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Abstract

In this work, we consider a distributed multi-agent stochastic optimization problem, where
each agent holds a local objective function that is smooth and strongly convex and that is
subject to a stochastic process. The goal is for all agents to collaborate to find a common
solution that optimizes the sum of these local functions. With the practical assumption
that agents can only obtain noisy numerical function queries at precisely one point at a
time, we consider an extention of a standard consensus-based distributed stochastic gradient
(DSG) method to the bandit setting where we do not have access to the gradient, and we
introduce a zero-order (ZO) one-point estimate (1P-DSG). We analyze the convergence of
this techniques using stochastic approximation tools, and we prove that it converges almost
surely to the optimum despite the biasedness of our gradient estimate. We then study the
convergence rate of our method. With constant step sizes, our method competes with its
first-order (FO) counterparts by achieving a linear rate O(%k) as a function of number of
iterations k. To the best of our knowledge, this is the first work that proves this rate in
the noisy estimation setting or with one-point estimators. With vanishing step sizes, we
establish a rate of O( 1√

k
) after a sufficient number of iterations k > K0. This rate matches

the lower bound of centralized techniques utilizing one-point estimators. We then provide
a regret bound of O(

√
k) with vanishing step sizes. We further illustrate the usefulness of

the proposed technique using numerical experiments.

1 Introduction

Gradient-free optimization is an old topic in the research community; however, there has been an increased
interest recently, especially in machine learning applications, where optimization problems are typically
solved with gradient descent algorithms. Successful applications of gradient-free methods in machine learning
include competing with an adversary in bandit problems (Flaxman et al., 2004; Agarwal et al., 2010),
generating adversarial attacks for deep learning models (Chen et al., 2019; Liu et al., 2019) and reinforcement
learning (Vemula et al., 2019). Gradient-free optimization aims to solve optimization problems with only
functional ZO information rather than FO gradient information. These techniques are essential in settings
where explicit gradient computation may be impractical, expensive, or impossible. Instances of such settings
include high data dimensionality, time or resource straining function differentiation, or the cost function not
having a closed-form. ZO information-based methods include direct search methods (Golovin et al., 2019),
1-point methods (Flaxman et al., 2004; Bach & Perchet, 2016; Vemula et al., 2019; Li & Assaad, 2021) where
a function f(·, S) : Rd → R is evaluated at a single point with some randomization to estimate the gradient
as such

g(1)
γ,z(x, S) = d

γ
f(x+ γz, S)z, (1)
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with x the optimization variable, γ > 0 a small value, and z a random vector following a symmetrical
distribution. ZO also includes 2- or more point methods (Duchi et al., 2015; Nesterov & Spokoiny, 2017;
Gorbunov et al., 2018; Bach & Perchet, 2016; Hajinezhad et al., 2019; Kumar Sahu et al., 2018; Agarwal
et al., 2010; Chen et al., 2019; Liu et al., 2019; Vemula et al., 2019), where functional difference at various
points is employed for estimation, generally having the respective structures

g(2)
γ,z(x, S) = d

f(x+ γz, S)− f(x− γz, S)
2γ z (2)

and g(2d)
γ (x, S) =

d∑
j=1

f(x+ γej , S)− f(x− γej , S)
2γ ej (3)

where {ej}j=1,...,d is the canonical basis, and other methods such as sign information of gradient estimates
(Liu et al., 2019).

Another area of great interest is distributed multi-agent optimization, where agents try to cooperatively
solve a problem with information exchange only limited to immediate neighbors in the network. Distributed
computing and data storing are particularly essential in fields such as vehicular communications and coordi-
nation, data processing and distributed control in sensor networks (Shi & Eryilmaz, 2020), big-data analytics
(Daneshmand et al., 2015), and federated learning (McMahan et al., 2017). More specifically, one direction
of research integrates (sub)gradient-based methods with a consensus/averaging strategy; the local agent
incorporates one or multiple consensus steps alongside evaluating the local gradient during optimization.
Hence, these algorithms can tackle a fundamental challenge: overcoming differences between agents’ local
data distributions.

1.1 Problem Description

Consider a set of agents N = {1, 2, . . . , n} connected by a communication network. Each agent i is associated
with a local objective function fi(·, S) : K → R, where K ⊂ Rd is a convex feasible set. The global goal
of the agents is to collaboratively locate the decision variable x ∈ K that solves the stochastic optimization
problem:

min
x∈K
F(x) = 1

n

n∑
i=1

Fi(x) (4)

where
Fi(x) = ESfi(x, S),

with S ∈ S denoting an i.i.d. ergodic stochastic process describing uncertainties in the communication
system.

We assume that at each time step, agent i can only query the function values of fi at exactly one point, and
can only communicate with its neighbors. Further, we assume that the function queries are noisy f̃i = fi+ζi
with ζi some additive noise. Agent i must then employ this query to estimate the gradient of the form
gi(x, Si).

1.2 Function Classes and Gradient Estimate Assumptions

Consider the following five classes of functions:

• The convex class Ccvx containing all functions f : Rd → R that are convex.

• The strongly convex class Csc containing all functions f : Rd → R that are continuously differentiable
and admit a constant λf such that

〈∇f(x)−∇f(y), x− y〉 ≥ λf‖x− y‖2, ∀x, y ∈ Rd.
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• The Lipschitz continuous class Clip containing all functions f : Rd → R that admit a constant Lf
such that

|f(x)− f(y)| ≤ Lf‖x− y‖, ∀x, y ∈ Rd.

• The smooth class Csmo containing all functions f : Rd → R that are continuously differentiable and
admit a constant Gf such that

‖∇f(x)−∇f(y)‖ ≤ Gf‖x− y‖, ∀x, y ∈ Rd.

• The gradient dominated class Cgd containing all functions f : Rd → R that are differentiable, have
a global minimizer x∗, and admit a constant νf such that

2νf (f(x)− f(x∗)) ≤ ‖∇f(x)‖2, ∀x ∈ Rd.

This gradient domination property can be viewed as a nonconvex analogy of strong convexity.

In addition, consider the following assumptions on the gradient estimate:

• A gradient estimate g is said to be unbiased w.r.t. the true gradient ∇f if for all x ∈ Rd and
independent S ∈ S, it satisfies the following equality

ES [g(x, S)|x] = ∇f(x).

• Otherwise, it is said to be biased and satisfies

ES [g(x, S)|x] = ∇f(x) + b(x),

with b(x) some bias term.

• A gradient estimate g is said to have bounded variance when for all x ∈ Rd and independent S ∈ S,

ES [‖g(x, S)−∇f(x)‖2|x] ≤ σ for some σ > 0.

• Otherwise, when this bound is unknown or does not exist, it is said to have unbounded variance.

In general, FO stochastic gradient estimates are unbiased and have bounded variance. ZO estimates, on the
other hand, are biased. While multi-point ZO estimates have bounded or even vanishing variance, one-point
estimates have unbounded variance Liu et al. (2020).

1.3 Related Work

FO Consensus-Based Distributed Methods: The optimal convergence rate for solving problem (4), as-
suming the objective function F is strongly convex with Lipschitz continuous gradients, has been established
as O( 1

k ) under a diminishing step size with full gradient information Pu & Nedić (2018); Nemirovski et al.
(2009). However, when employing a constant step size α > 0 that is sufficiently small, the iterates produced
by a stochastic gradient method converge exponentially fast (in expectation) to an O(α)-neighborhood of
the optimal solution (Pu & Nedić, 2018); this is known as the linear rate O(%k). The literature dedicated to
solving problem (4) is vast. In what follows, we highlight some of the contributions.

Towfic et al. (2016); Tu & Sayed (2012) study distributed stochastic gradient methods where they compare
the adapt-then-combine (ATC) and combine-then-adapt (CTA) strategies, and prove that the ATC strategy
outperforms CTA one in terms of convergence rate, whether with vanishing or with constant step sizes and
that it is more robust against data distribution drifts and network topology. Jakovetic et al. (2018) consider
the CTA strategy with noisy FO gradients over random networks and establish an O( 1

k ) convergence rate
for strongly convex and smooth objectives and vanishing step size. Matei & Baras (2011); Yuan et al. (2016)
also consider random networks and solve problem (4) using a noise-free (sub)gradient instead and achieve a
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ESTIMATE OP FUNCTION
CLASS

STEP
SIZE

REGRET
BOUND

CONVERGENCE
RATE

ZO

One-
point

Centralized Ccvx

⋂
Clip f. O(k 3

4 ) O( 1
4√

k
) Flaxman et al. (2004)

Centralized Csc

⋂
Clip

⋂
Csmo v. O(

√
k) O( 1√

k
) Bach & Perchet (2016)

Distributed Csc

⋂
Csmo v. O(

√
k) O( 1√

k
) 1P-DSG

Distributed Csc

⋂
Csmo f. - O(%k) 1P-DSG

Two-
point

Centralized Ccvx

⋂
Clip v. O(

√
k) O( 1√

k
) Agarwal et al. (2010)

Centralized Csc

⋂
Clip v. O(log k) O( log k

k
)Agarwal et al. (2010)

Distributed Clip

⋂
Csmo v. - O( 1√

k
log k) Tang et al. (2021)

Distributed Csmo

⋂
Cgd v. - O( 1

k
) Tang et al. (2021)

2d-
point

Distributed Csmo f. - O( 1
k

) Tang et al. (2021)
Distributed Csmo

⋂
Cgd f. - O(%k) Tang et al. (2021)

Distributed Csc

⋂
Csmo v. - O( 1√

k
) Kumar Sahu et al. (2018)

FO Unbiased
/BV

Distributed Csc

⋂
Csmo f. - O(%k) Matei & Baras (2011);

Yuan et al. (2016); Pu & Nedić (2018)
Distributed Csc

⋂
Csmo v. - O( 1

k
) Jakovetic et al. (2018);

Pu & Nedić (2018)

Table 1: Convergence rates for various algorithms related to our work, classified according to the nature of
the gradient estimate, whether the optimization problem (OP) is centralized or distributed, the assumptions
on the objective function, whether the step size is fixed (f.) or varying (v.), and the achieved regret bound
and convergence rate

linear rate to a neighborhood of the optimum with constant step sizes. Nedić & Olshevsky (2016) consider
time-varying and directed networks and present a subgradient-push method based on noisy FO gradients
that achieves an O( ln k

k ) rate under the same assumptions on the objective function and vanishing step size.
Both the works of Shi et al. (2015) and Qu & Li (2018) consider a static version of the objective function and
propose methods that employ history information of the gradient. They both obtain a rate of O( 1

k ) for general
convex and smooth objectives with constant step sizes. Under the further strong convexity assumption, the
static nature of the objective allows them to establish a linear convergence rate to the exact solution instead
of a neighborhood of it. Qu & Li (2018) inspire the vast literature on gradient tracking extended to the
stochastic setting (Pu & Nedić, 2018; Pu, 2020; Xin et al., 2019) that utilizes local auxiliary variables to
track the average of all agents’ gradients, the linear rate, however, is established to a neighborhood of the
optimum.

ZO Centralized Methods: ZO methods are known to have worse convergence rates than their FO coun-
terparts under the same conditions. For example, under a convex centralized setting, Flaxman et al. (2004)
prove a regret bound of O(k 3

4 ) (or equivalently a rate of O( 1
4√
k

)) with a one-point estimator for Lipschitz
continuous functions. For strongly convex and smooth objective functions, Hazan & Levy (2014) and Ito
(2020) improve upon this result by proving a regret of O(

√
k log k) and Bach & Perchet (2016) that of O(

√
k).

In the work of Agarwal et al. (2010), when the number of points is two, they prove regret bounds of Õ(
√
k)

with high probability and of O(log(k)) in expectation for strongly convex loss functions. When the number
is d+ 1 point, they prove regret bounds of O(

√
k) and of O(log(k)) with strong convexity. The reason why

the performance improves with the addition of number of points in the estimate, is that their variance can be
bounded, unlike one-point estimates whose variance cannot be bounded (Liu et al., 2020). However, when
the function queries are subjected to noise, multi-point estimates start behaving like one-point ones. In noisy
function queries (centralized) scenario, it has been proven that gradient-free methods cannot achieve a better
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convergence rate than Ω( 1√
k

) which is the lower bound derived by Duchi et al. (2015); Jamieson et al. (2012);
Shamir (2013) for strongly convex and smooth objective functions. In the work of Bubeck et al. (2021), a
kernelized loss estimator is proposed where a generalization of Bernoulli convolutions is adopted, and an
annealing schedule for exponential weights is used to control the estimator’s variance in a focus region for
dimensions higher than 1. Their method achieves a regret bound of O(

√
k).

ZO Consensus-Based Distributed Methods: In distributed settings, Tang et al. (2021) develop two
algorithms for a noise-free nonconvex multi-agent optimization problem aiming at consensus. One of them
is gradient-tracking based on a 2d-point estimator of the gradient with vanishing variance that achieves a
rate of O( 1

k ) with smoothness assumptions and a linear rate for an extra ν-gradient dominated objective
assumption and for fixed step sizes. The other is based on a 2-point estimator following an ATC strategy
instead of gradient tracking and achieves a rate of O( 1√

k
log k) under Lipschitz continuity and smoothness

conditions and O( 1
k ) under an extra gradient dominated function structure. In the nonconvex setting, a

gradient-tracking method is also proposed, but with a one-point estimator (Mhanna & Assaad, 2023) where a
convergence rate of O( 1

3√
k

) is established with Lipschitz continuous and smooth functions. Kumar Sahu et al.
(2018) propose a standard CTA method where they consider a 2d-point estimate with noisy function queries
over random networks. Under smoothness and strong convexity, they establish an O( 1√

k
) convergence rate

with vanishing step sizes. Wan et al. (2020; 2022) propose a projection-free method with one-point gradient
estimate where a linear optimization step is performed instead of projection. They prove a regret bound of
O(k 3

4 ) for convex losses and an improved regret of O(k 2
3 (log k) 1

3 ) for strongly convex ones.

We highlight some of the mentioned convergence rates from the literature in Table 1.

1.4 Contributions

While consensus-based distributed methods have been extended to the ZO case (Tang et al., 2021; Ku-
mar Sahu et al., 2018), their approach relies on a multi-point gradient estimator and in the case of Mhanna
& Assaad (2023); Wan et al. (2020; 2022), the rates established for one-point estimates are slow. The multi-
point estimation technique assumes the ability to observe multiple instances of the objective function under
identical system conditions, i.e., many function queries are done for the same realization of S in (2) and (3).
However, this assumption needs to be revised in applications such as mobile edge computing (Mao et al.,
2017; Chen et al., 2021; Zhou et al., 2022) where computational tasks from mobile users are offloaded to
servers within the cellular network. Thus, queries requested from the servers by the users are subject to
the wireless environment and are corrupted by noise not necessarily additive. Other applications include
sensor selection for an accurate parameter estimation (Liu et al., 2018) where the observation of each sensor
is continuously changing. Thus, in such scenarios, one-point estimates offer a vital alternative to solving
online optimization/learning problems. Yet, one-point estimators are not generally used because of their
slow convergence rate. The main reason is due to their unbounded variance. To avoid this unbounded
variance, in this work, we don’t use the estimate given in (1), we extend the one point approach in Li &
Assaad (2021)’s work where the action of the agent is a scalar and different agents have different variables,
to our consensual problem with vector variables. The difference is that in our gradient estimate, we don’t
divide by γ. This brings additional challenges in proving that our algorithm converges and a consensus can
be achieved by all agents. And even with bounded variance, there’s still a difficulty achieving good (linear)
convergence rates with two-point estimates due to the constant upper bound of the variance (Tang et al.,
2021). Here, despite this constant bound, we were able to go beyond two-point estimates to achieve a linear
rate. Moreover, while it requires 2d points with the gradient tracking method to achieve a linear rate in Tang
et al. (2021)’s work, which is twice the dimension of the gradient itself, here we only need one scalar point
or query. This is much more computationally efficient. We further replace the gradient tracking method by
a standard ATC strategy which is more communication efficient as it requires the sharing of only one vector
instead of two.

We summarize our contribution in the following points,

• We consider smooth and strongly convex local objectives, and we consider the distributed stochastic
gradient method in the case where we do not have access to the gradient in the noisy setting. Under
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the realistic assumption that the agent only has access to a single noisy function value at each
time without necessarily knowing the form of this function, we propose a one-point estimator in a
stochastic framework.

• Naturally, one-point estimators are biased with respect to the true gradient and suffer from high
variance (Liu et al., 2020); Despite this, in this work, we analyze and indeed prove the algorithm’s
convergence almost surely with a biased estimate. This convergence is stronger than expected
convergence analysis usually established for ZO optimization. We also consider that a stochastic
process influences the objective function from one iteration to the other, which provides a practical
modeling for real-world scenarios that involve various sources of stochasticity, not necessarily additive
noise.

• We then study the convergence rate and we demonstrate that with fixed step sizes, the algorithm
achieves a linear convergence rate O(%k) to a neighborhood of the optimal solution, marking the
first instance where this rate is attained in ZO optimization with one-point/two-point estimates and
in a noisy query setting, to the best of our knowledge. This linear rate competes with FO methods
and even centralized algorithms in terms of convergence speed (Pu & Nedić, 2018).

• When the step-sizes are vanishing, we prove that a rate of O( 1√
k

) is attainable to converge to an exact
solution after a sufficient number of iterations k > K0. This rate satisfies the lower bounds achieved
by its centralized counterparts in the same derivative-free setting (Duchi et al., 2015; Jamieson et al.,
2012; Shamir, 2013).

• We then show that a regret bound of O(
√
k) is achieved for this algorithm.

• Finally, we support our theoretical claims by providing numerical evidence and comparing the algo-
rithm’s performance to its FO and centralized counterparts.

The rest of this paper is divided as follow. In subsection 1.5, we present the mathematical notation followed
in this paper. In subsection 1.6, we present the main assumptions of our optimization problem. We then
describe our gradient estimate followed by the proposed algorithm in subsection 2.1. We then prove the
almost sure convergence of our algorithm in subsection 3.1 and study its rate in subsection 3.2 with varying
step sizes. In subsection 3.3, we find its regret bound. And in subsection 3.4, we consider the case of fixed
step sizes, study the convergence of our algorithm and its rate. Finally, in section 4, we provide numerical
evidence and conclude the paper in section 5.

1.5 Notation

In all that follows, vectors are column-shaped unless defined otherwise and 1 denotes the vector of all entries
equal to 1. For two vectors a, b of the same dimension, 〈a, b〉 is the inner product. For two matrices A,
B ∈ Rn×d, we define

〈A,B〉 =
n∑
i=1
〈Ai, Bi〉

where Ai (respectively, Bi) represents the i-th row of A (respectively, B). This matrix product is the Hilbert-
Schmidt inner product which is written as 〈A,B〉 = tr(ABT). ‖.‖ denotes the 2-norm for vectors and the
Frobenius norm for matrices.

We next let ΠK(·) denote the Euclidean projection of a vector on the set K. We know that this projection
on a closed convex set K is nonexpansive (Kinderlehrer & Stampacchia (2000) - Corollary 2.4), i.e.,

‖ΠK(x)−ΠK(x′)‖ ≤ ‖x− x′‖, ∀x, x′ ∈ Rd. (5)

We assume that each agent i maintains a local copy xi ∈ K of the decision variable and each agent’s local
function is subject to the stochastic variable Si ∈ Rm. At iteration k, the respective values are denoted as
xi,k and Si,k. Bold notations denote the concatenated version of the variables, i.e.,

x := [x1, x2, . . . , xn]T is of dimension n× d and S := [S1, S2, . . . , Sn]T of dimension n×m.
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We then define the mean of the decision variable as x̄ := 1
n1Tx whose dimension is 1× d.

We define the gradient of Fi at the local variable ∇Fi(xi) ∈ Rd and its Hessian matrix ∇2Fi(xi) ∈ Rd×d and
we let

∇F (x) := [∇F1(x1),∇F2(x2), . . . ,∇Fn(xn)]T ∈ Rn×d

and

g := g(x,S) := [g1(x1, S1), g2(x2, S2), . . . , gn(xn, Sn)]T ∈ Rn×d.

We define its mean ḡ := 1
n1Tg ∈ R1×d and we denote each agent’s gradient estimate at time k by gi,k =

gi(xi,k, Si,k).

1.6 Basic Assumptions

In this subsection, we introduce the fundamental assumptions that ensure the performance of the 1P-DSG
algorithm.
Assumption 1.1. (on the graph) The topology of the network is represented by the graph G = (N , E) where
the edges in E ⊆ N ×N represent communication links. A graph G is undirected, i.e., (i, j) ∈ E iff (j, i) ∈ E,
and connected (there exists a path of links between any two agents).

W = [wij ] ∈ Rn×n denotes the agents’ coupling matrix, where agents i and j are connected iff wij = wji > 0
(wij = wji = 0 otherwise). W is a nonnegative matrix and doubly stochastic, i.e., W1 = 1 and 1TW = 1T .
All diagonal elements wii are strictly positive.
Assumption 1.2. (on the objective function) We assume the existence and the continuity of both ∇Fi(x)
and ∇2Fi(x). Let x∗ ∈ K denote the solution of the problem (4) such that F(x∗) = minx∈K F(x). We next
assume that F(x) is λ-strongly convex where

F(y) ≥ F(x) + 〈∇F(x), y − x〉+ λ

2 ‖y − x‖
2, ∀x, y ∈ K.

We further assume the boundedness of the local Hessian where there exists a constant c1 ∈ R+ such that

‖∇2Fi(x)‖2 ≤ c1, ∀x ∈ K,∀i ∈ N ,

where here it suffices to the spectral norm (keeping in mind for a matrix A, ‖A‖2 ≤ ‖A‖F ).
Assumption 1.3. (on the additive noise) ζi,k is a zero-mean uncorrelated noise with bounded variance,
where E(ζi,k) = 0 and E(ζ2

i,k) = c2 <∞, ∀i ∈ N .

Lemma 1.4. (Qu & Li, 2018) Let ρw be the spectral norm of W − 1
n11T . When Assumption 1.1 is satisfied,

we have the following inequality

‖Wω − 1ω̄‖ ≤ ρw‖ω − 1ω̄‖, ∀ω ∈ Rn×d and ω̄ = 1
n

1Tω,

and ρw < 1.
Lemma 1.5. (Pu & Nedić, 2018) Define h(x) := 1

n1T∇F (x) ∈ R1×d. Due to the boundedness of the second
derivative in Assumption 1.2, there exists a scalar L > 0 such that the objective function is L-smooth, and

‖∇F(x̄)− h(x)‖ ≤ L√
n
‖x− 1x̄‖.

Proof: See Appendix A.

2 Distributed Stochastic Gradient Methods

We propose to employ a zero-order one-point estimate of the gradient subject to the stochastic process S
and an additive noise ζ while a stochastic perturbation and a step size are introduced, and we assume that
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each agent can perform this estimation at each iteration. To elaborate, let gi,k denote the aforementioned
gradient estimate for agent i at time k, then we define it as

gi,k = Φi,kf̃i(xi,k + γkΦi,k, Si,k)
= Φi,k(fi(xi,k + γkΦi,k, Si,k) + ζi,k),

(6)

where γk > 0 is a vanishing step size and Φi,k ∈ Rd is a perturbation randomly and independently generated
by each agent i. gi,k is in fact a biased estimation of the gradient ∇Fi(xi,k) and the algorithm can converge
under the condition that all parameters are properly chosen. For clarification on the form of this bias and
more on the properties of this estimate, refer to Appendix B.

2.1 The 1P-DSG Algorithm

We consider a zero-order distributed stochastic gradient algorithm aiming for consensus with a one-point
estimate. We denote it as 1P-DSG employing the gradient estimate gi,k in (6). Every agent i initializes its
variables with an arbitrary valued vector xi,0 ∈ K and computes gi,0 at that variable. Then, at each time
k ∈ N, agent i updates its variables independently according to the following steps:

zi,k+1 =
n∑
j=1

wij(xj,k − αkgj,k)

xi,k+1 = ΠK(zi,k+1)
perform the action: xi,k+1 + γk+1Φi,k+1

(7)

where αk > 0 is a step size. Algorithm (7) can then be written in the following compact matrix form for
clarity of analysis:

zk+1 = W (xk − αkgk)
xk+1 = [x1,k+1, x2,k+1, . . . , xn,k+1]T

perform the action: xk+1 + γk+1Φk+1

(8)

where Φk ∈ Rn×d is defined as Φk = [Φ1,k,Φ2,k, . . . ,Φn,k]T .

As is evident from the update of the variables, the exchange between agents is limited to neighboring nodes,
and it encompasses the value xk − αkgk or the local gradient descent step.

We remark the effect of the gradient estimate variance on the convergence by carefully examining the steps
in (8). Naturally, when the estimates have a large variance, the estimated gradients can vary widely from
one sample to another. This means that the norm of xk+1, which is directly affected by this variance,
may also grow considerably. Thus, it may then take longer to converge to the optimal solution because it
cannot reliably discern the direction of the steepest descent. In the worst case, the huge variance causes
instability as the optimizer may oscillate around the optimum or even diverge if the variance is too high,
making converging to a satisfactory solution difficult. In this work, we use the fact that the local functions
and the noise variance are bounded to prove that the variance of gradient estimate presented in (6) is indeed
bounded. This boundedness, alongside the properties of the matrix W in Assumption 1.1, allows us to find
then an upper bound on the variation of xk+1 with respect to its mean and the variation of this mean with
respect to the optimizer at every iteration and analyze the convergence of both.

We then consider the following assumptions for the subsequent convergence analysis. We must note that the
first assumption is only taken into account when we study the algorithm’s behavior with varying step sizes,
otherwise it is dropped.
Assumption 2.1. (on the step-sizes) Both αk and γk vanish to 0 as k →∞, and satisfy the the following
sums

∞∑
k=1

αkγk =∞,
∞∑
k=1

α2
k <∞, and

∞∑
k=1

αkγ
2
k <∞.
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Assumption 2.2. (on the random perturbation) Let Φi,k = (φ1
i,k, φ

2
i,k, . . . , φ

d
i,k)T .

Each agent i chooses its Φi,k vector independently from other agents j 6= i. In addition, the elements of Φi,k
are assumed i.i.d with E(φd1

i,kφ
d2
i,k) = 0 for d1 6= d2 and there exists c3 > 0 such that E(φdji,k)2 = c3, ∀dj, ∀i,

almost surely. We further assume that there exists a constant c4 > 0 where ‖Φi,k‖ ≤ c4, ∀i, almost surely.
Example 2.3. One example is to take αk = α0(k + 1)−υ1 and γk = γ0(k + 1)−υ2 with the constants α0,
γ0, υ1, υ2 ∈ R+. As

∑∞
k=1 αkγk diverges for υ1 + υ2 ≤ 1,

∑∞
k=1 α

2
k converges for υ1 > 0.5, and

∑∞
k=1 αkγ

2
k

converges for υ1 + 2υ2 > 1, we can find pairs of υ1 and υ2 so that Assumption 2.1 is satisfied.

To achieve the conditions in Assumption 2.2, we can choose the probability distribution of φdji,k to be the
symmetrical Bernoulli distribution where φdji,k ∈ {−

1√
d
, 1√

d
} with P(φdji,k = − 1√

d
) = P(φdji,k = 1√

d
) = 0.5, ∀dj,

∀i.
Assumption 2.4. (on the local functions) K is a compact convex set and all local functions x 7→ fi(x, S)
are bounded on the c4γ0-neighborhood of K, i.e.,

|fi(x, S)| <∞, ∀x ∈ Nc4γ0(K),∀S ∈ Rm,∀i ∈ N ,

where Nc4γ0(K) = {x ∈ Rd| infa∈K ‖x− a‖ < c4γ0} is the c4γ0-neighborhood of K.

3 The 1P-DSG Algorithm

In this section, we analyze Algorithm 1P-DSG presented in (7) and (8).

3.1 Convergence Results

The goal of this part is to analyze the asymptotic behavior of Algorithm (8). We start the analysis by defining
Hk as the history sequence {x0, y0, S0, . . . , xk−1, yk−1, Sk−1, xk} and denoting by E[.|Hk] as the conditional
expectation given Hk.

We define g̃k to be the expected value of ḡk with respect to all the stochastic terms S,Φ, ζ given Hk, i.e.,

g̃k = ES,Φ,ζ [ḡk|Hk].

In what follows, we use g̃k = E[ḡk|Hk] for shorthand notation.

We define the error ek to be the difference between the value of a single realization of ḡk and its conditional
expectation g̃k, i.e.,

ek = ḡk − g̃k,
where ek can be seen as a stochastic noise. The following lemma describing the vanishing of the stochastic
noise is essential for our main result.
Lemma 3.1. If all Assumptions 1.2, 1.3, 2.1, 2.2, and 2.4 hold, then for any constant ν > 0, we have

P( lim
K→∞

sup
K′≥K

‖
K′∑
k=K

αkek‖ ≥ ν) = 0, ∀ν > 0.

Proof: See Appendix C.

For any integer k ≥ 0, we define the divergence, or the error between the average action taken by the agents
x̄k and the optimal solution x∗ within K as

dk = ‖x̄k − x∗‖2. (9)

The following theorem describes the main convergence result.
Theorem 3.2. If all Assumptions 1.1-1.3, 2.1-2.2, and 2.4 hold, then as k → ∞, dk → 0, x̄k → x∗, and
xi,k → x̄k, for all i ∈ N , almost surely by applying the Algorithm.

Proof: See Appendix D.
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3.2 Convergence Rate with Vanishing Step Sizes

This part deals with how fast the expected divergence vanishes to find the proposed algorithm’s expected
convergence rate. To do so, we define the expected divergence as

Dk = E[‖x̄k − x∗‖2].

The goal is to bound this divergence from above by sequences whose convergence rate is known. The analysis
is highly associated with the parameters αk and γk that play a significant role in determining this upper
bound. Hence, in what follows, the analysis starts with a general form of αk and γk, then a particular case
is considered.

3.2.1 General Form of αk and γk

We first study the rate of convergence of the consensus error by introducing the following lemma.
Lemma 3.3. Let Assumptions 1.1-1.3, 2.1-2.2, and 2.4 hold. Define

K1 = arg min
α2
k+1
α2
k

>
1+ρ2

w
2

k.

Then, for k ≥ K1, there exist 0 < ϑ1, ϑ2 <∞, such that

‖xk − 1x̄k‖2 < ϑ2
1α

2
k and ‖zk+1 − 1x̄k‖2 ≤ ϑ2

2α
2
k. (10)

Proof: Refer to Appendix D.3.

Our main result regarding the convergence rate is summarized in the following theorem.
Theorem 3.4. Let Assumptions 1.1-1.3, 2.1-2.2, and 2.4 hold. We then define the constants A = λc3

2 ,
B = 4c3L

2ϑ2
1

λn , C = c2
1c

6
4

c3λ
, E = ϑ2

n ,

K2 = arg min
Aαkγk<1

k, and K0 = max{K1,K2}.

We finally define the following parameters:

κk =
1−(

γk+1
γk

)2

αkγk
, σ1 = max

k≥K0
κk, σ2 = max

k≥K0

α2
k

γ2
k

, σ3 = max
k≥K0

αk
γ3
k

,

τk =
1−

αk+1γ
−1
k+1

αkγ
−1
k

αkγk
, σ4 = max

k≥K0
τk, σ5 = max

k≥K0
αkγk, σ6 = max

k≥K0

γ3
k

αk
.

(11)

If κk < A for any k ≥ K0, then
Dk ≤ ς1γ2

k, ∀k ≥ K0, (12)

with

ς1 ≥ max
{
DK0

γ2
K0

,
Bσ2 + Eσ3 + C

A− σ1

}
. (13)

If τk < A for any k ≥ K0, then
Dk ≤ ς2

αk
γk
, ∀k ≥ K0, (14)

with

ς2 ≥ max
{
DK0γK0

αK0

,
Bσ5 + Cσ6 + E

A− σ4

}
. (15)

Proof: See Appendix E.1.
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3.2.2 A Special Case of αk and γk

We now consider the special case mentioned in Example 2.3:

αk = α0(k + 1)−υ1 and γk = γ0(k + 1)−υ2 , (16)

where 0.5 < υ1 < 1, 0 < υ2 ≤ 1− υ1, and υ1 + 2υ2 > 1.
Theorem 3.5. Let αk and γk have the forms given in (16) and consider the same assumptions of Theorem
3.4. If α0γ0 ≥ max{2υ2, υ1 − υ2}/A, then we can say that there exists Υ <∞, where

Dk ≤ Υ(k + 1)−min{2υ2,υ1−υ2}, ∀k ≥ K0.

Proof: See Appendix E.4.

The parameters clearly affect the upper bound of the convergence rate or rate of expected divergence decay
in Theorem 3.5. As it is evident that

max{2υ2, υ1 − υ2} ≤ 0.5,

the best choice is when equality holds for υ1 = 0.75 and υ2 = 0.25. With the sufficient condition on the
parameters in Theorem 3.5, we can finally state that our algorithm converges with a rate of O( 1√

k
) after a

sufficient number of iterations k > K0 when the step sizes are vanishing.

3.3 Regret Bound

To further examine the performance of our algorithm, we present the following theorem on the achieved
regret bound.
Theorem 3.6. Let the assumptions of Theorem 3.4 hold. When αk and γk have the forms of (16) with
υ1 = 0.75 and υ2 = 0.25, the regret bound is given by

E
[

1
n

K∑
k=1

n∑
i=1

Fi(xi,k)− Fi(x∗)
]
≤ O(

√
K).

Proof: See Appendix F.

3.4 Convergence Rate with Constant Step Sizes

In this subsection, we fix the step sizes to αk = α > 0 and γk = γ > 0, ∀k ≥ 0, and we assume them
to be two arbitrarily small values. We also define the following terms, A = λc3

2 , B = 4c3L
2

λn , C = c2
1c

6
4

c3λ
,

and R = ‖x0 − 1x̄0‖2. We let M denote the upper bound on ‖ḡk‖2. We then let G1 = 2nM(1+ρ2
w)

(1−ρ2
w)2 and

G2 = nM

((
1+ρ2

w

1−ρ2
w

)2
+ 1+ρ2

w

1−ρ2
w

)
. We finally define %1 = 1−Aαγ and %2 = 1+ρ2

w

2 .

Theorem 3.7. Assume αγ < 1
A and α < γ. Let Assumptions 1.1-1.3, 2.2, and 2.4 hold, then

‖xk+1 − 1x̄k+1‖2 ≤ %k+1
2 R+ α2G1 and ‖zk+1 − 1x̄k‖2 ≤ %k+1

2 R+ α2G2. (17)

Meaning, ‖xk+1 − 1x̄k+1‖2 converges with the linear rate of O
(
%k2
)
for an arbitrary small α almost surely.

Further,

• When %1 ≤ %2,

Dk+1 ≤%k+1
1 D0 + %k+1

2

2R
(
Bαγ + %2

n

)
2Aαγ + ρ2

w − 1 + α2BG1

A
+ α

γ

G2

nA
+ γ2C

A
. (18)

Then, for arbitrary small step sizes, Dk converges with the linear rate of O
(
%k2
)
.
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• When %1 > %2,

Dk+1 ≤%k+1
1

(
D0 +

2RBαγ + 2R%2
n

1− 2Aαγ − ρ2
w

)
+ α2BG1

A
+ α

γ

G2

nA
+ γ2C

A
. (19)

Then, for arbitrary small step sizes, Dk converges with the linear rate of O
(
%k1
)
.

Proof: See Appendix G.

Taking arbitrarily small values of α, γ satisfying αγ < 1
A and α < γ, and setting % = max{%1, %2}, the

convergence rate becomes O(%k), achieving the same rate as with FO information.

4 Numerical Results

In this section, we provide numerical examples to illustrate the performance of the algorithm 1P-DSG. We
compare it with FO distributed methods aiming to achieve consensus, namely DSGT (Pu & Nedić, 2018)
and EXTRA (Shi et al., 2015), a ZO distributed algorithm denoted 2P-DSG based on the two-point estimate
in (2) (Tang et al., 2021), and a ZO centralized algorithm based on gradient descent (e.g. Flaxman et al.
(2004) and Bach & Perchet (2016)) using another one-point estimate which is presented in (1). We denote
the ZO centralized algorithm by 1P-GD. We also compare with a centralized version of our algorithm where
we use the estimate in (6). For DSGT and EXTRA, we calculate the exact gradient and add white noise to
it to form an unbiased FO estimator and for all the ZO algorithms, we consider that the function queries
are noisy. The network topology is a connected Erdős-Rényi random graph with a probability of 0.05.

We consider a logistic classification problem to classify m images of the two digits, labeled as yij = +1 or
−1 from the MNIST data set (LeCun & Cortes, 2005). Each image, Xij , is a 785-dimensional vector and
is compressed using a lossy autoencoder to become 10-dimensional denoted as X ′ij , i.e., d = 10. The total
images are split equally among the agents such that each agent has mi = m

n images and no access to other
ones for privacy constraints. However, the goal is still to make use of all images and to solve collaboratively

min
θ∈K

1
n

n∑
i=1

1
m

mi∑
j=1

Eu∼N (1,σu) ln(1 + exp(−uijyij .X ′Tij θ)) + c‖θ‖2,

while reaching consensus on the decision variable θ ∈ K with K = [−10, 10]d. We note here that u models
some perturbation on the local querying of every example to add to the randomization of the communication
process.

We consider classifying the digits 1 and 2 with m = 12700 images. There are n = 100 agents in the network
and thus each has a local batch of mi = 127 images. We take σu = 0.01 and let αk = 0.05(k + 1)−0.75

and γk = 0.8(k + 1)−0.25 for 1P-DSG with vanishing step sizes, and α = 0.05 and γ = 0.6 with constant
step sizes. We choose Φk ∈ {− 1√

d
, 1√

d
}d with equal probability. Also, every function query is subject to

a white noise generated by the standard normal distribution. For the DSGT algorithm, we set the step
size to αk = 0.015(k + 1)−1 when it is vanishing and α = 0.015 when constant, and we do not consider
the perturbation on the objective function nor the noise on the objective function, only the noise on the
exact gradient. Similarly for EXTRA and we set its step size to α = 0.01. For 2P-DSG, we consider
αk = 0.01(k + 1)−0.75 and γk = 0.01(k + 1)−0.25. For the centralized 1P-GD algorithm, we set α = 0.005
and γ = 0.5 (α = 0.03 and γ = 0.6 with estimator (6)). We let c = 0.1, and the initialization be the same
for all algorithms, with θi,0 uniformly chosen from [−0.5, 0.5]d, ∀i ∈ N , per instance. We finally average the
simulations over 30 instances.

The expected evolution of the loss objective function is presented in Figure 1 and the graphs are zoomed
in on in Figure 2. Experimental results seem to validate our theoretical results: Our proposed algorithm
converges linearly fast with constant step sizes, however the final gap is due to converging to an O(α)-
neighborhood of the optimal solution. 1P-DSG with vanishing step sizes converges with an O( 1√

k
) while

DSGT with vanishing step size converges at a rate of O( 1
k ). Using constant vs vanishing step size does not
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seem to affect the convergence rate of the loss function of DSGT. EXTRA consistently performs similarly
to DSGT. The most interesting point is that 1P-DSG, with vanishing and constant step sizes, outperforms
the centralized ZO counterpart 1P-GD highlighting an advantage of our gradient estimate. In addition,
there seems to be an evident advantage to using our one-point estimate to two-point one when the queries
are noisy, as our algorithm outperforms 2P-DSG. We also note that the estimate we use seem more stable
than the other ZO counterparts as shown in Figure 3 where we plot the average loss error bar of these
algorithms. A possible explanation is that not dividing by γ in the estimate provides some stability against
noisy queries (this is slightly evident in 1P-GD with the different estimators and in 1P-DSG vs. 2P-DSG).

Figure 1: Expected loss function evolution of the
proposed algorithm vs. DSGT, EXTRA, and 1P-
GD considering vanishing vs. constant step sizes.

Figure 2: Expected loss function evolution of the
proposed algorithm vs. DSGT, EXTRA, and 1P-
GD considering vanishing vs. constant step sizes.

Figure 3: The average loss error bar evolution of
the proposed algorithm vs. DSGT.

Figure 4: Expected test accuracy evolution of the
proposed algorithm vs. DSGT, EXTRA, and 1P-
GD considering vanishing vs. constant step sizes.

In Figure 4, we measure at every iteration the classification accuracy against an independent test set of
2167 images using the updated mean vector θ̄k = 1

n

∑n
i=1 θi,k of the local decision variables. The interest

of the constant step sizes appears in the convergence rate of this accuracy, where our algorithm is able to
compete with DSGT with full FO information, and to outperform DSGT with a vanishing step size. This
is an important result as it shows that the classification goal with ZO is well met despite the limiting upper
bounds of convergence rate and that O(α)-neighborhood of the optimal solution achieved linearly fast can
be sufficient to achieve the best possible accuracy.

The reason for this better accuracy attainment is generally because the step sizes affect the bound on the
generalization error. For example, Hardt et al. (2016) prove theoretically that the bound on the generalization
error for strongly convex objectives is smaller when the step sizes are constant (theorem 3.9) than when they
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are vanishing (theorem 3.10), wherein the latter, there is an extra element containing the supremum of the
function. Naturally, the step sizes seem to play a role in affecting the bound on the evolution of iterates,
which in turn affects the uniform stability of the SGD method (stable means that the loss function is not
affected much if one datapoint is different) and the generalization error of an SGD-trained model is upper
bounded by the uniform stability bound.

This result seems to be confirmed by the centralized 1P-GD vs 1P-DSG with vanishing step sizes. Despite
the latter outperforming the first in convergence speed (of the objective function), the first with constant
step sizes seems to generalize better.

In Figures 5, 6, and 7 the curves are those of the evolution of the expected consensus error, or E
[∑n

i=1 ‖θi,k−
θ̄k‖2

]
which is the expected error between the local decision variables and their average. For all algorithms,

the error again validates the theoretical bounds and decreases quite fast. Generally, as evident in Figure 7
for all algorithms (expect 2P-DSG where a noise term is always multiplied by 1

γk
), vanishing step sizes allow

the consensus error to completely vanish while constant step sizes leave an O(α2)-gap.

We add other numerical examples for different image labels in Appendix H.

5 Conclusion

In this work, we extended the distributed stochastic gradient algorithm to present a practical solution to
a relevant problem with realistic assumptions. A novel ZO algorithm was studied and proved to converge
with a biased and high variance one-point gradient estimate and a stochastic perturbation on the objective
function. In the context of noisy ZO optimization, we have successfully established a linear convergence rate
of O(%k) using fixed step sizes and O( 1√

k
) with vanishing step sizes. These rates align with the optimal

expectations examined in the existing literature. We also prove a regret bound that of O(
√
k) with vanishing

step sizes. A numerical application confirmed the success and efficiency of the algorithm.
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Figure 5: Expected consensus error evolution of
the proposed algorithm vs. DSGT and EXTRA
considering vanishing vs. constant step sizes.

Figure 6: Expected consensus error evolution of
the proposed algorithm vs. DSGT and EXTRA
considering vanishing vs. constant step sizes.
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Figure 7: Expected consensus error evolution of
the proposed algorithm vs. DSGT and EXTRA
considering vanishing vs. constant step sizes.
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A L-Smoothness Property

‖∇F(x̄)− h(x)‖ =
∥∥∥ 1
n

n∑
i=1

(
∇Fi(x̄)−∇Fi(xi)

)∥∥∥
≤ 1
n

n∑
i=1

∥∥∥∇Fi(x̄)−∇Fi(xi)
∥∥∥

≤L
n

n∑
i=1
‖x̄− xi‖

=L

n

n∑
i=1
‖xi − x̄‖

(a)
≤ L
n

√√√√n

n∑
i=1
‖xi − x̄‖2

(b)= L√
n
‖x− 1x̄‖,

where (a) is by applying the Cauchy-Schwarz inequality, |
∑n
i=1 ai · 1| ≤ (

∑n
i=1 a

2
i )

1
2 · (

∑n
i=1 12) 1

2 =
n

1
2 (
∑n
i=1 a

2
i )

1
2 , and (b) is by definition of the Frobenius norm, ‖x− 1x̄‖2 =

∑n
i=1 ‖xi − x̄‖2.

B Estimated Gradient

In this section, we derive the bias of the gradient estimate with respect to the real gradient of the local
objective function. Let

ği,k = ES,Φ,ζ [gi,k|Hk].

Thus, by Assumption 1.3 and the definition in (4),

ği,k = ES,Φ,ζ [Φi,k(fi(xi,k + γkΦi,k, Si,k) + ζi,k)|Hk]
= ES,Φ[Φi,kfi(xi,k + γkΦi,k, Si,k)|Hk]
= EΦ[Φi,kFi(xi,k + γkΦi,k)|Hk].
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By Taylor’s theorem and the mean-valued theorem, there exists x̃i,k located between xi,k and xi,k + γkΦi,k
where

Fi(xi,k + γkΦi,k) = Fi(xi,k) + γk〈Φi,k,∇Fi(xi,k)〉+ γ2
k

2 〈Φi,k,∇
2Fi(x̃i,k)Φi,k〉,

substituting in the previous definition,

ği,k = Fi(xi,k)EΦ[Φi,k] + γkEΦ[Φi,kΦTi,k]∇Fi(xi,k) + γ2
k

2 EΦ[Φi,kΦTi,k∇2Fi(x̃i,k)Φi,k|Hk]

= c3γk[∇Fi(xi,k) + bi,k].
Thus, the estimation bias has the form

bi,k = ği,k
c3γk

−∇Fi(xi,k)

= γk
2c3

EΦ[Φi,kΦTi,k∇2Fi(x̃i,k)Φi,k|Hk].

Let Assumptions 1.2 and 2.2 hold. Then, we can bound the bias as

‖bi,k‖ ≤
γk
2c3

EΦ[‖Φi,k‖2‖ΦTi,k‖2‖∇2Fi(x̃i,k)‖2‖Φi,k‖2|Hk]

≤ γk
c34c1
2c3

.
(20)

We can see ‖bi,k‖ → 0 as k →∞ since γk is vanishing. We remark that
g̃k = E[ḡk|Hk]

= 1
n

n∑
i=1

E[gi,k|Hk]

= 1
n

n∑
i=1

c3γk[∇Fi(xi,k) + bi,k]

= c3γk[h(xk) + b̄k]

(21)

is also a biased estimator of h(xk) with

‖b̄k‖ = ‖ 1
n

n∑
i=1

bi,k‖

≤ 1
n

n∑
i=1
‖bi,k‖

≤ 1
n

n∑
i=1

γk
c34c1
2c3

= γk
c34c1
2c3

.

(22)

Lemma B.1. Let all Assumptions 1.3, 2.2, and 2.4 hold, then there exists a bounded constant M̄ > 0, such
that E[‖ḡk‖2|Hk] < M̄ .

Proof. ∀i ∈ N , we have
E[‖gi,k‖2|Hk] = E[‖Φi,k(fi(xi,k + γkΦi,k, Si,k) + ζi,k)‖2|Hk]

= E[‖Φi,k‖2‖fi(xi,k + γkΦi,k, Si,k) + ζi,k‖2|Hk]
(a)
≤ c24E[(fi(xi,k + γkΦi,k, Si,k) + ζi,k)2|Hk]
(b)= c24E[f2

i (xi,k + γkΦi,k, Si,k)|Hk] + c24c2
(f)
< ∞,
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where (a) is due to Assumption 2.2, (b) Assumption 1.3, and (c) Assumption 2.4.

Then, E[‖gk‖2|Hk] = E
[∑n

i=1 ‖gi,k‖2
∣∣∣Hk] =

∑n
i=1 E[‖gi,k‖2|Hk] <∞ and

E[‖ḡk‖2|Hk] =E
[
‖ 1
n

n∑
i=1

gi,k‖2
∣∣∣Hk]

= 1
n2E

[
‖

n∑
i=1

gi,k‖2
∣∣∣Hk]

≤ n

n2E
[ n∑
i=1
‖gi,k‖2

∣∣∣Hk]
= 1
n

n∑
i=1

E[‖gi,k‖2|Hk]

<∞.

C Stochastic Noise

To prove Lemma 3.1, we begin by demonstrating that the sequence {
∑K′

k=K αkek}K′≥K is a martingale. To
do so, we have to prove that for all K ′ ≥ K, XK′ =

∑K′

k=K αkek satisfies the following two conditions:

(i) E[XK′+1|XK′ ] = XK′

(ii) E[‖XK′‖2] <∞

We know that
E[ek] = E[ḡk − E[ḡk|Hk]] = EHk

[
E
[
ḡk − E[ḡk|Hk]

∣∣∣Hk]] = 0

by the law of total expectation. Hence,

E[XK′+1|XK′ ] = E
[
αK′+1eK′+1 +

K′∑
k=K

αkek

∣∣∣ K′∑
k=K

αkek

]
= 0 +

K′∑
k=K

αkek = XK′ . (23)

In addition, ek and ek′ are uncorrelated for any k 6= k′ since (assuming k > k′) E
[
eTk ek′

]
= E

[
E[eTk ek′ |Hk]

]
=

E
[
ek′E[eTk |Hk]

]
= 0. Thus,

E(‖
K′∑
k=K

αkek‖2) = E(
K′∑
k=K

K′∑
k′=K

αkαk′〈ek, ek′〉)

(a)= E(
K′∑
k=K
‖αkek‖2)

≤
∞∑
k=K

E(α2
k‖ḡk − E[ḡk|Hk]‖2)

=
∞∑
k=K

α2
kE(‖ḡk‖2)− EHk(‖E[ḡk|Hk]‖2)

≤
∞∑
k=K

α2
kE(‖ḡk‖2)

(b)
≤ M

∞∑
k=K

α2
k

(c)
< ∞,

(24)
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where (a) is due to the uncorrelatedness E[〈ek, ek′〉] = 0, (b) is by Lemma B.1, and (c) is by Assumption
2.1. Therefore, both (i) and (ii) are satisfied and we can say that {

∑K′

k=K αkek}K′≥K is a martingale. This
permits us to use Doob’s martingale inequality Doob (1953):

For any constant ν > 0,

P( sup
K′≥K

‖
K′∑
k=K

αkek‖ ≥ ν) ≤ 1
ν2E(‖

K′∑
k=K

αkek‖2)

(a)
≤ M

ν2

∞∑
k=K

α2
k,

(25)

where (a) is following the exact same steps as (24).

Since M is a bounded constant and limK→∞
∑∞
k=K α

2
k = 0 by Assumption 2.1, we get

limK→∞
M
ν2

∑∞
k=K α

2
k = 0 for any bounded constant ν. Hence, the probability that ‖

∑K′

k=K αkek‖ ≥ ν
also vanishes as K →∞, which concludes the proof.

D Proof of Convergence

We start by stating the following lemma that will be useful for the proof of convergence.

Lemma D.1. If all Assumptions 1.1-1.3, 2.1-2.2, and 2.4 hold, then limk→∞ ‖xk − 1x̄k‖2 = 0. In fact, we
have

∞∑
k=0
‖xk − 1x̄k‖2 <∞,

∞∑
k=0
‖zk+1 − 1x̄k‖2 <∞, and

∞∑
k=0

γkαk‖xk − 1x̄k‖ <∞,

almost surely.

Proof: See Appendix D.2.

D.1 Proof of Theorem 3.2

By using the compact form of the algorithm in (8), we know that

z̄k+1 = 1
n

1TW (xk − αkgk) (a)= 1
n

1T (xk − αkgk) = x̄k − αkḡk, (26)

where (a) is again due to the doubly stochastic property of W .

The divergence at time k + 1 can then be written as

dk+1 =‖x̄k+1 − x∗‖2

=‖ 1
n

n∑
i=1

(xi,k+1 − x∗)‖2

≤ n

n2

n∑
i=1
‖xi,k+1 − x∗‖2

(a)
≤ 1
n

n∑
i=1
‖zi,k+1 − x∗‖2
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= 1
n

n∑
i=1
‖zi,k+1 − x̄k + x̄k − x∗‖2

= 1
n

n∑
i=1
‖zi,k+1 − x̄k‖2 + 2 1

n

n∑
i=1
〈zi,k+1 − x̄k, x̄k − x∗〉+ 1

n

n∑
i=1
‖x̄k − x∗‖2

= 1
n
‖zk+1 − 1x̄k‖2 + 2〈z̄k+1 − x̄k, x̄k − x∗〉+ ‖x̄k − x∗‖2

(b)= 1
n
‖zk+1 − 1x̄k‖2 + 2〈−αkḡk, x̄k − x∗〉+ dk

=dk − 2αk〈x̄k − x∗, ḡk − E[ḡk|Hk] + E[ḡk|Hk]〉+ 1
n
‖zk+1 − 1x̄k‖2

=dk − 2αk〈x̄k − x∗,E[ḡk|Hk]〉 − 2αk〈x̄k − x∗, ek〉+ 1
n
‖zk+1 − 1x̄k‖2

(c)=dk − 2c3γkαk〈x̄k − x∗, h(xk) + b̄k〉 − 2αk〈x̄k − x∗, ek〉+ 1
n
‖zk+1 − 1x̄k‖2

=dk − 2c3γkαk〈x̄k − x∗,∇F(x̄k)〉+ 2c3γkαk〈x̄k − x∗,∇F(x̄k)− h(xk)〉

− 2c3γkαk〈x̄k − x∗, b̄k〉 − 2αk〈x̄k − x∗, ek〉+ 1
n
‖zk+1 − 1x̄k‖2

(d)
≤dk − 2c3γkαk〈x̄k − x∗,∇F(x̄k)〉+ 2c3Lγkαk√

n
‖x̄k − x∗‖‖xk − 1x̄k‖

+ 2c3γkαk‖x̄k − x∗‖‖b̄k‖ − 2αk〈x̄k − x∗, ek〉+ 1
n
‖zk+1 − 1x̄k‖2,

(27)

where (a) is by the projection inequality (5) noting that x∗ ∈ K (so projecting it onto K gives us the same
point), (b) is by (26), (c) is due to (21), and (d) is due to Lemma 1.5.

By recursion of inequality (27), we have

dK+1 ≤ d0 − 2c3
K∑
k=0

γkαk〈x̄k − x∗,∇F(x̄k) + b̄k〉+ 2c3L√
n

K∑
k=0

γkαk‖x̄k − x∗‖‖xk − 1x̄k‖

+ 2c3
K∑
k=0

γkαk‖x̄k − x∗‖‖b̄k‖ − 2
K∑
k=0

αk〈x̄k − x∗, ek〉+ 1
n

K∑
k=0
‖zk+1 − 1x̄k‖2.

(28)

By Lemma 3.1, we have limK→∞ ‖
∑K
k=0 αkek‖ <∞ almost surely. Since ‖x̄k−x∗‖ <∞ by the compactness

of K in Assumption 2.4, hence

lim
K→∞

‖
K∑
k=0

αk〈x̄k − x∗, ek〉‖ <∞. (29)

From (42) in Lemma D.1, we have

lim
K→∞

K∑
k=0
‖zk+1 − 1x̄k‖2 <∞. (30)

As stated in Lemma D.1, we have
∑∞
k=0 γkαk‖xk − 1x̄k‖ < ∞, adding to ‖x̄k − x∗‖ < ∞ by Assumption

2.4, then

lim
K→∞

K∑
k=0

γkαk‖x̄k − x∗‖‖xk − 1x̄k‖ <∞. (31)

By (22), we know that ‖b̄k‖ ≤ c3
4c1
2c3

γk and ‖x̄k − x∗‖ <∞ by Assumption 2.4,

lim
K→∞

K∑
k=0

γ2
kαk‖x̄k − x∗‖ <∞, (32)
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by Assumption 2.1.

From the above inequalities (28)-(32), we see that there exists 0 < D′ <∞ such that dK+1 ≤ D′+ zK , with
zK defined as

zK = −2c3
K∑
k=0

γkαk〈x̄k − x∗,∇F(x̄k)〉. (33)

By the strong convexity, we have

− 〈x̄k − x∗,∇F(x̄k)〉 ≤ F(x∗)−F(x̄k)− λ

2 ‖x̄k − x
∗‖2 ≤ 0, (34)

as F(x̄k) ≥ F(x∗) by the definition of x∗ being the optimum in K and x̄k ∈ K (by the property of a convex
set).

Thus, zK ≤ 0, confirming dK+1 <∞.

Let’s assume that ∀εh > 0, ∃Kh such that ‖x̄k − x∗‖2 > εh for k ≥ Kh, meaning

lim
K→∞

−
K∑

k=Kh

γkαk‖x̄k − x∗‖2 < −εh lim
K→∞

K∑
k=Kh

γkαk < −∞, (35)

since
∑
k αkγk diverges by Assumption 2.1. However, this implies that zK < −∞ and as a consequence,

dK+1 ≤ D′ + zK < −∞ which is a contradiction as dK+1 ≥ 0. We conclude that limk→∞ dk = 0 and
limk→∞ x̄k = x∗, almost surely.

D.2 Proof of Lemma D.1

The goal is to bound ‖xk+1 − 1x̄k+1‖2 by ‖xk − 1x̄k‖2 and other vanishing terms.

‖xk+1 − 1x̄k+1‖2 =‖xk+1 − 1x̄k + 1x̄k − 1x̄k+1‖2

=‖xk+1 − 1x̄k‖2 + 2〈xk+1 − 1x̄k,1x̄k − 1x̄k+1〉+ ‖1x̄k − 1x̄k+1‖2

(a)=‖xk+1 − 1x̄k‖2 − ‖1x̄k − 1x̄k+1‖2

≤‖xk+1 − 1x̄k‖2

=
n∑
i=1
‖xi,k+1 − x̄k‖2

(b)
≤

n∑
i=1
‖zi,k+1 − x̄k‖2

=‖zk+1 − 1x̄k‖2

=‖Wxk − αkWgk − 1x̄k‖2

=‖Wxk − 1x̄k‖2 − 2αk〈Wxk − 1x̄k,Wgk〉+ α2
k‖Wgk‖2

(c)
≤‖Wxk − 1x̄k‖2 + αk[ 1− ρ

2
w

2ρ2
wαk
‖Wxk − 1x̄k‖2 + 2ρ2

wαk
1− ρ2

w

‖Wgk‖2] + α2
k‖Wgk‖2

(d)
≤ρ2

w‖xk − 1x̄k‖2 + αk[ 1− ρ
2
w

2αk
‖xk − 1x̄k‖2 + 2ρ2

wαk
1− ρ2

w

‖Wgk‖2] + α2
k‖Wgk‖2

=1 + ρ2
w

2 ‖xk − 1x̄k‖2 + α2
k

1 + ρ2
w

1− ρ2
w

‖Wgk‖2

=1 + ρ2
w

2 ‖xk − 1x̄k‖2 + α2
k

1 + ρ2
w

1− ρ2
w

‖Wgk − 1ḡk + 1ḡk‖2

(e)= 1 + ρ2
w

2 ‖xk − 1x̄k‖2 + α2
k

1 + ρ2
w

1− ρ2
w

‖Wgk − 1ḡk‖2 + α2
k

n(1 + ρ2
w)

1− ρ2
w

‖ḡk‖2
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≤1 + ρ2
w

2 ‖xk − 1x̄k‖2 + α2
k

ρ2
w(1 + ρ2

w)
1− ρ2

w

‖gk − 1ḡk‖2 + α2
k

n(1 + ρ2
w)

1− ρ2
w

‖ḡk‖2

(f)
≤ 1 + ρ2

w

2 ‖xk − 1x̄k‖2 + α2
k

n(1 + ρ2
w)

1− ρ2
w

M.

(36)

where (a) is by (37), (b) is the projection inequality (5) noting that x̄k ∈ K since K is a convex set (so
projecting it onto K gives us the same point), (c) is by −2ε× 1

ε 〈a, b〉 = −2〈εa, 1
ε b〉 ≤ ε2‖a‖2 + 1

ε2 ‖b‖2 (d) is
by Lemma 1.4, (e) is by (38), and (f) is by (39) and (40).

2〈xk+1 − 1x̄k,1x̄k − 1x̄k+1〉 =2
n∑
i=1
〈xi,k+1 − x̄k, x̄k − x̄k+1〉

=2〈
n∑
i=1

(xi,k+1 − x̄k), x̄k − x̄k+1〉

=2〈n(x̄k+1 − x̄k), x̄k − x̄k+1〉
=− 2n〈x̄k − x̄k+1, x̄k − x̄k+1〉
=− 2n‖x̄k − x̄k+1‖2

=− 2‖1x̄k − 1x̄k+1‖2.

(37)

〈Wgk − 1ḡk,1ḡk〉 =
n∑
i=1
〈
n∑
j=1

wijgj,k − ḡk, ḡk〉

=〈
n∑
i=1

n∑
j=1

wijgj,k − nḡk, ḡk〉

=〈
n∑
j=1

(
n∑
i=1

wij)gj,k − nḡk, ḡk〉

=〈
n∑
j=1

gj,k − nḡk, ḡk〉

=0.

(38)

From Lemma B.1, we know that ‖ḡk‖2 ≤M <∞ almost surely,

‖gk − 1ḡk‖2 =
n∑
i=1
‖gi,k −

1
n

n∑
j=1

gj,k‖2

=
n∑
i=1

(
‖gi,k‖2 − 2〈gi,k,

1
n

n∑
j=1

gj,k〉+ ‖ḡk‖2
)

= ‖gk‖2 − 2n‖ḡk‖2 + n‖ḡk‖2

= ‖gk‖2 − n‖ḡk‖2

(39)

Then,

ρ2
w‖gk − 1ḡk‖2 + n‖ḡk‖2 = ρ2

w‖gk‖2 + n(1− ρ2
w)‖ḡk‖2

≤ ρ2
wnM + n(1− ρ2

w)M
= nM.

(40)
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1. Proving limK→∞
∑K
k=0 ‖xk−1x̄k‖2 <∞, limK→∞

∑K
k=0 ‖zk+1−1x̄k‖2 <∞, and limk→∞ ‖xk−

1x̄k‖2 = 0
Reconsider (36),

‖xk+1 − 1x̄k+1‖2 ≤
1 + ρ2

w

2 ‖xk − 1x̄k‖2 + α2
k

n(1 + ρ2
w)

1− ρ2
w

M

‖xk − 1x̄k‖2 ≤
1 + ρ2

w

2 ‖xk−1 − 1x̄k−1‖2 + α2
k−1

n(1 + ρ2
w)

1− ρ2
w

M

. . .

‖x1 − 1x̄1‖2 ≤
1 + ρ2

w

2 ‖x0 − 1x̄0‖2 + α2
0
n(1 + ρ2

w)
1− ρ2

w

M.

(41)

Adding all inequalities in (41), we obtain

‖xk+1 − 1x̄k+1‖2 ≤ −
1− ρ2

w

2

k∑
l=1
‖xl − 1x̄l‖2 + 1 + ρ2

w

2 ‖x0 − 1x̄0‖2 + n(1 + ρ2
w)

1− ρ2
w

M

k∑
l=0

α2
l

Let k → ∞, then the second and third terms are bounded due to Assumption 2.1. There are then
2 cases:

∑
l ‖xl − 1x̄l‖2 either diverges or converges. Assume the validity of the hypothesis H2 )∑

l ‖xl − 1x̄l‖2 diverges, i.e.,
∑∞
l=1 ‖xl − 1x̄l‖2 →∞. This leads to

‖xk+1 − 1x̄k+1‖2 < −∞,

as − 1−ρ2
w

2 < 0. However, ‖xk+1 − 1x̄k+1‖2 should be positive. Thus, hypothesis H2 cannot be true
and

∑
l ‖xl − 1x̄l‖2 converges. Hence, limk→∞ ‖xk − 1x̄k‖2 = 0 almost surely.

Thus, reconsider (36),

‖zk+1 − 1x̄k‖2 ≤
1 + ρ2

w

2 ‖xk − 1x̄k‖2 + α2
k

n(1 + ρ2
w)

1− ρ2
w

M

K∑
k=0
‖zk+1 − 1x̄k‖2 ≤

1 + ρ2
w

2

K∑
k=0
‖xk − 1x̄k‖2 + n(1 + ρ2

w)
1− ρ2

w

M

K∑
k=0

α2
k

<∞.

(42)

2. Proving
∑∞
k=0 γkαk‖xk − 1x̄k‖ <∞

By induction from (36), we have

‖xk+1 − 1x̄k+1‖2 ≤
(1 + ρ2

w

2
)k+1‖x0 − 1x̄0‖2 + 2nM

1− ρ2
w

k∑
j=0

(1 + ρ2
w

2
)j+1

α2
k−j . (43)

Since
√
a+ b <

√
a+
√
b,

‖xk+1 − 1x̄k+1‖ ≤
(1 + ρ2

w

2
) k+1

2 ‖x0 − 1x̄0‖+
√

2nM
1− ρ2

w

k∑
j=0

(1 + ρ2
w

2
) j+1

2 αk−j . (44)

Then, substituting into the sum
∑∞
k=0 γkαk‖xk − 1x̄k‖,

∞∑
k=1

γkαk

((1 + ρ2
w

2
) k

2 ‖x0 − 1x̄0‖+
√

2nM
1− ρ2

w

k−1∑
j=0

(1 + ρ2
w

2
) j+1

2 αk−1−j

)

≤γ0α0‖x0 − 1x̄0‖
√

1 + ρ2
w√

2−
√

1 + ρ2
w

+
√

2nM
1− ρ2

w

∞∑
k=1

γkαk

k−1∑
j=0

(1 + ρ2
w

2
) j+1

2 αk−1−j ,
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where the inequality is due to the fact that γk and αk are both decreasing step-sizes and we have a
geometric sum of ratio

√
1+ρ2

2 < 1. We then study the sums in the second term,

∞∑
k=1

γkαk

k−1∑
j=0

(1 + ρ2
w

2
) j+1

2 αk−1−j ≤
∞∑
k=1

γk

k−1∑
j=0

(1 + ρ2
w

2
) j+1

2 α2
k−1−j

=
∞∑
k=1

γk

k∑
j=1

(1 + ρ2
w

2
) k−j+1

2 α2
j−1

=
∞∑
j=1

α2
j−1

∞∑
k=j

γk
(1 + ρ2

w

2
) k−j+1

2

≤γ0

∞∑
j=1

α2
j−1

∞∑
k=j

(1 + ρ2
w

2
) k−j+1

2

=γ0

√
1 + ρ2

w√
2−

√
1 + ρ2

w

∞∑
j=1

α2
j−1

<∞,

as
∑
α2
k converges by Assumption 2.1.

Finally,
∑∞
k=0 γkαk‖xk − 1x̄k‖ <∞.

D.3 Convergence Rate of the Consensus Error ‖xk − 1x̄k‖2 and of ‖zk+1 − 1x̄k‖2

As
∑
k ‖xk − 1x̄k‖2 < ∞, let us assume that ‖xk − 1x̄k‖2 vanishes with the same rate as α2

k. Then, there
must be a scalar ϑ1 > 0 such that ‖xk − 1x̄k‖2 < ϑ2

1α
2
k. To test if such ϑ1 exists, we employ (36) to check

whether ‖xk+1 − 1x̄k+1‖2 < ϑ2
1α

2
k+1 holds,

‖xk+1 − 1x̄k+1‖2 ≤
1 + ρ2

w

2 ‖xk − 1x̄k‖2 + n(1 + ρ2
w)M

1− ρ2
w

α2
k

≤1 + ρ2
w

2 ϑ2
1α

2
k + n(1 + ρ2

w)M
1− ρ2

w

α2
k

=
(1 + ρ2

w

2 ϑ2
1 + n(1 + ρ2

w)M
1− ρ2

w

)
α2
k.

(45)

Then, testing (1 + ρ2
w

2 ϑ2
1 + n(1 + ρ2

w)M
1− ρ2

w

)
α2
k ≤ ϑ2

1α
2
k+1

n(1 + ρ2
w)M

1− ρ2
w

≤ ϑ2
1

(
α2
k+1
α2
k

− 1 + ρ2
w

2

)
n(1+ρ2

w)M
1−ρ2

w

α2
k+1
α2
k

− 1+ρ2
w

2

≤ ϑ2
1.

(46)

Thus, 0 < %2 <∞ whenever α2
k+1
α2
k

− 1+ρ2
w

2 > 0.

Let us consider αk having the form in Example 2.3, then α2
k+1
α2
k

=
(
k+1
k+2

)2υ1
is an increasing function of k

taking values between 0 and 1, and define
K1 = arg min

α2
k+1
α2
k

>
1+ρ2

w
2

k.
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To test whether K1 grows very large, we find the intersection α2
k+1
α2
k

= 1+ρ2
w

2 ,(k + 1
k + 2

)2υ1
= 1 + ρ2

w

2
k + 1
k + 2 =

(1 + ρ2
w

2

) 1
2υ1

k + 1 = (k + 2)
(1 + ρ2

w

2

) 1
2υ1

k =
2
(

1+ρ2
w

2

) 1
2υ1 − 1

1−
(

1+ρ2
w

2

) 1
2υ1

.

(47)

Define the function h(x, υ1) = 2x
1

2υ1 −1
1−x

1
2υ1

for 0 < x < 1 and 0.5 < υ < 1.

∂h(x,υ1)
∂υ1

= − exp( ln x
2υ1

) ln x

2υ2
1(1−x

1
2υ1 )2

> 0 for a fixed 0 < x < 1.

∂h(x,υ1)
∂x = x

−2υ1+1
2υ1

2υ1(1−x
1

2υ1 )2
> 0 for a fixed 0.5 < υ1 < 1.

Taking an extreme case of x = υ1 = 0.99, we obtain h(0.99, 0.99) ≈ 196 iterations. For x = υ1 = 0.95,
h(0.95, 0.95) ≈ 36 iterations. It decreases even more drastically for realistic choices of ρw and υ1. Thus, it
is reasonable to study the rate for k ≥ K1.

We conclude that for k ≥ K1, there exists 0 < ϑ1 <∞, such that

‖xk − 1x̄k‖2 < ϑ2
1α

2
k. (48)

Thus, from (36), for k ≥ K1, we also have

‖zk+1 − 1x̄k‖2 ≤
1 + ρ2

w

2 ‖xk − 1x̄k‖2 + α2
k

n(1 + ρ2
w)M

1− ρ2
w

≤
(1 + ρ2

w

2 ϑ2
1 + n(1 + ρ2

w)M
1− ρ2

w

)
α2
k

:=ϑ2
2α

2
k.

(49)

E Convergence Rate

Our primary result, stated in the following Lemma, is based on finding a relation between two successive
iterations of the expected divergence.
Lemma E.1. Let A = λc3

2 , B = 4c3L
2ϑ2

1
λn , C = c2

1c
6
4

c3λ
, and E = ϑ2

n . Then, for k > K1,

Dk+1 ≤ (1−Aαkγk)Dk +Bα3
kγk + Cαkγ

3
k + Eα2

k. (50)

Proof: See Appendix E.2.

Next, we let
K2 = arg min

Aαkγk<1
k

and K0 = max{K1,K2}. For the ensuing part, the purpose is to locate a vanishing upper bound of Dk,
making use of the inequality (50). The idea is to propose a decreasing sequence Uk+1 ≤ Uk and suppose that
Dk ≤ Uk, ∀k ≥ K0, and then verify that Dk+1 ≤ Uk+1 by induction. The choice of Uk is the most difficult
component as one has to keep in mind the general forms of αk and γk in (50) and what kind of decisions to
take regarding these forms. An essential property of Uk is presented in the subsequent lemma.
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Lemma E.2. If a decreasing sequence Uk+1 ≤ Uk for k ≥ K0 exists such that Dk+1 ≤ Uk+1 can be deduced
from Dk ≤ Uk and (50), then

Uk ≥
B

A
α2
k + C

A
γ2
k + E

A

αk
γk
. (51)

Proof: See Appendix E.3.

An important remark is that the lower bound of Uk in (51) is vanishing as α2
k, γ

2
k, and αk

γk
are all vanishing.

This lower bound provides an insight on the convergence rate of Dk as it cannot be better than that of
α2
k, γ

2
k, or αk

γk
.

The previous Lemma allows us to move forward in confirming the existence of the constants ς1 and ς2 that
permit Dk ≤ ς1γ2

k and Dk ≤ ς2 αkγk in Theorem 3.4, respectively.

E.1 Proof of Theorem 3.4

1. Proof of (12)
By definition of ς1, DK0 ≤ ς1γ2

K0
. The next step is to make sure that Dk+1 ≤ Uk+1 can be obtained

from Dk ≤ Uk, ∀k ≥ K0. Take Uk = ς1γ
2
k, let Dk ≤ Uk hold, and substitute in (50),

Dk+1 ≤ (1−Aαkγk)ς1γ2
k +Bα3

kγk + Cαkγ
3
k + Eα2

k.

We solve Dk+1 ≤ Uk+1 for ς1 ∈ R+

(1−Aαkγk)ς1γ2
k +Bα3

kγk + Cαkγ
3
k + Eα2

k ≤ Uk+1 = ς1γ
2
k+1.

Then, by considering κk =
1−(

γk+1
γk

)2

αkγk
> 0 as given in (11),

Bα2
kγ
−2
k + Eαkγ

−3
k + C ≤ ς1(A− κk),

and assuming A− κk > 0, we find a constant ς̄1 such that

ς1 ≥ ς̄1 = Bα2
kγ
−2
k + Eαkγ

−3
k + C

A− κk
,

keeping in mind that Bα2
kγ
−2
k +Eαkγ

−3
k +C is positive by definition. Examine the parameters σ1,

σ2, and σ3 as they are introduced in (11), then

ς̄1 ≤
Bσ2 + Eσ3 + C

A− σ1
,

We conclude that Dk ≤ ς1γ2
k where ς1 satisfies the definition (13).

2. Proof of (14)
DK0 ≤ ς2

γK0
αK0

by definition of ς2. ∀k ≥ K0, let Dk ≤ ς2 αkγk , then

Dk+1 ≤ (1−Aαkγk)ς2
αk
γk

+Bα3
kγk + Cαkγ

3
k + Eα2

k.

Solving Dk+1 ≤ ς2 αk+1
γk+1

for ς2 ∈ R+,

(1−Aαkγk)ς2
αk
γk

+Bα3
kγk + Cαkγ

3
k + Eα2

k ≤ ς2
αk+1

γk+1
.

Take τk =
αk
γk
−
αk+1
γk+1
α2
k

> 0 as given in (11), then

Bαkγk + Cα−1
k γ3

k + E ≤ (A− τk)ς2.
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If αkγk −
αk+1
γk+1

< Aα2
k, then ∃ ς̄2 such that

ς2 ≥ ς̄2 = Bαkγk + Cα−1
k γ3

k + E

(A− τk) .

Examine σ4, σ5, and σ6 that are defined in (11), we can say

ς̄2 ≤
Bσ5 + Cσ6 + E

(A− σ4) .

We conclude that Dk ≤ ς2 αkγk with ς2 satisfying (15).

E.2 Proof of Lemma E.1

Starting with the same steps as in (27),

Dk+1 =E[‖x̄k+1 − x∗‖2]

≤E[ 1
n
‖zk+1 − 1x̄k‖2 + 2〈−αkḡk, x̄k − x∗〉+ dk]

=Dk + 1
n
E[‖zk+1 − 1x̄k‖2]− 2αkE[〈x̄k − x∗, ḡk〉]

(a)=Dk + 1
n
E[‖zk+1 − 1x̄k‖2]− 2c3αkγkE[〈x̄k − x∗, h(xk) + b̄k〉]

=Dk + 1
n
E[‖zk+1 − 1x̄k‖2]− 2c3αkγkE[〈x̄k − x∗,∇F(x̄k)〉] + 2c3αkγkE[〈x̄k − x∗,∇F(x̄k)− h(xk)〉]

− 2c3αkγkE[〈x̄k − x∗, b̄k〉]
(52)

where (a) is due to both E[ek|Hk] = 0 and (21):

E[〈x̄k − x∗, ḡk〉] = E[〈x̄k − x∗, ḡk − E[ḡk|Hk] + E[ḡk|Hk]〉]
= E[〈x̄k − x∗, ek〉] + E[〈x̄k − x∗,E[ḡk|Hk]〉]
= EHk [E[〈x̄k − x∗, ek〉|Hk]] + E[〈x̄k − x∗,E[ḡk|Hk]〉]
= 0 + E[〈x̄k − x∗,E[ḡk|Hk]〉].

From Lemma B.1, we have E[‖ḡk‖2] < M̄ with M̄ a bounded constant.

By the strong convexity in Assumption 1.2, we have

−2c3αkγkE[〈x̄k − x∗,∇F(x̄k)〉] ≤ 2c3αkγkE[F(x∗)−F(x̄k)]− λc3αkγkE[‖x̄k − x∗‖2]
≤ −λc3αkγkE[‖x̄k − x∗‖2]
= −λc3αkγkDk,

(53)

where we used the fact that F(x∗)−F(x̄k) ≤ 0.

Next, from Lemma 1.5, we have

2c3αkγk〈x̄k − x∗,∇F(x̄k)− h(xk)〉 ≤ 2c3αkγk
L√
n
‖x̄k − x∗‖‖xk − 1x̄k‖

(a)
≤ λc3αkγk

4 ‖x̄k − x∗‖2 + 4c3αkγk
L2

λn
‖xk − 1x̄k‖2,

where (a) is due to 2
√
ε× 1√

ε
〈a, b〉 = 2〈

√
εa, 1√

ε
b〉 ≤ ε‖a‖2 + 1

ε ‖b‖
2. From (48), we have for k ≥ K1,

‖xk − 1x̄k‖2 ≤ ϑ2
1α

2
k.
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Hence,

2c3αkγkE[〈x̄k − x∗,∇F(x̄k)− h(xk)〉] ≤ λc3αkγk
4 Dk + 4c3L2ϑ2

1
λn

α3
kγk. (54)

From (22),

−2c3αkγkE[〈x̄k − x∗, b̄k〉] ≤
λc3αkγk

4 Dk + 4c3αkγk
λ

E[‖b̄k‖2]

≤ λc3αkγk
4 Dk + c21c

6
4αkγ

3
k

c3λ

(55)

From (49), for k ≥ K1, we have
1
n
E[‖zk+1 − 1x̄k‖2] ≤ ϑ2

n
α2
k. (56)

Finally, by combining (52), (53), (54), (55), and (56) we get (50).

E.3 Proof of Lemma E.2

Since 1−Aαkγk > 0 when k ≥ K0, we may substitute Dk ≤ Uk in (50),

Dk+1 ≤ (1−Aαkγk)Uk +Bα3
kγk + Cαkγ

3
k + Eα2

k.

Testing Dk+1 ≤ Uk+1 in the previous inequality, we get

(1−Aαkγk)Uk +Bα3
kγk + Cαkγ

3
k + Eα2

k ≤ Uk+1 ≤ Uk

B

A
α2
k + C

A
γ2
k + E

A

αk
γk
≤ Uk. (57)

E.4 Proof of Theorem 3.5

Theorem 3.4 indicates that the convergence rate is a function of υ1 and υ2, as γ2
k ∝ (k + 1)−2υ2 and

αk
γk
∝ (k + 1)−(υ1−υ2). Nonetheless, we must still verify the validity of the assumptions presented in the

theorem, meaning:

• Are σ1 < A and σ4 < A fulfilled?

• Are ς1 and ς2 bounded?

We must remark that in what follows, the analysis is done for k ≥ K0.

Let αk and γk have the forms given in (16).

1. Verifying that σ1 < A and σ4 < A

The idea is to find a bound on α0 and γ0 to guarantee σ1 < A and σ4 < A. We start by bounding
σ1 and σ4 from above, i.e.,

σ1 = max
k≥K0

1− (γk+1
γk

)2

αkγk
= max
k≥K0

1− (1 + 1
k+1 )−2υ2

α0γ0(k + 1)−υ1−υ2

and

σ4 = max
k≥K0

1− αk+1γ
−1
k+1

αkγ
−1
k

αkγk
= max
k≥K0

1− (1 + 1
k+1 )−(υ1−υ2)

α0γ0(k + 1)−υ1−υ2
.
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To do so, we define a function q(x) = x−a(1− (1 + x)−b) with a, b, x ∈ (0, 1]. Since x−a ≤ x−1, we
have q(x) ≤ x−1(1 − (1 + x)−b) = r(x). To further bound q(x), We study the derivative of r(x) as
it is simpler to do so,

r′(x) = x−2
(

((b+ 1)x+ 1)(1 + x)−b−1 − 1
)

= x−2s(x).

Hence the sign of r′(x) is that of s(x). We again calculate the derivative of s(x) to find its sign,

s′(x) = −b(b+ 1)x(1 + x)−b−2 ≤ 0

since b > 0 and x > 0. Then, s(x) is a decreasing function of x over (0, 1]. We remark that
limx→0 s(x) = 0, meaning s(x) < 0 and r′(x) < 0, ∀x ∈ (0, 1]. Finally,

r(x) < lim
x→0

r(x) = 1− (1 + x)−b
x

= b,

and q(x) ≤ r(x) < b, noting that limx→0 q(x) = b for a = 1. We conclude that σ1 < 2υ2
α0γ0

and
σ4 <

υ1−υ2
α0γ0

. For σ1 < A and σ4 < A to be valid, we must have

α0γ0 ≥ max{2υ2, υ1 − υ2}/A. (58)

2. Verifying that ς1 and ς2 are bounded
The goal is to verify that the constant term in the convergence rate is bounded. Thus, we must
check that the lower bounds given in (13) and (15) are indeed finite. We start by analyzing σ2 and
σ5,

σ2 = α2
0γ
−2
0 max

k≥K0
(1 + k)−2(υ1−υ2) = α2

0γ
−2
0 (1 +K0)−2(υ1−υ2), as 0 < υ2 ≤ υ1,

and
σ5 = α0γ0 max

k≥K0
(1 + k)−(υ1+υ2) = α0γ0(1 +K0)−(υ1+υ2), as 0 < υ2 + υ1.

We end with the analysis of σ3 and σ6, i.e.,

σ3 = α0γ
−3
0 max

k≥K0
(1 + k)−(υ1−3υ2) =

{
α0γ

−3
0 (1 +K0)−(υ1−3υ2), if υ1 ≥ 3υ2,

∞, if υ1 < 3υ2,

and

σ6 = α−1
0 γ3

0 max
k≥K0

(1 + k)υ1−3υ2 =
{
α−1

0 γ3
0(1 +K0)υ1−3υ2 , if υ1 ≤ 3υ2,
∞, if υ1 > 3υ2.

There are clearly 3 cases:

• υ1 > 3υ2
Thus, σ3 is bounded.
Since σ2 and ς1 (by definition) are also bounded provided that α0γ0 ≥ 2υ2

A in (58).
However, ς2 →∞ since σ6 →∞ resulting in a loose upper bound in (14).
To that end, we can write Dk ≤ Υ1(1 + k)−2υ2 with Υ1 a bounded constant.

• υ1 < 3υ2
Similarly, σ6 is bounded while σ3 → ∞. Then, ∃ Υ2 < ∞, where Dk ≤ Υ2(1 + k)−(υ1−υ2)

provided that α0γ0 ≥ υ1−υ2
A .

• υ1 = 3υ2
Both σ3 and σ6 are bounded allowing both previous inequalities corresponding to Dk to be
valid.
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By this analysis, we conclude the proof of Theorem 3.5.

We present Figure 8 for easier reading of the conditions on
the step sizes’ exponents where we plot υ2 vs. υ1.

Figure 8: Plot of υ2 vs. υ1 where the
yellow shaded area is the feasibility re-
gion determined by Assumption 2.1.

F Regret Analysis

Consider the following modified definition of expected divergence that we denote by D′k.

D′k = E
[ 1
n

n∑
i=1
‖xi,k − x∗‖2

]
.

We then develop this entity,

D′k+1 =E
[ 1
n

n∑
i=1
‖xi,k+1 − x∗‖2

]
(a)
≤E

[ 1
n

n∑
i=1
‖zi,k+1 − x∗‖2

]
=E
[ 1
n

n∑
i=1

∥∥∥ n∑
j=1

wij(xj,k − αkgj,k)− x∗
∥∥∥2]

=E
[ 1
n

n∑
i=1

∥∥∥ n∑
j=1

wij(xj,k − αkgj,k − x∗)
∥∥∥2]

(b)
≤E
[ 1
n

n∑
i=1

n∑
j=1

wij‖xj,k − αkgj,k − x∗‖2
]

(c)=E
[ 1
n

n∑
j=1
‖xj,k − αkgj,k − x∗‖2

]
=D′k − 2αk

1
n

n∑
j=1

E[〈xj,k − x∗, gj,k〉] + α2
k

1
n

n∑
j=1

E[‖gj,k‖2]

=D′k − 2c3αkγk
1
n

n∑
j=1

E[〈xj,k − x∗,∇Fj(xj,k) + bj,k〉] + α2
k

1
n

n∑
j=1

E[‖gj,k‖2]

(d)
≤D′k − 2c3αkγk

1
n

n∑
j=1

E[Fj(xj,k)− Fj(x∗)] + c3αkγk
1
n

n∑
j=1

E[‖xj,k − x∗‖2 + ‖bj,k‖2] + α2
kM

(e)
≤D′k − 2c3αkγk

1
n

n∑
j=1

E[Fj(xj,k)− Fj(x∗)] + c3αkγkD
′
k + c3αkγ

3
k

c64c
2
1

4c23
+ α2

kM,
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where (a) is by applying the projection inequality (5), (b) is by the convexity of the norm square function,
(c) is by the doubly stochastic nature of the matrix W , (d) is by the convexity of the objective function and
Lemma B.1, and (e) is by (20).

Then,

1
n

n∑
i=1

E[Fi(xi,k)− Fi(x∗)] ≤
D′k −D′k+1
c3αkγk

+D′k + c64c
2
1

4c23
γ2
k + αk

c3γk
M. (59)

We know that D′k can be written as

D′k =E
[ 1
n

n∑
i=1
‖xi,k − x∗‖2

]
=E
[ 1
n

n∑
i=1
‖xi,k − x̄k + x̄k − x∗‖2

]
=E
[ 1
n

n∑
i=1

(
‖xi,k − x̄k‖2 + 2〈xi,k − x̄k, x̄k − x∗〉+ ‖x̄k − x∗‖2

)]
=E
[ 1
n
‖xk − 1x̄k‖2 + 2〈x̄k − x̄k, x̄k − x∗〉+ ‖x̄k − x∗‖2

]
=E
[ 1
n
‖xk − 1x̄k‖2 + ‖x̄k − x∗‖2

]
.

(60)

Hence, to find the regret bound, we write

E
[

1
n

K∑
k=K0

n∑
i=1

Fi(xi,k)− Fi(x∗)
]

(a)
≤

K∑
k=K0

(
D′k −D′k+1
c3αkγk

+D′k + c64c
2
1

4c23
γ2
k + αk

c3γk
M

)

=
K∑

k=K0+1
D′k

( 1
c3αkγk

− 1
c3αk−1γk−1

)
+

D′K0

c3αK0γK0

+
D′K+1

c3αK+1γK+1
+

K∑
k=K0

(
D′k + c64c

2
1

4c23
γ2
k + αk

c3γk
M
)

(b)=
( 1
c3α0γ0

+ 1
) K∑
k=K0+1

D′k +
( 1
c3αK0γK0

+ 1
)
D′K0

+
D′K+1

c3αK+1γK+1
+

K∑
k=K0

(c64c21γ2
0

4c23
1√
k + 1

+ Mα0

c3γ0

1√
k + 1

)
(c)
≤
( 1
c3α0γ0

+ 1
) K∑
k=K0+1

(ϑ2
1α

2
0

n

1
(k + 1) 3

2
+ Υ 1√

k + 1

)
+ (K + 2)

c3α0γ0

(ϑ2
1α

2
0

n

1
(K + 2) 3

2
+ Υ 1√

K + 2

)

+
( 1
c3αK0γK0

+ 1
)
D′K0

+
(c64c21γ2

0
4c23

+ Mα0

c3γ0

) K∑
k=K0

1√
k + 1

where (a) is following up from (59), (b) is by substituting αk = α0(k + 1)− 3
4 and γk = γ0(k + 1)− 1

4 , and (c)
is by (60), Lemma 3.3, and Theorem 3.5.

To find an upper bound, we interpret the sums over K0 +1 ≤ k ≤ K as Riemann sums in which the functions
1

(u+1)
3
2
and 1√

u+1 are evaluated at the right endpoint of the interval [i− 1, i] for i = K0 + 1,K0 + 2, . . . ,K.

Since the functions 1
(u+1)

3
2

and 1√
u+1 are monotonically decreasing, the sums are in fact lower Riemann

sums and therefore bounded from above by the integrals
∫K
K0

1
(u+1)

3
2
du and

∫K
K0

1√
u+1du, respectively.

K∑
k=K0+1

1
(k + 1) 3

2
≤
∫ K

K0

1
(u+ 1) 3

2
du = 2

( 1√
K0 + 1

− 1√
K + 1

)

33



Published in Transactions on Machine Learning Research (11/2024)

K∑
k=K0+1

1√
k + 1

≤
∫ K

K0

1√
u+ 1

du = 2(
√
K + 1−

√
K0 + 1)

Finally,

E
[

1
n

K∑
k=K0

n∑
i=1

Fi(xi,k)− Fi(x∗)
]
≤2
( 1
c3α0γ0

+ 1
)(ϑ2

1α
2
0

n

( 1√
K0 + 1

− 1√
K + 1

)
+ Υ(

√
K + 1−

√
K0 + 1)

)

+ 1
c3α0γ0

(ϑ2
1α

2
0

n

1√
K + 2

+ Υ
√
K + 2

)
+
( 1
c3αK0γK0

+ 1
)
D′K0

+
(c64c21γ2

0
2c23

+ 2Mα0

c3γ0

)
(
√
K + 1−

√
K0)

G Convergence Rate with Constant Step Sizes

We start by going over previous derivations,

ği,k = ES,Φ,ζ [Φi,k(fi(xi,k + γΦi,k, Si,k) + ζi,k)|Hk]
= EΦ[Φi,kFi(xi,k + γΦi,k)|Hk]

= Fi(xi,k)EΦ[Φi,k] + γEΦ[Φi,kΦTi,k|Hk]∇Fi(xi,k) + γ2

2 EΦ[Φi,kΦTi,k∇2Fi(x̃i,k)Φi,k|Hk]

= c3γ[∇Fi(xi,k) + bi,k].

Thus, bi,k = γ
2c3

EΦ[Φi,kΦTi,k∇2Fi(x̃i,k)Φi,k|Hk].

Let Assumptions 1.2 and 2.2 hold. Then, we can bound the bias as

‖bi,k‖ ≤
γ

2c3
EΦ[‖Φi,k‖2‖ΦTi,k‖2‖∇2Fi(x̃i,k)‖2‖Φi,k‖2|Hk]

≤ γ c
3
4c1
2c3

.

We remark that

g̃k = E[ḡk|Hk]

= 1
n

n∑
i=1

E[gi,k|Hk]

= 1
n

n∑
i=1

c3γ[∇Fi(xi,k) + bi,k]

= c3γ[h(xk) + b̄k]

(61)

is also a biased estimator of h(xk) with

‖b̄k‖ = ‖ 1
n

n∑
i=1

bi,k‖

≤ 1
n

n∑
i=1
‖bi,k‖

≤ 1
n

n∑
i=1

γ
c34c1
2c3

= γ
c34c1
2c3

.

(62)
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Lemma G.1. Let all Assumptions 1.3, 2.2, and 2.4 hold, then there exists a bounded constant M̄ > 0, such
that E[‖ḡk‖2] < M̄ .

Proof. ∀i ∈ N , we have

E[‖gi,k‖2|Hk] = E[‖Φi,k(fi(xi,k + γΦi,k, Si,k) + ζi,k)‖2|Hk]
= E[‖Φi,k‖2‖fi(xi,k + γΦi,k, Si,k) + ζi,k‖2|Hk]
(a)
≤ c24E[(fi(xi,k + γΦi,k, Si,k) + ζi,k)2|Hk]
(b)= c24E[f2

i (xi,k + γΦi,k, Si,k)|Hk] + c24c2
(c)
< ∞,

where (a) is due to Assumption 2.2, (b) Assumption 1.3, and (c) Assumption 2.4.

The stochastic noise is still defined as ek = ḡk − g̃k and retains its property

E[ek] = E[ḡk − E[ḡk|Hk]] = EHk
[
E
[
ḡk − E[ḡk|Hk]

∣∣∣Hk]] = 0.

1. Proving ‖xk − 1x̄k‖2 and ‖zk+1 − 1x̄k‖2 converge linearly

‖xk+1 − 1x̄k+1‖2 =‖xk+1 − 1x̄k + 1x̄k − 1x̄k+1‖2

=‖xk+1 − 1x̄k‖2 + 2〈xk+1 − 1x̄k,1x̄k − 1x̄k+1〉+ ‖1x̄k − 1x̄k+1‖2

(a)=‖xk+1 − 1x̄k‖2 − ‖1x̄k − 1x̄k+1‖2

≤‖xk+1 − 1x̄k‖2

=
n∑
i=1
‖xi,k+1 − x̄k‖2

(b)
≤

n∑
i=1
‖zi,k+1 − x̄k‖2

=‖zk+1 − 1x̄k‖2

=‖Wxk − αWgk − 1x̄k‖2

=‖Wxk − 1x̄k‖2 − 2α〈Wxk − 1x̄k,Wgk〉+ α2‖Wgk‖2

(c)
≤‖Wxk − 1x̄k‖2 + α[ 1− ρ

2
w

2ρ2
wα
‖Wxk − 1x̄k‖2 + 2ρ2

wα

1− ρ2
w

‖Wgk‖2] + α2‖Wgk‖2

(d)
≤ρ2

w‖xk − 1x̄k‖2 + α[ 1− ρ
2
w

2α ‖xk − 1x̄k‖2 + 2ρ2
wα

1− ρ2
w

‖Wgk‖2] + α2‖Wgk‖2

=1 + ρ2
w

2 ‖xk − 1x̄k‖2 + α2 1 + ρ2
w

1− ρ2
w

‖Wgk‖2

=1 + ρ2
w

2 ‖xk − 1x̄k‖2 + α2 1 + ρ2
w

1− ρ2
w

‖Wgk − 1ḡk + 1ḡk‖2

(e)= 1 + ρ2
w

2 ‖xk − 1x̄k‖2 + α2 1 + ρ2
w

1− ρ2
w

‖Wgk − 1ḡk‖2 + α2n(1 + ρ2
w)

1− ρ2
w

‖ḡk‖2

≤1 + ρ2
w

2 ‖xk − 1x̄k‖2 + α2 ρ
2
w(1 + ρ2

w)
1− ρ2

w

‖gk − 1ḡk‖2 + α2n(1 + ρ2
w)

1− ρ2
w

‖ḡk‖2

(f)
≤ 1 + ρ2

w

2 ‖xk − 1x̄k‖2 + α2n(1 + ρ2
w)

1− ρ2
w

M.

(63)
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where (a) is by (37), (b) is the projection inequality (5) noting that x̄k ∈ K since K is a convex set (so
projecting it onto K gives us the same point), (c) is by −2ε× 1

ε 〈a, b〉 = −2〈εa, 1
ε b〉 ≤ ε

2‖a‖2 + 1
ε2 ‖b‖2

(d) is by Lemma 1.4, (e) is by (38), and (f) is by (39) and (40).
By induction, we have

‖xk+1 − 1x̄k+1‖2 ≤
(1 + ρ2

w

2
)k+1‖x0 − 1x̄0‖2 + α2 2nM

1− ρ2
w

k∑
j=0

(1 + ρ2
w

2
)j+1

≤
(1 + ρ2

w

2
)k+1‖x0 − 1x̄0‖2 + α2 2nM(1 + ρ2

w)
(1− ρ2

w)2 ,

(64)

where the last inequality is due to the geometric sum with 1+ρ2
w

2 < 1
We conclude that ‖xk − 1x̄k‖2 converges linearly to an α2 neighborhood of 0, almost surely.
Substituting in (63),

‖zk+1 − 1x̄k‖2 ≤
1 + ρ2

w

2 ‖xk − 1x̄k‖2 + α2n(1 + ρ2
w)

1− ρ2
w

M

≤1 + ρ2
w

2

((1 + ρ2
w

2
)k‖x0 − 1x̄0‖2 + α2 2nM(1 + ρ2

w)
(1− ρ2

w)2

)
+ α2n(1 + ρ2

w)
1− ρ2

w

M

=
(1 + ρ2

w

2
)k+1‖x0 − 1x̄0‖2 + α2nM

((1 + ρ2
w

1− ρ2
w

)2
+ 1 + ρ2

w

1− ρ2
w

) (65)

Finally, ‖zk+1 − 1x̄k‖2 converges linearly to an α2 neighborhood of 0, almost surely, as well.

2. Proving Dk = E[‖x̄k − x∗‖2] converges linearly

Dk+1 =E[‖x̄k+1 − x∗‖2]

≤E[ 1
n
‖zk+1 − 1x̄k‖2 + 2〈−αḡk, x̄k − x∗〉+ dk]

=Dk + 1
n
E[‖zk+1 − 1x̄k‖2]− 2αE[〈x̄k − x∗, ḡk〉]

(a)=Dk + 1
n
E[‖zk+1 − 1x̄k‖2]− 2c3αγE[〈x̄k − x∗, h(xk) + b̄k〉]

=Dk + 1
n
E[‖zk+1 − 1x̄k‖2]− 2c3αγE[〈x̄k − x∗,∇F(x̄k)〉] + 2c3αγE[〈x̄k − x∗,∇F(x̄k)− h(xk)〉]

− 2c3αγE[〈x̄k − x∗, b̄k〉]
(66)

where (a) is due to both E[ek|Hk] = 0 and (21):

E[〈x̄k − x∗, ḡk〉] = E[〈x̄k − x∗, ḡk − E[ḡk|Hk] + E[ḡk|Hk]〉]
= E[〈x̄k − x∗, ek〉] + E[〈x̄k − x∗,E[ḡk|Hk]〉]
= EHk [E[〈x̄k − x∗, ek〉|Hk]] + E[〈x̄k − x∗,E[ḡk|Hk]〉]
= 0 + E[〈x̄k − x∗,E[ḡk|Hk]〉].

From Lemma G.1, we have E[‖ḡk‖2] < M̄ with M̄ a bounded constant.
By the strong convexity in Assumption 1.2, we have

−2c3αγE[〈x̄k − x∗,∇F(x̄k)〉] ≤ 2c3αγE[F(x∗)−F(x̄k)]− λc3αγE[‖x̄k − x∗‖2]
≤ −λc3αγE[‖x̄k − x∗‖2]
= −λc3αγDk,

(67)
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where we used the fact that F(x∗)−F(x̄k) ≤ 0.
Next, from Lemma 1.5, we have

2c3αγ〈x̄k − x∗,∇F(x̄k)− h(xk)〉 ≤ 2c3αγ
L√
n
‖x̄k − x∗‖‖xk − 1x̄k‖

(a)
≤ λc3αγ

4 ‖x̄k − x∗‖2 + 4c3αγ
L2

λn
‖xk − 1x̄k‖2,

where (a) is due to 2
√
ε× 1√

ε
〈a, b〉 = 2〈

√
εa, 1√

ε
b〉 ≤ ε‖a‖2 + 1

ε ‖b‖
2.

In (64) and (65), we let R = ‖x0 − 1x̄0‖2, and G1 = 2nM(1+ρ2
w)

(1−ρ2
w)2 , G2 = nM

((
1+ρ2

w

1−ρ2
w

)2
+ 1+ρ2

w

1−ρ2
w

)
,

‖xk − 1x̄k‖2 ≤
(1 + ρ2

w

2
)k
R+ α2G1 and ‖zk+1 − 1x̄k‖2 ≤

(1 + ρ2
w

2
)k+1

R+ α2G2. (68)

Hence,

2c3αγE[〈x̄k − x∗,∇F(x̄k)− h(xk)〉] ≤ λc3αγ

4 Dk + 4c3αγ
L2

λn

[(1 + ρ2
w

2
)k
R+ α2G1

]
. (69)

From (62),

−2c3αγE[〈x̄k − x∗, b̄k〉] ≤
λc3αγ

4 Dk + 4c3αγ
λ

E[‖b̄k‖2]

≤ λc3αγ

4 Dk + αγ3 c
2
1c

6
4

c3λ

(70)

Finally, by combining (66), (67), (68), (69), and (70), and setting now A = λc3
2 , B = 4c3L

2

λn , and
C = c2

1c
6
4

c3λ
, we get

Dk+1 ≤(1−Aαγ)Dk +Bαγ
[(1 + ρ2

w

2
)k
R+ α2G1

]
+ 1
n

[(1 + ρ2
w

2
)k+1

R+ α2G2

]
+ Cαγ3

=(1−Aαγ)Dk +R
[
Bαγ + 1

n

(1 + ρ2
w

2
)](1 + ρ2

w

2
)k + α3γBG1 + α2 1

n
G2 + αγ3C.

(71)

Let %1 = 1−Aαγ and %2 =
( 1+ρ2

w

2
)
. Then, assuming αγ < 1

A and taking the telescoping sum

Dk+1 ≤%k+1
1 D0 +R

(
Bαγ + %2

n

) k∑
i=0

%i1%
k−i
2 + (α3γBG1 + α2 1

n
G2 + αγ3C)

k∑
i=0

%i1

=%k+1
1 D0 +R

(
Bαγ + %2

n

) k∑
i=0

%i1%
k−i
2 + (α3γBG1 + α2 1

n
G2 + αγ3C)

(1− %k+1
1

1− %1

)
=%k+1

1 D0 +R
(
Bαγ + %2

n

) k∑
i=0

%i1%
k−i
2 +

(
α2BG1

A
+ α

γ

G2

nA
+ γ2C

A

)
(1− %k+1

1 )

≤%k+1
1 D0 +R

(
Bαγ + %2

n

) k∑
i=0

%i1%
k−i
2 + α2BG1

A
+ α

γ

G2

nA
+ γ2C

A

(72)

where in the last equality, we further imposed the step sizes to satisfy α < γ.
In what follows, we discuss the summation in the second term of the inequality to avoid setting loose
bounds. We know that this summation can be written as follows,

k∑
i=0

%i1%
k−i
2 =

k∑
i=0

%k−i1 %i2 (73)
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Thus, without imposing further assumptions on the step sizes, we consider the following function
the two cases:

• When %1 ≤ %2, we use the left hand side of the previous equality

Dk+1 ≤%k+1
1 D0 +R

(
Bαγ + %2

n

)
%k2

k∑
i=0

%i1%
−i
2 + α2BG1

A
+ α

γ

G2

nA
+ γ2C

A

≤%k+1
1 D0 +R

(
Bαγ + %2

n

)
%k2

1
1− %1

%2

+ α2BG1

A
+ α

γ

G2

nA
+ γ2C

A

=%k+1
1 D0 + %k+1

2

2R
(
Bαγ + %2

n

)
2Aαγ + ρ2

w − 1 + α2BG1

A
+ α

γ

G2

nA
+ γ2C

A

(74)

Then, for arbitrary small step sizes satisfying αγ < 1
A and α < γ, Dk converges with the linear

rate of O
(
%k2
)
.

• When %1 > %2, we use the right hand side

Dk+1 ≤%k+1
1 D0 +R

(
Bαγ + %2

n

)
%k1

k∑
i=0

%−i%i2 + α2BG1

A
+ α

γ

G2

nA
+ γ2C

A

≤%k+1
1 D0 +R

(
Bαγ + %2

n

)
%k1

1
1− %2

%1

+ α2BG1

A
+ α

γ

G2

nA
+ γ2C

A

=%k+1
1

(
D0 +

2RBαγ + 2R%2
n

1− 2Aαγ − ρ2
w

)
+ α2BG1

A
+ α

γ

G2

nA
+ γ2C

A

(75)

Then, for arbitrary small step sizes satisfying αγ < 1
A and α < γ, Dk converges with the linear

rate of O
(
%k1
)
.

H Additional Numerical Examples

Figures 9-11 depict the classification of images with the labels 2 and 3 and Figures 12-14 depict those with
the labels 3 and 4.

Figure 9: Expected loss function evolution of the
proposed algorithm vs. DSGT, EXTRA, and 1P-
GD considering vanishing vs. constant step sizes
classifying images with labels 2 and 3.

Figure 10: Expected test accuracy evolution of
the proposed algorithm vs. DSGT, EXTRA, and
1P-GD considering vanishing vs. constant step
sizes classifying images with labels 2 and 3.
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Figure 11: Expected consensus error evolution of
the proposed algorithm vs. DSGT and EXTRA
considering vanishing vs. constant step sizes clas-
sifying images with labels 2 and 3.

Figure 12: Expected loss function evolution of
the proposed algorithm vs. DSGT, EXTRA, and
1P-GD considering vanishing vs. constant step
sizes classifying images with labels 3 and 4.

Figure 13: Expected test accuracy evolution of
the proposed algorithm vs. DSGT, EXTRA, and
1P-GD considering vanishing vs. constant step
sizes classifying images with labels 3 and 4.

Figure 14: Expected consensus error evolution of
the proposed algorithm vs. DSGT and EXTRA
considering vanishing vs. constant step sizes clas-
sifying images with labels 3 and 4.
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