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ABSTRACT

Deep learning-based models are sensitive to class imbalance. Existing approaches
often involve rebalancing tricks such as loss reweighting and class resampling to
emphasize the minority class. In this work, we explore a novel baseline method to
deal with class imbalance by regrouping the majority class into smaller pseudo-
classes and turning the imbalanced classification problem into a balanced multi-
class classification. This simple modification helps to make the class frequencies
more uniform in the training data and, simultaneously, helps the representation
learning by imposing a structure on the majority class. Experiment results on bi-
nary and multiclass classification show that the proposed method can substantially
boost the classification performance as measured by average precision metric. Our
code will be released before publication.

1 INTRODUCTION

Modern data classification is founded on accuracy maximization or equivalently error minimization:

min
f∈H

E(x,y)∼Dx,y
1 {y ̸= f(x)} =

∑C

i=1
P(y = i)Ex|y=i1 {y ̸= f(x)} , (1)

where H is the hypothesis class, Dx,y is the distribution of the input-label pair (x, y), and C ≥ 2
is the number of classes. Imbalanced Classification (IC) refers to the scenario in which the la-
bel distribution D(y) is non-uniform. This has been observed in numerous real-life applica-
tion tasks, such as rare disease diagnosis (Codella et al., 2018; Irvin et al., 2019), insurance
fraud detection (Wei et al., 2013; Herland et al., 2018), object detection (Lin et al., 2017; Chen
et al., 2020), text classification (Fernández et al., 2018; Wei & Zou, 2019). For IC, accuracy∑C

i=1 P(y = i)Ex|y=i1 {y = f(x)} as the evaluation metric is known to be biased, as it puts more
emphasis on classes with high frequencies and hence is less sensitive to performance on minor-
ity classes. A slightly refined notion is balanced-accuracy (BA) 1/C ·

∑C
i=1 Ex|y=i1 {y = f(x)},

which cancels out the effect of class frequencies and leads to balanced-error minimization:

min
f∈H

1/C ·
∑C

i=1
Ex|y=i1 {y ̸= f(x)} . (2)

Figure 1: An example confu-
sion matrix for binary IC.

Balanced error minimization forms the basis for two classical ideas
to deal with imbalanced classification: (1) loss reweighting: as-
signing larger weights to losses from minority classes compared to
majority classes to ensure that the classifier does not bias toward the
majority classes (Elkan, 2001); (2) class resampling oversampling
the minority classes and/or downsampling the majority classes to
rebalance the classes. Randomly oversampling (ROS) minority
classes is more effective and hence popular than downsampling ma-
jority classes (Buda et al., 2018)—throwing away data seems un-
wise for training modern classifiers such as data-hungry deep neural
networks (DNNs). These methods are overwhelmingly popular in
practice due to their relative simplicity, flexibility in terms of adapt-
ing to different classification models, and their asymptotic guaran-
tees (Menon et al., 2013; Singh & Khim, 2022). However, it should
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be noted that BA does not provide a complete picture: a classifier with a reasonably large BA may
have very poor precision as shown in Fig. 1. Moreover, recent studies (Byrd & Lipton, 2019; Xu
et al., 2021) find that the effect of reweighting vanishes as powerful DNNs gradually overfit the
training data, nullifying the asymptotic guarantees.

Figure 2: An overview of the training pipeline for the proposed regrouping-based IC method for
images. There are three major steps: (1) Encoding. Map the input images to a lower-dimensional
feature space using a pre-trained model, such as CLIP image encoder; (2) Regrouping. Apply clus-
tering methods on majority classes and assign pseudo-labels to the resulting clusters; (3) Balanced
Classification. Train a classification model with the new balanced dataset.

In this paper, we introduce a fundamental yet relatively under-explored approach to address the issue
of class imbalance in classification tasks. Our method involves regrouping the majority class into
multiple pseudo-classes, thereby inducing a balanced classification task. It is motivated by the ob-
servation that class imbalance often arises artificially due to the labeling process. For instance, in the
medical domain, negative controls, which constitute the dominant class, are sourced from various
origins or demographic groups. By regrouping these negative controls into smaller, semantically
meaningful clusters, we are able to obtain more fine-grained labels leading to relatively more bal-
anced multiclass datasets. While Wu et al. (2010) also explores the use of clustering to decompose
the majority class into sub-classes, their primary motivation aligns with the resampling approach,
which only aims to balance label frequencies. Additionally, they limit their scope to linear classifiers
applied to structured tabular data. In contrast, our work departs from prior approaches. We focus on
discovering the latent label hierarchy within the majority class and study image classification with
DNNs. The entire pipeline of our proposed methods is illustrated Fig. 2. Importantly, our approach
applies to high-dimensional image data by integrating with image encoders, such as CLIP (Radford
et al., 2021), or alternative image encoders trained using self-supervised learning techniques.

Our contributions are threefold: 1) We present a novel approach for addressing class imbalance,
dubbed as ReGrouping (RG), which serves as a strong baseline in addition to class resampling
and loss reweighting; 2) We conduct a comprehensive analysis of the proposed regrouping method,
demonstrating its ability to facilitate learning efficient representation and synchronizing the training
progress across different classes; and 3) We perform experiments on both binary and multiclass IC
tasks, demonstrating superior performance compared to state-of-the-art methods in terms of bal-
anced accuracy (BA) and average precision (AP) metrics.

2 REGROUPING FOR IMBALANCED CLASSIFICATION

2.1 MOTIVATING EXAMPLE

Consider a synthetic imbalanced classification problem: classifying the images in the CIFAR-10
into airplane vs the rest of the 9 classes (such as automobile, bird, ship, etc.). Since the original
dataset is balanced in 10 classes, the resulting binary classification problem is imbalanced with a
ratio of 9:1. There are two natural approaches to training a classifier for this task: 1) Binary: train
a binary classifier using 0/1 labels; 2) Multiclass: train a multiclass classifier with actual 0-9 labels
and aggregate the responses to binary labels at test time. Note that the multiclass approach has two
advantages over the binary: 1) the learning problem is balanced; 2) it can leverage extra information
in the form of fine-grained labels. However, for a practical imbalanced problem, fine-grained labels
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Figure 3: Top: t-SNE visualization for CIFAR-10 test set in different image encoder representation
spaces; Bottom: t-SNE visualization for CIFAR-10 test set classifier representations, i.e. the outputs
from the second-last layer of ResNet34 model, trained using different types of labels.

may not be available. A natural idea in this scenario is to regroup the majority class samples into
several pseudo-classes using a clustering algorithm.

When the input data is in tabular form, K-means algorithm with Euclidean distance metric is a
popular choice for clustering algorithms. However, when the input is in the form of unstructured
data such as images, text, or audio, Euclidean distance fails to provide any meaningful information.
To illustrate this, in Fig. 3 (Top) we show the t-SNE visualization of CIFAR-10 test data encoded
using three approaches: 1) Raw: in the flattened image domain, 2) Autoencoder: in the latent
feature space obtained from an autoencoder trained on CIFAR-10, 3) CLIP: in the representation
space of the CLIP image encoder (Radford et al., 2021). We note that CLIP model, which was
pre-trained using 400 million image-text pairs in a self-supervised manner, is able to group the data
in a meaningful manner which can be leveraged to cluster the majority class samples. Raw and
autoencoder approaches fail to provide meaningful representations to perform clustering, despite
autoencoder providing reasonably good reconstructions, see Fig. 4 for reconstructed images. Hence,
CLIP image encoder is a natural choice for regrouping. We highlight two key features motivating
the regrouping method:

Figure 4: Top: original images in CIFAR-10; Bottom: reconstruction image from autoencoder.

Efficient representation learning For CIFAR-10 training dataset, we obtain the CLIP image en-
coder representations and use them to cluster the majority class (all images other than airplane class)
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Figure 5: Classifying airplane images vs the rest on CIFAR-10 dataset: The total variation of train-
ing sample representations, measured in terms of mean squared distance from the class centers, is
compared over epochs.

into 9 pseudo-classes using K-means clustering algorithm. Next, we train a ResNet34 model for the
task of airplane vs rest classification using four sets of labels: binary, multiclass (ground truth), CLIP
regrouped (airplane and 9 pseudo-classes based on clustering), and randomly regrouped (airplane
and 9 pseudo-classes divided randomly). We observe that CLIP regrouped classifier which only uses
binary label information is able to learn meaningful feature representation learning (Fig. 3 (Bottom))
similar to multiclass labels, and is able to achieve better test performance (Fig. 6) compared to bi-
nary labels. We also note that improved performance is not simply due to balancing the classes as
the randomly regrouped labels perform much worse (Fig. 6). We compare the test performance in
terms of average precision (AP) metric, which is a standard measure for comparing the performance
of classifiers in the presence of data imbalance and is discussed in detail in Sec. 4.

Figure 6: CIFAR-10 test
data performance of different
methods in terms of average
precision (AP) over training
epochs

Synchronous learning Apart from semantically separating the
majority class samples in representation space, the CLIP regrouped
labels are able to to the synchronize the learning pace of different
classes. Deep learning models are powerful enough to fit the imbal-
anced data perfectly, even with binary labels that ignore the class
imbalance. However, during the training process, representations of
most majority class samples tend to converge close to a single point
very rapidly in comparison to the minority class samples. It can be
observed in Fig. 5 that the concentration in the case of binary labels
is significantly different for majority and minority classes, whereas
for multiclass labels, each class tend to concentrate at a similar rate.
We refer to this phenomenon as asynchronous learning, where in
the initial stage of training the learning is guided by the majority
class and in the latter stage by the minority class. CLIP regroup-
ing is able to avoid this issue by learning all classes synchronously, whereas random regrouping is
disparate for the airplane class and other pseudo classes. These observations highlight yet another
strength of the proposed regrouping method.

2.2 REGROUPING FORMULATION

In this section, we explicitly present the framework of the proposed method. For simplicity,
we first present the proposed method in binary classification framework: consider training data
{(xi, yi)}ni=1 ∼ Dx,y , where each input xi ∈ Rd has a corresponding binary label yi ∈ {−1,+1}.
The learning model is a DNN fθ : Rd → [0, 1], parametrized by weights θ and outputting a score
for the positive class. In the standard empirical risk minimization (ERM) framework, the weights θ
are trained by:

min
θ

1

n

n∑
i=1

ℓ(yi, fθ(xi)). (3)

Without loss of generality, we assume the positive class is rare, i.e., D(y = +1)
.
= p < 1/2, and

refer to it as the minority class and the negative class as the majority class. The ERM objective can
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then be decomposed as

1

n

∑
i:yi=−1

ℓ(−1, fθ(xi)) +
1

n

∑
i:yi=+1

ℓ(+1, fθ(xi)). (4)

It can be observed that for IC problems with high imbalance ratios (i.e., (1 − p)/p), the loss in
Eq. (4) is dominated by samples in the majority/negative class, i.e., the first summation term. While
the typical methods to address the imbalance issue, such as reweighting and resampling, try to
rebalance the two summation terms in Eq. (4), we propose to decompose the first term further by
assigning pseudo-labels to the negative samples and performing multiclass classification so that the
resulting classification problem is more balanced. To this end, we divide the negative samples into K
clusters using any standard clustering algorithm (such as K-means), assigning samples belonging to
each cluster a pseudo-label ỹi from the set {2, 3, . . . ,K,K + 1}. The positive samples are assigned
the pseudo label ỹi = 1, resulting in a multiclass problem with (K +1) classes. A classifier (for eg.
neural network) f̃θ : Rd → [0, 1]K+1 is then trained using ERM:

min
θ

1

n

n∑
i=1

ℓ
(
ỹi, f̃θ(xi)

)
=

1

n

K+1∑
k=1

∑
i:yi=k

ℓ
(
k, f̃θ(xi)

)
,

where f̃θ(x) ∈ [0, 1]K+1 estimate the conditional class probabilities for each pseudo-label. At test
time, the decision of binary classification for a sample x can be made using two approaches:

1. Max aggregation: classify x to the positive class if e⊺1 f̃θ(x) ≥ maxk≥2 e
⊺
k f̃θ(x),

2. Sum aggregation: classify to the positive class if e⊺1 f̃θ(x) ≥
∑K+1

k=2 e⊺k f̃θ(x),

where ek’s are the standard basis vectors. Max aggregation emulates the decision rule typically used
in multiclass classification scenario, whereas sum aggregation first aggregates the pseduo classes
into actual class probabilities first before comparison. A natural choice for the number of pseudo-
labels parameter K is given by the imbalance ratio n−/n+, where n+, n− are number of samples
in positive and negative classes respectively. However, when the original problem has a very high
imbalance ratio, the number of classes may get large. In practice, K may be used as a tunable
hyperparameter for optimal performance.

The proposed method can be naturally extended to multiclass classification scenario: Consider a
C-class imbalanced classification problem: with training data (xi, yi)

n
i=1 ∼ Dx,y where the labels

yi ∈ {1, . . . , C}. We assume that the class frequencies nj = |{i : yi = j}| are sorted in descending
order n1 ≥ · · · ≥ nC . Similar to the binary case, we aim to tackle the data imbalance by regrouping
the samples from classes with large frequencies and assigning them pseudo-labels. To this end,
we choose a class frequency threshold parameter n′ and regroup the samples from the class j into⌈nj

n′

⌉
number of clusters respectively, resulting in a K-class classification problem, where K =∑C

j=1

⌈nj

n′

⌉
. Note that only the samples from classes frequency nj larger than the chosen threshold

n′ shall be regrouped and the rest shall stay unchanged. While choosing the threshold n′ as the
smallest class frequency, i.e. n′ = nC is the natural choice, it maybe treated as a hyper-parameter
and tuned for optimal performance in practice.

3 RELATED WORK

Imbalanced learning using clustering Use of clustering methods in the context of imbalanced
learning problems is not unknown. There are two families of resampling-based imbalanced learning
methods using clustering: 1) Clustering-based upsampling: K-means clustering has been used in
conjunction with SMOTE upsampling method (Chawla et al., 2002) on the minorty class samples
in order to avoid generating noisy samples when minority class distribution is multi-modal (Last
et al., 2017). Clustering algorithms on the minority class samples have also been used to ensure a
larger sampling frequency closer to the centroid (Singh & Dhall, 2018). Class-specific clustering
has been used to ensure local class balance by enforcing a margin between the same and different
class clusters (Huang et al., 2016; 2019); 2) Clustering-based downsampling: Clustering has been
used to improve upon the performance of random undersampling by first dividing the majority class
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samples into clusters and randomly downsampling the samples within these clusters (Yen & Lee,
2009).

Closest to the proposed method is COG (Wu et al., 2010), which divides the large classes into
multiple sub-classes by use of a clustering method. However, since their method was restricted
to linear classifiers, the key motivation was to increase the complexity of the hypothesis class by
allowing higher number of linear partitions in the low-dimensional data space. In contrast, we focus
on image classification with DNNs, and our motivation stems from identifying underlying data
distributions to help facilitate the representation learning.

Pseudo labeling in semi-supervised learning Pseudo labeling is one of the most fundamental
ideas used in semi-supervised learning setting, i.e. when small amount of labeled data accompa-
nied with a large amount of unlabelled data is available at the training time. Self-training methods
alternatingly perform two steps: 1) train the model on the labeled data and use it to assign pseudo
labels to the unlabelled data, 2) retrain the model using labelled as well as a fraction of most con-
fidently predicted unlabeled data along with their pseudo labels (Zhu, 2005). Check the recent
surveys (Van Engelen & Hoos, 2020; Yang et al., 2021) for detailed literature review on pseudo
labeling-based semi-supervised methods. In contrast to these methods, we fix the pseudo labeling at
the start of the training process.

Transfer learning for imbalanced data Transfer learning has also been explored in the imbal-
anced learning literature with the intention of: 1) transferring knowledge from head to tail class, 2)
making use of unlabelled training data, 3) distill knowledge from a well-trained teacher model and,
4) finetuning the model on a more balanced training set; see (Zhang et al., 2021; Yang et al., 2022)
for a detailed survey on these methods. Our proposed regrouping algorithm is most closely aligned
with knowledge distillation, where we provide a new approach to perform transfer learning from a
powerful CLIP model by imposing a structure on the representations of the majority classes.

AP/AUPRC optimization The classical imbalanced learning techniques are aimed at optimizing
the balanced accuracy. The idea of optimizing Area under Precison Recall Curve (AUPRC) / aver-
age precision (AP) directly has been extensively explored for classical ML methods, see (Qi et al.,
2021) for literature survey. However, in the context of DNNs, they have been very briefly explored,
mainly targeting image retrieval and object detection applications. FastAP (Cakir et al., 2019) and
SmoothAP (Brown et al., 2020) have been proposed to handle the challenging AP objective by re-
placing it with a simpler approximation. RaMBO (Rolı́nek et al., 2020) and AP-Loss (Chen et al.,
2019) use a blackbox differentiation and finite difference approximation methods respectively for
optimizing AP. SOAP (Du et al., 2021) uses a surrogate loss to replace the AP objective and pro-
vide a novel stochastic algorithm to handle the composite structure in the objective with provable
convergence guarantees. However, extending AP optimization to imbalanced multiclass problem
has not been addressed in the literature. The natural extension of naively averaging the class wise
AP metrics is misleading, since the AP metric is sensitive to imbalance ratio, and the effective im-
balance ratio while calculating AP corresponding to each class varies in the case of imbalanced
learning. Caliberating the precision values based on observation made in Williams (2021); Hoiem
et al. (2012) before aggregating them may be a potential direction to explore in the future.

Long Tailed Learning A subclass of IC problem recently emerging in computer vision is long-
tailed classification (Zhang et al., 2021; Yang et al., 2022), which blends IC and few-shot learning as
the tail classes are underrepresented in the training set. In comparison, in this paper, we assume that
all classes are sufficiently represented despite the class imbalance. We observe from the comparison
made in (Zhang et al., 2021) that classical IC methods fail to match the performance of state-of-
the-art (SOTA) long tailed classification methods. However, we argue that further exploration of
IC problems is still essential for two primary reasons: (1) numerous practical applications such
as disease diagnosis, spam filtering, and fraud detection still fall under IC, and (2) SOTA long
tailed methods often employ the use of standard IC-based methods within the overall framework,
for e.g., Cao et al. (2019); Wang et al. (2020). In this paper, we focus on addressing the classical IC
setting, and extension to long-tailed classification setting is left open for future work.
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Table 1: RG vs. others on binary CIFAR-100 and binary HAM10000 dataset. ↑ means the
larger, the better. The best scores are marked in bold maroon

binary CIFAR-100 binary HAM10000

Method BA (%) ↑ AP (%) ↑ BA (%) ↑ AP (%) ↑
Neg (49, 500) Pos (500) Neg (9, 688) Pos (327)

CE 81.0±2.00 99.9±0.00 64.8±1.90 66.8±1.40 98.7±0.30 48.8±4.30

WCE 87.3±1.40 99.9±0.00 58.5±0.90 79.4±1.80 99.7±0.00 45.7±7.60

Focal 77.2±1.20 99.9±0.00 64.7±1.10 65.6±3.30 99.0±0.20 49.3±0.80

LDAM 77.6±1.10 99.9±0.00 58.3±7.27 57.4±8.29 99.6±0.20 37.9±15.5

LA 79.3±1.30 99.9±0.00 65.3±1.00 64.4±2.60 98.9±0.10 47.0±1.00

RUSC 84.9±0.90 99.9±0.00 14.5±4.70 85.9±0.70 99.7±0.00 27.4±5.50

DSMT 79.2±0.70 99.9±0.00 58.7±11.0 66.9±1.10 99.2±0.10 52.9±3.50

ROS 81.2±1.70 99.8±0.00 68.5±2.10 66.4±1.50 99.7±0.00 54.4±2.00

CLIP+MLP 91.9±0.70 99.9±0.00 84.2±1.00 47.3±1.90 98.6±0.00 0.70±0.00

RG 84.5±2.20 99.7±0.00 73.8±1.10 71.3±3.10 98.8±0.15 55.5±3.77

RG-WCE 85.1±1.00 99.8±0.00 72.7±1.90 75.1±1.60 98.9±0.20 63.8±1.90

4 EXPERIMENTS

4.1 SETTING

In this section, we compare our proposed regrouping (RG) method with standard ERM based on
cross-entropy loss (CE) and several other state-of-the-art methods from two major categories: 1)
loss-based methods such as Weighted cross-entropy loss (WCE), Focal loss (Lin et al., 2017),
LDAM (Cao et al., 2019), Logit Adjustment (LA) (Menon et al., 2020), AP-Loss (Chen et al.,
2019), and 2) resampling-based methods such as Random under-sampling by cluster (RUSC) (Yen
& Lee, 2009), Deep SMOTE (DSMT) (Dablain et al., 2022), and Random over-sampling (ROS). We
apply grid search for methods involving tunable hyper-parameters and report the best performance.
In RG, we use CLIP as the image encoder, k-means for the clustering algorithm, cross-entropy loss
as the loss function, and max as the aggregation method. We repeat the experiments with 3 runs
and reported the means and standard deviations. Details of the experiment setups can be found in
Appendix A, ablation study to explore the impact of the clustering algorithm, image encoder, loss
function, and aggregation method can be found in Appendix B, and exploration of RG in sentiment
classification with language models can be found in Appendix C.

Dataset We study three datasets, including: 1) Binary CIFAR-100. The original CIFAR-100 is
a balanced dataset with 50000 images of 100 classes. We modify it by taking out the worm images
as the positive class and combining the rest as the negative class, resulting in an imbalanced binary
dataset with an imbalance ratio of 99 : 1. 2) Binary HAM10000 HAM10000 (Tschandl et al., 2018)
is a large collection of multi-source dermatoscopic images of 7 common skin lesions: Melanocytic
nevi (nv), Melanoma (mel), Benign keratosis-like lesions (bkl), Basal cell carcinoma (bcc), Actinic
keratoses (akiec), Vascular lesions (vasc), and Dermatofibroma (df). Similar to binary CIFAR-100,
we binarize it by grouping 6 classes (nv, mel, bkl, akiec, vasc, and df) as a negative class, and leaving
1 class (bcc) as the positive class. 3) HAM10000 We train and evaluate the original imbalanced
multiclass classification task.

Evaluation Metrics We evaluate all the methods using both BA and average precision (AP). Our
consideration of including AP is that BA is highly specialized for recall and ignores precision which
can be biased and misleading, as discussed in Sec. 1. To ensure fair comparisons, metrics such as
AUPRC (i.e. area under the precision and recall curve) and F1 score (i.e., the harmonic mean of
precision and recall) that consider both precision and recall are more appropriate. However, F1 score
depends on the decision rule, specifically, how continuous-valued prediction scores are discretized
into discrete class labels. It is known that the typical choice of 0.5 threshold, used in balanced
scenarios, is provably suboptimal in the presence of class imbalance (Menon et al., 2013; Singh &
Khim, 2022). Considering that AUPRC is agnostic to the decision rule and is often approximated
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Figure 7: prediciton distribution of CE, RUSC, and RG (ours) on CIFAR100 dataset. BA is a biased
metric: while RUSC achieves a higher BA score than CE, it suffers a lot from its high false-positive
rate. Our proposed RG methods achieve the highest AP score. By default, we set the decision
threshold as 0.5 for all methods.

by AP given finite sample sizes (Boyd et al., 2013), we report AP as the primary measure of IC
performance for all subsequent experiments.

4.2 BINARY CLASSIFICATION

We start with binary IC problems on two datasets – binary CIFAR-100 and binary HAM10000. In
Tab. 1, we observe that BA and AP often give divergent results. For example, on two datasets, RUSC
is performing very competitively in terms of BA but worse in AP. As illustrated ahead, we believe it
is due to the inferiority of BA when evaluating highly imbalanced datasets. To confirm our hypothe-
sis, we plot the distribution of the prediction score and compare it with three representative methods
in Fig. 7. It is clear that RUSC performs the worst as it struggles to separate between positives and
negatives while the BA is still very high, which indicates that BA can give very misleading results
when evaluating a highly imbalanced dataset. Notably, BA is sensitive to the choice of the decision
threshold. For CE and RG, one may need to carefully tweak the threshold to get a high BA. In con-
trast, RG achieves much better distribution and is more lenient on the threshold choice. As CLIP is
introduced in the image encoding process of RG, it is worth exploring if the CLIP model represen-
tations are sufficient to train a classifier. Therefore, we set an extra competitor which takes CLIP as
a fixed feature extractor, and train a multi-layer perceptron (MLP) as the classifier. In CIFAR-100,
CLIP does help to improve the performance and outperform RG. However, we observe a significant
performance drop when switching to HAM10000, a more challenging dataset with higher image
resolution from a specialized domain – different from where CLIP was pretrained. We believe that
instead of direct feature transfer, RG helps to find better label structures, which further guide the
model to learn good feature representations and thus improve the performance.

4.3 MULTICLASS CLASSIFICATION

Now we turn to a real-world medical multiclass classification task on the HAM10000 dataset. Unlike
the binary setting, where we can clearly tell the minority and majority class, multiclass classification
can be more complex as it may have multiple small/large classes. A natural extension of our method
would be to set a hard threshold n′, and for any class with samples below the bar, we treat it as a
minority class and keep the original labels. We regroup the data using a clustering algorithm for
those large classes with sufficient samples. If the data acquisition process is known, the number of
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Table 2: RG vs. others on HAM10000 dataset. We report both BA and class-wise AP scores.
Below the class name is the corresponding number of images in each class. ↑ means the larger, the
better. The best scores (with interval intersects) are marked in bold maroon

Method BA (%) ↑
AP (%) ↑

nv mel bkl bcc akiec vasc df
6705 1113 1099 514 327 142 115

CE 55.4±2.20 96.2±0.40 59.2±1.50 65.5±2.60 73.2±2.70 54.0±1.60 76.0±4.50 47.5±5.40

WCE 64.2±1.20 96.1±0.10 46.3±3.30 54.3±3.00 62.9±2.70 53.5±6.60 83.1±2.00 51.0±4.30

Focal 56.7±0.70 96.5±0.30 59.6±1.60 66.0±0.80 72.6±1.30 54.6±1.80 80.6±1.80 47.7±5.10

LDAM 42.1±3.40 94.2±0.30 34.5±1.90 37.7±2.10 44.4±11.3 34.3±2.40 61.0±10.5 7.50±2.10

LA 56.2±1.30 96.8±0.10 59.9±0.40 64.1±2.20 73.4±4.60 51.5±3.20 81.4±4.00 42.5±3.50

RUSC 50.1±3.60 90.7±0.30 25.7±2.10 28.6±2.40 28.3±5.60 28.5±1.40 61.7±7.00 17.3±6.20

DSMT 56.2±2.40 96.6±0.30 61.3±0.20 65.9±3.60 74.0±2.10 54.7±2.40 73.3±4.90 41.4±1.60

ROS 66.8±2.10 97.9±0.10 72.7±1.00 81.8±1.30 84.8±1.40 70.2±3.70 85.5±4.20 47.0±2.70

CLIP+MLP 22.5±0.40 90.5±0.80 41.2±0.50 22.5±1.20 11.0±1.60 6.50±1.80 2.00±0.60 1.50±0.00

RG 62.6±2.20 93.7±0.60 65.0±1.70 72.1±1.20 75.8±3.30 57.4±5.80 80.8±2.60 54.5±4.10

RG+WCE 63.5±1.60 91.7±0.20 60.4±1.80 67.6±2.50 72.9±2.10 54.7±5.30 81.1±2.20 54.7±1.90

clusters can be determined by the intrinsic structure of the data. If no prior knowledge is provided,
as is in this task, a natural choice is to set the number of clusters as ni

n where ni is the number of
images in the current class. We exclude AP in this task as it performs poorly in binary classification,
and is sensitive to high imbalance ratios.

As shown in Tab. 2, our method significantly outperforms all loss-based methods (e.g., CE, WCE,
Focal, LDAM, and LA) without introducing extra data during training. Surprisingly, ROS also out-
performs many loss-based methods, which is likely due to the highly imbalanced training data. For
highly imbalanced datasets, given the limited batch size and without augmenting minority samples,
many batches will have insufficient or no samples for minority classes, making gradients less infor-
mative. Despite the high performance, ROS adds more computation cost than other methods as it
introduces 4× training data. Notably, our methods only add tolerable computation cost in the re-
grouping phase while achieving the best AP scores for the minority class with minimal performance
loss in the majority classes.

5 CONCLUSIONS

In this paper, we propose a novel simple yet effective baseline for imbalanced classification called
ReGrouping (RG), which involves decomposing the majority class to form smaller clusters and thus
induces a more balanced dataset that adheres to the latent label hierarchy. We first use a motivating
example to show that the proposed method is able to learn efficient representations for image data
and synchronize the learning pace for different classes as well. Then, we compare RG with several
popular imbalanced learning methods and show that RG is a strong competitor among all methods
and often gives the best performance. Lastly, we shed light on the ineffectiveness of commonly
used performance metrics such as BA in terms of comparing different methods for imbalanced
classification and recommend the use of AP/AUPRC metrics for this purpose.

Although we mostly discuss imbalanced classification with image data, we believe our method can
be readily extended to text data with popular foundation language models as text encoders. As a
next step, our future work will focus on: 1) extending RG to other data modalities; 2) avoiding the
dependency on pretrained encoders by using self-supervised learning techniques, and 3) studying
more complex and challenging imbalanced tasks such as long-tail learning. We believe that our
methods give a fresh perspective to the imbalance learning problem which gives new opportunities
and challenges for future research.
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