Context-Aware Prompt: Customize A Unique Prompt For Each Input

Anonymous ACL submission

Abstract

After the proposal of BERT, pre-trained lan-
guage models have become the dominant ap-
proach for solving many NLP tasks. Typically,
a linear classifier is added to the head of the
model for fine-tuning to fit downstream tasks,
while a more recent approach, also known as
prompt-based learning or prompt-learning, us-
ing prompts to perform various downstream
tasks, is considered to be able to uncover the
potential of the language model.

Prior study, however, attempted to find a uni-
versal prompt for a certain task across all sam-
ples. Therefore, we propose a novel method,
Context-Aware Prompt (CAP), which provides
a unique continuous prompt for each sample
input by combining contextual information to
further investigate the potential capabilities of
the language models. On the SuperGlue bench-
mark, our method outperforms multiple models
with vanilla fine-tuning. Furthermore, we ex-
tend the use of prompts to include Replaced
Token Detection (RTD) type prompts, allow-
ing models like ELECTRA and DeBERTaV3
that employ RTD as a training objective to use
prompts for downstream tasks.'

1 Introduction

Due to their outstanding performance in down-
stream tasks such as question answering (Rajpurkar
et al., 2016), named entity recognition (Sang and
Meulder, 2003), and text classification (Sun et al.,
2019), pre-trained language models (Devlin et al.,
2018; Liu et al., 2019; Raffel et al., 2020; He et al.,
2021b) have gained increasing importance and be-
come the primary way to solve various natural lan-
guage processing (NLP) tasks in recent years.
How to leverage these language model effec-
tively has been a struggle for researchers to figure

'Our code is available at https://anonymous.

4dopen.science/r/CAP_01. To avoid violating the
anonymized review principle, an anonymous repository is
employed.

out. The typical approach is to add a linear classi-
fier to the head of the model and then adapt the pa-
rameters of the linear classifier and the pre-trained
language model to the supervised target task, also
known as fine-tuning (Radford et al., 2018).

More recently, a paradigm, known as prompt-
based learning or prompt learning (Liu et al.,
2021a), has had great success in zero-shot and few-
shot learning. In this way, a task description is
provided for downstream tasks that not only more
closely resembles the human way of thinking, but
also aids the language model to "understand" what
the task purpose is (Radford et al., 2019). These
results suggest that when prompted by relevant
task descriptions, pre-trained language models can
solve NLP problems more effectively. As a result,
we believe that prompts can be used to improve
performance on a variety of NLP tasks.

However, finding a prompt that works for all
samples is very difficult, as shown in Table 1 (a
sentiment classification task): a prompt that works
for one sample may not work for another, although
the reason for the results in the table is most likely
a bias caused by the pre-training process: "It is" is
usually followed by "great", while "It was" is usu-
ally followed by "terrible". Accordingly, we strive
to alleviate this bias in the pre-trained language
model by using contextual information from the
input sequence to automatically generate prompts
that are suitable for independent samples.

In this paper, we introduce Context-Aware
Prompt (CAP), a novel method for generating
a unique continuous prompt for each sample in-
put through context-awareness and is based on
the extension of P-tuning (Liu et al., 2021c). We
construct continuous prompts via the prompt en-
coder in CAP, which uses contextual information
to create different prompts for each sample input
by contextualized embeddings that decouples from
the pre-trained language model word embeddings.
Correspondingly, we also need an answer mapping,

https://anonymous.4open.science/r/CAP_01
https://anonymous.4open.science/r/CAP_01

Input Example Prompt Predict Label
)) It is [MASK] . terrible .
A sometimes tedious film . negative
It was [MASK]. great
Among the year ’s most intriguing It is [MASK] . terrible i
ositive
explorations of alientation . It was [MASK]. great P

Table 1: Examples from SST-2 (Socher et al., 2013), which are predicted by BERT-base, and verbalizers set as

"great" and "terrible".

Prompt Decoder
For RTD

Prompt Decoder
For MLM

Pre-trained Language Model
(BERT, ELECTRA, ...)

|

‘ Prompt Encoder

Figure 1: Illustration of CAP.

which we call prompt decoder, to map the output of
the pre-trained language model to a specific label.
Further, we expand the way of using prompts in
models like ELECTRA (Clark et al., 2020), De-
BERTaV3 (He et al., 2021a) — prompt decoder for
Replaced Token Detection (RTD).

Experiments show that our proposed method
achieves better performance than vanilla fine-
tuning on most tasks in the SuperGLUE (Wang
et al., 2019) benchmark. Moreover, our approach
changes the parameters of the pre-trained language
model to a lesser level than vanilla fine-tuning,
which is why we believe that prompt-based learn-
ing works well.

2 Related Work

The idea of prompt was initially proposed by Rad-
ford et al. (2019) to "recall” knowledge learned
during the training of pre-trained language mod-
els and apply it to downstream tasks in an unsu-
pervised way. Schick and Schiitze (2021) employ
cloze problem modeling for text classification and
natural language inference. Taking a sentiment
classification task as an example, constructs the
input as "Best pizza ever! It was __.", let the pre-
trained language model predict the text in the blank.
The sentence is regarded positive if the probabil-

ity of predicting the text as "great" is larger than
the probability of predicting the text as "bad" and
vice versa. The "Best pizza ever!" is the sample
to be classified; "It was __." and "great" or "bad"
are called pattern and verbalizers by Schick and
Schiitze (2021), respectively.

However, the preceding researches rely on man-
ual prompt creation, which necessitates a great
deal of prior knowledge and experimental valida-
tion, and the cost of determining which pattern-
verbalizer pair (PVP) performs best is extremely
expensive. To address this issue, some of the re-
searches look at ways to automatically find the ap-
propriate prompts, which can be divided into two
types: discrete prompts and continuous prompts.

2.1 Discrete Prompt

AutoPrompt (Shin et al., 2020) employs gradient-
guided search to create prompts for various tasks;
LPAQA (Jiang et al., 2020) adopts a mining-based
and paraphrase-based approach to prompt genera-
tion; LM-BFF (Gao et al., 2021) utilises the genera-
tive TS (Raffel et al., 2020) model to automatically
generate templates, all of which have achieved
promising results and have contributed significantly
to automatically search for prompts, but they limit
prompts to discrete prompts that humans can un-
derstand. However, do machines need discrete
prompts that humans can understand?

2.2 Continuous Prompt

As a matter of fact, prompts are employed to pre-
train language models to understand the task pur-
pose rather than supplying them to humans, so it
is not necessary to stick to discrete prompts as per-
ceived by humans, but rather continuous prompts
are composed of virtual words embedded in a con-
tinuous space can be used.

Initialized Prompt WARP (Hambardzumyan
et al., 2021), OPTIPROMPT (Zhong et al., 2021),

Prompt Tuning (Lester et al., 2021) randomly ini-
tialize the word embeddings of the pseudo-tokens
or by existing real word embeddings, and optimize
the word embedding vector of the pseudo-tokens
by gradient descent in the word embedding space.
In addition, WARP (Hambardzumyan et al., 2021)
also constructs the continuous verbalizer, which
is free of the constraints imposed by the human
cognitive discrete word.

Generated Prompt After pre-training, the word
embeddings of the pre-trained language model have
been highly discretized. When the pseudo-token
is initialized in the above ways, Allen-Zhu et al.
(2019) have shown that the relevant parameters
will only be changed within a small domain and are
prone to fall into local minima. Therefore, P-tuning
(Liu et al., 2021c¢) use bidirectional long-short term
memory networks (BiLSTM) (Graves et al., 2013)
to generate the embeddings of the prompt token,
obtains satisfactory performance.

Whereas, P-tuning necessitates the addition of
a few anchor tokens in order to improve perfor-
mance further, which is in direct opposition to the
intention of the automatic search for prompts. In
contrast, our proposed CAP does not require any
anchor token, and we believe that prompt tokens
generated using CAP are more useful for machine
comprehension, rather than relying on prior knowl-
edge, as demonstrated in subsequent experiments
(Table 4).

Prefix-tuning (Li and Liang, 2021) trains an up-
stream prefix across layers and freezes the pre-
trained language model, saving storage costs, but it
is designed for natural language generation (NLG)
tasks and autoregressive LM. Liu et al. (2021b)
have extended it to NLU tasks and achieved per-
formance comparable to fine-tuning. Similar to
adapter (Houlsby et al., 2019), their motivation
is parameter-efficiency, which reduces the stor-
age cost of the language model during training.
Nevertheless, their approach requires large train-
ing epochs, which raises the cost of training for
downstream tasks. That is different from our start-
ing point, where we propose that CAP involves
fully training the pre-trained language model for
improving performance, making downstream tasks
are more relative to the training objectives of the
pre-training phase, and thus can be an alternative
to fine-tuning for certain tasks.

3 CAP

In this section, we present the implementation of
Context-Aware Prompt (CAP), which consists of
two components: a prompt encoder and a prompt
decoder, the former generates prompt embeddings,
while the latter decodes the hidden states output
from the pre-trained language model into the corre-
sponding labels of the task. Let M be a pre-trained
language model with vocabulary V and pre-trained
embedding layer E'nq € M; let £ be a set of labels
for our target classification task A, and assign a
verbalizer token V; ¢ V to each label [€ L.

Overall, we need to optimize the parameters
© = {©p,0y,0} by gradient descent, for the
prompt encoder, the verbalizer embeddings, and
the pre-trained language model, respectively.

3.1 Prompt Encoder

Since a direct update of the prompt embeddings
would result in parameters that vary only within
a small neighborhood and we need a BiLSTM
to incorporate contextual information, we pro-
pose a prompt encoder to generate prompt embed-
dings. Given a sequence of sample input tokens
x = {zg, z1, X2, ..., T }, which will be mapped to
input embeddings F(x) = {eo,e1,€2,...,en},
here z(refers to the token that can represent the
semantics of the whole sentence, which is "[CLS]"
in BERT.

We can flexibly insert prompt tokens between
a given input sequence and links with label to-
ken ([LABEL]), where the label token in MLM
and RTD denotes masked token ([MASK]) and
verbalizer token (V}), respectively. For exam-
ple, let [P;] refers to the i*" prompt token, given
the input x one can compose the template T =
{[Pl], L1y ey Ly, [PQ], [LABEL], [Pg],.%‘n+1, cony

ZTm, [P4]}. Note that the prompt tokens here
are not discrete, the prompt embeddings will be
inserted into the appropriate spot.

Naturally, our research turns into finding a set of
parameters O p for generating continuous prompt
embeddings that allow the pre-trained language
model to predict the expected answer to a masked
token (for MLM) or determine whether the ver-
balizer token is replaced (for RTD). Finally, the
continuous prompt embeddings generated by the
prompt encoder, which is influenced by this set of
parameters and inputs, are fed into the pre-trained
language model with the embeddings of the origi-
nal inputs.

Pre-trained Language Model
(BERT, ELECTRA, ...)

e
(R

pre-trained

———————————

[Xo] .. [X.] ([EABELH

BiLSTM]

’[\ . Prompt Encoder

L

ﬁ [Pol [Py] ... [P

Figure 2: Prompt Encoder in CAP.

3.1.1 Continuous Prompt Embeddings

Customizing the prompt for each input and en-
abling the prompt to fully incorporate contextual
information, as illustrated in Figure 2, we employ
BiLSTM to attempt to pass contextual information
to the prompt and comply with P-tuning (Liu et al.,
2021c) using MLP to encourage discretization. Be-
sides, we establish a shortcut connection (He et al.,
2016) between the raw prompt embeddings and
the generated embeddings. For one thing, it pre-
vents the vanishing gradient to raw prompt embed-
dings. And for another, we employ an idea similar
to ELMo (Peters et al., 2018) which combines the
internal states of each layer for rich word repre-
sentation, generating prompt embeddings that com-
bine the raw prompt embeddings with the prompt
embeddings that have combined contextual infor-
mation.

So the continuous prompt embeddings PE can
be given by:

PE = PFo, (x)
— MLP(BiLSTM[Ec(x), Ep(P)]) (1)
+ Ep(P)

where PFEg, means Prompt Encoder, E¢ and
Ep mean contextualized embedding layer and
prompt embedding layer respectively, and P =
{[P1], [P2], ..., [Py|} refers to prompt sequence.

3.1.2 Contextualized Embeddings

Since the word embedding layer of the pre-trained
language model and the contextualized embedding
layer used by CAP are strongly related to each other
but have radically different training objectives, they
form what He et al. (2021a) call "tug-of-war" dy-
namics.

Further, inspired by their proposed Gradient-
Disentangled Embedding Sharing (GDES) method,
we adopt a similar strategy to share the word em-
bedding layer of the pre-trained language model
(Eaq) with the contextualized embedding layer
(E¢) used by CAP but decouple them with stopping
gradients in the CAP’s contextualized embeddings
from back-propagating to the pre-trained language
model’s word embeddings.

In short, the contextualized embedding can be
expressed as:

Ec = sg(Em) + AE)

where sg is the stop gradient operator which only
allows gradients propagation through A FE. Note-
worthy, A F is initialized as a zero matrix.

3.2 Prompt Decoder

After the generated prompt embeddings are sent to
the pre-trained language model, a prompt decoder
to parse the output of the hidden states is required
to obtain the predicted labels.

QV
0000)2
© 00:02®H, .,
oo

~N

[Pre-trained MLM Decoder } pre-trained

1

[Hx; 5Hmas|< J

L
H, ;H® RTD F(Sp—
A R
H,; ;H® RTD argmax)~(§))
A N
H,; H® RTD (55—

(a) Prompt Decoder For MLM

(b) Prompt Decoder For RTD

Figure 3: The method of prompt decoder for MLM and RTD solve classification tasks, where Hy, Hp, Hp,sk, Hy
attain the hidden states of x, the hidden states of prompt, the hidden state of masked token, and the hidden state of

verbalizer token output by the pre-trained language model, respectively.

For each label, a verbalizer for answer map-
ping is required. It is worth noting that for MLM
(Masked Language Model) 2, we follow WARP
(Hambardzumyan et al., 2021) to replicate continu-
ous verbalizers.

3.2.1 Prompt Decoder For MLM

Masked Language Model (MLM), such as BERT
(Devlin et al., 2018), ALBERT (Lan et al., 2020),
RoBERTa (Liu et al., 2019), typically masks a spe-
cific percentage of words in a given sentence, and
the model predicts these masked words based on
other remaining words in this sentence. So the
last hidden state of the masked token can be easily
obtained by MLM:

Hpmask = M(EM (X)v PE@p (X)) 3)

where H,,sx refers to the last hidden state of the
masked token and has been pooled by pre-trained
MLM decoder.

And the probability of labels are given by:

©/H
Po(l | x) = PO Vm“k) el 4
Z exp(@l/ Hmask)
el
where @lV is the parameters of the verbalizer em-

bedding corresponding to the label /.

3.2.2 Prompt Decoder For RTD

ELECTRA (Clark et al., 2020) and DeBERTaV3
(He et al., 2021a), applying Replaced Token Detec-
tion (RTD) as training objective, use a generator to

It can be easily extended to Permuted Language Model
(PLM) such as XLNet, which is not described in this paper.

generate ambiguous tokens and a discriminator to
distinguish the ambiguous tokens from the original
inputs, similar to Generative Adversarial Networks
(GAN, Goodfellow et al. 2014).

For RTD, analogously to Candidates-Contrast
proposed by Sun et al. (2021), we consider different
verbalizer tokens as input label tokens, use RTD to
detect verbalizer tokens, derive the score of each
verbalizer token is not replaced, and consider the
label corresponding to the verbalizer token with
the highest score as the predicted label, which is as
shown in Figure 3.

So the score can be considered as the negative
of the score of the model output that detects as a
replaced token:

S(l[x) = —M(Em(x), PEep(x), Ev (1)) (5)

where Ey (1) denotes the verbalizer embeddings
representing the label [.

Resemble equation 4, the probability of labels
are given by:

exp(S(Ifx))
Po(lx) = S exp(S(U1)) (6)
Vel

This multiple choice approach, on the other hand,
demands numerous calculations of the pre-trained
language model (once for each label), implying
that the training cost will be several times higher
than MLM (depending on the total count of labels).

4 Experiments

We select six natural language understanding
(NLU) tasks from the SuperGLUE (Wang et al.,

CB RTE BoolQ WiC WSC MultiRC
Method Avg.
Acc. F1 Acc. Acc. Acc. Acc. EM Fla
BERT}5¢
Vanilla Fine-tuning 89.3 89.0 70.0 752 T71.6 635 179 660 68.6
P-tuning(Liu et al., 2021c) 89.2 92.1 71.1 739 68.8 635 148 635 679
CAP 100 100 73.6 762 719 635 192 67.8 715
RoBERTa,

Vanilla Fine-tuning 964 974 76.2 78.5 693 635 339 752 732
CAP 100 100 84.1 80.0 69.6 635 343 751 753
DeBERTaV3,,.

Vanilla Fine-tuning 94.6 937 84.8 833 741 635 494 821 77.6
CAP 100 100 86.3 863 70.7 63.5 503 825 789

Table 2: Dev set results on SuperGLUE tasks.

2019) benchmark for experiments to evaluate our
method. CB (De Marneffe et al., 2019), RTE (Da-
gan et al., 2005), BoolQ (Clark et al., 2019), WiC
(Pilehvar and Camacho-Collados, 2018), WSC
(Levesque et al., 2012) and MultiRC (Khashabi
etal., 2018) are among the tasks, which contain two
textual entailment tasks (CB, RTE), two question
answering tasks (BoolQ, MultiRC), a co-reference
resolution task (WiC), and a word sense disam-
biguation task (WSC). These NLU tasks are re-
formulated as cloze problems, with prompt tokens
inserted in the intervals between sentencel, label,
and sentence?2 (if it exists).

4.1 Experiment Settings

In our experiments, BERT and RoBERTa are
used as MLM representatives and DeBERTaV3
as RTD representative, and the base-scale model
(Layer=12, Hidden Size=768, Attention Head=12)
is used uniformly. Pre-trained language models
we use are from the Hugging Face Transformers
(Wolf et al., 2020) library, and we employ the
AutoModelForSequenceClassification
it provides for fine-tuning as a baseline.
To build CAP, the prompt embeddings for
[P1], [P2], ..., [P,] are generated by prompt en-
coder, and verbalizer embeddings for [V4], ..., [V]
are initialized with verbalizer token embeddings in
pre-trained language model for their corresponding
labels. For MM, the bias of the verbalizer clas-
sifier is also initialized with the bias of the MLM
classifier head of the pre-trained language model in
order to be consistent with the pre-training phase.
We choose the AdamW optimizer with a learning

rate that decreases linearly after a warmup period
and train for 3-6 epochs on various task. Specifi-
cally, we set the learning rate from 2e-5, 3e-5, 4e-3,
5e-5 and batch size from 6, 8, 16, 24, 32.3

4.2 Results

The results are presented in Table 2. We can see
that CAP outperforms vanilla fine-tuning on most
tasks. For the average results, CAP outperforms
vanilla fine-tuning by 2.9, 2.1, and 1.3 percent for
BERT, RoBERTa, and DeBERTaV3, respectively.
Besides, CAP also outperforms P-tuning. In par-
ticular, CAP outperforms vanilla fine-tuning more
significantly in tasks such as CB, RTE and BoolQ,
which are easy to construct prompts for. We then
focus our subsequent experiments on these three
tasks.

It can be seen that our method achieves rela-
tively well performance in both the small sample
size task (CB) and the multiple sample task (Mul-
tiRC). But for WSC, a word sense disambiguation
task, our approach does not show any improvement
over vanilla fine-tuning, and we conjecture that
it is difficult to construct prompts that allow pre-
trained language models to understand the purpose
of such difficult tasks. The same is true for WiC,
where there is only a small improvement when
using BERT and RoBERTa, and even a drop in
performance when using DeBERTaV3, so we get a
similar conclusion to Liu et al. (2021c¢), that these
types of more complex tasks are not suitable for

3To reproduce our work better, we pushed the hyperpa-
rameters we used in our experiments to our open-source code
repository.

CB RTE BoolQ

Method
Acc. F1 Acc. Acc.
BERT + FT 946 937 704 77.7
BERT + CAP 98.2 98.7 758 78.1
RoBERTa + FT 964 904 856 854
RoBERTa + CAP 100 100 874 86.1
DeBERTaV3 + FT 94.7 89.0 884 87.5
DeBERTaV3 + CAP 100 100 88.8 88.2

Table 3: Best results on SuperGLUE tasks based on
large-scaled model, where BERT + FT results are from
(Wang et al., 2019), FT refers to vanilla fine-tuning.

CB RTE BoolQ
Method

Acc. F1 Acc. Acc.
Vanilla Fine-tuning 89.3 89.0 70.0 75.2
WARP;,,i 91.1 89.2 70.8 76.6
P-tuning + CV 929 947 69.0 75.6
CAP 100 100 73.6 76.2
+ anchor token 929 923 682 75.0
- CA (i.e. NUP) 929 90.5 69.0 752
- GDES (i.e. NES) 98.2 964 71.1 76.0

Table 4: Dev set results (BERT-base) on SuperGLUE
tasks, where WARP;,,;; differs from the original paper
and trains the entire model, CV refers to continuous
verbalizer. - CA denotes CAP without contextualized
awareness, i.e. no unique prompt (NUP). GDES means
Gradient-Disentangled Embedding Sharing, while NES
is No Embedding Sharing.

current prompt-based learning.

In addition, we also do experiments based on
large-scale models (Layer=24, Hidden Size=1024,
Attention Head=16). Analogous results based on
the large-scale models are shown in Table 3.

Furthermore, we compare existing methods
based on prompts. To be fair, BERT is applied
as the base pre-training model, and the same pat-
tern and verbalizers are used. As shown in Table
4, our method has certain advantages over existing
methods.

4.3 Ablation Experiments

To further analyze CAP, a series of ablation experi-
ments are carried out to investigate which part plays
a crucial role. Specifically, we evaluate CAP with
or without anchor tokens, contextualized awareness
and the GDES method.

CAP
Fine-tuning

0.00048
0.00045
0.00042

0.00039

0.00036
1 2 3 4 5 6 7 8 9

Layer

10 11 12

Figure 4: Parameter changes of pre-trained language
model (BERT-base) for different layers after fitting
downstream task (RTE).

Several conclusions can be drawn from the ex-
periment results in Table 4. First, as predicted by
our earlier supposition, the automatic learning of
the prompt token using CAP surpasses the addition
of the anchor token. Second, prompt combines
contextual information and decouples the CAP’s
contextualized embeddings from the original pre-
trained language model word embeddings gradient
is effective. Third, creating unique prompts with
contextualized awareness plays a key role, with the
GDES (Gradient-Disentangled Embedding Shar-
ing) method serving as the icing on the cake.

5 Discussion

The experiment results show that CAP outperforms
vanilla fine-tuning in the experimental NLU task.
Vanilla fine-tuning is an approach similar to or
rather a transfer learning, the inputs are passed
through a pre-trained language model (which can
be thought of as feature extraction), are then fed
into an added linear output layer to predict.

The prompt-based learning approach, on the
other hand, employs a pre-trained language model
that is more closely aligned with the pre-training
process’s training objectives. As shown in Fig-
ure 4, fitting the same downstream task with CAP
changes the parameters less than vanilla fine-tuning.
It’s not unexpected that CAP achieves better perfor-
mance than vanilla fine-tuning because we believe
the less the pre-trained luaguage model changes,
the more it keeps its learnt knowledge. Besides,
just as adding a task description such as "Please
classify the sentiment of the following sentences"
provides a clear grasp of the job’s objective, while
it is not evident what one needs to do when given

a pile of text and must guess at the assignment’s
intention.

Although prompt-based learning is hard to adapt
to all tasks at the moment, it makes sense to explore
in the prompt-based learning direction when using
pre-trained language models for downstream tasks
with "not only fine-tuning" in mind.

6 Conclusion

In this paper, we propose a new method, Context-
Aware Prompt (CAP), as an alternative to fine-
tuning using pre-trained language models. Specifi-
cally, CAP constructs a unique continuous prompt
for each diverse input by combining contextual
information. Experiment results show that our
method can make better and full use of pre-trained
language models, thus outperforms vanilla fine-
tuning and existing methods for most tasks on the
SuperGLUE benchmark. In addition, we further
extend to the RTD-based prompts usage scheme,
making it possible to use prompt-based learning as
a method for the majority of existing pre-trained
language models.

References

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. 2019.
A convergence theory for deep learning via over-
parameterization. In International Conference on
Machine Learning, pages 242-252. PMLR.

Christopher Clark, Kenton Lee, Ming-Wei Chang,
Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. 2019. Boolq: Exploring the surprising
difficulty of natural yes/no questions. In North Amer-
ican Chapter of the Association for Computational
Linguistics.

Kevin Clark, Minh-Thang Luong, Quoc V. Le, and
Christopher D. Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than generators.
In International Conference on Learning Representa-
tions.

Ido Dagan, Oren Glickman, and Bernardo Magnini.
2005. The pascal recognising textual entailment chal-
lenge. In Machine Learning Challenges Workshop,
pages 177-190. Springer.

Marie-Catherine De Marneffe, Mandy Simons, and Ju-
dith Tonhauser. 2019. The commitmentbank: Inves-
tigating projection in naturally occurring discourse.
In proceedings of Sinn und Bedeutung, volume 23,
pages 107-124.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep

bidirectional transformers for language understand-
ing. In North American Chapter of the Association
for Computational Linguistics.

Tianyu Gao, Adam Fisch, and Dangi Chen. 2021.
Making pre-trained language models better few-shot
learners. In Meeting of the Association for Computa-
tional Linguistics.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative
adversarial nets. Advances in neural information
processing systems, 27.

Alex Graves, Abdel-rahman Mohamed, and Geoffrey
Hinton. 2013. Speech recognition with deep recur-
rent neural networks. In 2013 IEEE international

conference on acoustics, speech and signal process-
ing, pages 6645-6649. Ieee.

Karen Hambardzumyan, Hrant Khachatrian, and
Jonathan May. 2021. Warp: Word-level adversar-
ial reprogramming. In Meeting of the Association for
Computational Linguistics.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun. 2016. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 770—
778.

Pengcheng He, Jianfeng Gao, and Weizhu Chen. 2021a.
Debertav3: Improving deberta using electra-style pre-
training with gradient-disentangled embedding shar-
ing. arXiv preprint arXiv:2111.09543.

Pengcheng He, Xiaodong Liu, Jianfeng Gao, and
Weizhu Chen. 2021b. Deberta: Decoding-enhanced
bert with disentangled attention. In International
Conference on Learning Representations.

Neil Houlsby, Andrei Giurgiu, Stanistaw Jastrzgbski,
Bruna Halila Morrone, Quentin de Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly.
2019. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning.

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham
Neubig. 2020. How can we know what language
models know? Transactions of the Association for
Computational Linguistics, 8:423-438.

Daniel Khashabi, Snigdha Chaturvedi, Michael Roth,
Shyam Upadhyay, and Dan Roth. 2018. Looking
beyond the surface: A challenge set for reading com-
prehension over multiple sentences. In Proceedings
of the 2018 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long Pa-
pers), pages 252-262.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2020. Albert: A lite bert for self-supervised learning
of language representations. In International Confer-
ence on Learning Representations.

Brian Lester, Rami Al-Rfou, and Noah Constant. 2021.
The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691.

Hector Levesque, Ernest Davis, and Leora Morgenstern.
2012. The winograd schema challenge. In Thir-
teenth International Conference on the Principles of
Knowledge Representation and Reasoning.

Xiang Lisa Li and Percy Liang. 2021. Prefix-tuning:
Optimizing continuous prompts for generation. In
Meeting of the Association for Computational Lin-
guistics.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang,
Hiroaki Hayashi, and Graham Neubig. 2021a. Pre-
train, prompt, and predict: A systematic survey of
prompting methods in natural language processing.
arXiv preprint arXiv:2107.13586.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Zhengxiao Du,
Zhilin Yang, and Jie Tang. 2021b. P-tuning v2:
Prompt tuning can be comparable to fine-tuning
universally across scales and tasks. arXiv preprint
arXiv:2110.07602.

Xiao Liu, Yanan Zheng, Zhengxiao Du, Ming Ding,
Yujie Qian, Zhilin Yang, and Jie Tang. 2021c. Gpt
understands, too. arXiv preprint arXiv:2103.10385.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqgi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Matthew E. Peters, Mark Neumann, Mohit lyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word repre-
sentations. In North American Chapter of the Associ-
ation for Computational Linguistics.

Mohammad Taher Pilehvar and José Camacho-Collados.
2018. Wic: 10,000 example pairs for eval-
uating context-sensitive representations. CoRR,
abs/1808.09121.

Alec Radford, Karthik Narasimhan, Tim Salimans, and
Ilya Sutskever. 2018. Improving language under-
standing by generative pre-training.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. 2019. Language
models are unsupervised multitask learners. OpenAl
blog, 1(8):9.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J. Liu. 2020. Exploring the limits
of transfer learning with a unified text-to-text trans-

former. Journal of Machine Learning Research,21:1—
67.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Empirical Meth-
ods in Natural Language Processing.

Erik F. Tjong Kim Sang and Fien De Meulder. 2003.
Introduction to the conll-2003 shared task: language-
independent named entity recognition. In North
American Chapter of the Association for Computa-
tional Linguistics.

Timo Schick and Hinrich Schiitze. 2021. Exploiting
cloze-questions for few-shot text classification and
natural language inference. In Conference of the Eu-
ropean Chapter of the Association for Computational
Linguistics.

Taylor Shin, Yasaman Razeghi, Robert L. Logan, Eric
Wallace, and Sameer Singh. 2020. Autoprompt: Elic-
iting knowledge from language models with automat-
ically generated prompts. In Empirical Methods in
Natural Language Processing.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng, and
Christopher Potts. 2013. Recursive deep models for
semantic compositionality over a sentiment treebank.
In Proceedings of the 2013 conference on empiri-
cal methods in natural language processing, pages
1631-1642.

Chi Sun, Xipeng Qiu, Yige Xu, and Xuanjing Huang.
2019. How to fine-tune bert for text classification?
In China National Conference on Chinese Computa-
tional Linguistics, pages 194-206. Springer.

Yi Sun, Yu Zheng, Chao Hao, and Hangping Qiu. 2021.
Nsp-bert: A prompt-based zero-shot learner through
an original pre-training task—next sentence prediction.
arXiv preprint arXiv:2109.03564.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R. Bowman. 2019. Superglue: A stick-
ier benchmark for general-purpose language under-
standing systems. In Neural Information Processing
Systems.

Thomas Wolf, Julien Chaumond, Lysandre Debut, Vic-
tor Sanh, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Morgan Funtowicz, Joe Davison, Sam
Shleifer, et al. 2020. Transformers: State-of-the-
art natural language processing. In Proceedings of
the 2020 Conference on Empirical Methods in Nat-
ural Language Processing: System Demonstrations,
pages 38-45.

Zexuan Zhong, Dan Friedman, and Dangi Chen. 2021.
Factual probing is [mask]: Learning vs. learning to
recall. arXiv preprint arXiv:2104.05240.

