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Abstract

Modeling and simulations of pandemic dynamics play an essential role in un-
derstanding and addressing the spreading of highly infectious diseases such as
COVID-19. In this work, we propose a novel deep learning architecture named
Attention-based Multiresolution Graph Neural Networks (ATMGNN) that learns
to combine the spatial graph information, i.e. geographical data, with the temporal
information, i.e. timeseries data of number of COVID-19 cases, to predict the
future dynamics of the pandemic. The key innovation is that our method can
capture the multiscale structures of the spatial graph via a learning-to-cluster al-
gorithm in a data-driven manner. This allows our architecture to learn to pick
up either local or global signals of a pandemic, and model both the long-range
spatial and temporal dependencies. Importantly, we collected and assembled a
new dataset for New Zealand. We established a comprehensive benchmark of
statistical methods, temporal architectures, graph neural networks along with our
spatio-temporal model. We also incorporated socioeconomic cross-sectional data
to further enhance our prediction. Our proposed model have shown highly ro-
bust predictions and outperformed all other baselines in various metrics for our
new dataset of New Zealand. Our data and source code are publicly available at
https://github.com/HySonLab/pandemic_tgnn.

1 Introduction

The Coronavirus Disease started in 2019 (COVID-19) has been and currently is a major global
pandemic, challenging every country’s population and public health systems. As a fairly water-
isolated island country, New Zealand mostly contained the spread of COVID-19 until early 2022,
when infection cases surged to more than 2 million confirmed cases by the end of the year (WHO
data, https://covid19.who.int/region/wpro/country/nz). While New Zealand responded
promptly, contained and effectively vaccinated the population to keep the case number low, the
sudden rise in infections posed certain challenges to the healthcare system.

In the wake of the spread of COVID-19, many epidemiological modeling and prediction models
emerged, seeking to project the progression of the pandemic and inform public health authorities
to take measures when appropriate. To model non-linear disease growth functions, artificial neural
networks and deep learning models have been developed and trained to predict the infection case time
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series of each health area. The most common types of deep learning models for epidemic modeling
are Long Short-Term Memory (LSTM)-based models, in which the architecture is specially designed
to learn and represent historical or temporal information [49].

It is shown that incorporating geospatial information, including but not limited to movement and
connectedness information, helps with the forecasting performance of LSTM-based and deep learning
model [33]. One of the classes of deep learning models that can seamlessly embed geospatial
information is Graph Neural Networks (GNNs), neural network deep learning models that can capture
topological information in graph- and network-based data [54]. Following in the footsteps of previous
efforts at COVID-19 forecasting with GNNs and spatial disease features [41], we propose improved
spatiotemporal graph neural network models that can accurately learn and forecast COVID-19 case
progression in New Zealand. To this end, we gathered and reformated New Zealand COVID-19 case
data, and constructed day-to-day disease graphs based on geographical information; graph disease
representations are then fed to a hierarchical, multi-resolution temporal graph neural network model
that can automatically group multiple disease areas to learn large-scale disease properties [19, 23].

2 Related works

Various traditional statistical and linear models have been employed to forecast the spread of COVID-
19 cases. Among these traditional models are the Susceptible, Infectious, or Recovered (SEIR)
models [51, 43, 17]. While mathematical models such as SEIR can estimate the effect of control
measures even before the start of the pandemic, these models cannot make accurate predictions due
to a lack of data and their inherent assumptions restricting the class of available learnable disease
functions [44, 6]. ARIMA models are applied the case of COVID-19 [28, 2, 53]; Meta-developed
Prophet model and its variants are also used in forecasting the number of cases in India [45] and
generally for any country using day level case information [29, 4].

The vanilla neural networks without any additional component have been tested as predictors of
COVID-19 outbreaks across several countries, owing to their high capacity modeling of disease
patterns and functions when certain assumptions (e.g., disease incubation period) are encoded [38].
Recurrent neural networks (RNNs) are frequently used in the context of COVID-19 modeling. LSTM-
based models were used to simulate and forecast the COVID-19 pandemic in several other countries,
either independently or in conjunction with various distinct statistical models incorporating spatial
features [40, 34, 48], albeit without incorporating spatial information of the pandemic.

Graph neural networks (GNNs) utilizing various ways of generalizing the concept of convolution to
graphs [47, 39, 30] have been widely applied to many learning tasks, including modeling physical
systems [3], finding molecular representations to estimate quantum chemical computation [8, 26, 13,
21, 22], and protein interface prediction [11]. One of the most popular types of GNNs is message
passing neural nets (MPNNs) [13] that are constructed based on the message passing scheme in which
each node propagates and aggregates information, encoded by vectorized messages, to and from its
local neighborhood. In order to capture the dynamic nature of evolving features or connectivity over
time, temporal graph neural networks (TGNN) have been proposed by [46, 23] as a generic, efficient
deep learning framework that combines graph encoding (e.g., MPNNs) with time-series encoding
architectures (e.g., LSTM, Tranformers, etc.). Applications of TGNN include traffic prediction
[7, 31, 37] and learning on brain networks [37], etc.

3 Methods

3.1 Graph Neural Networks

3.1.1 Graph construction

We process the input disease data as graphs, a form of non-Euclidean irregular data that is permutation
invariant in nature (i.e., changing the ordering of the nodes in a graph does not change the data
that the graph represents). To represent the New Zealand pandemic data as graphs, the entirety
of the country is formatted as a single graph G = (V,E), where n = V is the number of nodes,
and each node represents a single district health board in New Zealand. We create a series of
graphs G(1),G(2), ...,G(T ) corresponding to each day in the case dataset of New Zealand, where
the current day t is within the available day case data for every district health board. The topology
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(i.e., connecting edges and adjacency matrix) of the graphs remains constant over all time steps. The
adjacency matrix A represents the connection between edges in the disease graph; we constructed
the connections between nodes based on geographical adjacency between any two district health
boards. Between any two district health boards u and v, the edge (u, v) from u to v is Au,v = 2 if
two district health boards share any border length, and Au,v = 1 otherwise. For each node or district
health board, we denote the features, or the number of cases in the last d days in the region u, as the
vector x(t)u = (c

(t−d)
u , ..., c

(t)
u )

⊺
∈ Rd. The number of cases over multiple previous days is used to

account for irregular case reporting and the length of the incubation period.

3.1.2 Message-passing neural networks

We model the spatial and geographical spread of COVID-19 in New Zealand using a well-known
family of GNNs known as message-passing neural networks (MPNNs) [13]. Across multiple layers
and to account for the vectorization of the node embeddings, we define the neighborhood aggregation
scheme as

H(k) = σ(ÃH(k−1)W (k)
) (1)

where H(k−1) is a matrix containing the generated node embeddings from the previous layer, H(k) =
(h
(k)
1 , h

(k)
2 , ..., h

(k)
n )

⊺ denotes the matrix arrangement of the node embeddings of all nodes in the
graph (H(0) = X), and Ã denotes the aforementioned normalized graph Laplacian, with hidden
embedding h

(k)
u representing each node/district health board u ∈ V . The time index is omitted from

both equations; the model is in fact applied to all input graphs G(1),G(2), ...,G(T ) in the time series
separately. Since the connectivity and adjacency of the disease graphs are constant over time, the
matrix Ã is shared across all temporal graphs alongside the weight matrices W (1), ...,W (K) for K
message-passing layers, while the node embeddings H0, ...,HK are unique for each disease day
graph in the time series.

Dropout +

BatchNorm + ReLU

Dropout + ReLU

Figure 1: Overview of the proposed Message-Passing Neural Network architecture on the graph
representation of New Zealand. Note that dotted green arrows represent the extraction of historical
case counts as node features, and dotted orange arrows represent the geospatial location between two
regions extracted as edge features.

3.1.3 Multiresolution Graph Neural Networks

In field of graph learning, it is important to build a graph neural network that can capture the
multiscale and hierarchical structures of graphs. Multiresolution Graph Neural Networks (MGNN)
was originally proposed by [20] as a graph encoder in the context of graph generation via variational
autoencoder, and adopted by [23] in combination with a temporal architecture to learn and predict
the dynamics of an epidemic or a pandemic. Instead of a fixed coarse-graining process, MGNN
introduces a learnable clustering algorithm that iteratively constructs a hierarchy of coarsening graphs,
also called multiresolution or multiple levels of resolutions (see Def. 3.2):
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1. Based on the node embeddings, we cluster a graph into multiple partitions. Each partition
is coarsened into a single node, and all the edges connecting between two partitions are
aggregated into a single edge (see Def. 3.1). This process results into a smaller coarsened
graph.

2. We continue to apply message passing on the coarsened graph to produce its node embed-
dings, and then cluster it further. On each resolution, all the node embeddings are pooled
into a single graph-level vectorized representation, i.e. latent. The hierarchy of latents allows
us to capture both local information (in the lower levels) and global information (in the
higher levels) of a graph.

Definition 3.1. A k-cluster partition on a graph G = (V,E) partitions its set of nodes into k disjoint
sets {V1, V2, .., Vk}. A coarsening of G is a graph G̃ = (Ṽ , Ẽ) of k nodes in which node ṽi ∈ Ṽ

corresponds to a induced subgraph of G on Vi. The weighted adjacency matrix Ã ∈ Nk×k of G̃ is
defined as:

Ãij = {

1
2 ∑u,v∈Vi

Auv, if i = j,
∑u∈Vi,v∈Vj

Auv, if i ≠ j,

where the diagonal of Ã denotes the number of edges inside each cluster, while the off-diagonal
denotes the number of edges between two clusters.
Definition 3.2. An L-level of resolutions, i.e. multiresolution, of a graph G is a series of L graphs
G̃1, .., G̃L in which: (i) G̃L is G itself; and (ii) For 1 ≤ ℓ ≤ L − 1, G̃ℓ is a coarsening graph of G̃ℓ+1

as defined in Def. 3.1. The number of nodes in G̃ℓ is equal to the number of clusters in G̃ℓ+1. The top
level coarsening G̃1 is a graph consisting of a single node.

The key innovation of MGNN is how the model can learn to cluster graph G̃ℓ+1 into G̃ℓ in a data-
driven manner. Without the loss of generality, we suppose that the number of nodes in G̃ℓ is K, i.e.
∥Ṽℓ∥ = K, meaning that we cluster G̃ℓ+1 into K partitions. First, we employ a GNN to produce
a K-channel node embedding for each node of G̃ℓ+1. Then, we apply a softmax over the node
embedding to compute the probability of assigning each node to one of the K clusters. However,
we want each node to be in a single cluster, i.e. hard clustering, thus we employ the Gumbel-max
trick [14, 24, 35] to sample/select the cluster based on the assignment probability while maintaining
differentiability for back-propagation. This results into an assignment matrix P ∈ {0,1}∥Ṽℓ+1∥×K .
The adjacency matrix of G̃ℓ can be computed as Ãℓ = P

T Ãℓ+1P . We repeat this clustering process
iteratively in order to build multiple resolutions of coarsening graphs.

3.1.4 Spatio-temporal graph neural networks

In this section, we build our spatio-temporal GNNs by combining all the previously defined modules.
Suppose that we are given a historical data of T timesteps which can be modeled by T input graphs
G(1),G(2), ..,G(T ). The simplest combination is MPNN+LSTM in which we employ MPNN (see
Section 3.1.2) to encode each G(t) into a graph-level vectorized representation and then feed it into an
LSTM backbone (as formulated in [18]). Furthermore, we want to capture the multiscale information,
i.e. local to global, that is essential in modeling the long-range spatial and temporal dependencies.
Thus, instead of MPNN, we apply MGNN (see Section 3.1.3) to construct a hierarchy of latents (i.e.
each latent is a graph-level representation for a resolution) for each graph G(t). At the t-th timestep,
a multi-head self-attention mechanism (as formulated in [50]) is applied to encode the hierarchy
of latents into a single vector that will be fed further into a temporal architecture. Finally, another
multi-head self-attention mechanism block is used, instead of LSTM, as the temporal backbone. We
call this novel architecture as Attention-based Multiresolution Graph Neural Networks or ATMGNN.

3.2 Data preprocessing

New Zealand daily new cases with graphs Official data originally obtained is in tabular form
with information regarding the sex, age group, district health board location, case status and travel of
each COVID-19 infected patient. All cases are filtered so that only cases in 2022 and cases that are
confirmed are included in the dataset. For each district health board, on each day, all confirmed cases
regardless of sex or age group are aggregated and counted toward the daily new cases count. From
the geographical map of the district health boards, an adjacency matrix that represents the topology

4



Model Next 3 Days Next 7 Days Next 14 Days Next 21 Days
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

AVG 247.20 325.92 -3.22 258.95 340.95 -3.58 277.16 362.98 -4.22 292.23 379.98 -4.87
AVG_WINDOW 80.88 111.15 0.76 104.09 142.37 0.55 144.88 196.63 -0.02 176.82 238.39 -0.79
LAST_DAY 118.81 158.56 0.64 73.65 102.09 0.84 120.99 164.78 0.47 156.17 211.44 -0.08
LIN_REG 182.46 284.61 0.31 213.53 336.56 -0.01 272.77 440.60 -0.77 335.95 551.23 -1.81
GP_REG 331.43 471.17 -0.89 332.08 472.45 -0.98 325.55 464.20 -0.97 322.08 460.23 -0.96
RAND_FOREST 98.97 152.96 0.80 72.85 111.69 0.89 112.02 168.81 0.74 140.77 210.73 0.59
XGBOOST 109.68 165.36 0.77 68.51 105.91 0.90 108.45 165.17 0.75 137.45 208.13 0.60
PROPHET 119.32 642.78 -0.24 148.58 770.55 -1.50 222.01 526.58 -0.59 292.54 407.66 -0.17
ARIMA 132.49 534.26 0.14 155.44 523.57 -0.15 204.51 472.95 -0.28 239.06 423.17 -0.26
LSTM 186.86 242.62 -0.97 168.43 222.65 -0.39 140.69 192.39 0.38 128.04 182.35 0.59
MPNN 80.33 110.75 0.84 87.45 121.23 0.79 121.41 168.34 0.53 153.62 210.69 0.15
MGNN 80.87 111.67 0.83 89.77 124.56 0.74 125.30 172.46 0.46 156.25 213.55 0.06
MPNN+LSTM 75.25 104.64 0.86 85.14 117.92 0.84 88.28 121.71 0.85 99.85 137.74 0.83
ATMGNN 77.49 106.96 0.86 86.85 119.68 0.84 90.43 124.89 0.84 101.87 140.33 0.82

Table 1: New Zealand: Performance of all experimental model evaluated based on the metrics
specified in Section 4.4

of the disease graph is generated by connecting each board to itself with a unit weighted edge, and
each board to every other board that shares any part of its border with edges weighted 2. Original
data is imported and transformed using the Python packages Pandas and NumPy [52, 16], while
disease graphs are built with the included code and the NetworkX [15] package. All data that was
preprocessed and converted to graph form between March 4, 2022 and November 4, 2022 is available
on GitHub.

New Zealand economic features Official categorical GDP data is obtained from NZStats [1],
with the original data containing GDP information in terms of NZ dollars for each predefined
administrative region and for every 22 available economic industry categories. All economic feature
vectors are normalized (via mean and standard deviation) to allow the models to learn properly and
mitigate exploding/vanishing gradients.

4 Experiments

4.1 Experiment task description

We comprehensively evaluate the forecasting effectiveness of the models in short-, mid-, and long-
term prediction windows. The models are trained and assessed on their predictions 3, 7, 14, and
21 days from the input data. Data from day 1 to day T is used to train one model at a time, and
then predictions are obtained from the model from day T + 1 to day T + d, where d is the prediction
window size and 0 < d < 22. Note that each model within a single class of models is trained separately
and specifically for a single fixed time window. In other words, two different models are trained
to predict days T + a and T + b, where a, b > 0 and a ≠ b. The size of the training set gradually
increases as time progresses, and for each value of T the best model is identified via a validation set
with no overlapping day with the test set. We trained and validated the models on the time series
data from March 4, 2022 to September 4, 2022, and performed further model evaluations to examine
generalization performance on an out-of-distribution starting from September 4, 2022 to November 4,
2022.

4.2 Baselines and Comparisons

We compare the different spatio-temporal models with traditional statistical prediction and neural
network-based regression models that have been recently applied to the problem of COVID-19
forecasting.

Simple statistical models The class of most rudimentary statistical models for forecasting. The
models examined include (1) AVG: The average number of cases for one region up to the time of the
test day, (2) AVG_WINDOW: The average number of cases in the past d-day window for one region,
and (3) LAST_DAY: The prediction for the next day in one region is the same as the number of cases
on the previous day.
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Traditional machine learning models The input format for all models in this class is the case
history up to the prediction date of each district health board. The models examined include (4)
LIN_REG [25]: Ordinary least squares Linear Regression, (5) GP_REG [27]: Gaussian Process
Regressor, (6) RAND_FOREST [12]: A random forest regression model, and (7) XGBOOST [9]:
An improved version of the random forest regression model using gradient boosting.

Parameterized regression time-series forecasting models The class of linear regression models
with specific components represented as parameters. The models examined include (8) PROPHET
[36]: A forecasting model for various types of time series that has also seen extensive use in
forecasting COVID-19 where the input is the entire time-series historical number of cases of one
region up to before the testing day; (9) ARIMA [28]: A simple autoregressive moving average model,
which the input is similar to PROPHET; and (10) LSTM [5]: A two-layer bidirectional LSTM model.

Graph neural network-based models The proposal graph models to be compared to the previous
baseline models, with and without temporal components. The models examined include (11) MPNN
[13]: Message-passing neural network model with separate layers for each day in the case time series;
(12) MGNN [23, 20]: Message-passing neural network model similar to MPNN, but with multiple
graph resolutions and learned clustering of different regions; (13) MPNN + LSTM: Message-passing
neural network model with long-short term memory neural time series model; and (14) ATMGNN:
Multiresolution graph model based on the MGNN model combined with Transformers for modeling
time series. All models in this category are described in detail in Section 3.

4.3 Experimental setup

We detail the hyperparameters setup of the deep learning prediction models in our experiments. For
all graph-based models (MPNN, MPNN+LSTM, ATMGNN), training lasts for a maximum of 300
epochs with early stopping patience of 50 epochs, and early stopping is only enabled from epoch
100 onward. Models are trained with the Adam optimizer (lr = 10−3), batch size 128. For the
neighborhood aggregation layers of the graph models, batch normalization is applied to the output
of all layers with dropout applied to 0.5 times the total number of nodes. The LSTM component
of the MPNN+LSTM model is implemented with a hidden state size of 64. The multiresolution
component of the ATMGNN is configured for two additional coarsening layers with 10- and 5-node
clusters, respectively; self-attention is configured with a single head for all regions. The models with
the lowest validation loss at each prediction day shift are saved as parameter checkpoints for the sake
of further evaluation, and validation information is outputted for further examination. All models are
implemented with PyTorch [42] and PyTorch geometric [10].

4.4 Evaluation metrics

We measured the performance of all models with three evaluation metrics: Mean absolute error
(MAE), root mean squared error (RMSE), and the coefficient of determination (R2-score).

4.5 Observations

Performance measurement Across the board, MPNN+LSTM is the highest-performing model,
with relatively low mean error and root means square error, alongside accurate trend prediction at
R2-score consistently over 0.8. Other baseline methods performed inconsistently across different
time ranges, with massive fluctuations in heuristic statistical methods (AVG, AVG_WINDOW, and
especially LAST_DAY), owning to these baselines simply forecasting based on rudimentary statistics
of the data. The class of traditional machine learning models performed reasonably well, with
tree-based methods RAND_FOREST and XGBOOST outperforming simple statistical methods and
parameterized models aside from LSTM. In New Zealand from 14 days prediction length onwards,
graph-based temporal models on average see a 20.31% and 25.37% relative reduction in MAE
and RMSE, respectively; while correlation metric R2 relatively improving 9.43%. Similar results
are obtained from cross-examining Italy and England COVID datasets, with graph-based temporal
models (e.g., MPNN+LSTM, ATMGNN) generally outperforming other baseline models and LSTM
models coming second on all metrics (see Appendix).
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Figure 2: Performance decay with respect to MAE and R2 metrics. Models with performance worse
than the defined y-axis range are excluded.

Performance decay over long forecasting windows Across all models, the AVG model performed
the worst when it comes to performance decay relative to the length of forecasting windows, concern-
ing both absolute error and correlation metrics. On the other hand, the two other heuristic statistical
methods, AVG_WINDOW and LAST_DAY, outperformed regression-based methods ARIMA and
PROPHET with respect to the rate of decay and error increment over longer forecasting windows
(Figure 2). Graph- and temporal-hybrid models MPNN+LSTM and ATMGNN maintained a stable
performance decay profile with a low decay rate on both error and correlation compared to every
other model aside from the LSTM exception, alongside lower values in both metrics across the
board. Both temporal graph models started with relatively high performance in terms of all metrics
compared to other baselines and mostly maintained the same performance when predicting longer
time ranges with minimal decay, resulting in them outperforming all other baseline models. We
specifically demonstrated the relative metric and decay stability of the two graph-based temporal
models by averaging over several runs and computing the deviation, showing the performance and
decay similarities between these models over time.
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Figure 3: Sample out-of-distribution new case predictions for two graph-based models.

Out-of-distribution forecasting We examined the out-of-distribution performances of two of our
best-performing models, the MPNN+LSTM and ATMGNN. The evaluation is done on the number
of new cases between September 4, 2022 and November 4, 2022, with no overlapping between
the evaluation set and the train/validation sets. All models are evaluated as autoregressive models,
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meaning for the 30-day prediction window the models use the prediction output of the previous
day as an input feature for predicting the current day. As demonstrated in Figure 3, ATMGNN
outperformed MPNN+LSTM when it comes to prediction error and emulating the spiking dynamics
of the number of new cases. The predictions retrieved from the outputs of ATMGNN showed that
the model can fairly precisely simulate the case spiking dynamics even when tested on a dataset
completely unrelated and separate from the training dataset, demonstrating good generalization
performance of the model. All other baseline models are not included in the evaluation after extensive
testing showing that their performances are not remotely comparable to the two models demonstrated
above. Further testing with different information windows with ground truth case information feed
into the model ranging between 3 and 9 days before the target day to predict showed that both models
maintained similar forecasting patterns with ATMGNN better conforming to the ground truth and the
models maintaining relatively stable predictions given different case information levels.

5 Discussion

Interpretation of the main results We provided a comprehensive evaluation of four classes of
COVID-19 forecasting models, with a detailed analysis of the models’ performance, decay over time,
out-of-distribution forecasting, and economic features addition. Generally, graph neural network-
based models, specifically the temporal variant of graph-based models outperformed every other
baseline model in terms of performance metrics and performance decay over time. This trend is not
shared by non-temporal graph-based models, indicating the importance of temporal mechanisms in
forecasting models, whether it is attention-based on recurrent network-based (i.e., LSTM). The results
suggest that the spatiotemporal approach to modeling the spread of COVID-19 based on the number
of new cases is effective compared to other traditional modeling methods. Intuitively, graph-based
models can accurately simulate the change in the number of new cases in one region when given that
region’s traffic connectivity with its neighbors. Since the spread of COVID-19 in every country, not
only in New Zealand, is movement-based in nature, by modeling such geographical connectivity we
can find latent information by accounting for human contacts with graph-based models. Moreover,
the out-of-distribution performance of multiresolution temporal graph models also demonstrates the
utility of modeling the problem of COVID-19 forecasting as a hierarchical system, with spreads
localized in adjacent regions that have significant traffic volume.

Limitations and future directions While certain metrics of the proposed models are satisfactory,
we have identified several weaknesses of the models that were tested. Graph-based models, while
powerful, still require a certain amount of computational resources and adequate time for the process
of training the models. Data inputs also have to be well-structured and preprocessed carefully to suit
the formatting of the models, though this is less of a concern given the availability and accuracy of
case datasets such as the New Zealand COVID-19 public dataset. Furthermore, data features can
be further enriched with more detailed movement data between regions, traffic density information
for all traveling modalities (e.g., land, sea, or air travel), and local movement details within each
region. Most importantly, graph-based networks and deep learning models in general are black-boxes,
offering little insight into the precise mechanisms of forecasting and modeling disease dynamics for
the sake of studying the exact nature of epidemic spread. Further research may focus on additional
data features and enrichment features readily incorporable into the model as node features (e.g.,
more fine-grained socioeconomic features) or as edge features (e.g., mobility data), or interpretation
methods designed for graph neural networks [32] for the sake of understanding the inner workings of
such prediction models.

6 Conclusion

In this paper, we propose a combined multiresolution graph neural network model for forecasting
evolving COVID-19 pandemic graphs constructed from New Zealand data. We also provided a
comprehensive evaluation of the model’s performance with respect to high-performing traditional
and machine learning approaches to the task of epidemic forecasting. Our study suggested that graph
neural network-based models outperformed every other baseline model in terms of performance
metrics and performance decay over time. Furthermore, our graph neural network-based models can
effectively predict the number of COVID-19 cases up to 30 days and therefore can assist with public
health policy planning in order to control the COVID-19 outbreaks. Our work can be further expanded

8



with richer graph features such as mobility between infected regions or policy representations. Finally,
our results in terms of model structures and frameworks can be generalized to other countries with
similar settings.
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Appendix

Model Next 3 Days Next 7 Days Next 14 Days Next 21 Days
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

AVG 8.15 11.39 -0.14 8.50 11.77 -0.35 8.97 12.14 -0.80 9.32 12.60 -1.39
AVG_WINDOW 6.33 8.79 0.40 7.94 10.87 -0.07 11.04 14.91 -1.52 14.17 18.77 -4.06
LAST_DAY 7.12 10.45 0.19 7.33 10.49 0.19 9.83 14.13 -0.90 12.76 17.85 -3.01
LIN_REG 13.13 17.77 -0.32 17.19 22.95 -1.32 26.28 34.53 -6.34 37.11 47.94 -18.85
GP_REG 14.95 21.48 -0.93 14.13 20.65 -0.88 12.00 17.50 -0.89 10.04 14.72 -0.87
RAND_FOREST 6.64 9.87 0.59 7.16 10.17 0.54 10.01 14.08 -0.22 13.03 17.88 -1.76
XGBOOST 7.32 10.93 0.50 7.46 10.82 0.48 10.00 14.50 -0.30 12.82 18.06 -1.82
PROPHET 10.79 20.78 -0.06 14.45 29.28 -1.29 23.43 34.29 -2.99 33.59 31.72 -3.66
ARIMA 8.95 20.28 -0.01 9.51 13.77 0.49 9.63 13.02 0.43 9.77 11.62 0.37
LSTM 8.61 11.88 -0.36 8.20 11.24 0.12 7.86 10.66 0.47 7.09 9.95 0.65
MPNN 6.51 9.41 0.55 7.54 10.63 0.39 10.12 14.14 -0.42 12.84 17.77 -1.82
MGNN 6.87 9.48 0.55 8.18 10.93 0.35 11.07 14.67 -0.60 14.14 18.67 -2.16
MPNN+LSTM 6.73 9.55 0.57 7.08 10.13 0.57 7.68 10.89 0.57 7.95 11.36 0.58
ATMGNN 6.24 8.82 0.63 6.44 9.04 0.66 6.80 9.57 0.68 6.70 9.53 0.73

Table 2: England: Performance of all experimental model evaluated based on the metrics specified in
Section 4.4

Model Next 3 Days Next 7 Days Next 14 Days Next 21 Days
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

AVG 21.13 42.80 0.53 20.31 41.88 0.49 20.28 43.23 0.43 19.19 41.35 0.39
AVG_WINDOW 17.69 33.48 0.66 19.75 37.30 0.53 23.75 44.90 0.30 26.88 50.00 -0.01
LAST_DAY 21.21 41.99 0.45 21.83 43.36 0.37 25.45 49.97 0.13 27.73 50.85 0.03
LIN_REG 28.15 54.53 0.29 35.35 69.38 -0.29 50.02 99.11 -1.74 65.12 132.16 -4.61
GP_REG 37.41 74.72 -0.33 35.72 70.72 -0.34 33.12 68.38 -0.31 30.13 63.40 -0.29
RAND_FOREST 19.42 40.80 0.60 20.41 42.38 0.52 24.80 50.01 0.30 27.41 52.76 0.11
XGBOOST 21.79 47.09 0.47 22.49 48.63 0.37 26.41 55.60 0.14 28.64 57.06 -0.05
PROPHET 23.03 55.65 0.46 29.18 71.44 0.15 40.95 92.95 -0.76 51.92 100.06 -1.64
ARIMA 22.90 76.56 -0.03 27.01 68.94 0.21 28.62 56.27 0.36 25.57 45.51 0.45
LSTM 20.98 42.01 0.51 19.80 40.17 0.59 19.56 39.91 0.60 20.18 39.44 0.66
MPNN 18.09 36.67 0.64 21.45 43.56 0.49 26.07 51.72 0.21 28.94 59.26 -0.16
MGNN 19.14 37.17 0.64 22.69 42.99 0.51 27.33 51.73 0.20 29.87 58.18 -0.14
MPNN+LSTM 18.50 38.43 0.60 19.48 39.98 0.59 19.72 41.89 0.56 19.84 41.22 0.58
ATMGNN 18.05 36.94 0.65 19.63 39.06 0.63 19.80 39.49 0.63 18.55 37.07 0.67

Table 3: Italy: Performance of all experimental model evaluated based on the metrics specified in
Section 4.4

Model Next 3 Days Next 7 Days Next 14 Days Next 21 Days
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

AVG 7.65 14.41 -462.73 7.55 14.22 -591.09 7.92 15.20 -872.30 8.49 16.56 -1187.11
AVG_WINDOW 5.24 9.47 -102.43 5.69 10.14 -215.84 7.88 14.55 -666.37 10.56 19.55 -2235.75
LAST_DAY 7.29 13.94 -140.97 5.05 9.84 -181.85 7.12 14.01 -970.65 10.05 19.45 -6024.04
LIN_REG 9.89 19.71 -0.55 12.59 24.65 -3.63 18.57 35.83 -21.64 26.00 49.31 -101.23
GP_REG 8.20 17.55 -0.22 7.51 13.45 -0.10 8.97 18.67 -5.34 9.79 21.43 -18.70
RAND_FOREST 6.91 16.15 -0.04 5.01 10.94 0.09 7.13 15.60 -3.29 9.76 20.83 -17.25
XGBOOST 7.80 18.15 -0.31 5.00 12.56 -0.20 7.03 17.15 -4.19 9.71 22.87 -20.98
PROPHET 11.12 42.21 -1.41 13.86 44.01 -2.13 21.25 40.86 -3.10 27.88 39.83 -8.04
ARIMA 9.09 19.95 0.46 9.08 20.54 0.32 8.78 16.03 0.37 8.13 13.37 -0.03
LSTM 7.95 14.98 -590.28 6.12 11.62 -41.90 7.89 14.42 -29.37 8.93 16.34 -35.69
MPNN 6.41 12.14 -28.73 5.61 10.70 -41.77 8.11 15.09 -254.37 10.85 20.89 -1358.29
MGNN 7.04 11.83 -27.92 7.44 11.66 -69.09 10.17 16.27 -424.27 13.21 22.09 -1363.33
MPNN+LSTM 6.92 12.72 -19.68 7.55 13.71 -30.45 7.46 13.10 -6.30 8.26 15.20 -2.66
ATMGNN 7.44 13.21 -13.40 7.16 12.59 -27.34 7.28 12.69 -9.79 8.25 14.18 -1.61

Table 4: France: Performance of all experimental model evaluated based on the metrics specified in
Section 2.5
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Model Next 3 Days Next 7 Days Next 14 Days Next 21 Days
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

AVG 48.71 111.19 -9.68 52.60 122.82 -12.68 60.01 149.53 -20.01 68.19 178.26 -31.68
AVG_WINDOW 32.56 59.57 -0.51 40.09 79.83 -3.08 53.03 121.30 -12.42 63.15 159.29 -25.10
LAST_DAY 35.20 63.98 -0.34 37.63 70.57 -1.23 52.60 112.27 -8.45 63.23 155.97 -22.17
LIN_REG 50.73 104.21 0.11 62.34 126.85 -0.39 87.19 190.79 -5.48 120.59 267.01 -29.84
GP_REG 53.22 121.87 -0.22 51.28 119.04 -0.23 43.12 86.49 -0.33 31.58 57.52 -0.43
RAND_FOREST 33.27 65.77 0.64 37.05 74.41 0.52 51.72 117.37 -1.45 61.38 155.99 -9.53
XGBOOST 35.41 69.85 0.60 38.18 76.67 0.49 52.58 117.90 -1.47 62.70 159.38 -9.99
PROPHET 60.60 351.20 -2.49 75.86 320.15 -2.88 114.87 192.33 -0.91 149.51 167.25 -1.09
ARIMA 41.89 112.37 0.64 40.54 75.95 0.78 48.46 82.08 0.65 56.45 119.47 -0.18
LSTM 43.39 84.78 -3.69 44.25 85.54 -3.48 36.50 66.01 0.33 35.74 60.87 0.76
MPNN 33.26 65.51 0.24 39.91 82.70 -0.70 50.42 106.45 -4.64 61.95 142.19 -9.40
MGNN 34.71 66.16 0.26 42.35 84.48 -0.68 54.31 109.22 -5.09 67.11 148.25 -10.40
MPNN+LSTM 34.60 69.55 0.37 35.03 67.52 0.45 37.95 81.06 0.56 39.68 82.58 0.72
ATMGNN 34.08 69.37 0.40 35.88 72.06 0.40 34.73 69.56 0.70 38.13 82.72 0.71

Table 5: Spain: Performance of all experimental model evaluated based on the metrics specified in
Section 2.5

Model Next 3 Days Next 7 Days Next 14 Days Next 21 Days
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

MPNN+LSTM 128.79 139.09 -3.65 149.44 160.53 -2.73 174.22 185.44 -2.81 203.13 214.37 -3.17
ATMGNN 132.83 143.38 -4.04 150.52 161.47 -2.77 178.19 189.93 -2.88 208.49 220.03 -3.20
MPNN+LSTM (ECON) 128.17 139.26 -3.22 150.13 161.30 -3.00 165.94 178.23 -2.62 199.19 211.00 -3.17
ATMGNN (ECON) 131.59 142.21 -4.23 154.19 165.13 -3.25 173.04 184.48 -2.71 203.36 214.87 -3.16

Table 6: New Zealand: Limited DHB map results for graph-based models with and without economic
features

Model Next 3 Days Next 7 Days Next 14 Days Next 21 Days
MAE RMSE R2 MAE RMSE R2 MAE RMSE R2 MAE RMSE R2

MPNN+LSTM (MO) 86.85 119.97 0.84 99.89 137.90 0.81 114.84 158.12 0.75 128.79 177.60 0.70
ATMGNN (MO) 85.67 118.27 0.84 100.91 138.11 0.81 114.43 157.87 0.76 129.89 178.97 0.70
MPNN+LSTM (MO+ET) 109.82 150.23 0.76 121.45 166.33 0.73 124.55 171.37 0.71 136.98 188.01 0.66
ATMGNN (MO+ET) 104.44 143.88 0.76 113.65 155.83 0.76 128.81 177.27 0.70 133.34 183.91 0.68

Table 7: New Zealand: Multiple outputs demographical graph models results, with and without
explicit training weighting. MO denotes the multiple output graph models, and ET denotes custom
age group weighting during graph model training.
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