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Abstract

Though much previous work tried to uncover the best practices for transfer learning,
much is left unexplored. Our preliminary work explores the effect of removing
a portion of the ImageNet classes with low per-class validation accuracy on the
accuracy of the remaining classes. Furthermore, we explore if models trained with
a reduced number of classes are suitable for transfer learning.

Introduction Models initialized with ImageNet trained weights serve as a basis for exploration
of various problems, e.g. image retrieval [7] and video classification [4]. Recent methods based on
weakly supervised training [16] and self-supervised training [25] achieve state of the art results on
the ImageNet validation accuracies, however they use 3.5 billion and 300 million images respectively
in addition to the the 1.3 million images in ImageNet. Though these are important results, it is hard to
imagine one being able to achieve them without the vast computational resources of large companies.
On the other hand, ImageNet with 1.3M images is a more accessible dataset requiring a machine with
2-4 GPUs to be able to run quality experiments. Therefore it is important to explore various methods
of improving the representations learned on the ImageNet dataset in order for them to be used as
a basis for other tasks. We are interested in understanding and improving learned representations
for transfer learning. Much work in previous years has been put into understanding the best way to
perform transfer learning [12, 21], however much remains to be understood. We explore the effect of
removing 100 or 200 “hard” classes from the ImageNet dataset, and how this removal affects the
validation accuracy on the remaining 800 classes and its effect on the learned representations for
transfer-learning. The following are two questions we are interested in understanding:

Should removing "hard" classes improve the accuracy of ImageNet models? Looking at this
question through the lens of curriculum learning [1], it can be argued that the answer is yes. We
postulate that if one removes a portion of the lowest performing classes, then training the network
will improve the accuracy on the remaining classes.

Would improving the accuracy on a subset of the images improve the transfer-learning perfor-
mance on different datasets? If we look at the recent work by [12], the answer is seemingly yes.
[12] shows that models with higher accuracy on the ImageNet dataset achieve better transfer-learning
performance. However, by removing a certain number of classes from the training set, one is giving up
the volume of data and diversity of images. Therefore, we set out to understand the transfer-learning
performance of models which were trained with top 800, 900, or 1000 classes based on validation
accuracy.

Experimental details and results All of our experiments are implemented using PyTorch Deep
Learning Framework [20], and extend the codebase from [21] (MIT License). Our initial experiments
utilize ResNet-18 [9] as the architecture for all of our experiments. Training of the ImageNet models
is done on a single node, each running 2 18-core Xeon CPUs and 4 NVIDIA P100s GPU. Training
takes approximately 32 hours for the non-robust model, and 80 hours for a robust model (utilizing a
3-step PGD attack [15] to generate adversarial examples during training). Each ImageNet model is
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Table 1: Table showing the validation accuracies (Top-1 / Top-5 accuracy) of the various models on
the ImageNet dataset on the subset of 800 classes with the best validation accuracy. The left column
of the table shows the number of classes that were used to train the ImageNet model. Columns 3 and
4 show the validation accuracies of l2-robust ImageNet models - left pair shows the accuracy on the
clean ImageNet validation set, and right pair shows the accuracy on the adversarial validation set
with ε equal to the robustness of the particular model.

Number of classes ε = 0. ε = 1. ε = 3.
800 78.27 / 92.88 71.44 / 88.81 | 56.34 / 81.34 60.70 / 80.86 | 37.50 / 64.87
900 77.42 / 92.56 69.97 / 87.87 | 55.25 / 80.09 60.35 / 81.29 | 36.47 / 63.02
1000 76.23 / 91.80 68.65 / 87.01 | 54.05 / 79.05 59.30 / 80.37 | 35.61 / 61.78

(a) FGVC Aircraft [17] (b) Birdsnap [2] (c) Caltech-101 [6] (d) Caltech-256 [8]

(e) CIFAR-10 [14] (f) CIFAR-100 [14] (g) DTD [5] (h) Flowers [18]

(i) Food-101 [3] (j) Oxford-III Pets [19] (k) Stanford Cars [13] (l) SUN397 [24]

Figure 1: Graphs comparing the fixed-feature transfer learning accuracy across 12 datasets at different
levels of robustness and number of ImageNet classes used for training of the baseline models.

trained for 100 epochs, with initial learning rate of 0.1 and decreased by 10 every 30 epochs. The
classes removed and defined as “hard” are those with the lowest validation accuracies on the ImageNet
validation set with 1000 classes. We denote ImageNet800 and ImageNet900 the models trained with
the 800 and 900 classes with the highest validation accuracies respectively. ImageNet1000 is a model
trained will all classes. [21] support the hypothesis that adversarial robustness improves features
representations, and therefore we train additional models which are l2 robust with ε = 1 and ε = 3.
For transfer learning, we use the same 12 datasets used by [21].

ImageNet experiments We first explore the difference in validation accuracy of ImageNet800,
ImageNet900, and ImageNet1000 models on the validation set of the 800 common classes. The
results can be seen in the Table 1. Table 1 shows the validation accuracy for varying number of classes
and degrees of robustness for the validation set with 800 classes (with best validation accuracy). As
we can see, in both robust and non-robust models the validation accuracy decreases as more classes
are added to the training set. This is likely due to the additional classes being confused with some of
the original classes.

Transfer learning experiments In our transfer learning experiments, we follow the setup used in
[21], and test both “fixed-feature” and full-network transfer. Figure 1 shows the transfer learning
results for the “fixed-features” setting, in which the weights of the network are frozen, and only the
top layer is fine-tuned. Interestingly, only in half of the non-robust case is the full model with 1000
classes more accurate on the target dataset and ImageNet800 or ImageNet900. And in some cases,
robustifying the various models removed the advantage of haveing more classes, e.g. the Flowers
and SUN-397 datasets. Figure 2 shows the full-network transfer learning results, where all of the
weights were fine-tuned. As we can see from the Figure 2, transfer-learning benefited from being

2



(a) FGVC Aircraft [17] (b) Birdsnap [2] (c) Caltech-101 [6] (d) Caltech-256 [8]

(e) CIFAR-10 [14] (f) CIFAR-100 [14] (g) DTD [5] (h) Flowers [18]

(i) Food-101 [3] (j) Oxford-III Pets [19] (k) Stanford Cars [13] (l) SUN397 [24]

Figure 2: Graphs comparing the full-network transfer learning accuracy across 12 datasets at different
levels of robustness and number of ImageNet classes used for training of the baseline models.

trained on larger number of classes in 7 out of the 12 cases. In case of DTD, Flowers, Food-101, and
Oxford-III Pets datasets, we saw no or slight improvement in transfer learning performance when
removing the classes with the worst validation accuracies. This however changes, when we look at
the robust case - in 9 out of 12 datasets models initlaized with l2(ε = 1) robust models with 800 or
900 classes performed better.

Limitations of our work. This is preliminary work in exploring methods for improving the learned
representations and their suitability for transfer-learning. Due to computational and time constraints,
our experiments are limited to a single architecture, a small number of robustness values, and a single
run of transfer-learning experiments.

Conclusion Though previous work identifies some factors that effect transfer learning from Ima-
geNet pre-trained models, much work still remains. In our preliminary experiments we show that
even though we remove a significant portion of classes from the ImageNet dataset (up to 20 % ), one
can still achieve comparable or better performance in terms of transfer learning. In the following
paragraphs, we highlight potential directions for future research.

Leveraging self-supervised learning for learning better representations. [21] provide evidence
that adversarially robust models achieve better transfer learning in both a "fixed-features" setting,
and full-network transfer learning. Examining Table 8. in the supplement of [22], we can see that
in case of full-network transfer learning, for majority of the datasets and tested architectures, the
robustness setting that provides the best transfer-learning is either ε = 0 or ε < 0.1. Only in case of
the CIFAR-10 and CIFAR-100 datasets, the best performing robust models had ε ≥ 1.0. Recent work
by [10] suggests that supplementing a supervised loss with a self-supervised objective improves the
robustness and out-of-distribution detection. Therefore, it’d be interesting to explore to what extent
do various self-supervised methods robustify ImageNet models (by way of observing the adversarial
validation accuracy at different values of ε), and in turn what effect they have on transfer-learning
performance of various datasets.

Using incremental learning to learn to improve accuracies. Table 1 shows that removing a portion
of the worst performing classes improves the validation accuracy. However, we see a drop in this
validation accuracy when we fine-tune these models with data containing more classes. Therefore, in
order to preserve the higher accuracy of the original models, we propose to adopt various incremental
learning approaches, e.g. work by [23], or leveraging knowledge distillation [11] as an auxiliary loss
while learning with a larger number of classes.
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