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Abstract

The training process of Large Language Mod-001
els (LLMs) requires extensive text corpus.002
However, these data are often unevenly dis-003
tributed in different languages. As a result,004
LLMs perform well on common languages,005
such as English, German, and French, but per-006
form poorly on low-resource languages. How-007
ever, currently, there is no work to quantita-008
tively measure the performance of LLMs in009
low-resource languages. To fill this gap, we010
proposed the Language Ranker that aims to011
benchmark and rank different languages ac-012
cording to the performance of LLMs on those013
languages. We employ the LLM’s performance014
on the English corpus as a baseline to com-015
pare the performances of different languages016
and English. We have the following three find-017
ings: 1. The performance rankings of different018
LLMs in all languages are roughly the same. 2.019
LLMs with different sizes have the same par-020
tial order of performance. 3. There is a strong021
correlation between LlaMa2’s performance in022
different languages and the proportion of the023
pre-training corpus. These findings illustrate024
that the Language Ranker can be used as an025
indicator to measure the performance of LLMs026
with different languages.027

1 Introduction028

Large Language Models (LLMs), such as ChatGPT029

and GPT-4, have demonstrated surprising perfor-030

mance in various NLP tasks (Achiam et al., 2023;031

Ouyang et al., 2022; Touvron et al., 2023; Team032

et al., 2024; Jiang et al., 2023; Bai et al., 2023).033

However, the majority of the text datasets are pre-034

sented in high-resource languages such as English035

(Xie et al., 2024). According to the statistics, for036

GPT-3 model approximately 92.65% of the training037

tokens are English and all other languages share the038

remaining 7.35% training tokens (OpenAI, 2023).039

Similarly, English accounts for 89.70% of data for040

pre-training LlaMa 2 (Touvron et al., 2023). Thus,041

this imbalanced token distribution will cause bias 042

towards English (Blasi et al., 2021). As a result, 043

the excellent performance of LLM is often limited 044

to some common languages, such as English. 045

This imbalanced distribution makes the LLM less 046

capable of understanding low-resource languages. 047

For example, LLM cannot understand the true 048

meaning of some slang terms with specific cul- 049

tural backgrounds, such as Chinese idioms (Zhang 050

et al., 2023). Moreover, recent research has shown 051

that the pre-trained model often underperforms in 052

language with insufficient training data (Lankford 053

et al., 2024). Above phenomena illustrate the im- 054

portance of training data for LLM. However, it 055

is often not released by leading companies and it 056

does not take the inner representations of LLMs 057

into account. Therefore, it is necessary to propose 058

a metric to measure different language proportions 059

in the LLM’s pre-training corpus and further im- 060

plicitly measure the language ability for different 061

languages, especially low-source languages. 062

In this paper, we propose to utilize internal repre- 063

sentations to quantitatively measure the multilin- 064

gual abilities of LLMs. Specifically, we employ 065

the representation of LLMs on the English corpus 066

as the baseline. Then, we measure the similarity 067

between the representations on the corpus of low- 068

resource languages and those of English. We take 069

this similarity value as the performance score of the 070

model in each language. In experiments, we found 071

that the ranking results obtained by our method are 072

roughly the same as the ranking results of differ- 073

ent language proportions in the LLM’s pre-training 074

corpus. It shows that our proposed method can 075

effectively measure the performance of LLMs in 076

different languages. 077

2 Analysis Method 078

In this section, we will give an introduction to 079

our analysis method. First, we will introduce the 080
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dataset we used in our experiment. Then, we will081

introduce how to obtain the similarity between En-082

glish and other languages as well as how to com-083

pare different LLMs’ performances.084

2.1 Probing Datasets085

We use OPUS-100 (Zhang et al., 2020) as our086

evaluation datasets. OPUS-100 is an English-087

centric multilingual corpus that covers 100 lan-088

guages. Each sample consists of text in a non-089

English language as the original data, with its En-090

glish translation serving as the target data. For091

example, {"German": "Ich wollte dir erst noch092

etwas zeigen.","English": "I wanted to show you093

something first."}. After filtering, there are 94 sub-094

sets containing English, including high-resource095

languages such as German, French, and Chinese,096

as well as low-resource languages such as Oriya,097

Kannada, and Kazakh. Each subset contains 2000098

samples.099

2.2 Similarity Measurement100

We employ cosine similarity to measure the LLMs’101

performance gap between the target language and102

English. Specifically, given two sentences X =103

{xi}ni=1 and Y = {yi}mi=1 representing the text in104

English and the text in the target language. We use105

the representation obtained after LLM mapping of106

the last token xn and ym as the representation of107

the text and calculate the similarity between them.108

As we know, LLM consists of several layers of a109

Transformer block (Vaswani et al., 2017). There-110

fore, after each layer of mapping by the transformer111

block, we can get a representation vector xln and112

ylm, l = 1...H , where H represents the number of113

the layer of LLMs. According to (Li et al., 2024),114

the intermediate representation can be briefly sum-115

marized by the following equations:116

xl+1 = MLP(xl + MHA(xl)) l = 1...H, (1)117

where MHA means multi-head attention or multi-118

group attention, and MLP means standard multi-119

layer perceptron layer. Next, we take xln and ylm120

to calculate the similarity. To implement a more121

robust similiarity measure, we use the average sim-122

ilarity obtained by several intermediate layers as123

the final similarity. This process can be described124

as follows:125

Sim =
1

|lsub|

|lsub|∑
i=1

Simi, whereSimi =
xiny

i
m

||xin||||yim||
,

(2)126

where lsub = {5, 10, 15, 20, 25} is the subset of the 127

layers we selected. Finally, we use Sim to evaluate 128

the performance gap between English and Non- 129

English corpus. 130

2.3 Rank Correlation Measurement 131

When we get the similarity between each non- 132

English representation and the English represen- 133

tation, we sort them according to the similarity 134

to get a sorted ranking list of all languages. To 135

measure the similarity of the sorted ranking lists 136

of two LLMs, we use the longest common par- 137

tial order sublist to measure. It can be defined 138

as follows: For two sorted lists A and B, find 139

a sublist C which is a subset of A and B such 140

that for any number of index i1 ≤ i2 ≤ ... ≤ in, 141

Index(Ci1)≤Index(Ci2)≤...≤Index(Cin) is true for 142

both A and B, and the longest sublist C that makes 143

it true is called the longest common partial order 144

sublist of A and B. We use the ratio of the length 145

of the longest common partial order sublist of two 146

LLMs to the total length of the ranking list as a 147

metric to measure the correlation. 148

3 Experiments 149

3.1 Open-source Models 150

We use four popular open-source large models as 151

our analysis baselines: LlaMa2 (Touvron et al., 152

2023), Qwen (Bai et al., 2023), Mistral-v0.1 (Jiang 153

et al., 2023), and Gemma (Team et al., 2024). In 154

Section 3.2, we concentrate on the 7B version of 155

these models. The performance of models of vari- 156

ous sizes will be discussed in Section 3.3. 157

3.2 Comparison of Different Models 158

To visualize the performance of different LLMs 159

in these languages, we selected 10 representative 160

languages to display their inference results. They 161

consist of five high-resource languages, including 162

German, Spanish, French, Indonesian, and Chinese, 163

and five low-resource languages, including Igbo, 164

Kazakh, Kannada, Oriya, and Turkmen. Figure 1 165

shows detailed results, where the X-axis represents 166

different layers of LLMs, while the Y-axis repre- 167

sents the similarity between the target language 168

and English for each layer. From Figure 1, we can 169

derive the following key observations: 170

(1) High-resource languages have representa- 171

tions more similar to English, whereas low- 172

resource languages show less similarity. Al- 173

though the exact proportion of high-resource and 174
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Figure 1: Performance of different LLMs for ten kinds of language, German, Spanish, French, Indonesian and
Chinese are five high-source languages; Igbo, Kazakh, Kannada, Oriya and Turkmen are five low-source languages.

Figure 2: Rank correlation between different LLMs

low-resource languages in each LLM’s pre-training175

corpus is unknown, high-resource languages are176

generally more prevalent, and the results in the fig-177

ure show that our similarity-based measurement178

method can effectively measure the proportion of179

each language in the LLM’s pre-training corpus.180

(2) Different models display similar results181

across languages. Their performance is that the182

high-resource language similarity is higher than the183

low-resource language similarity. Figure 2 further184

illustrates this conclusion, we can see from the fig-185

ure that for each LLM, the ranking result is used 186

as the baseline, and the remaining three LLMs are 187

roughly similar to the baseline. 188

(3) Fine-tuning on specific languages will im- 189

prove its performance. From the result of Qwen, 190

we can observe that the performance of the Chinese 191

improves as the number of layers increases. In the 192

last few layers, it surpasses other high-resource lan- 193

guages in the figure. According to the technical 194

report of Qwen(Bai et al., 2023), Qwen has addi- 195

tional fine-tuning on the Chinese corpus, which 196

leads to better performance in Chinese. 197

3.3 Comparison of LLMs of Different Sizes 198

We also conducted analytical experiments on the 199

same model of different sizes. The result is shown 200

in Figure 3. We found that the results of low- 201

resource languages fluctuated greatly, so we de- 202

fined the layer depth as dividing the interval [0,1] 203

equally by the number of layers and selected a spe- 204

cific layer depth interval [0.4,0.6] to display the 205

results of low-resource languages. We can observe 206

two phenomena: 207

(1) There is a modest positive correlation between 208

the size of an LLM and its performance on low- 209

resource languages. As shown in the figure, for 210

Kannada, Occitan, and Western Frisian, the perfor- 211

3



Figure 3: The performance of Qwen 1.5 (0.5B, 1.8B, 4B, and 7B) in various languages. German, French, and
Spanish are high-resource languages, Kannada, Occitan, and Western Frisian are low-resource languages. For
low-resource languages, to make the results clearer, we selected the intermediate layer representation (layers depth
0.4-0.6) results that change relatively smoothly.

mance of Qwen 1.5 on three sizes of 0.5B, 4B, and212

7B gradually improves as the size increases.213

(2) For high-resource languages, there is a strong214

negative correlation between the size of the LLMs215

and the performance of high-resource languages.216

In the figure 3, high-resource languages and217

low-resource languages show completely opposite218

trends. The possible reason for this phenomenon219

is that as the size of the LLM increases, the com-220

plexity of the high-resource training corpus also in-221

creases, leading to interference from lower-quality222

data. On the contrary, low-resource language cor-223

pus is relatively scarce, so the feature distribution224

is relatively uniform. In such cases, the size of the225

model is positively correlated with the performance226

in the language.227

3.4 Relationship to Pre-training Corpus228

According to the technical report of LlaMa2 (Tou-229

vron et al., 2023), we get the proportion of the230

pre-training corpus of some languages. Table 1231

shows the relationship between the proportion of232

pre-training corpus for some languages and the sim-233

ilarity metric. We can observe that from French234

to Swedish to Finnish to Norwegian, as the pro-235

portion of corpus decreases, the similarity metric 236

also decreases. It does not hold for all languages, 237

because it is not only the proportion that affects the 238

performance of LLM in a certain language but also 239

factors such as the grammatical similarity between 240

the language and English.

Language Proportion Similarity Language Proportion Similarity
German 0.17% 0.581 Polish 0.09% 0.534
French 0.16% 0.591 Vietnamese 0.08% 0.529
Swedish 0.15% 0.531 Finnish 0.03% 0.516
Chinese 0.13% 0.446 Norwegian 0.03% 0.501

Table 1: The proportion of different languages in the
LlaMa2 pre-training corpus and the similarity metric
we proposed. The English language ratio is 89.7%.

241

4 Conclusions and Future Work 242

In this work, we propose a similarity-based evalu- 243

ation method to measure the LLMs’ performance 244

in various languages quantitatively. The results 245

show that this similarity metric has a clear corre- 246

lation with the proportion of each language in the 247

pre-training corpus, and can roughly measure the 248

performance ability of the model in each language. 249

In the future, we plan to design more detailed eval- 250

uation criteria to measure LLM’s capabilities in 251

each language. 252
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Limitations253

The proposed Language Ranker approach provides254

an initial quantitative way to analyze LLM per-255

formance across languages. However, it has sev-256

eral limitations. First, the similarity metric based257

on English representations may not fully capture258

the nuances and complexities of each language’s259

linguistic properties. Additionally, low-resource260

languages are likely to exhibit more noise and vari-261

ance in the similarity scores due to the smaller262

dataset sizes used for pre-training these languages263

in LLMs. Furthermore, the method does not ac-264

count for potential biases or skews that could be265

present in the multilingual evaluation datasets them-266

selves. The existence of such biases can also in-267

troduce noise in the resulting rankings of language268

abilities for different LLMs.269
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A Appendix361

A.1 Related Work362

Multilingual Language Model. The imbalance363

distribution of training corpus in different lan-364

guages leads to the bias of LLM towards some com-365

mon languages such as English (Blasi et al., 2021).366

Some approaches employ multilingual language367

modeling to alleviate the phenomenon (Shen et al.,368

2024; Kalyan et al., 2021; Conneau et al., 2019).369

These studies show the importance of strengthen-370

ing the cross-lingual capabilities of the pretrained371

model. (Schäfer et al., 2024) found that the pres-372

ence of a primary language in the training pro-373

cess of LLMs can improve the performance of374

low-resource languages and lead to a more consis-375

tent representation of LLMs in different languages.376

(Liu et al., 2024) found that for English-centric377

LLMs, although translation into English helps im-378

prove the performance of NLP tasks, it is not the379

best choice for all situations.380

A.2 Ranking Result For LLMs381

We give the similarity scores of the four LLMs382

used in the experiment on 18 common languages.383

Results are shown in following tables.

Language Similarity Score Language Similarity Score
German 0.581 Polish 0.534
French 0.592 Portuguese 0.598
Swedish 0.531 Vietnamese 0.529
Chinese 0.446 Ukrainian 0.551
Spanish 0.616 Korean 0.199
Russian 0.589 Catalan 0.582
Dutch 0.569 Serbian 0.555
Italian 0.567 Indonesian 0.577
Japanese 0.194 Czech 0.587

Table 2: The similarity score of LlaMa2 7B.
384

Language Similarity Score Language Similarity Score
German 0.571 Polish 0.487
French 0.546 Portuguese 0.535
Swedish 0.494 Vietnamese 0.456
Chinese 0.471 Ukrainian 0.484
Spanish 0.537 Korean 0.338
Russian 0.531 Catalan 0.492
Dutch 0.516 Serbian 0.472
Italian 0.522 Indonesian 0.499
Japanese 0.328 Czech 0.512

Table 3: The similarity score of Gemma 7B.

A.3 Performance Comparison of Qwen1.5 of385

Different Sizes386

The following two figures show the performance of387

Qwen1.5 in different size for different languages.388

Language Similarity Score Language Similarity Score
German 0.516 Polish 0.421
French 0.503 Portuguese 0.482
Swedish 0.435 Vietnamese 0.392
Chinese 0.399 Ukrainian 0.437
Spanish 0.499 Korean 0.261
Russian 0.494 Catalan 0.445
Dutch 0.460 Serbian 0.408
Italian 0.466 Indonesian 0.421
Japanese 0.248 Czech 0.459

Table 4: The similarity score of Mistral 7B.

Language Similarity Score Language Similarity Score
German 0.642 Polish 0.596
French 0.634 Portuguese 0.625
Swedish 0.603 Vietnamese 0.584
Chinese 0.608 Ukrainian 0.597
Spanish 0.638 Korean 0.481
Russian 0.634 Catalan 0.601
Dutch 0.612 Serbian 0.588
Italian 0.615 Indonesian 0.597
Japanese 0.457 Czech 0.611

Table 5: The similarity score of Qwen 7B.

Figure 4 shows the result of five high-resource 389

languages. Figure 5 shows the result of five low- 390

resource languages. From figure 4, we observe that 391

the performance of 0.5B is the best, while 7B per- 392

forms the worst. Figure 5 shows the opposite result. 393

It also can be found that the performance variance 394

in low-resource languages is much greater than the 395

performance in high-resource languages. 396

Figure 4: Result for five high-resource languages.

Figure 5: Result for five low-resource languages.
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