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Abstract

We introduce Gradual Abstract Argumentation for Case-Based Reasoning (Gradual
AA-CBR), a data-driven, neurosymbolic classification model in which the outcome is de-
termined by an argumentation debate structure that is learned simultaneously with neural-
based feature extractors. Each argument in the debate is an observed case from the training
data, favouring their labelling. Cases attack or support those with opposing or agreeing
labellings, with the strength of each argument and relationship learned through gradient-
based methods. This argumentation debate structure provides human-aligned reasoning,
improving model interpretability compared to traditional neural networks (NNs). Unlike
the existing purely symbolic variant, Abstract Argumentation for Case-Based Reasoning
(AA-CBR), Gradual AA-CBR is capable of multi-class classification, automatic learning
of feature and data point importance, assigning uncertainty values to outcomes, using all
available data points, and does not require binary features. We show that Gradual AA-
CBR performs comparably to NNs whilst significantly outperforming existing AA-CBR
formulations.

1. Introduction

Interpreting neural-based models is challenging because of their size, mathematical com-
plexity and latent representations (Fan et al., 2020). Despite their success in classification
tasks, it is unclear what lines of reasoning are applied to the data. On the other hand,
symbolic AI represents knowledge bases as symbols that can be reasoned with in much the
same way as humans. Computational argumentation, for example, resolves situations of
uncertainty by applying human-aligned argumentative reasoning (Dung, 1995; Čyras et al.,
2021). However, purely symbolic methods struggle to scale and generalise to large datasets,
and cannot easily handle noisy or unstructured data. Neurosymbolic methods offer the best
of both worlds (Garcez and Lamb, 2023).

To this end, we propose Gradual Abstract Argumentation for Case-Based Reasoning
(Gradual AA-CBR). This neurosymbolic model is the first-of-its-kind to learn the structure
of a case-based debate via gradient-based methods (Rumelhart et al., 1986). Every data
point in the training set argues in favour of its labelling, attacking those with an opposing
label and supporting those with the same label. Gradual AA-CBR uses a neural-based
feature extractor to learn the relative importance of each argument and how arguments
should relate to each other. Figure 1 showcases an example of the architecture. Given the
argument relationships, the final strength of each argument is computed and used to deter-
mine the outcome of a new, unlabelled data point (Baroni et al., 2018; Amgoud and Doder,
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Figure 1: An example case-based debate generated by Gradual AA-CBR. Each node in the
graph on the left-hand side is an argument represented by a data point in the
training set. Red and green arrows indicate attacks and supports, respectively.
The thickness of the argument borders and arrows represents the strength of the
arguments and relationships. Argument importance and relationship strengths
are computed with the feature extractor on the right-hand side.

2019). We can apply a gradient descent-like algorithm to optimise the model parameters,
provided these final strengths are computed with differentiable functions. Unlike neural
network (NN) inference, this reasoning process is transparent and interpretable.

Furthermore, this enables Gradual AA-CBR to overcome the limitations of the purely
symbolic variant Abstract Argumentation for Case-Based Reasoning (AA-CBR) (Čyras
et al., 2016), allowing it to i) do multi-class classification, improving the applicability of
the model; ii) automatically learn which features and data points are essential, leading to
improved classification performance; iii) assign a quantified acceptability score to each argu-
ment, allowing users to calibrate their trust in the prediction; and iv) operate beyond binary
features, expanding the types of data that the model can be applied to. Our contributions
are summarised as follows1:

1. We introduce Gradual AA-CBR, which quantifies a case-based debate, allowing for
argumentative reasoning with degrees of acceptability.

2. We show how Gradual AA-CBR can be parametrised with learnable weights that can
be updated via gradient-based methods. This allows for end-to-end learning of the
Gradual AA-CBR structure using neural-based feature extractors.

3. We show that Gradual AA-CBR achieves performance comparable to neural-based
models without sacrificing interpretability yet outperforms other AA-CBR variants.

In Section 2 we discuss related works. Then, in Section 3 we provide the necessary
background before introducing our neurosymbolic model in Section 4. We demonstrate the
effectiveness of our approach in Section 5 and conclude in Section 6.

1. Experiment code is available at: https://github.com/TheAdamG/Gradual-AACBR
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2. Related Work

AA-CBR (Čyras et al., 2016) is a purely symbolic model that uses argumentation with
previously observed data points to make a binary classification for a new, unlabelled data
point. AA-CBR treats data points as observed cases, which state a general rule in favour
of their labelled outcome. Each case may have multiple exceptions, which are represented
by an attack relationship between the cases. The most general rule is the default case,
which is associated with a default outcome that the model predicts when unable to make
a prediction with the observed cases. To classify a new data point, cases irrelevant to it
are excluded, and the argumentation debate is resolved to determine if the default outcome
is accepted. Unlike Gradual AA-CBR, this model only does binary classification, cannot
determine feature or data point importance, will not quantify its confidence in its output
and struggles to handle data types more complex than binary features.

Preference-Based AA-CBR (AA-CBR-P) (Gould et al., 2024) is a variant of AA-CBR
that introduces user-defined preferences over features. This method improved performance
in a medical application with clinical knowledge injected and thus shows the promise of
AA-CBR with feature importance. However, this approach requires manually specifying
these preferences. Deciding what features are preferable or optimised for the classification
task may not be obvious. Gradual AA-CBR automatically optimises feature importance.

Neuro-argumentative Learning (NAL) studies how to combine argumentation with neural-
based models (Proietti and Toni, 2023). Applications include argumentation-to-NN trans-
lation (d’Avila Garcez et al., 2005, 2014), constraining the learning of neural-based mod-
els (Riveret et al., 2020) and argument mining (Cocarascu et al., 2019; Freedman et al.,
2024). Gradual AA-CBR differs from these, learning end-to-end with gradient-based tech-
niques using a quantitative argumentation framework as the underlying structure.

One such NAL method, Artificial Neural Networks for Argumentation (ANNA), uses
AA-CBR as a classifier of features extracted from an NN (Cocarascu et al., 2020, 2018).
This approach operates in a pipeline fashion, wherein the NN (e.g. an autoencoder (Bank
et al., 2023)) is trained separately from the AA-CBR model. However, this approach cannot
learn features that will be the best for argumentative reasoning. The AA-CBR component
of the pipeline is still purely symbolic, so all limitations outlined above apply.

Another NAL approach interprets feed-forward NNs as argumentation frameworks to
understand or simplify their structure (Potyka, 2021; Ayoobi et al., 2023b). This has been
applied to prototype networks for image classification, where prototypical images can be
recalled as the reason for the assigned class (Ayoobi et al., 2023a) in a different formulation
of case-based reasoning to AA-CBR. However, this approach still contains hidden neurons
as part of the final component that classifies the similarities to the prototypes, hindering the
model’s overall interpretability. Our approach uses data points rather than hidden neurons
in the argumentation debate and thus does not have this limitation.

As Gradual AA-CBR learns the structure of the debate, we can look to Graph Structure
Learning (GSL), a subfield of Graph Neural Networks (GNN) that optimises the structure of
a graph simultaneously with the network weights for a downstream classification task (Zhu
et al., 2021). Similar to Jiang et al. (2019); Luo et al. (2021), we allow an NN to discover the
relationships between nodes, although we do not use a GNN as the underlying structure.
As in Luo et al. (2021), we use a regulariser that encourages community preservation.
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3. Background

Gradual AA-CBR is built upon the Edge-Weighted Quantitative Bipolar Argumentation
Framework (Potyka, 2021).

Definition 1 (Edge-Weighted Quantitative Bipolar Argumentation Framework)
An edge-weighted QBAF is a quadruple ⟨A, E , τ, w⟩, where A is a set of arguments, E is a
set of edges between arguments, τ : A → [0, 1] is a total function that maps every argument
a ∈ A to a base score and w : E → R is a total function that maps every edge to a weight2.

Intuitively, the base score of an argument can be interpreted as its intrinsic strength
before we consider its relationships to other arguments. For instance, a base score may be
the uncertainty that the argument represents a truthful statement or our initial belief of
the degree of acceptability. Similarly, edge weights define the strength of the arguments’
relationships, with negative weights representing an attack and positive weights a support.
We can represent these graphically as in Figure 1.3

We must consider how the strengths of the arguments change when they have been
attacked or supported. For example, if an argument a with a base score of 0.5 is attacked
with a strength of -1 by an argument b with a base score of 1, then we expect the final
strength of a to decrease, say to 0.25, signifying that the acceptability of a has reduced. The
approach used to compute the degree of acceptability is called the gradual semantics (Am-
goud and Doder, 2019; Baroni et al., 2018). The final strength of an argument a ∈ A in
an edge-weighted QBAF is given by the function σ : A → [0, 1] ∪ {⊥}, where ⊥ means the
final strength is undefined.

Modular semantics (Mossakowski and Neuhaus, 2018; Potyka, 2019), involves iteratively
computing the acceptability of each argument through aggregation of the strengths of at-
tacks and supports whilst accounting for the influence of the arguments’ base scores. For
this work, we focus on semantics that simulate a multi-layer perceptron (MLP) (Potyka,
2021) as this considers the edge weights and is differentiable, which will be necessary for
gradient-based optimisation techniques. MLP semantics are defined as follows:

Definition 2 Let ψ
(i)
a ∈ [0, 1] be the strength of argument a at iteration i. For every

argument a ∈ A, we let ψ
(0)
a := τ(a) so that the starting strength is equal to the base score.

The strength values are computed by repeating the following two functions:

Aggregation: Let ρ
(i+1)
a :=

∑
(b,a)∈E w(b, a) · ψ

(i)
b

Influence: Let ψ
(i+1)
a := φ(φ−1(τ(a)) + ρ

(i+1)
a ), where φ is a non-linear activation

function.

The final strength of argument a is given by σ(a) = limk→∞ ψ
(k)
a if the limit exists and ⊥

otherwise.

In this work, as in work by Ayoobi et al. (2023b), we let the activation be the ReLU,
that is φ = max(0, x). Though not invertible, we let φ−1 = max(0, x).

2. With a slight abuse of notation we remove the inner brackets, such that w((a, b)) becomes w(a, b).
3. An edge weight of 0 between a given pair of arguments is semantically equivalent to no edge between

these nodes. We need only consider those with non-zero edge weights.
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4. Methodology

4.1. Gradual AA-CBR

We now introduce Gradual AA-CBR. Intuitively, Gradual AA-CBR reasons analogously to
AA-CBR (see Section 3), with previously observed data points forming a casebase. However,
in Gradual AA-CBR cases with the same outcome may also support other cases. The
functions τx and w≽ are provided to determine the argument base scores and edge weights.
Instead of a single default argument, which could bias the model towards an outcome, we
introduce a set of target cases, each associated with a target outcome. Irrelevance to the
new case is now defined by the function w≁, and the argumentation debate is resolved
with gradual semantics to determine the final strength of the target arguments. The model
classifies the new case based on the outcome of the target argument with the greatest final
strength. Now we can define Gradual AA-CBR as follows:

Definition 3 (Gradual AA-CBR) Let D ⊆ X × Y be a finite casebase of labelled ex-
amples where X is a set of characterisations and Y = {c1, . . . , cm} (m ≥ 2) is the set of
possible outcomes. Each data point is of the form (xa, ya). Let T = {(xδi , ci) | ci ∈ Y } be
the set of target arguments corresponding to each class label, with xδi the default charac-
terisation for class ci. Let A′ = D ∪ T be the set of labelled cases. Let N be an unlabelled
example of the form (xN , y?) with y? an unknown outcome. Let τx : X → [0, 1] be a function
mapping characterisations to base scores. Let w≽ : X×X → [0, 1] and w≁ : X×X → [−1, 0]
be functions mapping pairs of characterisations to weights. The edge-weighted QBAF mined
from D and xN is ⟨A, E , τ, w⟩ in which:

• A = A′ ∪ {N},

• τ((xa, ya)) = τx(xa),

• E = {((xa, ya), (xb, yb)) ∈ A′ | a ̸= b} ∪
{((xN , y?), (xa, ya)) | (xa, ya) ∈ A′},

• w((xa, ya), (xb, yb)) =


w≁(xN , xb) if (xa, ya) = (xN , y?),

w⇝((xa, ya), (xb, yb)) if ya ̸= yb,

w→((xa, ya), (xb, yb)) otherwise,

where

◦ w⇝((xa, ya), (xb, yb)) = −[wc(xa, xb,F(A′, ya)) + w=(xa, xb)],

◦ F(S, ya) = {(xc, yc) ∈ S | ya = yc}
◦ w→((xa, ya), (xb, yb)) = wc(xa, xb,A′),

◦ wc(xa, xb, S) = w≻(xa, xb) ·
∏

(xc,yc)∈S(1− (w≻(xa, xc) · w≻(xc, xb))).

◦ w=(xa, xb) = w≽(xa, xb) · w≽(xb, xa),
◦ w≻(xa, xb) = w≽(xa, xb) · (1− w≽(xb, xa)),
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Intuitively, we define our set of arguments as the observed cases, the target arguments,
and the new, unlabelled case. The base score of each case is determined by a provided
function τx, depending only on the argument’s characterisation. We define edges between
every pair of distinct labelled arguments or from the new case to every labelled argument.

The weight of the edges is determined by one of three ways. Firstly, a provided w≁
function is used to determine the strength of the irrelevance attacks by the new case.
Secondly, for arguments with different outcomes, the strength of attacks is given by w⇝,
which is computed using a provided w≽ function. w≽ defines the degree of exceptionalism
between cases in the casebase, with w≽(xa, xb) = 1 meaning argument a is considerably
more exceptional than b, whereas w≽(a, b) = 0 means a is not more exceptional than b. w≻
and w= define strict exceptionalism and equal exceptionalism, respectively, such that cases
with the same level of exceptionalism attack each other symmetrically; otherwise, strictly
more exceptional cases attack less exceptional cases with greater strength than in reverse.
The function wc enforces a soft minimality constraint, such that an attacking case a is most
minimal to an attacked case b if there is not another case, c with the same outcome as a
that is more similar to b, thus ensuring cases most similar to those they attack have larger
magnitude weights.

Finally, the edge weights for supports, given by w→, is defined similarly for cases with
the same outcome with two minor changes: i) as we have sets of data points, there cannot
be two cases with the same characterisation and outcome, so we need not apply w=, and
ii) a supporting case a is most minimal to a supported case b if there is not another case, c
with any outcome that is more similar to b. We do not enforce that c must have the same
outcome as a so that similarity between cases with opposing outcomes will also cause the
weight of the support to decrease, allowing attacks to have priority over supports.

Furthermore, unlike with a traditional edge-weighted QBAF we enforce that the range
of w is [−1, 1]. To do so, we should constrain w≽ such that w≻ and w= have the range [0, 1].
We therefore enforce that:

w≽(xa, xb) = 1− w≽(xb, xa). (1)

Additionally, we enforce some constraints on the choice of T and w≁ to guarantee
behaviour that is consistent with reasoning intuitions we expect:

Definition 4 (Regular Gradual AA-CBR) The edge-weighted QBAF mined from D
and N , with target arguments T = {(xδc , yc) | yc ∈ Y } is regular when:

1. w≁(N, (xa, ya)) = w≽(N, (xa, ya)) - 1

2. ∀k, l ∈ [1,m], xδk = xδl and ∀xa ∈ X,w≽(xa, xδk) = 1 and w≽(xδk , xa) = 0.

Condition (1) ensures that w≁ is defined in terms of w≽. This is crucial when we allow
w to contain parameters learned by gradient-based methods as described in Section 4.2. If
w≁ was unrelated to w≽, it may learn that new cases should only attack target arguments
and ignore the arguments in the casebase and thus will not apply case-based reasoning.

Condition (2) enforces that all target arguments have the same characterisation and
that every case in the casebase will always be considered more exceptional than the target
arguments. This ensures that the target arguments cannot attack/support other arguments
and that the QBAF always directs chains of attacks/supports towards the target arguments.
From now on, we will be using Regular Gradual AA-CBR unless specified otherwise.
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4.2. An End-to-End Neuro-Argumentative Learner

For a new case, N , we predict the outcome y? by applying a gradual semantics on the
constructed QBAF and selecting the target argument with the maximum final strength.
Formally:

gAA-CBR(D,N) = argmax
ci∈Y

σ((xδi , ci)), (2)

where σ is a gradual semantics such as that in Definition 2.

4.2.1. Function Choices

Choosing a gradual semantics that is differentiable, for example, MLP-based semantics
(Definition 2) and selecting differentiable functions for τx and w≽ means these can contain
parameters learnable by gradient-based methods. These functions could be set to any
neural-based model such as an NN, convolutional neural network (CNN) (LeCun et al.,
1989, 1998), or transformer (Vaswani et al., 2017). Furthermore, the parameters used by
τx and w≽ can be shared, ensuring that the same features extracted are used for both.
This work focuses on real-valued data where each xa is of the form [xa,1, xa,2, ..., xa,d]

⊤ ∈ Rd.
For feature extraction, we use the function,

h(xa) =
d∑

k=1

θkxa,k (3)

where θk is a learnable weight for feature xa,k. We then define the base score and edge
weight functions as

τx(xa) = S(h(xa) · θs) (4)

w≽(xa, xb) = S((h(xa)− h(xb)) · T ) (5)

where S(x) = 1
1+exp(−x) is the sigmoid function, θs is a learned scale value and T is a

temperature hyperparameter.
Equation (3) defines a function that weights each feature of xa. These weights are shared

for τx and w≽ such that relative feature contributions are the same for both base scores
and the edge weights, even if the absolute contributions can be scaled by θs. Equation (5)
defines an approximate partial order such that if h(xa) > h(xb), then w≽ will return a value
closer to 1 and a value closer to 0 otherwise. The sigmoid function, S, ensures that the
ranges of τx and w≽ are [0, 1] and that the constraint defined in Equation (1) holds.

When w≽(xa, xb) returns a value between 0 and 1 (exclusive), then by Equation (1), there
will always be a non-zero value in the reverse direction. This leads to a situation where for
every pair of arguments, a, b ∈ A′, there is an edge from a to b and from b to a both with
non-zero edge weights in the resulting QBAF. Cycles in the QBAF are problematic as the
model becomes difficult to interpret, and, as identified by Potyka (2021), may prevent the
semantics from converging. To remedy this, we apply a post-process function, P, defined
using the indicator function X (B) = 1 if B, and 0 otherwise, formally:

P(a, b) = w(a, b) · X (|w(a, b)| ≥ |w(b, a)|) (6)

which for cyclic edges between pairs of arguments, ensures that only the edge with a larger
weight is kept and the other is set to 0.
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4.2.2. Model Training

The model can be trained for a classification task by minimising the categorical cross-entropy
loss function Lce (Ciampiconi et al., 2023). Furthermore, we can apply regularisation during
training to enforce soft constraints on the graphical structure of the learned QBAF. To do
so, we can represent the post-processed edge weight function P as an adjacency matrix
A wherein Ai,j = P(i, j) where i and j correspond to the i-th and j-th argument of
A′ respectively. Then, as in existing GSL approaches (Zhu et al., 2021), we apply the
community preservation regularisation Lcp = rank(A). It acts as a soft constraint, causing
the graph to have better-defined communities, which is beneficial for ensuring the most
critical arguments are highly connected. The model is, therefore trained by minimising the
following function:

L = Lce + γLcp (7)

where γ ≥ 0 is a hyperparameter controlling the trade-off between classification and regu-
larisation loss4.

The training algorithm is based on gradient descent and can be found in the supple-
mentary material. The primary difference when training Gradual AA-CBR compared to
gradient descent is the need for a fit step in which we first construct the QBAF with the
casebase. Then, as in traditional NN training, we iterate through the training data, making
a class prediction for each data point and backpropagating the loss gradients. However, in
Gradual AA-CBR, the subject data point must be treated as a new case with a new QBAF
constructed, and the forward pass involves computing the gradual semantics. Besides these
changes, we update parameters based on the loss gradient as in gradient descent.

A suitable choice for the default characterisation that ensures we obey Regular Gradual
AA-CBR (Definition 4) is to set xδc to the mean characterisation of the training data, that
is, we let xδc = µ(Xt) where Xt = {xa | (xa, ya) ∈ D}. When the dataset is normalised,
µ(Xt) is equal to the zero vector and so xδc = 0. With our choice of base score function
(Equation (4)), we therefore have τx(xδc) = 0.5, which ensures the base score is not initially
biased towards any one outcome.

5. Experiments

We evaluate Gradual AA-CBR using the standard classification metrics, accuracy and macro
averaged precision, recall and f1 score (Hossin and Sulaiman, 2015). We experiment with
three binary classification datasets, Mushroom (Unknown, 1981), Breast Cancer (Wolberg
et al., 1993), and Glioma Grading (Erdal Tasci, 2022), and one multi-class classification set,
Iris (R. A. Fisher, 1936). Each experiment is evaluated against a simple NN with no hidden
layers, and for the Mushroom and Glioma datasets, which contain only binary features, we
test against AA-CBR and ANNA5.

4. In practice, we can regularise the attacks (negative edge weights) and supports (positive edge weights)
independently, leading to more stable training.

5. A discussion of dataset details and selected model hyperparameters for each dataset and baseline is
provided in the supplementary material.
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Table 1: Classification results across four datasets

Model Accuracy Precision Recall F1 Score

Mushroom

AA-CBR 0.48 0.24 0.50 0.33
ANNA 0.84 0.85 0.84 0.84
NN 0.99 0.99 0.99 0.99
Gradual AA-CBR 0.98 0.98 0.98 0.98

Glioma

AA-CBR 0.67 0.67 0.67 0.67
ANNA 0.67 0.67 0.67 0.67
NN 0.85 0.86 0.86 0.85
Gradual AA-CBR 0.86 0.86 0.86 0.86

Breast Cancer

NN 0.98 0.98 0.98 0.98
Gradual AA-CBR 0.95 0.95 0.94 0.94

Iris

NN 0.97 0.97 0.96 0.97
Gradual AA-CBR 0.97 0.97 0.96 0.97

5.1. Experimental Results and Discussion

Table 1 shows the classification performance observed on the test set across the four datasets.
Gradual AA-CBR performs comparably to the NN on all datasets, with only small margins
of performance lost. On the datasets with binary features, Gradual AA-CBR considerably
outperforms both AA-CBR and ANNA. We observe deficiencies in the previous models that
Gradual AA-CBR can overcome. Firstly, ANNA is not a catch-all for AA-CBR as we see
with the Glioma dataset in which no subset of features was found that could perform better
than using all features. Secondly, we did not run AA-CBR and ANNA on the Breast Cancer
and Iris datasets as they contain continuous features and defining a notion of exceptionality
over these becomes exceedingly difficult. Finally, AA-CBR and ANNA only work for binary
classification, and so even if we could find such a notion, these models would still not work for
Iris. Table 2 summarises these model capabilities, wherein only Gradual AA-CBR achieves
high performance whilst being interpretable, capable of multi-class classification and using
continuous data.

The interpretability of Gradual AA-CBR is the key highlight of the model. We can
visualise the QBAF and inspect the features weights, edge weights and case base scores6.
This is a significant advantage over an NN, wherein even small models are challenging to
interpret.

6. The supplementary material includes a full figure of a learned QBAF for the Iris dataset.
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Table 2: Model Capabilities

Model Performant Interpretable Multi-class Continuous Data

AA-CBR × ✓ × ×
ANNA ∼ ✓ × ×
NN ✓ × ✓ ✓
Gradual AA-CBR ✓ ✓ ✓ ✓

× - model is not capable, ∼ - model is partially capable, ✓ - model is capable

Whilst we present the best-observed results here, a notable weakness of Gradual AA-
CBR is that the model performance is sensitive to the choice of initial weights. For a simple
NN used for classification, weights are initially randomised, typically with an initialisation
function imposing some constraints on the values that the weights can take. This leads
to the NN randomly predicting each class an equal number of times before training. For
Gradual AA-CBR, the model typically starts by predicting every instance as a single class.
Thus, training can quickly get stuck in a local minimum where the logits for a single class
are correctly minimised, but logits for other classes are not. As the number of possible initial
states scales with the number of features of the dataset, this limitation can prevent the model
from scaling to high-dimensional data, and future work must look at new initialisation
schemes. AA-CBR on the Iris dataset can learn in 79% of initial states tried. The key
features that helped improve this rate is using Xavier Normal initialisation (Glorot and
Bengio, 2010), introducing supports, using graph-based regularisation and hyperparameter
tuning of the learning rate, number of epochs and optimiser. However, we found that on
the Breast Cancer and Glioma datasets, the model can only learn in 16% and 11% of initial
states, prompting future work on the matter.

6. Conclusion

We have introduced Gradual AA-CBR, a novel neuro-argumentative learning model capable
of leveraging the reasoning capabilities of AA-CBR with feature extractors learned end-to-
end. This model successfully matches the performance of an NN on continuous data whilst
providing interpretable and transparent reasoning. There are many avenues for future
work, including a richer analysis of the intepretability of the model, developing a new
initialisation scheme to improve the percentage of initial states the model can learn from,
experimenting with feature extraction on more complex tasks and data types, for instance
images and time series using more complex feature extractors such as CNNs (LeCun et al.,
1989, 1998), RNNs (Lipton et al., 2015) or transformers (Vaswani et al., 2017), and applying
explainable AI techniques to extract tailored explanations of the model (Čyras et al., 2021).
Furthermore, other variants of AA-CBR, such as cumulative AA-CBR (Paulino-Passos and
Toni, 2021) and preference-based AA-CBR (Gould et al., 2024) could be adapted to neuro-
argumentative learning models in much the same way as our method, thus allowing for
monotonic reasoning methods or user-injected preferences.
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Appendix A. Gradual AA-CBR Training

As described in the main body, Algorithm 1 showcases the training algorithm for Gradual
AA-CBR. The primary difference when training Gradual AA-CBR compared to a traditional
NN is the need for a fit step (line 4) in which we first construct the QBAF with the casebase,
referred to as QBAFd. Then, as in traditional NN training, we iterate through the training
data, making a class prediction for each data point and propagating the loss. However, in
Gradual AA-CBR, the subject data point must be treated as a new case with a new QBAF
constructed (line 6) and the forward pass involves computing the gradual semantics (line 7).
Otherwise, we propagate the loss and update parameters as standard.
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Algorithm 1 Gradual AA-CBR Training with Gradient Descent

1. Input: Training data Dt, learning rate α, number of epochs E, semantics σ, base
score function τx, edge weight functions w≽ and w≁, target arguments T ,

2. Initialize: Function parameters θ of τx, w≽ and w≁ randomly or using a specific
initialization method

3. For epoch = 1 to E

4. Fit the QBAF on the training data Dt, such that F := QBAFDt

5. For each case a := (xa, ya) in Dt

Forward Pass:

6. Add case a as a new case to F , giving F ′ := QBAFDt,a

7. Compute the output ŷa := [σ(t1), σ(t2), ..., σ(tm)]⊤, for each target argument
ti of F

′

8. Compute loss L(ŷa, ya)
Backward Pass:

9. Compute the gradient of the loss with respect to the parameters ∇θL(ŷa, ya)
Update Parameters:

10. Update parameters: θ := θ − α∇θL(ŷa, ya)

11. Output: Trained weights θ

Appendix B. Experiment Details

The baseline NN for all models was a single layer NN with an input size equal to the
number of features in the dataset and the output size is the number of classes. It was
trained with Categorical Cross Entropy Loss (Ciampiconi et al., 2023), using the Adam
optimiser Kingma and Ba (2014) with a learning rate of 0.02 and 500 epochs.

The Mushroom dataset is used for binary classification, distinguishing poisonous or
edible mushrooms. It consists of 8124 instances and 117 one-hot encoded binary features and
was used to compare Gradual AA-CBR against ANNA and AA-CBR with exceptionalism
defined by the subset relation as in Cocarascu et al. (2018). For ANNA, an autoencoder
with a hidden layer size of 30 was used to select the top 22 features. We use 200 randomly
chosen instances for model training, 50 for validation, and 7874 as the test set. Gradual
AA-CBR was trained with the Adam Optimiser, with a learning rate of 0.02 for 500 epochs.
The temperature T was set to 0.05, and γ was set to 0.005.

Similarly, the Glioma dataset is used for binary classification, grading brain tumours as
either low or high grade. It consists of 839 instances with 21 binary features7. 364 randomly
chosen instances were used for model training, 91 for validation and 114 for the test set.

7. There is also one real-valued feature, patient age, and one categorical feature, race, which we exclude as
AA-CBR/ANNA require binary features.
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For ANNA, an autoencoder with multiple hidden layer sizes, 5, 10, 15, 30 was tried, but
no subset of features found lead to better results than using all features as with AA-CBR.
Gradual AA-CBR was trained with the Adam Optimiser, with a learning rate of 0.02 for
6000 epochs. The temperature T was set to 0.05, and γ was set to 0.005.

The Breast Cancer dataset is used for binary classification, distinguishing malignant vs
benign tumours. It consists of 569 instances with 30 real-valued features. 364 randomly
selected instances were used for model training, 91 for validation and 114 for the test set.
Gradual AA-CBR was trained with the Adam Optimiser, with a learning rate of 0.02 for
2500 epochs. The temperature T was set to 0.05, and γ was set to 0.005.

Finally, the Iris dataset was selected to demonstrate the ability to expand to multi-class
classification. This dataset consists of 150 instances of three classes with 4 continuous-
valued features. 96 instances were randomly selected for training, 24 for validation and 30
for the test set. Gradual AA-CBR was trained with the Adam Optimiser, with a learning
rate of 0.02 for 3000 epochs. The temperature T was set to 0.05, and γ was set to 0.005.

B.1. Visualising the Learned QBAF

Figure 2 showcases a learned QBAF for the Iris dataset. We can see, for example, that
the 28th data point is highly attacking; thus, the model considers this data point highly
exceptional. As a result, the default for Class 2 is not strongly attacked or supported,
suggesting that the model may, by default, predict a new data point as Class 2 unless node
28 is considered irrelevant to the new data point.
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Figure 2: A learned QBAF for the Iris dataset. Every argument in the casebase is a node in
the graph, with the edges from each node representing attacks (in red) or supports
(in green). We filter the edges to only those with a magnitude greater than 0.1
for visualisation purposes. The intensity of the colour indicates the strength of
the attack or support.
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