFS. However, IRFS
shows better results in terms of the target rare categories compared to standalone ECM. Class/Instance
balanced sampling and weighted loss are complementary, and ECM with RFS and IRFS achieves
significantly improved performance compared to standalone ECM or RFS/IRFS. Specifically, ECM
with the IRFS achieves the best performance across all metrics. For target rare categories, it achieves
a19.4% and 20.6% AP for detection and segmentation tasks, respectively, which is a relative 17%
and 10% improvement compared with ECM with RFS for detection and segmentation tasks.

Table 3| presents the performance comparison of RFS and IRFS on ATSS, a state-of-the-art single-
stage detector, trained with ResNet-50 and ResNet-101 backbones. When trained with IRFS, ATSS
exhibits a substantial relative improvement of 26% and 21% over its RFS-trained counterpart on
rare classes, using ResNet-50 and ResNet-101 backbones, respectively. Furthermore, it consistently
achieves better overall mAP compared to the counterpart RFS method.

Qualitative results and ablation studies are provided in the Supplementary Materials.

5 Discussion and Conclusions

In this work, we presented a novel approach named instance-aware repeat factor sampling (IRFS)
for handling long-tail distributions in object detection. Extensive experimental results demonstrate
that by incorporating instance count in addition to image count, IRFS consistently outperforms RFS
by significantly improving detection performance of rare categories while maintaining the overall
performance for all categories. These results emphasize the importance of instance count in improving
the performance of rare categories.

IRFS is a simple method that can be used as a plug-in replacement for RFS, or combined with
re-weighting methods to achieve state-of-the-art results in long-tailed object detection and instance
segmentation. Due to its simplicity, easy integration with other methods, and effectiveness in
improving performance, we believe IRFS can become a strong baseline for methods aiming to address
long-tail distributions. For future work, we plan to investigate the application of IRFS in related fields
in the computer vision domain, and explore new approaches to optimize the averaging method.
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6 Supplementary Materials

6.1 Qualitative Results

Fig. P]illustrates the detection and segmentation results for w/o sampling, RFS and IRFS models
trained with Mask R-CNN framework using ResNet-50 backbone on 1x schedule. Note that only
targeted rare categories are shown for visibility. As expected, w/o sampling fails in detecting the rare
categories. IRFS detects and segment with a higher accuracy for rare categories detected by RFS as
well (Fig. %}). IRFS further shows its strength by detecting rare categories that are not detected by
RFS (Fig. [2b).

Fig. [3illustrates the detection and segmentation results for ECM, ECM + RFS and ECM + IRFS
models trained with Mask R-CNN framework using ResNet-50 backbone on 1x schedule. Note that
only targeted rare categories are shown for visibility. In this challenging representative scenario, ECM
without any re-sampling as well as RFS and IRFS without ECM fails to detect the rare categories.
While ECM combined with RFS also fails detecting any rare category, ECM with IRFS achieves a
better performance and successfully detects and segments a rare category.

Ground Truth w/o sampling

Figure 2: Representative detection and instance segmentation visualizations on LVIS v1.0 dataset.
For convenience, we present the results specifically focused on the rare categories.

Ground Truth ECM ECM + RFS ECM + IRFS
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Figure 3: Illustration of detection and instance segmentation results for ECM re-weighting method
and its combination with re-sampling approaches. For convenience, we exclusively display the results
for the targeted rare categories.

6.2 Ablation Study

In this section we conduct ablation studies on two key parameters of the proposed IRFS method,
namely threshold value and averaging method.

Table [d] presents the ablation study for IRFS using thresholds, ¢ € {1071,1072,107%,10~*}. The
best overall mAP is achieved by IRFS with ¢ = 1073, For the target rare category, t = 1073
significantly outperforms other thresholds for both detection and segmentation. It is noteworthy that
IRFS’s best performing threshold value, ¢+ = 102 matches RFS’s best matching threshold value

Gupta et al.|(2019).




Table 4: An ablation study on IRFS with different thresholds ¢ using Mask R-CNN with a ResNet-50
backbone on a 1x schedule on LVIS v1.0 validation set.

Detection | Segmentation
t mAPy,,, AP, AP. AP; | mAPy,, AP, AP. AP,
w/o sampling (¢t =0) 16.9 0.0 123 29.6 | 16.2 0.0 125 273
t=0.1 19.8 6.0 17.8 28.0 | 189 6.0 175 26.1
t=0.01 23.7 11.0 222 309 | 22.9 11.3 222 287
t =0.001 24.4 141 22.8 30.7 | 23.7 149 228 285
t = 0.0001 19.5 37 165 29.7 | 187 39 168 274
RFS (¢t = 0.001) 22.7 92 213 300|219 104 21.1 27.8

Table [5] shows the results of different common averaging options, including geometric, harmonic,
arithmetic, and quadratic averagingﬂ In addition to averaging, we also propose and include the
instance only repeat factor sampling. Instance only disregards the image count in the re-sampling
process. We present the results for t = 10~3. Both harmonic and geometric averaging show improved
performance over arithmetic and quadratic averaging, with the former providing the best overall
results. The results indicate that all averaging options provide significant improvement over RFS.
This further emphasizes the importance of including instances when addressing long-tail distributions.
More interestingly, instance only approach achieves the best overall mAP in detection and it achieves
more than +50% improvement over RFS, the counterpart image count only based re-sampling method.
However, disregarding image count can lead to suboptimal results when dealing with real-world
long-tailed datasets that exhibit variations in image instance count distributions. Thus, we assert that
IRFS is better suited for addressing long-tailed datasets with diverse distributions.

Table 5: An ablation study on different averaging options for IRFS using Mask R-CNN with a
ResNet-50 backbone on a 1x schedule on LVIS v1.0 validation set. We also propose instance only
approach for comparison purposes.

Detection \ Segmentation
Mean mAPy,,, AP, AP. AP; | mAP,.,, AP. AP, AP;
w/o sampling (¢t =0) 16.9 00 123 29.6 | 162 0.0 125 273
Geometric 244 14.1 22.8 30.7 | 23.7 149 228 285
Harmonic 24.5 15.0 227 30.8 | 23.8 155 227 28.6
Arithmetic 24.1 122 232 305 | 233 129 23.0 283
Quadratic 23.6 11.7 222 304 | 227 120 22.0 282
Instance Only 24.6 144 229 310 | 237 140 229 28.7
RFS 22.7 92 213 300|219 104 21.1 278

'Note the mathematical definition for geometric, harmonic, arithmetic, and quadratic average for two numbers

. 2 2 .
z and y is defined as /7y, jﬁ’j, %, and 4/ % ;y , respectively.
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