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ABSTRACT

The memory and computational demands of Key-Value (KV) cache present sig-
nificant challenges for deploying long-context language models. Previous ap-
proaches attempt to mitigate this issue by selectively dropping tokens, which irre-
versibly erases critical information that might be needed for future queries. In this
paper, we propose a novel compression technique for KV cache that preserves all
token information. Our investigation reveals that: i) Most attention heads primar-
ily focus on the local context; ii) Only a few heads, denoted as retrieval heads,
can essentially pay attention to all input tokens. These key observations motivate
us to use separate caching strategy for attention heads. Therefore, we propose
RazorAttention, a training-free KV cache compression algorithm, which main-
tains a full cache for these crucial retrieval heads and discards the remote tokens
in non-retrieval heads. Furthermore, we introduce a novel mechanism involv-
ing a “compensation token” to further recover the information in the dropped to-
kens. Extensive evaluations across a diverse set of large language models (LLMs)
demonstrate that RazorAttention achieves a reduction in KV cache size by over
70% without noticeable impacts on performance. Additionally, RazorAttention is
compatible with FlashAttention, rendering it an efficient and plug-and-play solu-
tion that enhances LLM inference efficiency without overhead or retraining of the
original model.

1 INTRODUCTION

Long-context large language models (LLMs) have significantly advanced capabilities in natural lan-
guage processing across diverse tasks. However, the growth of the Key-Value (KV) cache under
increasing input length has become the major bottleneck for deployment. There are been plenty
of previous work designed to alleviate this problem by compressing the KV cache size, including
quantization (Sheng et al., 2023; Zhao et al., 2024; Lin et al., 2024), token-dropping (Zhang et al.,
2023; Xiao et al., 2024), local attention (Jiang et al., 2023; Child et al., 2019), etc.
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Figure 1: RazorAttention achieves comparable performance to the original model, even with 70%
KV cache compressed. To demonstrate this, we tested Llama2-13B-64K (Fu et al., 2024) on the
Needle in A Haystack benchmark (gkamradt, 2023).

One major direction for KV cache compression is to directly drop tokens deemed unimportant so
far (Zhang et al., 2023; Xiao et al., 2024; Liu et al., 2023b; Li et al., 2024). These methods inherently
assume that tokens considered unimportant will not be needed in future queries, which does not hold
in practical scenarios. For instance, a user might request information that is not directly aligned with
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Input context: "DOD's MILCON appropriations are used to fund the acquisition, construction, installation... 

Mary's favorite number is 34251... Bob's favorite number is 7690... reviewing project cost estimates."

Q1: "What is Mary's favourite number?"

Original model: "Mary's favorite number is 34251."

H2O: "Mary's favorite number is not explicitly mentioned in the text provided."

SnapKV: "Mary's favorite number is 34251."

RazorAttention: "Mary's favorite number is 34251."

Q2: "What is Bob's favourite number?"

Original model: "Bob's favorite number is 7690."

H2O: "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

SnapKV: "!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!"

RazorAttention: "Bob's favorite number is 7690."

Figure 2: Importance-based token-dropping methods cannot work when querying the less relevant
information to the main theme. Here, we use an 8K document from LongBench (Bai et al., 2023b)
and add two sentences that are not relevant to the main theme. In this case, H2O discards tokens
that are less relevant to the main theme, leading to failures in both Q1 and Q2. SnapKV discards
tokens based on the first query, making it effective for Q1 but failing in subsequent queries like Q2.
Only RazorAttention successfully outputs the exact information from the lengthy input even when
we compress 70% of the KV cache.

the main theme of the processed text, or engage in a multi-round conversation querying different
segments from the context. In these cases, the importance-based token-dropping methods can lead
to significant performance degradation since the actual information required by the query might be
discarded if considered unimportant (see our example on Qwen1.5-7B-Chat (Bai et al., 2023a) in
Figure 2). This leads us to pose a critical question:

“Can we find a way to reduce the KV cache size without losing semantic information?”

In this work we address this problem from a novel perspective. Our investigation reveals that there
exists a “retrieve and process” mechanism in LLMs when processing a long context. More specifi-
cally, LLMs can accurately recall the queried information from a lengthy input through certain group
of attention heads, which we denote as “retrieval heads” (see Section 3.3 for definition). These heads
are capable of concentrating most of their attention weights on the relevant information (w.r.t. the
queries) and increasing the output probability for those words. Another important finding is that
non-retrieval heads primarily focus on local context or the attention sink (Xiao et al., 2024), which
means these heads cannot effectively utilize all the semantic information from the input. Based on
these important findings, we hypothesize that LLM runs the reasoning procedure on a “retrieve and
process” basis. That says, the model first uses the retrieval heads to gather relevant information, and
then non-retrieval heads to process the retrieved information and generate the final response. This
motivates us to design separate caching strategies for different heads: For retrieval heads, we keep
the KV cache unaltered; for the rest heads, we only cache recent tokens and attention sinks.

Beyond this, we notice that there still exists a certain accuracy gap when we directly discard all
the remote tokens in the non-retrieval heads. Therefore for these non-retrieval heads, we designed
a “compensation token” for compressing the dropped cache into one token, and proved that the
accuracy degradation due to the truncated KV cache gets further improved with this compensa-
tion token. With retrieval heads and compensation tokens, we prove that our algorithm, namely
RazorAttention, can successfully compress 70% of the KV cache without noticeable performance
degradation as illustrated in Figure 1. RazorAttention can even support the compression of 1024K
sequences, achieving nearly lossless precision in the Needle in a Haystack task after compressing
the KV cache by 50%, as shown in Figure 6.

Last but not least, previous importance-based token-dropping methods cannot be combined with
FlashAttention due to their reliance on the attention weights to compute the importance score, mak-
ing them impracticable for implementation since FlashAttention is one of the most important com-
ponents in long-context inference. RazorAttention addresses this problem since it does not use the
attention map as the metric. The head-wise pruning criterion is totally compatible with FlashAtten-
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tion, and the computation overhead of the compensation token is negligible. Therefore RazorAtten-
tion could achieve a substantial inference speedup when compared to previous methods.

To the best of our knowledge, RazorAttention is the first training-free token reduction algorithm
that achieves a nearly lossless 3X KV cache reduction. We evaluated RazorAttention on models
including Qwen (Bai et al., 2023a), Llama-2 (Touvron et al., 2023), Llama-3 (AI@Meta, 2024) and
Baichuan (Baichuan, 2023) on long-context tasks to prove its effectiveness. Our contribution can be
summarized as follows

• We systematically analyze the attention dynamic of Transformers under lengthy inputs.
Our work reveals that only a few retrieval heads can essentially recall information from the
whole input while the rest heads mainly focus on the local context.

• We introduce a novel algorithm, namely RazorAttention, that is capable of reducing the KV
cache size by 70% under minimal impact on performance for contexts ranging from 8K to
100K tokens. We designed an accurate and data-free metric for allocating all the retrieval
heads, together with an error compensation strategy for compensating the information loss
due to the truncated KV cache.

• RazorAttention introduces negligible overhead in compression and is compatible with
FlashAttention, rendering it an efficient and plug-and-play solution that enhances LLM in-
ference efficiency without training or significant overhead. Extensive experiments demon-
strate that RazorAttention can be effectively applied to various models and tasks.

2 RELATED WORK

As the sequence length increases, the memory consumption of KV cache rapidly expands, poten-
tially surpassing the size of the model parameters themselves. This leads to an urgent need for
KV cache compression, particularly in scenarios with limited GPU memory. One direction is non-
Transformer architecture design, such as Mamba (Gu & Dao, 2024), Mamba2 (Dao & Gu, 2024),
Infini-Transformer (Munkhdalai et al., 2024), RWKV (Peng et al., 2023)and Griffin (De et al., 2024).
However, in this paper we focus on KV cache reduction for typical Transformers, which is the most
widely used model structure. Below we introduce several approaches for KV cache compression.

Quantization Quantization is a classic yet effective approach to neural network compression. In
the field of LLM Quantization, while the outlier challenge attracts great attention (Xiao et al., 2023;
Wei et al., 2022; 2023) to tackle, the application of which on KV cache is often seen as a by-product
of activation quantization. Nevertheless, there are several noteworthy works demonstrating the value
of KV cache quantization. FlexGen, Atom and QServe (Sheng et al., 2023; Zhao et al., 2024;
Lin et al., 2024) carefully designed quantization pipelines that utilize KV cache compression to
boost the overall inference throughput. KVQuant (Hooper et al., 2024) integrates several techniques
to minimize KV quantization error and KIVI (Zirui Liu et al., 2023) pushed the limit towards 2-
bits. Besides the post-training methods, LLM-QAT (Liu et al., 2023a) offers a data-free distillation
process that further recovers the performance of the model.

Token-dropping Token-dropping methods assume that not all key-value pairs are essential in self-
attention computations, so memory usage can be saved by identifying and removing unimportant KV
cache. StreamingLLM (Xiao et al., 2024) utilizes sliding window technology, preserving only the
KV pairs of attention sink tokens and those within the sliding window, thereby reducing memory
footprint and stabilizing model performance. H2O (Zhang et al., 2023) is one of the pioneers that
use the attention scores to evaluate the importance of each token, followed by an eviction strategy
that greedily selects cache with higher scores. Scissorhands (Liu et al., 2023b) and one of the latest
work SnapKV (Li et al., 2024) use similar ideas by narrowing the computation range to consider
attention scores related to recent information. Built on that, PyramidKV and PyramidInfer (Cai.
et al., 2024; Yang et al., 2024) analyze the attention concentration patterns and further reduce KV
cache in later layers. Moreover, research efforts have been made to understand KV cache from
different perspectives: FastGen (Ge et al., 2024) paid attention to special tokens and punctuation,
SubGen (Zandieh et al., 2024) investigated the clusterability of key embedding and CORM (Dai
et al., 2024) discovered strong correlation amongst tokens of near neighbors.
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Non-MHA Attention Another category focuses on reducing KV cache by sharing cache across
attention heads. MQA (Shazeer, 2019) aggressively uses a single KV head for all heads, whereas
GQA (Ainslie et al., 2023) suggests an intermediate number of heads to balance the trade-off be-
tween inference speed and output quality. Furthermore, MLA (DeepSeek-AI et al., 2024) presents a
novel caching method by low-ranking KV cache of all heads into single latent space.

Our algorithm is motivated by the idea from Olsson et al. (2022), where the authors noticed that
there are certain groups of attention heads, denoted as the induction heads, that can effectively recall
the queried information from the input. Recent study (Wu et al., 2024) also validated this property
under extended inputs. This is the first work that proposes a head-wise pruning criterion for KV
cache compression based on the interpretability of the attention mechanism.

3 METHODOLOGY

In this section, we introduce the key components of RazorAttention. We firstly apply RazorAtten-
tion to models using ALiBi (Press et al., 2022) positional embedding (denoted as ALiBi models) to
provide an intuitive understanding of the retrieval and non-retrieval heads. Afterwards, we demon-
strate that models using RoPE (Su et al., 2023) positional embedding (denoted as RoPE models)
also exhibit this crucial characteristic, which reveal that KV cache within RoPE models can also be
efficiently compressed under minimal loss of accuracy.

3.1 RAZORATTENTION FOR ALIBI MODELS

For ALiBi models, its h-th attention head computes the attention score according to
Sm→n (q;k) = qmk⊺

n − lh(m− n), (1)
where qm is the query tensor at the m-th position, kn is the key tensor at the n-th position, lh is the
head-specific slope, Sm→n (q;k) is the attention score. Notice that (m ≥ n) is guaranteed by the
casualty of attention.

In the scenario where lh(m − n) significantly dominates qmk⊺
n, the attention between qm and kn

would decay to zero, meaning that the contribution of any tokens positioned further than n becomes
negligible for the output at position m. The following theorem formalizes this observation.

Theorem 1 Given an attention head that calculates the attention score as per equation 1, for any
ϵ ∈ (0, 1), the attention weight from qm to kn can be upper bounded by:

Attnm→n (q;k) =
exp (Sm→n (q;k))∑m
n=0 exp (Sm→n (q;k))

≤ ϵ, ∀n < m− C0,

Lh :=
2∥WQh

WKh
∥2

(
∥γ∥2 + ∥b∥2

)
− log(ϵ)

lh
. (2)

Here WQh
and WKh

are the query and key matrices of the h-th attention head, γ and b are the
weight and bias for the LayerNorm layer before attention (b = 0 for RMSNorm (Zhang & Sennrich,
2019)), and ∥ · ∥2 denotes the l2-norm of the matrix. Lh can be viewed as the vision scope of the
head. The detailed proof can be found in Appendix A.

Theorem equation 1 indicates that when the distance between qm and kn exceeds C0, the attention
weight between these two tokens falls below ϵ. When ϵ is sufficiently small (e.g., 0.1%), remote
tokens impose minimal influence on the final output and can thus be discarded. Building on this
principle, ALiBi models dynamically adjust the KV cache size for each head. We first compute
the effective attention scope Lh, and keep only the recent Lh tokens in the KV cache, since any
token further than Lh impose attention weight no more than ϵ, we can safely discard them for
compression. Therefore, for ALiBi models, the retrieval heads are the ones with a larger Lh, while
the non-retrieval heads has a smaller attention vision Lh.

3.2 RAZORATTENTION FOR ROPE MODELS

For RoPE models, each attention head computes the attention score according to
Sm→n (q;k) = qmk⊺

n, qm = Rmq, kn = Rnk (3)
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Protection heads MultiFieldQA-en Hotpotaqa 2Wikimqa
Baseline 46.94% 50.96% 36.36%

Protect 0% heads 37.36% 42.36% 31.33%
Protect 15% heads(Random) 38.33% 42.46% 31.97%

Protect 15% heads(Retrieval) 46.66% 50.49% 36.12%

Table 1: We protected the KV cache within different groups of attention heads while keeping only
the recent 4K tokens in the rest with Qwen1.5-7B. The results indicate that both unprotected heads
and randomly protected heads yield similar poor performance, while only protecting the retrieval
heads effectively retains most of the LLM’s performance. This clearly shows that most attention
heads rely solely on local context, and only retrieval heads can fully utilize all contextual informa-
tion.

Where qm and kn are the query and key states after the rotary transformation, and Rm and Rn are
the rotary matrices at positions m and n (see Su et al. (2023) for details). Although RoPE embedding
does not inherently suggest long-range decaying attention, our empirical findings indicate that only
about 15% of the heads, which we term ”retrieval heads,” are capable of effectively utilizing long-
range information to ensure the model’s reasoning performance, while the remaining heads primarily
focus on local context. As shown in Table 1, when all heads are set to focus only on local context
(Protect 0% heads), the accuracy significantly decreases by an average of 7.3%; when 15% of the
heads are randomly selected to attend to long-range information (Protect 15% heads Random) while
the rest focus on local context, the accuracy significantly decreases by an average of 7.1%; however,
when retrieval heads are selected to focus on long-range information (Protect 15% heads Retrieval)
while the remaining heads focus on local context, the accuracy is comparable to the baseline, with
only a decline of 0.3%.

Based on the findings above, we directly decrease the KV cache for all non-retrieval heads. The
performance of the model is mostly retained as shown in Table 1.However, a notable accuracy gap
remains, indicating that some information is still being lost. Moreover, the test result on Needle
in a Haystack shows a clear performance degradation even when we protect the KV cache of re-
trieval heads (see our ablation result in Figure 7). To further improve performance, we designed a
lightweight and effective way to compress the information in the dropped token into a “compensa-
tion token”. The compensation token is defined as

k̂ =
1

Nd

∑
m∈{D}

km, v̂ =
1

Nd

∑
m∈{D}

vm. (4)

Here k̂, v̂ are the compensation tokens for the dropped KV cache, {D} contains the indices of the
dropped tokens and Nd is the number of the dropped tokens. Afterward, we discard the dropped
tokens and augment the KV cache with the compensation token k̂ and v̂, where {K,V } are the KV
cache of the remaining token after rotary transformation. Denoting the compressed KV cache as
{K, k̂} and {V, v̂}, the attention output of the current token follows

Attn(qm, {K, k̂}, {V, v̂}}) =
Nd exp

(
qmk̂⊺

)
v̂ +

∑
n/∈{D} exp (qmk⊺

n)vn

Nd exp
(
qmk̂⊺

)
+
∑

n/∈{D} exp (qmk⊺
n)

. (5)

In Figure 3(a) we provide an illustrative example of RazorAttention for RoPE models. With com-
pensation tokens, the accuracy is further improved, making RazorAttention almost lossless even
dropping 70% of the KV cache in the non-retrieval heads. Below we introduce how we determine
the retrieval heads group.

3.3 IDENTIFICATION OF RETRIEVAL HEADS

For ALiBi models, the attention scope can be directly determined via equation 2 and KV cache
can be dropped accordingly. However, for RoPE models, the retrieval heads need to be identified
in a more sophisticated way. Our investigation reveals that two groups of heads are essential in
processing long context, so both of them should be included as retrieval heads as stated below.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

[sink] [rolling cache][dropped cache]

Non-retrieval head:

(compressed cache)

Retrieval head:

(full cache)

(a)

A B C ...... A B C

Echo head: A B C ...... A B

A B C ...... A BInduction head:

(b)

Figure 3: In Figure 3(a) we present the illustration of how RazorAttention compress the KV cache.
For retrieval heads, we maintain a full cache for retaining all the tokens’ information. For non-
retrieval heads, we directly discard remote tokens and compress the discarded tokens into a com-
pensation token whose KV cache is denoted as {k̂, v̂}. In Figure 3(b) we provide an illustration
example of the echo head and induction head. The current token is “B” and the generated token is
“C”. In this case, the echo head would mainly attend to token “B” while the induction head mainly
attend to token “C” in previous context.

• Echo head: The head tends to attends back to previous token (referred as echo token)
identical to the current token.

• Induction head: The head tends to attend to the previous token (namely induction token)
that is immediately succeeded by the current token. Basically it attends to the coming token
that also exists in previous context.

In Figure 3(b) we present an illustrative example explaining the echo heads and induction heads. In
order to identify the retrieval heads, we generate K (for example, K = 2500) random tokens, repeat
these tokens 4 times, and then use it as the input of the model. This design minimizes semantic
dependencies among tokens, thereby allowing a clearer observation of the behavior of echo and
induction heads.

Subsequently, we calculated the echo score (attention weight to the echo token) and induction score
(attention weight to the induction token) of all words across all heads. The selection of retrieval
heads involves the top-14% attention heads with the highest induction score and top-1% of attention
heads with the highest echo score (see Table 2). Notice that although we only use much fewer echo
heads than retrieval heads, our investigation indicates that both heads are crucial for the retrieving
performance for LLMs (see Section 4.3 for ablation results).

With the retrieval heads being identified, we hereby introduce RazorAttention for RoPE Models in
Algorithm 1.

Algorithm 1 RazorAttention for RoPE Models
Input: Non-retrieval headset {H}, original KV cache (after rotary transformation) {K,V }, com-

pression ratio C, compression threshold S0, sink token num N0.
1: for non-retrieval head h ∈ {H} do
2: Compute the buffer length Lh = max

(
S0,

N
C

)
, here N is the number of tokens in the head.

3: Keeping only the recent Lh tokens near output and first N0 sink tokens, discarding the re-
maining tokens and compress them into a compensation token according to equation 4.

4: end for
5: Non-retrieval heads compute attention according to equation 5, while retrieval heads follow the

original attention.
Output: Generated output tokens.
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Hyper-parameter Settings
Buffer length max(4000, N/5)

Induction head protection top 14%
Echo head protection top 1%

Sink token num 4

Table 2: General hyper-parameter settings for experiments in the paper, which leads to 3.125x com-
pression of KV cache under long context input.
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Figure 4: Performance comparison of RazorAttention and other compression algorithms on Llama2-
7b-80K, Needle In A Haystack. Notice that H2O is incompatible with FlashAttention so we get
OOM errors when tested on longer sequences, and its performance has already become unusable in
this case.

4 EXPERIMENTS

A variety of recent-released LLMs are selected to validate our proposals, including Qwen (Bai
et al., 2023a), Llama2 (Touvron et al., 2023), Llama3 (AI@Meta, 2024) and Baichuan (Baichuan,
2023). The selected models are evaluated on Longbench (Bai et al., 2023b) and Needle In A
Haystack (gkamradt, 2023) to demonstrate their capabilities in long-context circumstances. The
experiments are conducted on NVIDIA GeForce RTX 4090 (24GB). We will first validate the ef-
fectiveness of our proposal on various tasks, followed by the ablation study of each component in
our algorithm design. Unless explicitly stated, we use RazorAttention with the hyper-parameters as
in Table 2. We use H2O (Zhang et al., 2023) and StreamingLLM (Xiao et al., 2024) for compari-
son. Notice that we do not include SnapKV (Li et al., 2024) as the baseline because it assumes that
the query is known before compression, which does not hold in general cases or in a multi-round
conversation where the user might query different information from the context (as discussed in
Section 1).

4.1 LONGBENCH EVALUATION

In Table 3 we present the results of different algorithms on LongBench (Bai et al., 2023b), which
provides a comprehensive assessment to evaluate long-context related abilities of LLMs. We use
Qwen1.5-7B and Qwen1.5-72B for testing since they are RoPE models with a context length of
32K. We also include Llama3-8B to validate the performance of RazorAttention on GQA models.
We choose Baichuan2-13B to demonstrate the effectiveness of RazorAttention on ALiBi models.
It can be seen that RazorAttention achieved a superior performance across all models compared
to StreamingLLM and H2O. The compelling outcomes indicate that RazorAttention can achieve
comparable performance as the uncompressed baseline, even under 3X compression ratio.

Moreover, we test Llama3-8B-Instruct as a GQA instance where every 4 attention heads share a sin-
gle set of KV cache. Hence, we consider the attention heads in a group as all retrieval if one or more
heads satisfy inductive or echoing property. The results in Table 3 clearly prove that RazorAttention
still work for GQA models.

7
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StreamingLLM 6.22 24.62 18.9 34.51 20.68 12.31 5.88 3.86 3.52 20.74 3.17 8.5 36.57 13 42.51 17.00
H2O 16.5 38.15 40.22 51.46 50.19 35.69 27.12 28.42 22.00 22.70 14.03 18.25 83.72 16.4 47.54 34.16
RA 16.63 43.1 46.66 61.08 50.49 36.1 28.79 26.68 22.59 23.96 13.83 20.87 83.83 15.66 47.85 35.87

Q
w

en
1.

5-
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B
-C

ha
t All KV 28.32 46.73 48.25 63.41 55.91 46.23 34.56 32.47 22.69 24.86 15.61 71.0 91.15 46 65.05 46.15

StreamingLLM 9.57 28.33 19.06 34.98 25.32 13.42 10.08 4.11 3.79 21.1 3.74 43.0 43.72 20.5 53.6 22.29
H2O 27.98 41.45 43.69 55.93 54.77 45.16 34.61 32.24 22.35 24.36 14.5 70.0 91.15 42 64.2 44.29
RA 27.97 46.44 47.36 63.04 55.92 46.15 34.36 32.35 22.75 24.91 15.17 71.0 91.49 46 64.68 45.97

L
la

m
a3

-8
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t All KV 21.84 37.04 45.07 52.34 44.63 27.28 23.04 28.18 24.54 26.26 14.41 0 85.90 3 30.17 35.44
StreamingLLM 0.61 16.29 13.41 20.05 2 5.84 0.37 5.22 4.63 18.89 2.52 - 11.54 - 26.83 9.86
H2O 21.14 34.1 40.84 47.13 43.47 27.13 21.31 22.85 16.36 22.3 14.52 - 86.17 - 30.26 32.89
RA 21.16 36.22 42.88 51.93 44.07 26.89 22.03 26.56 23.86 25.83 15.69 - 85.83 - 30.25 34.86

B
ai
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ua

n2
-1

3B

All KV 18.63 30.16 44.1 50.36 37.93 32.62 13.90 26.16 20.14 24.58 15.66 62.5 86.61 27.5 55.36 36.41
StreamingLLM 5.12 12.44 23.53 32.52 16.93 16.08 6.15 5.53 1.03 5.6 3.94 42.22 30.15 7.32 35.42 16.27
H2O 17.81 29.89 43.74 49.54 37.02 31.71 13.54 25.8 18.96 23.31 15.11 62.41 85.25 26.86 54.45 35.69
RA 18.22 31.87 43.6 51.36 36.97 32.89 13.98 25.51 20.13 24.51 15.41 62.5 87.23 28 54.53 36.45

Table 3: Performance comparison of RazorAttention and other compression algorithms across vari-
ous LLMs on LongBench. Notice that the performance of Llama3-8B-Instruct on TREC and LSHT
are not applicable (close to 0), hence we do not include their result on Llama3-8B.
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Figure 5: Adding 1% of the echo heads can significantly enhances the retrieving performance of
RazorAttention on Llama2-7B-80k.

4.2 NEEDLE IN A HAYSTACK EVALUATION

In Figure 4, we present the results on Needle In A Haystack. We use Llama2-7B-80K from Fu et al.
(2024) since the context length of this model is 80K. Unlike H2O, whose performance is severely
degraded under long inputs, RazorAttention can still accurately recall the queried information. This
is a strong evidence proving that RazorAttention can retain all the semantic information within
the original context, while importance-based methods inevitably discard information that might be
useful in future queries.

In Figure 6, we verified that the RazorAttention algorithm can support ultra-long sequences by
testing the Needle in a Haystack task using GLM-9B-1M (GLM et al., 2024). It is observed that
RazorAttention achieves nearly lossless accuracy at the 1024K sequence length. To ensure effective
retrieval of needles in ultra-long sequences, we retained a higher number of retrieval heads (30%
induction heads + 1% echo heads).
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Figure 6: GLM-9B-1M on the 1024K Needle In A Haystack task .
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Protection scheme Score
1% Echo + 5% Induction Head 69.54%
1% Echo + 8% Induction Head 78.40%
1% Echo + 11% Induction Head 84.55%
1% Echo + 14% Induction Head 86.59%

Baseline 87.05%

Table 4: Qwen1.5-7B-Chat using RazorAttention with different numbers of heads protected, tested
on Needle in A Haystack.

4.3 ABLATION STUDIES

Below we present the ablation results of RazorAttention, and prove that the algorithm design and
configuration are optimally chosen to achieve a higher compression ration with acceptable perfor-
mance degradation.

4.3.1 IMPORTANCE OF ECHO HEADS

Although we only include 1% echo heads in RazorAttention, we notice that this group of heads
is quite essential in retrieving information under long context as shown in Figure 5. One possible
explanation is that the induction heads depend on the existence of echo heads as discussed in Olsson
et al. (2022).

4.3.2 NUMBER OF INDUCTION HEADS

To determine the optimal number of induction heads to use in RazorAttention, in Table 4 we present
the accuracy of RazorAttention under various numbers of induction heads. The results show that
the accuracy improves continuously with an increasing number of induction heads. We decide to
include 14% of the induction heads in order to achieve an optimal balance between the compression
ratio and model performance.
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Figure 7: The compensation token is critical for recovering the information loss introduced by the
truncated KV cache.

4.3.3 IMPORTANCE OF THE COMPENSATION TOKEN

In Figure 7, it is clearly demonstrated that compensation tokens are critical for the performance of
RazorAttention. The compensation tokens successfully compressed most of the information from
the dropped tokens,thereby maintaining high accuracy even with significant KV cache reduction.

5 CONCLUSION

In this paper, we propose RazorAttention, a novel KV cache compression algorithm, which success-
fully achieves a 3X compression ratio for models use RoPE or ALiBi embeddings. Unlike previous
importance-based token-dropping methods which inevitably discard semantic information, RazorAt-
tention preserves all semantic information within retrieval heads. We demonstrate that remote tokens
can be effectively compressed into compensation tokens within non-retrieval heads. Furthermore,
our head-wise pruning criterion is fully compatible with FlashAttention, making RazorAttention a
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plug-and-play compression method that accelerates the inference of LLMs under extended context.
Our experiments demonstrate that RazorAttention can achieve comparable performance with the
original model and surpasses previous methods in both accuracy and efficiency.

6 LIMITATION

However, there are still certain limitations of our work. The first question is why attention heads
in LLMs behave so differently and how retrieval heads operate under lengthy inputs. The second
challenge lies in achieving a higher compression ratio. Although we have successfully reduced the
KV cache by 70%, we believe this number can be further improved. Moreover, although we have
tested our algorithm on several models, the optimal configuration on other models might be different,
meaning that we might need more or less retrieval heads under different cases. These topics are quite
important and we will keep investigating them in the future work.
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A APPENDIX: PROOF OF THEOREM 1

Below we first give an upper bound for the product of the queries and keys, and then show that the
attention weight would decay to zero when the positional bias is significantly larger than that upper
bound. Since we have q = WQh

x and k = WKh
x where x is the input of the Attention block, this

leads to

qk⊺ = xWQh
WKh

x⊺ ≤ ∥WQh
WKh

∥2∥x∥2. (6)

Since x is attained after LayerNorm, which means

x = γ ⊙ x̂− µ

σ
+ b,

µ =
1

d

d∑
i=1

x̂i, σ =
1

d

d∑
i=1

(x̂i − µ)2.

Here x̂ is the input of LayerNorm, d is its dimension and x̂i is the i-th dimension of x̂. The equation
above leads to

∥x∥2 =

∥∥∥∥γ ⊙ x̂− µ

σ
+ b

∥∥∥∥2
≤2

∥∥∥∥γ ⊙ x̂− µ

σ

∥∥∥∥2 + 2∥b∥2

≤2∥γ∥2 + 2∥b∥2. (7)
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Combining equation 6 and equation 7 we get

qk⊺ ≤ ∥WQh
WKh

∥2
(
2∥γ∥2 + 2∥b∥2

)
(8)

In order to give an upper bound for the attention weight, we have

Attnm→n (q;k) =
exp (Sm→n (q;k))∑m
n=0 exp (Sm→n (q;k))

=
exp (qk⊺ − lh(m− n))∑m
n=0 exp (Sm→n (q;k))

≤exp (qk⊺ − lh(m− n))

exp (Sn→n (q;k))

≤exp (qk⊺ − lh(m− n))

exp (qq⊺)

≤ exp (qk⊺ − lh(m− n))

=
exp (qk⊺)

exp (lh(m− n))
.

Therefore to ensure Attnm→n (q;k) ≤ ϵ, which is equivalent as log (Attnm→n (q;k)) ≤ log(ϵ), we
need

log (Attnm→n (q;k)) ≤qk⊺ − lh(m− n) ≤ log(ϵ)

Taking equation 8 into the equation above, we get

∥WQh
WKh

∥2
(
2∥γ∥2 + 2∥b∥2

)
− lh(m− n) ≤ log(ϵ),

which gives us

m− n ≥
2∥WQh

WKh
∥2

(
∥γ∥2 + ∥b∥2

)
− log(ϵ)

lh
.

In this case, we have

Attnm→n (q;k) ≤ ϵ.
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