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Abstract

After the proposal of BERT, pre-trained lan-001
guage models have become the dominant ap-002
proach for solving many NLP tasks. Typically,003
a linear classifier is added to the head of the004
model for fine-tuning to fit downstream tasks,005
while a more recent approach, also known as006
prompt-based learning or prompt-learning, us-007
ing prompts to perform various downstream008
tasks, is considered to be able to uncover the009
potential of the language model.010

Prior study, however, attempted to find a uni-011
versal prompt for a certain task across all sam-012
ples. Therefore, we propose a novel method,013
Context-Aware Prompt (CAP), which provides014
a unique continuous prompt for each sample015
input by combining contextual information to016
further investigate the potential capabilities of017
the language models. On the SuperGlue bench-018
mark, our method outperforms multiple models019
with vanilla fine-tuning. Furthermore, we ex-020
tend the use of prompts to include Replaced021
Token Detection (RTD) type prompts, allow-022
ing models like ELECTRA and DeBERTaV3023
that employ RTD as a training objective to use024
prompts for downstream tasks.1025

1 Introduction026

Due to their outstanding performance in down-027

stream tasks such as question answering (Rajpurkar028

et al., 2016), named entity recognition (Sang and029

Meulder, 2003), and text classification (Sun et al.,030

2019), pre-trained language models (Devlin et al.,031

2018; Liu et al., 2019; Raffel et al., 2020; He et al.,032

2021b) have gained increasing importance and be-033

come the primary way to solve various natural lan-034

guage processing (NLP) tasks in recent years.035

How to leverage these language model effec-036

tively has been a struggle for researchers to figure037

1Our code is available at https://anonymous.
4open.science/r/CAP_01. To avoid violating the
anonymized review principle, an anonymous repository is
employed.

out. The typical approach is to add a linear classi- 038

fier to the head of the model and then adapt the pa- 039

rameters of the linear classifier and the pre-trained 040

language model to the supervised target task, also 041

known as fine-tuning (Radford et al., 2018). 042

More recently, a paradigm, known as prompt- 043

based learning or prompt learning (Liu et al., 044

2021a), has had great success in zero-shot and few- 045

shot learning. In this way, a task description is 046

provided for downstream tasks that not only more 047

closely resembles the human way of thinking, but 048

also aids the language model to "understand" what 049

the task purpose is (Radford et al., 2019). These 050

results suggest that when prompted by relevant 051

task descriptions, pre-trained language models can 052

solve NLP problems more effectively. As a result, 053

we believe that prompts can be used to improve 054

performance on a variety of NLP tasks. 055

However, finding a prompt that works for all 056

samples is very difficult, as shown in Table 1 (a 057

sentiment classification task): a prompt that works 058

for one sample may not work for another, although 059

the reason for the results in the table is most likely 060

a bias caused by the pre-training process: "It is" is 061

usually followed by "great", while "It was" is usu- 062

ally followed by "terrible". Accordingly, we strive 063

to alleviate this bias in the pre-trained language 064

model by using contextual information from the 065

input sequence to automatically generate prompts 066

that are suitable for independent samples. 067

In this paper, we introduce Context-Aware 068

Prompt (CAP), a novel method for generating 069

a unique continuous prompt for each sample in- 070

put through context-awareness and is based on 071

the extension of P-tuning (Liu et al., 2021c). We 072

construct continuous prompts via the prompt en- 073

coder in CAP, which uses contextual information 074

to create different prompts for each sample input 075

by contextualized embeddings that decouples from 076

the pre-trained language model word embeddings. 077

Correspondingly, we also need an answer mapping, 078
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Input Example Prompt Predict Label

A sometimes tedious film .
It is [MASK] . terrible

negative
It was [MASK] . great

Among the year ’s most intriguing It is [MASK] . terrible
positive

explorations of alientation . It was [MASK] . great

Table 1: Examples from SST-2 (Socher et al., 2013), which are predicted by BERT-base, and verbalizers set as
"great" and "terrible".

Pre-trained Language Model
(BERT, ELECTRA, …)

Prompt Encoder

Prompt Decoder
For MLM

Prompt Decoder
For RTD

Figure 1: Illustration of CAP.

which we call prompt decoder, to map the output of079

the pre-trained language model to a specific label.080

Further, we expand the way of using prompts in081

models like ELECTRA (Clark et al., 2020), De-082

BERTaV3 (He et al., 2021a) — prompt decoder for083

Replaced Token Detection (RTD).084

Experiments show that our proposed method085

achieves better performance than vanilla fine-086

tuning on most tasks in the SuperGLUE (Wang087

et al., 2019) benchmark. Moreover, our approach088

changes the parameters of the pre-trained language089

model to a lesser level than vanilla fine-tuning,090

which is why we believe that prompt-based learn-091

ing works well.092

2 Related Work093

The idea of prompt was initially proposed by Rad-094

ford et al. (2019) to "recall" knowledge learned095

during the training of pre-trained language mod-096

els and apply it to downstream tasks in an unsu-097

pervised way. Schick and Schütze (2021) employ098

cloze problem modeling for text classification and099

natural language inference. Taking a sentiment100

classification task as an example, constructs the101

input as "Best pizza ever! It was __.", let the pre-102

trained language model predict the text in the blank.103

The sentence is regarded positive if the probabil-104

ity of predicting the text as "great" is larger than 105

the probability of predicting the text as "bad" and 106

vice versa. The "Best pizza ever!" is the sample 107

to be classified; "It was __." and "great" or "bad" 108

are called pattern and verbalizers by Schick and 109

Schütze (2021), respectively. 110

However, the preceding researches rely on man- 111

ual prompt creation, which necessitates a great 112

deal of prior knowledge and experimental valida- 113

tion, and the cost of determining which pattern- 114

verbalizer pair (PVP) performs best is extremely 115

expensive. To address this issue, some of the re- 116

searches look at ways to automatically find the ap- 117

propriate prompts, which can be divided into two 118

types: discrete prompts and continuous prompts. 119

2.1 Discrete Prompt 120

AutoPrompt (Shin et al., 2020) employs gradient- 121

guided search to create prompts for various tasks; 122

LPAQA (Jiang et al., 2020) adopts a mining-based 123

and paraphrase-based approach to prompt genera- 124

tion; LM-BFF (Gao et al., 2021) utilises the genera- 125

tive T5 (Raffel et al., 2020) model to automatically 126

generate templates, all of which have achieved 127

promising results and have contributed significantly 128

to automatically search for prompts, but they limit 129

prompts to discrete prompts that humans can un- 130

derstand. However, do machines need discrete 131

prompts that humans can understand? 132

2.2 Continuous Prompt 133

As a matter of fact, prompts are employed to pre- 134

train language models to understand the task pur- 135

pose rather than supplying them to humans, so it 136

is not necessary to stick to discrete prompts as per- 137

ceived by humans, but rather continuous prompts 138

are composed of virtual words embedded in a con- 139

tinuous space can be used. 140

Initialized Prompt WARP (Hambardzumyan 141

et al., 2021), OPTIPROMPT (Zhong et al., 2021), 142
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Prompt Tuning (Lester et al., 2021) randomly ini-143

tialize the word embeddings of the pseudo-tokens144

or by existing real word embeddings, and optimize145

the word embedding vector of the pseudo-tokens146

by gradient descent in the word embedding space.147

In addition, WARP (Hambardzumyan et al., 2021)148

also constructs the continuous verbalizer, which149

is free of the constraints imposed by the human150

cognitive discrete word.151

Generated Prompt After pre-training, the word152

embeddings of the pre-trained language model have153

been highly discretized. When the pseudo-token154

is initialized in the above ways, Allen-Zhu et al.155

(2019) have shown that the relevant parameters156

will only be changed within a small domain and are157

prone to fall into local minima. Therefore, P-tuning158

(Liu et al., 2021c) use bidirectional long-short term159

memory networks (BiLSTM) (Graves et al., 2013)160

to generate the embeddings of the prompt token,161

obtains satisfactory performance.162

Whereas, P-tuning necessitates the addition of163

a few anchor tokens in order to improve perfor-164

mance further, which is in direct opposition to the165

intention of the automatic search for prompts. In166

contrast, our proposed CAP does not require any167

anchor token, and we believe that prompt tokens168

generated using CAP are more useful for machine169

comprehension, rather than relying on prior knowl-170

edge, as demonstrated in subsequent experiments171

(Table 4).172

Prefix-tuning (Li and Liang, 2021) trains an up-173

stream prefix across layers and freezes the pre-174

trained language model, saving storage costs, but it175

is designed for natural language generation (NLG)176

tasks and autoregressive LM. Liu et al. (2021b)177

have extended it to NLU tasks and achieved per-178

formance comparable to fine-tuning. Similar to179

adapter (Houlsby et al., 2019), their motivation180

is parameter-efficiency, which reduces the stor-181

age cost of the language model during training.182

Nevertheless, their approach requires large train-183

ing epochs, which raises the cost of training for184

downstream tasks. That is different from our start-185

ing point, where we propose that CAP involves186

fully training the pre-trained language model for187

improving performance, making downstream tasks188

are more relative to the training objectives of the189

pre-training phase, and thus can be an alternative190

to fine-tuning for certain tasks.191

3 CAP 192

In this section, we present the implementation of 193

Context-Aware Prompt (CAP), which consists of 194

two components: a prompt encoder and a prompt 195

decoder, the former generates prompt embeddings, 196

while the latter decodes the hidden states output 197

from the pre-trained language model into the corre- 198

sponding labels of the task. Let M be a pre-trained 199

language model with vocabulary V and pre-trained 200

embedding layer EM ∈ M; let L be a set of labels 201

for our target classification task A, and assign a 202

verbalizer token Vl /∈ V to each label l ∈ L. 203

Overall, we need to optimize the parameters 204

Θ = {ΘP ,ΘV ,ΘM} by gradient descent, for the 205

prompt encoder, the verbalizer embeddings, and 206

the pre-trained language model, respectively. 207

3.1 Prompt Encoder 208

Since a direct update of the prompt embeddings 209

would result in parameters that vary only within 210

a small neighborhood and we need a BiLSTM 211

to incorporate contextual information, we pro- 212

pose a prompt encoder to generate prompt embed- 213

dings. Given a sequence of sample input tokens 214

x = {x0, x1, x2, ..., xn}, which will be mapped to 215

input embeddings EM(x) = {e0, e1, e2, ..., en}, 216

here x0 refers to the token that can represent the 217

semantics of the whole sentence, which is "[CLS]" 218

in BERT. 219

We can flexibly insert prompt tokens between 220

a given input sequence and links with label to- 221

ken ([LABEL]), where the label token in MLM 222

and RTD denotes masked token ([MASK]) and 223

verbalizer token (Vl), respectively. For exam- 224

ple, let [Pi] refers to the ith prompt token, given 225

the input x one can compose the template T = 226

{[P1], x1, ..., xn, [P2], [LABEL], [P3], xn+1, ..., 227

xm, [P4]}. Note that the prompt tokens here 228

are not discrete, the prompt embeddings will be 229

inserted into the appropriate spot. 230

Naturally, our research turns into finding a set of 231

parameters ΘP for generating continuous prompt 232

embeddings that allow the pre-trained language 233

model to predict the expected answer to a masked 234

token (for MLM) or determine whether the ver- 235

balizer token is replaced (for RTD). Finally, the 236

continuous prompt embeddings generated by the 237

prompt encoder, which is influenced by this set of 238

parameters and inputs, are fed into the pre-trained 239

language model with the embeddings of the origi- 240

nal inputs. 241
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[P0] [P1] ... [Pk][LABEL][X0]  ...  [Xn]

EC EP

BiLSTM

MLP

+

Pre-trained Language Model
(BERT, ELECTRA, …)

[LABEL][X0]  ...  [Xn]

EM

+
Prompt Encoder

pre-trained

Pre-trained Language Model
(BERT, ELECTRA, …)

Figure 2: Prompt Encoder in CAP.

3.1.1 Continuous Prompt Embeddings242

Customizing the prompt for each input and en-243

abling the prompt to fully incorporate contextual244

information, as illustrated in Figure 2, we employ245

BiLSTM to attempt to pass contextual information246

to the prompt and comply with P-tuning (Liu et al.,247

2021c) using MLP to encourage discretization. Be-248

sides, we establish a shortcut connection (He et al.,249

2016) between the raw prompt embeddings and250

the generated embeddings. For one thing, it pre-251

vents the vanishing gradient to raw prompt embed-252

dings. And for another, we employ an idea similar253

to ELMo (Peters et al., 2018) which combines the254

internal states of each layer for rich word repre-255

sentation, generating prompt embeddings that com-256

bine the raw prompt embeddings with the prompt257

embeddings that have combined contextual infor-258

mation.259

So the continuous prompt embeddings PE can260

be given by:261

PE = PEΘP
(x)

= MLP(BiLSTM[EC(x), EP(P)])

+ EP(P)

(1)262

where PEΘP
means Prompt Encoder, EC and263

EP mean contextualized embedding layer and264

prompt embedding layer respectively, and P =265

{[P1], [P2], ..., [Pk]} refers to prompt sequence.266

3.1.2 Contextualized Embeddings 267

Since the word embedding layer of the pre-trained 268

language model and the contextualized embedding 269

layer used by CAP are strongly related to each other 270

but have radically different training objectives, they 271

form what He et al. (2021a) call "tug-of-war" dy- 272

namics. 273

Further, inspired by their proposed Gradient- 274

Disentangled Embedding Sharing (GDES) method, 275

we adopt a similar strategy to share the word em- 276

bedding layer of the pre-trained language model 277

(EM) with the contextualized embedding layer 278

(EC) used by CAP but decouple them with stopping 279

gradients in the CAP’s contextualized embeddings 280

from back-propagating to the pre-trained language 281

model’s word embeddings. 282

In short, the contextualized embedding can be 283

expressed as: 284

EC = sg(EM) +△E (2) 285

where sg is the stop gradient operator which only 286

allows gradients propagation through △E. Note- 287

worthy, △E is initialized as a zero matrix. 288

3.2 Prompt Decoder 289

After the generated prompt embeddings are sent to 290

the pre-trained language model, a prompt decoder 291

to parse the output of the hidden states is required 292

to obtain the predicted labels. 293
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Hx ; HP ; H�
(1) 

Hx ; HP ; H�
(2)

Hx ; HP ; H�
(3)

 

RTD

RTD

RTD

S1

S2

S3

argmax ŷPre-trained MLM Decoder

Hx ; HP ; Hmask 

argmaxŷ
⊗

pre-trained

⊗
⊗

(a) Prompt Decoder For MLM (b) Prompt Decoder For RTD

Figure 3: The method of prompt decoder for MLM and RTD solve classification tasks, where Hx, HP, Hmask, HV

attain the hidden states of x, the hidden states of prompt, the hidden state of masked token, and the hidden state of
verbalizer token output by the pre-trained language model, respectively.

For each label, a verbalizer for answer map-294

ping is required. It is worth noting that for MLM295

(Masked Language Model) 2, we follow WARP296

(Hambardzumyan et al., 2021) to replicate continu-297

ous verbalizers.298

3.2.1 Prompt Decoder For MLM299

Masked Language Model (MLM), such as BERT300

(Devlin et al., 2018), ALBERT (Lan et al., 2020),301

RoBERTa (Liu et al., 2019), typically masks a spe-302

cific percentage of words in a given sentence, and303

the model predicts these masked words based on304

other remaining words in this sentence. So the305

last hidden state of the masked token can be easily306

obtained by MLM:307

Hmask = M(EM(x), PEΘP
(x)) (3)308

where Hmask refers to the last hidden state of the309

masked token and has been pooled by pre-trained310

MLM decoder.311

And the probability of labels are given by:312

PΘ(l | x) =
exp(ΘV

l Hmask)∑
l′∈L

exp(ΘV
l′ Hmask)

, l ∈ L (4)313

where ΘV
l is the parameters of the verbalizer em-314

bedding corresponding to the label l.315

3.2.2 Prompt Decoder For RTD316

ELECTRA (Clark et al., 2020) and DeBERTaV3317

(He et al., 2021a), applying Replaced Token Detec-318

tion (RTD) as training objective, use a generator to319

2It can be easily extended to Permuted Language Model
(PLM) such as XLNet, which is not described in this paper.

generate ambiguous tokens and a discriminator to 320

distinguish the ambiguous tokens from the original 321

inputs, similar to Generative Adversarial Networks 322

(GAN, Goodfellow et al. 2014). 323

For RTD, analogously to Candidates-Contrast 324

proposed by Sun et al. (2021), we consider different 325

verbalizer tokens as input label tokens, use RTD to 326

detect verbalizer tokens, derive the score of each 327

verbalizer token is not replaced, and consider the 328

label corresponding to the verbalizer token with 329

the highest score as the predicted label, which is as 330

shown in Figure 3. 331

So the score can be considered as the negative 332

of the score of the model output that detects as a 333

replaced token: 334

S(l|x) = −M(EM(x), PEΘP
(x), EV (l)) (5) 335

where EV (l) denotes the verbalizer embeddings 336

representing the label l. 337

Resemble equation 4, the probability of labels 338

are given by: 339

PΘ(l|x) =
exp(S(l|x))∑

l′∈L
exp(S(l′|x))

, l ∈ L (6) 340

This multiple choice approach, on the other hand, 341

demands numerous calculations of the pre-trained 342

language model (once for each label), implying 343

that the training cost will be several times higher 344

than MLM (depending on the total count of labels). 345

4 Experiments 346

We select six natural language understanding 347

(NLU) tasks from the SuperGLUE (Wang et al., 348
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Method
CB RTE BoolQ WiC WSC MultiRC

Avg.
Acc. F1 Acc. Acc. Acc. Acc. EM F1a

BERTbase

Vanilla Fine-tuning 89.3 89.0 70.0 75.2 71.6 63.5 17.9 66.0 68.6
P-tuning(Liu et al., 2021c) 89.2 92.1 71.1 73.9 68.8 63.5 14.8 63.5 67.9
CAP 100 100 73.6 76.2 71.9 63.5 19.2 67.8 71.5

RoBERTabase
Vanilla Fine-tuning 96.4 97.4 76.2 78.5 69.3 63.5 33.9 75.2 73.2
CAP 100 100 84.1 80.0 69.6 63.5 34.3 75.1 75.3

DeBERTaV3base
Vanilla Fine-tuning 94.6 93.7 84.8 83.3 74.1 63.5 49.4 82.1 77.6
CAP 100 100 86.3 86.3 70.7 63.5 50.3 82.5 78.9

Table 2: Dev set results on SuperGLUE tasks.

2019) benchmark for experiments to evaluate our349

method. CB (De Marneffe et al., 2019), RTE (Da-350

gan et al., 2005), BoolQ (Clark et al., 2019), WiC351

(Pilehvar and Camacho-Collados, 2018), WSC352

(Levesque et al., 2012) and MultiRC (Khashabi353

et al., 2018) are among the tasks, which contain two354

textual entailment tasks (CB, RTE), two question355

answering tasks (BoolQ, MultiRC), a co-reference356

resolution task (WiC), and a word sense disam-357

biguation task (WSC). These NLU tasks are re-358

formulated as cloze problems, with prompt tokens359

inserted in the intervals between sentence1, label,360

and sentence2 (if it exists).361

4.1 Experiment Settings362

In our experiments, BERT and RoBERTa are363

used as MLM representatives and DeBERTaV3364

as RTD representative, and the base-scale model365

(Layer=12, Hidden Size=768, Attention Head=12)366

is used uniformly. Pre-trained language models367

we use are from the Hugging Face Transformers368

(Wolf et al., 2020) library, and we employ the369

AutoModelForSequenceClassification370

it provides for fine-tuning as a baseline.371

To build CAP, the prompt embeddings for372

[P1], [P2], ..., [Pn] are generated by prompt en-373

coder, and verbalizer embeddings for [V1], ..., [VL]374

are initialized with verbalizer token embeddings in375

pre-trained language model for their corresponding376

labels. For MLM, the bias of the verbalizer clas-377

sifier is also initialized with the bias of the MLM378

classifier head of the pre-trained language model in379

order to be consistent with the pre-training phase.380

We choose the AdamW optimizer with a learning381

rate that decreases linearly after a warmup period 382

and train for 3-6 epochs on various task. Specifi- 383

cally, we set the learning rate from 2e-5, 3e-5, 4e-5, 384

5e-5 and batch size from 6, 8, 16, 24, 32.3 385

4.2 Results 386

The results are presented in Table 2. We can see 387

that CAP outperforms vanilla fine-tuning on most 388

tasks. For the average results, CAP outperforms 389

vanilla fine-tuning by 2.9, 2.1, and 1.3 percent for 390

BERT, RoBERTa, and DeBERTaV3, respectively. 391

Besides, CAP also outperforms P-tuning. In par- 392

ticular, CAP outperforms vanilla fine-tuning more 393

significantly in tasks such as CB, RTE and BoolQ, 394

which are easy to construct prompts for. We then 395

focus our subsequent experiments on these three 396

tasks. 397

It can be seen that our method achieves rela- 398

tively well performance in both the small sample 399

size task (CB) and the multiple sample task (Mul- 400

tiRC). But for WSC, a word sense disambiguation 401

task, our approach does not show any improvement 402

over vanilla fine-tuning, and we conjecture that 403

it is difficult to construct prompts that allow pre- 404

trained language models to understand the purpose 405

of such difficult tasks. The same is true for WiC, 406

where there is only a small improvement when 407

using BERT and RoBERTa, and even a drop in 408

performance when using DeBERTaV3, so we get a 409

similar conclusion to Liu et al. (2021c), that these 410

types of more complex tasks are not suitable for 411

3To reproduce our work better, we pushed the hyperpa-
rameters we used in our experiments to our open-source code
repository.
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Method
CB RTE BoolQ

Acc. F1 Acc. Acc.
BERT + FT 94.6 93.7 70.4 77.7
BERT + CAP 98.2 98.7 75.8 78.1
RoBERTa + FT 96.4 90.4 85.6 85.4
RoBERTa + CAP 100 100 87.4 86.1
DeBERTaV3 + FT 94.7 89.0 88.4 87.5
DeBERTaV3 + CAP 100 100 88.8 88.2

Table 3: Best results on SuperGLUE tasks based on
large-scaled model, where BERT + FT results are from
(Wang et al., 2019), FT refers to vanilla fine-tuning.

Method
CB RTE BoolQ

Acc. F1 Acc. Acc.
Vanilla Fine-tuning 89.3 89.0 70.0 75.2
WARPinit 91.1 89.2 70.8 76.6
P-tuning + CV 92.9 94.7 69.0 75.6
CAP 100 100 73.6 76.2
+ anchor token 92.9 92.3 68.2 75.0
- CA (i.e. NUP) 92.9 90.5 69.0 75.2
- GDES (i.e. NES) 98.2 96.4 71.1 76.0

Table 4: Dev set results (BERT-base) on SuperGLUE
tasks, where WARPinit differs from the original paper
and trains the entire model, CV refers to continuous
verbalizer. - CA denotes CAP without contextualized
awareness, i.e. no unique prompt (NUP). GDES means
Gradient-Disentangled Embedding Sharing, while NES
is No Embedding Sharing.

current prompt-based learning.412

In addition, we also do experiments based on413

large-scale models (Layer=24, Hidden Size=1024,414

Attention Head=16). Analogous results based on415

the large-scale models are shown in Table 3.416

Furthermore, we compare existing methods417

based on prompts. To be fair, BERT is applied418

as the base pre-training model, and the same pat-419

tern and verbalizers are used. As shown in Table420

4, our method has certain advantages over existing421

methods.422

4.3 Ablation Experiments423

To further analyze CAP, a series of ablation experi-424

ments are carried out to investigate which part plays425

a crucial role. Specifically, we evaluate CAP with426

or without anchor tokens, contextualized awareness427

and the GDES method.428

0.00036

0.00039

0.00042

0.00045

0.00048

1 2 3 4 5 6 7 8 9 10 11 12

Layer

CAP
Fine-tuning

∆�
�

Figure 4: Parameter changes of pre-trained language
model (BERT-base) for different layers after fitting
downstream task (RTE).

Several conclusions can be drawn from the ex- 429

periment results in Table 4. First, as predicted by 430

our earlier supposition, the automatic learning of 431

the prompt token using CAP surpasses the addition 432

of the anchor token. Second, prompt combines 433

contextual information and decouples the CAP’s 434

contextualized embeddings from the original pre- 435

trained language model word embeddings gradient 436

is effective. Third, creating unique prompts with 437

contextualized awareness plays a key role, with the 438

GDES (Gradient-Disentangled Embedding Shar- 439

ing) method serving as the icing on the cake. 440

5 Discussion 441

The experiment results show that CAP outperforms 442

vanilla fine-tuning in the experimental NLU task. 443

Vanilla fine-tuning is an approach similar to or 444

rather a transfer learning, the inputs are passed 445

through a pre-trained language model (which can 446

be thought of as feature extraction), are then fed 447

into an added linear output layer to predict. 448

The prompt-based learning approach, on the 449

other hand, employs a pre-trained language model 450

that is more closely aligned with the pre-training 451

process’s training objectives. As shown in Fig- 452

ure 4, fitting the same downstream task with CAP 453

changes the parameters less than vanilla fine-tuning. 454

It’s not unexpected that CAP achieves better perfor- 455

mance than vanilla fine-tuning because we believe 456

the less the pre-trained luaguage model changes, 457

the more it keeps its learnt knowledge. Besides, 458

just as adding a task description such as "Please 459

classify the sentiment of the following sentences" 460

provides a clear grasp of the job’s objective, while 461

it is not evident what one needs to do when given 462
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a pile of text and must guess at the assignment’s463

intention.464

Although prompt-based learning is hard to adapt465

to all tasks at the moment, it makes sense to explore466

in the prompt-based learning direction when using467

pre-trained language models for downstream tasks468

with "not only fine-tuning" in mind.469

6 Conclusion470

In this paper, we propose a new method, Context-471

Aware Prompt (CAP), as an alternative to fine-472

tuning using pre-trained language models. Specifi-473

cally, CAP constructs a unique continuous prompt474

for each diverse input by combining contextual475

information. Experiment results show that our476

method can make better and full use of pre-trained477

language models, thus outperforms vanilla fine-478

tuning and existing methods for most tasks on the479

SuperGLUE benchmark. In addition, we further480

extend to the RTD-based prompts usage scheme,481

making it possible to use prompt-based learning as482

a method for the majority of existing pre-trained483

language models.484
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