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ABSTRACT

Small molecules are vital to modern medicine, and accurately predicting their
bioactivity against protein targets is crucial for therapeutic discovery and develop-
ment. However, current machine learning models often rely on spurious features,
leading to biased outcomes. Notably, a simple pocket-only baseline can achieve
results comparable to, and sometimes better than, more complex models that incor-
porate both the protein pockets and the small molecules. Our analysis reveals that
this phenomenon arises from insufficient training data and an improper evaluation
process, which is typically conducted at the pocket level rather than the small
molecule level. To address these issues, we redefine the bioactivity prediction task
by introducing the SIU dataset-a million-scale Structural small molecule-protein
Interaction dataset for Unbiased bioactivity prediction task, which is 50 times
larger than the widely used PDBbind. The bioactivity labels in SIU are derived
from wet experiments and organized by assay types, ensuring greater accuracy
and comparability. The complexes in SIU are constructed using a majority vote
from three commonly used docking software programs, enhancing their reliability.
Additionally, the structure of SIU allows for multiple small molecules to be associ-
ated with each protein pocket, enabling the redefinition of evaluation metrics like
Pearson and Spearman correlations across different small molecules targeting the
same protein pocket. Experimental results demonstrate that this new task provides
a more challenging and meaningful benchmark for training and evaluating bioac-
tivity prediction models, ultimately offering a more robust assessment of model
performance.

1 INTRODUCTION

Small molecules are essential active components in life-saving therapeutic drugs, with their safety
and efficacy intricately linked to interactions with various protein targets within the human body.
Consequently, bioactivity prediction has emerged as a critical task in the drug discovery process
(Tropsha et al., 2024} |Gaulton & Overington, [2010), driven by the rapid advancement of machine
learning methods. In this context, ’bioactivity” encompasses the diverse biological effects resulting
from small molecule-protein interactions, including binding responses-commonly quantified by the
dissociation constant (K;) and the inhibition constant (K;)-as well as functional responses, typically
assessed through the half-maximal inhibitory concentration (IC5p) and the half-maximal effective
concentration (ECsg).

Recently, various 3D machine learning models have been proposed in this direction (Townshend et al.|
2020; Zhou et al.| 2022; |Gao et al., 2023a; [Luo et al. [2023)), achieving significant advancements.
These methods utilize the structural information of small molecules and protein targets as inputs
to learn a mapping function between these inputs and bioactivity labels. This methodology is
inherently sound and explainable, as biological insights suggest that the biological effect of a small
molecule largely depends on its 3D shape complementarity with its protein targets (Verma et al.|
2010), a principle known as the key-lock modulation theory (Koshland Jr, [1995; Eschenmoser, |1995)).
Nevertheless, the applications of these methods have not yielded satisfactory results regarding drug
discovery capabilities. For instance, when using predicted biological labels to differentiate between
active and inactive molecules-an essential task in virtual screening-these predictive models often fail
to compete with widely used docking methods, as noted in|Shen et al.|(2021)) and |Gao et al.|(2023b).

Our analysis reveals that these models can be easily biased to some spurious features, leading to
inaccurate predictions based on shortcuts. We propose a pocket-only baseline to diagnose the current
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bioactivity prediction task. While previous works assume that the bioactivity labels are determined
by the interaction between small molecules and protein targets, they tend to assess only the protein
target while ignoring the provided small molecules, representing a degenerate solution. As shown in
Figure[I](A) (B), experiments on the widely used Atom3D ligand binding affinity (LBA) prediction
dataset (Townshend et al.} 2020) demonstrate that this pocket-only approach achieves, or can even
outperforms, models utilizing the complex information across both 30% and 60% sequence identity
splits. These results support our claim by suggesting that statistical irregularities in the data enable a
model to achieve bioactivity predictions beyond what should be possible without access to the small
molecule information.
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Figure 1: Analysis of Atom3D bioactivity prediction task. The evaluation metrics include (A)
Root Mean Squared Error (RMSE) and (B) Pearson correlation. The models tested include: a GNN
model using the full protein-ligand complexes as inputs, a Uni-Mol model with both a small molecule
encoder and a protein encoder, and a Uni-Mol model with only a protein encoder which only takes
pocket side information. Performance is evaluated across different sequence identity splits (30%
and 60%). It shows that Pocket-only model can overfit Atom3D bioactivity prediction task. (C)
Predicted versus actual label values for various small molecules within a single protein target.

Upon further analysis, we find that the key issue stems from the improper definition of the current
bioactivity prediction task, particularly in terms of both data construction and evaluation metrics.

From a data perspective, the constructed training data is not sufficient for developing a robust
bioactivity predictor. Although previous works have utilized different training data, they are all
derived form PDBbind (Wang et al.} 2004} 2003)), which contains only about 20,000 small molecule-
protein target pairs. More importantly, for each protein target, these datasets typically feature only a
single small-molecule ligand. This introduces bias into the training data, causing models to primarily
learn the bioactivity range for each protein target rather than differentiating between various small
molecules interacting with the same target. As demonstrated in Figure [[(C), when testing a model
with different small molecules for the same target, even with both protein and small molecule
information provided, the model generates predictions that cluster around the mean bioactivity value
of the target, while the actual label values vary across a much wider range. This behavior suggests
that the model trained on the current dataset fails to differentiate between different small molecules.
This also helps to explain why pocket-only baselines can achieve unexpectedly good metric values.

From an evaluation perspective, the current metrics fail to accurately reflect how well models capture
the interactions between a protein target and diverse small molecules. Specifically, established metrics
like Pearson and Spearman correlations are computed across different protein targets rather than
across multiple small molecules for the same target. This approach primarily measures differences
between various protein targets. Consequently, models can overfit by relying predominantly on
pocket information without truly learning the nuances of small molecule binding.

To address these issues, we propose redefining the bioactivity prediction task in this paper. Our strategy
involves constructing a novel, large-scale structural dataset of small molecule-protein interactions,
featuring multiple small molecules for each protein target, and evaluating metrics across these
different small molecules. A significant challenge lies in constructing a large-scale dataset of reliable
small molecule-protein complexes, as high-quality structural data depends on labor-intensive and
time-consuming wet-lab experiments. To tackle this, we first sourced, cleaned, and deduplicated
small molecules and protein targets from relevant databases containing high-quality bioactivity labels.
For each protein and its various pockets, we utilized multiple docking software programs, such as
Vina (Trott & Olson, [2010)), to dock associated molecules, generating primary interaction complex
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structures. Subsequently, a majority vote mechanism was employed to obtain high-quality interaction
poses. Furthermore, we differentiated between various assay types, such as Ky, K;, IC5¢, and ECsg,
to mitigate potential biases associated with assay types during training and evaluation. This resulted
in a large-scale Structural dataset of small molecule-protein Interactions for Unbiased bioactivity
prediction, namely SIU.

The SIU dataset comprises over 5.34 million conformations and features 1.38 million rigorously
curated bioactivity annotations, each clearly designated by assay types. This extensive dataset
provides comprehensive coverage of diverse small molecules, surpassing the limitations of datasets
restricted to molecules structurally similar to co-crystal ligands. It also includes a wide array of
protein targets across all major protein classes, with each protein linked to multiple PDB IDs that
reflect distinct pocket conformations (not necessarily different binding sites). Notably, SIU differs
from existing datasets that often overlook critical distinctions between assay types, making it more
suitable for fair bioactivity prediction and comparison.

With the availability of multiple small molecules with bioactivity labels for each protein target in
SIU, we redefine the evaluation metrics by calculating values among different small-molecule ligands
with the same target, rather than across different targets. The results are then averaged across targets
using mean pooling. This approach ensures that the evaluation metrics accurately reflect the biactivity
difference between small molecules within the same targets, thereby mitigating the aforementioned
evaluation bias.

We compare the experimental results of training several classical baseline models on PDBbind and
SIU. Two key findings highlight the outperformance of SIU over PDBbind. First, when evaluated
using traditional metrics like RMSE, Pearson, and Spearman correlations across different targets,
models trained on SIU demonstrate significant improvements compared to those trained on PDBbind,
reflecting the value of the inclusion of more structural data. Notably, this performance enhancement
persists even after removing data with high sequence identity from the test set, while models trained
on PDBbind do not undergo the same removal. Second, our redefined metrics reveal a substantial
drop in performance when evaluating small molecules within the same target. For instance, the
Pearson correlation for K; can decrease from 0.485 to 0.036. This indicates that the new task is more
challenging and that the bioactivity prediction abilities of the previous models may be overestimated
due to improper task definitions. These results underscores the importance of the unbiased bioactivity
prediction task we introduced, which we believe will advance the development of machine learning
models that are truly beneficial for drug discovery.

2 RELATED WORK

Commonly used bioactivity prediction tasks include the Comparative Assessment of Scoring Func-
tions (CASF) task (Cheng et al.,[2009; |Li et al.,|2014bza; Su et al.,2018) and the Atom3D LBA task
(Townshend et al., 2020). Both tasks are derived from the PDBbind dataset (Wang et al., 2004; 2005),
which is widely used and contains complex structures of small molecule-protein interactions along
with their corresponding bioactivity labels. However, the data cleaning and splitting methods differ
between these tasks. The CASF-2016 task (Su et al.| [2018)) consists of 285 protein-ligand complexes,
each labeled with an experimentally measured binding affinity. Since it does not provide a dedicated
training set, prior research typically relies on self-defined training datasets derived from PDBbind. In
contrast, the LBA task in Atom3D (Townshend et al.,|2020) provides predefined training and testing
splits, using sequence identity-based splits on 30% and 60% to ensure that test results reflect the
model’s generalization ability. This task combines different label assay types, including ICsg, K;,
and K, into a unified prediction variable, with a total of 4,463 complexes in the dataset.

In this work, we introduce the SIU dataset to address specific challenges in bioactivity prediction
tasks. Similarly, large-scale, high-quality datasets like Papyrus(Béquignon et al.| [2023), curated from
diverse sources, address other critical aspects and contribute valuable resources to the field.

Atom3D also introduced two widely adopted baseline models: a voxel-grid-based 3D convolutional
neural network (3D-CNN) and a graph neural network (GNN) (Townshend et al., 2020). Recent
advances in bioactivity prediction have been driven by the application of pretrained models, such
as Uni-Mol (Zhou et al., [2022)) and ProFSA (Gao et al., 2023a)). These models utilize large-scale
pretraining on molecular and structural data to achieve state-of-the-art performance across various
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bioactivity prediction tasks. In Atom3D, binding affinity prediction models are evaluated using
Root Mean Square Error (RMSE), Mean Absolute Error (MAE), Pearson correlation, and Spearman
correlation metrics.

3 METHODS

3.1 SIU DATASET CONSTRUCTION
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Figure 2: Construction and features of the SIU dataset. (A) The construction pipeline began
with the collection of small molecules and protein targets from established databases, followed by
data cleaning and deduplication. The small molecules underwent a comprehensive multi-software
docking process, where they were prepared and docked to their experimentally validated targets. For
quality control, the resulting poses were filtered through a voting mechanism, resulting in a dataset
organized by both PDB and assay, designed to enable unbiased bioactivity prediction. (B) The SIU
dataset offers large-scale structural data, making it more than fifty times the size of PDBbind and
significantly larger than datasets currently used for bioactivity prediction tasks. (C) The SIU dataset
is meticulously structured to enhance unbiased bioactivity prediction. It features multiple pockets
(identified by PDB IDs) associated with the same protein target, multiple small molecules mapped
to individual pockets (green), multiple high-quality docking poses per small molecule, and detailed
assay type annotations corresponding to all bioactivity values (orange).

Bioactivity label data cleaning and deduplication. Non-structural bioactivity data were retrieved
from established databases: ChEMBL (Mendez et al., 2019} |Gaulton et al.,2012) and BindingDB
(Chen et al., 2001} Liu et al.,[2007; |Gilson et al.l 2016). These data were subjected to well-defined
criteria to exclude small molecules that are not drug-like, based on molecular weight, atom composi-
tion, and element restrictions (detailed in Appendix [A). All small molecules retained their original
IUPAC International Chemical Identifier (InChl) keys (Heller et al.,[2015) and simplified molecular
input line entry system (SMILES) notations (Weininger, |1988}; [Weininger et al., [1989) from the
databases to avoid mismatches due to different software calculations. Additionally, we examined
targets associated with an excessively high number of small molecules and introduced a new filter
based on small molecule extended-connectivity fingerprints (ECFP) similarity (Rogers & Hahnl
2010), ensuring both quality and diversity of small molecules while minimizing the computational
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expense of molecular docking. Protein target information for each assay was carefully identified and
standardized using UniProt IDs (Consortium, 2015} 2017), ensuring consistency across datasets
and facilitating matching with experimental structural data. All small molecule-protein pairs with
matched bioactivity labels were subsequently docked. The bioactivity information was standardized
to a unit of mol /L (M) and converted to their negative logarithm, similar to datasets for drug-target
binding affinity prediction (Oztiirk et al., 2018).

Protein structures were downloaded and matched with their UniProt IDs to ensure accurate alignment
with bioactivity data. For clarity, we refer to the area within a certain distance from different
co-crystal ligands on the same protein as distinct pockets (identified by PDB IDs), regardless of
whether they belong to the same binding site on the protein. We developed a filtering mechanism
that leverages chemical and biological knowledge to eliminate PDB files containing non-specific
or biologically irrelevant co-crystallized ligands that do not occupy actual binding sites. Docking
all pocket structures is computationally expensive and offers diminishing returns in terms of novel
information. We addressed this issue by implementing Fast Local Alignment of Protein Pockets
(FLAPP) (Sankar et al., 2022)) to further deduplicate the pocket library.
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Figure 3: Quality control of SIU structural data. (A) A feasibility study of our methods showing the
impact of root mean square deviation (RMSD) on success (when the pose simultaneously passes the
consensus filter and has an RMSD < 2 A compared to the co-crystal pose) and remaining ratios (the
ratio of poses passing the filter) was analyzed using co-crystal poses, treated as the ground truth, and
redocked into their original PDB pockets according to our docking procedure. (B-D) Visualization
of our pose consensus mechanism, where RMSD is calculated between different docking poses
from different software. A single Glide docking pose is compared with the top three docking poses
generated by GOLD. (B) RMSD 1.544 A: well-superimposed poses; (C) RMSD 1.985 A: similar
predicted binding modes; (D) RMSD 8.095 A: fundamentally different predicted binding modes.

Structural data construction via multi-software docking SIU employs multiple docking software
programs (Friesner et al.}, 2004} [Verdonk et al.} 2003 [Trott & Olsonl [2010), reducing reliance on any
individual docking software. Initial 3D conformations for the small molecules were generated prior to
docking using the Glide LigPrep module with default settings. The preprocessed data were organized
into formats compatible with the chosen docking software. Protein targets were prepared, and grid
files were generated according to each software’s specific requirements to ensure compatibility. Small
molecules were then docked into the pockets of the protein structures (detailed in Appendix [B).

For quality control, the SIU structural data underwent a majority voting mechanism: only docking
poses consistent across at least two of the three docking software were retained. This consensus-based
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approach mitigated the inclusion of erroneous or misleading docking poses, thereby improving the
overall quality and reliability of the dataset.

We investigated the selection of the consensus filtering RMSD cutoff by evaluating the trade-off
between pose accuracy and the quantity of retained data. Experiments were conducted to assess
the impact of varying RMSD cutoffs on these factors (Figure [3(A)). In this experiment, we re-
docked small-molecule ligands with known co-crystal structures using different docking software.
A successful docking pose was defined as one with an RMSD of less than 2 A compared to the
experimental structure. The results demonstrate that with an RMSD cutoff below 2 A, a significant
number of molecules are retained, and the success rate of the poses is satisfactory. However, as the
RMSD cutoff increases, the number of retained poses rises slightly, but their accuracy decreases
substantially. This suggests that our consensus method is effective for quality control of docked
structures. Furthermore, Figure B—D) show that when the RMSD is around 2 A, key interactions
are preserved, indicating a potentially valid docking result. Based on these observations, an RMSD
cutoff of 2 A was selected as the optimal threshold.

3.2 DATASET OVERVIEW

Large-scale. The SIU dataset comprises 5,342,250 conformations detailing small molecule-protein
interactions, each entry providing comprehensive structural and bioactivity information, as shown
in figure 2 B). It includes 1,385,201 bioactivity labels derived from wet experiments, each with
standardized values and clearly annotated assay types. The top four assay types by small molecule-
protein pair count are half-maximal inhibitory concentration IC5y (994,409), K; (201,458), half-
maximal effective concentration EC5( (103,435), and K, (56,485), which form the primary subset
used in our subsequent experiments.

Diversity. SIU offers an extensive range of data, encompassing 214,686 diverse small molecules
and 1,720 distinct protein targets. It includes experimentally validated low-bioactivity or inactive
molecules, often absent in structural datasets from wet experiments, thus providing valuable negative
data for Al-driven drug discovery (AIDD). The dataset features extensive protein pocket coverage,
including protein from humans, E. coli (Vila et al., 2016)), various viruses, and other organisms. It
spans major protein classes such as GPCRs (Hauser et al., 2017), kinases (Attwood et al., 2021}
Cohen et al., 2021)), nuclear receptors (Robinson-Rechavi et al., |2003), cytochromes (Danielson,
2002), ion channels (Ashcroft, |1999), and other protein involved in complex biological processes like
epigenetics (Gibney & Nolan, [2010; [Feinberg, |2008)) and transcription (Cramer, 2019; [Lambert et al.|
2018). As illustrated in Figure 4{D), the assay values of different protein targets vary significantly.
This broad coverage ensures a comprehensive representation of small molecule-protein interaction
modes, enhancing the relevance of our bioactivity prediction tasks to real biological environments.

High-quality. The structural information on small molecule-protein interactions in SIU is of
high quality, due to our multi-software voting mechanism that maximizes docking accuracy within
computational limits. As detailed in the structural data construction section, we achieved a satisfactory
balance between data accuracy and scale, presenting high-quality data unobtainable with a single
docking software or solely by ranking based on software-predicted docking scores. Docking software
often provides successful simulated docking poses within the top-ranking positions, but these are
not always ranked first by docking scores. Our method, however, is based on the consistency of
docking pose sampling across different algorithms. By examining consensus among different docking
algorithms, we effectively ensure more accurate docking pose data.

Well-organized. SIU’s bioactivity labels are meticulously curated and systematically organized by
PDB IDs and assay types, ensuring data integrity and enabling effective PDB-wise and assay-wise
comparisons. This organization offers a robust resource for unbiased bioactivity prediction, addressing
the limitations of existing datasets that often fail to distinguish clearly between different bioactivity
assay types. Traditional machine learning measurements of correlations in bioactivity prediction
tasks are often ineffective due to the lack of clarity in existing datasets. SIU can also address this
problem, ensuring more precise and meaningful analyses. Our structured approach facilitates nuanced
assessments, such as evaluating the impact of specific small molecule transformation on protein
interactions or comparing the efficacy of different compounds within the same protein pocket context.



Under review as a conference paper at ICLR 2025

2 .
A ICso B
Pairwise t-test p- The distribution 10
value differences of assay values
between assay ECso for 8
values of
6
Ky
4
Ki 2
ICso  ECso Ky Ki * ICso ECso Kq K;
(o] & ! D 10
&
e@
Pairwise t-test p- ?’:ﬁa The distribution
value differences ‘9:@ of assay values
between assay & for
values of & ©
@
&
QO& .
o§H
T N
&
&

SEFLIEE S & &
Figure 4: Differences in assay values across label types and protein targets. (A) The mean assay
values vary among representative label types, as shown by a heatmap of pairwise t-test p-values.
Smaller p-values (lighter colors) indicate significant differences. (B) Violin plots illustrate the
distributions of label values for different label types. (C) Differences in mean assay values among ten
protein targets. (D) The distributions of label values for different protein targets.

3.3 REFRAMING THE BIOACTIVITY PREDICTION TASK

Organization of different assay types. We organized the data by assay types to address the
common issue of mixing K4 and K; data, while also ensuring that other bioactivities are not neglected.
As illustrated in Figure f{A) and 4(B), the physical meanings of the label types differ, leading to
variations in their mean values and distributions. This highlights the importance of not mixing
different label types and suggests that they should be treated as distinct tasks.

Unbiased correlation metrics with group-by-pocket approach. As shown in Figure dC), we
selected 10 different protein targets along with their corresponding ICs label values and calculated
the pairwise t-test p-values. A higher p-value (darker color) indicates a higher similarity in the mean
values of different targets. This observation is further corroborated by Figure (D), where violin plots
depict the distribution of label values for each of the representative targets, highlighting variations
in both mean values and overall distributions. The figure clearly demonstrates that most target
pairs exhibit significantly different distributions. These differences introduce bias into the dataset
and explain why utilizing only pocket information can still achieve strong Pearson and Spearman
correlation performance, as shown in Figure[T]

Thanks to the fact that our dataset provides multiple small-molecule ligands for each protein, we
can reframe the task and introduce new bioactivity prediction metrics, enabling more unbiased
benchmarking of the models.

In the traditional machine learning approach, Pearson correlation is calculated across all ligand-
pocket pairs without considering the individual protein pocket. Given N ligand-pocket pairs, where
y; represents the predicted bioactivity and y; represents the true bioactivity for each ligand-pocket
pairs, the Pearson correlation r is computed as:

N ~ = _
. 21 i — )i —9) 7 n
N ~ = N _
\/Ei:l(yi —9)*\ 2i=1 (% — 9)?
where: 7 is the mean of the predicted bioactivities across all ligand-pocket pairs. 7 is the mean of the
true bioactivities across all ligand-pocket pairs.

We calculate Pearson correlation after grouping by protein pockets (PDB IDs). For each protein
pocket ¢, with n; ligands and their corresponding predicted bioactivities §j; ; and true bioactivities
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i+, we first compute the Pearson correlation r;, for each pocket:
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where: ¢, is the mean of predicted bioactivities for ligands within the same pocket . 7 is the mean
of true bioactivities for ligands within the same pocket ¢.

Once we have computed the Pearson correlation for each pocket, the overall correlation considering
all protein pockets (Pearson*) is obtained by mean pooling:

r* = 1 irt. 3)
T

where T is the total number of pockets.
The similar method is also applied to the Spearman correlation to get Spearman®.

This grouped-by-pocket approach offers an unbiased and more useful evaluation, as it ensures that
the correlation reflects the model’s ability to predict bioactivities for different small-molecule ligands
within the same protein pocket, reducing bias introduced by variations between different pockets.

Sequence identity guided data split. To ensure the generalizability of the experimental findings
with SIU, we employed a manual curation approach for dataset splitting. We selected a set of 10
representative protein targets to serve as the test set (detailed in Appendix [C)). These targets were
intentionally chosen to cover a diverse range of protein classes, including well-known drug targets
such as G-Protein Coupled Receptors (GPCRs) (Hauser et al., 2017)), kinases (Attwood et al.| 2021}
Cohen et al., 2021)), and cytochromes (Danielson, 2002)). This selection strategy was designed to
encompass the bioactivity landscape across various protein functionalities, thereby enhancing the
applicability of our results to a wider range of potential drug discovery applications. We conducted
non-homology analyses at two levels, 0.6 and 0.9, to ensure the independence and diversity of the
training and test sets. For both versions 0.9 and 0.6, we have 21,528 data pairs allocated for testing.
Specifically, version 0.9 includes 1,250,807 data pairs for training and validation, while version 0.6
includes 386,330 data pairs for these purposes (detailed in Appendix [D).

4 EXPERIMENTS AND ANALYSIS

4.1 EXPERIMENTS

We conducted experiments using several classical models to provide baseline results and analyze our
SIU dataset. The models tested include a voxel-grid based 3D-CNN model, a Graph Neural Network
(GNN) model, and pretrained models such as Uni-Mol and ProFSA (Gao et al.l 2023a)) as it achieves
SOTA result for protein-ligand binding affinity prediction task. Our experiments were performed
in both Multi-Task Learning (MTL) and single-target settings. In the MTL setting, all data were
combined to train a single MTL model. In the single-target setting, the Uni-Mol model was trained
separately on individual labels.

The metrics used in our analysis include RMSE, Mean Absolute Error (MAE), general Pearson and
Spearman correlation, and the correlation after grouping by PDB IDs. The general Pearson and
Spearman correlations are calculated by mixing pairs of protein pockets and molecules. The grouped
correlation metrics are calculated for different molecules within a single protein pocket. We use
Pearson™ to represent Pearson correlation after grouping by PDB ID (pocket), and Spearman* to
represent Spearman correlation after grouping by PDB IDs.

Results for multi-task learning is shown in Table[I] and the results for single task learning is shown
in Table 71

4.2 ANALYSIS

Different difficulties of assay types. The bioactivity prediction difficulty varies among different
assay types. The K task is the most challenging, primarily due to the varying correlations between
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Table 1: Results for multi task learning with different label types. We show results for 3D-CNN,
GNN, Uni-Mol, and ProFSA trained on SIU 0.9 version.

| RMSE  MAE  Pearson Pearson* Spearman Spearman*

3D-CNN | 1.560 1.275  0.158 0.044 0.154 0.040

ICs0 G_NN 1412 1.141  0.336 0.241 0.316 0.235
° Uni-Mol | 1.353 1.092  0.462 0.343 0.466 0.351
ProFSA | 1.361 1.108 0.382 0.331 0.356 0.317
3D-CNN | 1.518 1.234  0.128 0.010 0.128 0.004

ECs, G_NN 1.334  1.025  0.444 0.108 0.481 0.120
°® Uni-Mol | 1.273 1.017 0.428 0.178 0.461 0.144
ProFSA | 1.255 0971 0.438 0.204 0.495 0.154
3D-CNN | 1.534 1260 0.201 0.025 0.200 0.021

K. GNN 1.814 1504  0.247 0.099 0.107 0.058
! Uni-Mol | 1.390 1.133  0.375 0.092 0.324 0.056
ProFSA | 1.374 1.142  0.405 0.149 0.365 0.127
3D-CNN | 1.503 1.233  0.173 0.024 0.167 0.038

K, GNN 1.711 1431  -0.068 0.065 -0.147 0.033
Uni-Mol | 1.429 1.223 -0.084 0.155 -0.175 0.144
ProFSA | 1546 1334 -0.172 0.057 -0.205 0.029

Table 2: Results for single task training with different label types. We show the results with Uni-Mol
model on PDBbind dataset, our SIU 0.6 version and 0.9 version dataset.

Train Set | RMSE  MAE  Pearson Pearson® Spearman Spearman*

PDBbind | 1.575 1279 0430  0.245 0.425 0.229

ICs0  SIUO06 | 1407 1138  0.461 0.317 0.463 0.311
SIUO0.9 | 1.357 1.099 0470  0.345 0.474 0.347

g, SIU06 | 1400 1163 0280  0.171 0.284 0.150
0 SIU0Y | 1.340 1.096 0384  0.196 0.379 0.142
PDBbind | 1.315 1.085  0.368 0.040 0.323 0.026

K; SIU06 | 1255 1.034 0472  0.106 0.452 0.112
SIU0.9 | 1.235 1.017 0485  0.036 0.452 0.041
PDBbind | 1.565 1308  0.041 0.010 0.004 0.006

Kgs SIUO06 | 1389 1192 -0.149  0.052 -0.206 0.022
SIU0.9 | 1.364 1141 -0.033  0.103 -0.082 0.065

different assay types, as shown in Figure [d{ A)(B). Although the means of K; and K, labels do not
differ statistically, the distribution of these two data groups is different. The intrinsic differences in
assay types of bioactivity arise from the principles of the wet-lab experiments used to measure them.
Binding assays focus on the direct interaction between the small molecule and the protein target,
providing insights into the strength and specificity of this binding through metrics like K; and K,
using techniques such as surface plasmon resonance (SPR) (Schasfoort, [2017; |Englebienne et al.,
2003) and isothermal titration calorimetry (ITC) (Leavitt & Freirel |2001). In contrast, functional
assays measure the biological response elicited by the small molecule on the target, capturing its
effect on a biological system and often quantified by IC5g and EC5y by enzyme activity assays
(Bisswanger, 2014} |Hall, [ 1996) or other wet experiment techniques. The inherent differences in
what these assays measure mean that their values cannot be directly compared (Yung-Chi &
Prusoff,[1973). Furthermore, even within the categories of binding and functional assays, metrics
should not be used interchangeably, as K; and K, describe different aspects of binding affinity, just
as ICyg and ECj5q describe different aspects of biological response.

Influence of our unbiased metrics As demonstrated in Figure 5] calculating the correlation at
after grouping by PDB ID (pocket) across all assay types results in a significant decline in both
Pearson and Spearman correlations. This observation suggests that it is more challenging to achieve
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Figure 5: (A) Pearson and Spearman correlations for various label types, calculated both before and
after grouping by PDB IDs. (B) Pearson correlations after grouping PDB IDs for different assay
types trained on different datasets.

high correlation when assessing binding affinities for different molecules within the same pocket
after grouping. This challenge primarily arises from the different distribution of binding affinities
across various protein pockets, as shown in Figure (C)(D). Furthermore, these findings highlight that
conventional machine learning approaches to measuring correlation without grouping by target
may not effectively capture a model’s ability to differentiate between molecules targeting the
same protein. Such discriminatory capacity is crucial in drug discovery, emphasizing the importance
of focusing on molecular interactions specific to each target rather than general correlations across
diverse targets. This underscores the necessity of our dataset, which measures correlation within
the same PDB IDs, providing a more relevant assessment of a deep learning model’s utility in drug
discovery. Also, as the correlation is calculated within same pocket, it cannot be overfitted with
pocket only information, as it will result in similar prediction results for different molecules, which
would lead to NaN when calculating the pearson or spearman correlation.

Effectivness of training on our dataset. We compare models trained on the PDBbind 2020 dataset
with those trained on SIU versions 0.6 and 0.9. Notably, the PDBbind 2020 dataset was used in its
entirety, without implementing any filtering techniques to exclude pockets similar to those in the test
set. As illustrated in Table[7]and Figure[5] models trained on the SIU datasets outperform those trained
on PDBbind, despite the latter’s lack of homology removal. This underscores the effectiveness of
our large-scale dataset in enhancing model learning for binding affinity prediction. Also the 0.9
version gives a better performance compared to the 0.6 version, indicating the influence of removing
homology and scaling law of the dataset. We also provide the results of using docked structures of
PDBbind to train the model, which is shown in Appendix [F| The results yield the same conclusion.

5 CONCLUSION

We identified and further analyzed the inherent biases present in mainstream bioactivity prediction
tasks. These tasks tend to introduce bias in both the training and testing processes. During training,
the bias arises due to the limited scale of small molecule-protein pairs; in most current datasets,
there is only one small molecule associated with each protein pocket. This limits the model’s
ability to learn the underlying interactions between small molecules and protein targets, leading to
overfitting to the value range of these protein pockets. Furthermore, during testing, existing metrics
primarily assess the models’ ability to discriminate between different protein pockets, neglecting their
ability to rank various small molecules that interact with the same protein pocket. To address these
critical challenges, we redefined the bioactivity prediction task by introducing a novel, large-scale,
high-quality structural dataset with well-organized labels. We also developed new metrics that
specifically evaluate a model’s ability to rank different small molecules for each protein target. Our
analysis, which included testing several classical models as baselines, demonstrates that our dataset
can improve model performance. Moreover, our proposed metrics provide a more challenging and
meaningful evaluation of bioactivity prediction models. Therefore, the task we introduced and the
SIU dataset we created represent valuable contributions to the field.

10
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A DATA CLEANING AND DEDUPLICATION DETAILS

We retrieved non-structural bioactivity data from ChEMBL (Release 33) and BindingDB (version
202404), applying rigorous filtering to refine the dataset. For ChEMBL, data were extracted via
SQLite, focusing on records with an assays.confidence_score of 9, targeting a single protein, and
classified as binding (B) or functional (F). We included entries with non-null values for activi-
ties.standard_relation and activities.standard_value, where activities.standard_units were 'pM’, 'nM’,
or 'uM’. Further refinement was applied to activities.activity_comment to capture specific biological
activity descriptions, and molecular weight (compound_properties.mw _freebase) was restricted to
between 150 and 650 Da.

For small molecules, stringent filtering criteria were used to exclude non-drug-like entities. We
selected molecules with a molecular weight of 150-650 Da, containing at least one carbon atom,
and having a minimum of nine heavy atoms. Each small molecule retained its original [UPAC
International Chemical Identifier (InChl) keys and Simplified Molecular Input Line Entry System
(SMILES) notations.

From BindingDB, we extracted relevant data from the tsv file and standardized protein target
information using UniProt IDs. The ChEMBL and BindingDB datasets were merged by matching
InChlI keys for small molecules with UniProt IDs for protein targets, ensuring accurate alignment of
bioactivity labels with their corresponding small molecule-protein interactions.

To manage data quality, we introduced a filter based on extended-connectivity fingerprints (ECFP)
similarity, excluding targets with more than 2,146 associated small molecules (90th percentile),
thereby focusing on more manageable target sets.

B DOCKING METHOD DETAILS

Constructing a structural dataset of this magnitude required us to tune the docking settings to balance
docking performance with computational resource utilization. Since the ligands in the bioactivity
databases are provided only as 1D structures (SMILES), we first generated up to 32 stereoisomers for
each small molecule in the ligand preparation process. For molecules with chiral centers, different
stereoisomers were explored and included. Ionization states of molecules at physiological pH were
also considered to ensure accurate representations of their charged forms. Multiple conformations
were prepared for each small molecule to account for their flexibility. We then prepared the protein
structures we collected, predicted their ionization states, and removed water molecules. A grid file
for docking was generated, with the pocket centered on the co-crystal ligand and a length of 20 A.
The small molecules were docked with an exhaustiveness setting of 3. The resulting conformations
underwent a consensus filtering pipeline, yielding the final conformations reported in the dataset.

C TEST SET CONSTRUCTION

To ensure the robustness and generalizability of the experimental findings with SIU, we meticulously
curated a test set composed of 10 protein targets, as listed in Table|3| These targets were selected to
represent a wide range of protein classes, including G-Protein Coupled Receptors (GPCRs), kinases,
cytochrome, nuclear receptor, ion channel, epigenetic, and others, ensuring broad coverage of the
bioactivity landscape. For example, "C11B1_HUMAN” belongs to the cytochrome P450 family,
which is involved in the metabolism of various drugs (Bureik et al.l [2002; Denisov et al.| [2005).
"RARG_HUMAN” belongs to the Nuclear Receptor family, with drugs like bexarotene used for
certain cancers (Altucci et al., 2007; Qu & Tang, |2010). "NMDE1_HUMAN” represents the NMDA
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receptor, a critical glutamate receptor in neurons implicated in various neurological disorders, with
memantine being an approved NMDA receptor antagonist for moderate to severe Alzheimer’s disease
(Mori & Mishina, [1995; [Reisberg et al., 2003). Including these targets across various functionalities
enhances the applicability of our results in drug discovery.

Table 3: The curated test set of 10 protein targets, covering a diverse range of protein classes and
displaying an even distribution of small molecule-pocket pair counts.

UniProt Gene name Class Small molecule-

pocket pair count
P61073 CXCR4_HUMAN GPCR 1376
P42866 OPRM_MOUSE GPCR 2379
Q00535 CDK5_HUMAN Kinase 2189
Q04759 KPCT_HUMAN Kinase 2320
P15538 C11B1_HUMAN Cytochrome 2427
P13631 RARG_HUMAN | Nuclear Receptor 1888
Q12879 | NMDE1_HUMAN Ton Channel 2144
QI9UGNS | PARP2_.HUMAN Epigenetic 2251
Q86WV6 | STING.HUMAN Others 2495
Q96SW2 | CRBN_HUMAN Others 2059

D DATASET OVERVIEW

SIU represents a large-scale, high-quality dataset of small molecule-protein interactions, meticulously
organized to facilitate unbiased bioactivity prediction, both PDB-wise and assay-type-wise. The
dataset comprises a total of 5,342,250 conformations. Each instance in the dataset provides detailed
information about small molecule-protein interactions, including the coordinates and element types
of each atom in the small molecule and the corresponding pockets of each interaction. Additionally,
the assay value and type of each conformation, along with other critical information, are carefully
obtained and retained from the original bioactivity databases. This includes the UniProt ID and PDB
ID of the protein pockets, as well as the InChl keys (Heller et al., [2015) and SMILES |Weininger
(1988); |Weininger et al.|(1989) notations of the small molecules.

Table 4: The label count for 4 representative assay types in SIU total, SIU 0.9, and 0.6 versions.

\ SIU 0.9 version \ SIU 0.6 version
| Total Train Valid Test | Total Train Valid Test

MTL | 1272335 1125727 125080 21528 | 407858 347697 38633 21528

ICsq 962063 854230 94859 12974 | 320594 276969 30651 12974
ECso 97952 84067 9508 4377 | 32842 25675 2790 4377
K; 198091 175442 19447 3202 | 47946 40188 4556 3202
Ky 54570 47347 5347 1876 17509 14003 1630 1876

Additionally, the dataset encompasses over 1,385,201 assay labels, each derived from corresponding
wet-lab bioactivity experiments, ensuring the reliability and accuracy of the bioactivity information.
SIU includes 1,720 diverse protein targets, with each protein potentially possessing multiple distinct
binding pockets, verified through rigorous deduplication methods, resulting in a total of 9,662 unique
pockets. The dataset also features a substantial and diverse collection of small molecules, totaling
214,686, across all pockets. Importantly, we have only included protein pocket-small molecule pairs
confirmed to be active or inactive through wet-lab experiments, amounting to over 1,291,362 million
pairs.
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E MODEL TRAINING

For GNN Model, we use the same model in Atom3D (Townshend et al.l[2021). We train the model
using one NVIDIA A100 GPU. The batch size is 256, the max number of epochs is 20, the optimizer
is Adam, the learning rate is le-3.

For 3D-CNN Model, we use the same model in Atom3D (Townshend et al., [2021). We train the
model using one NVIDIA A100 GPU. The batch size is 256, the max number of epochs is 20, the
optimizer is Adam, the learning rate is le-4.

For Uni-Mol model, we use the pretrained model weights provided. The pretrained molecular encoder
and pocket encoder outputs are concatenated and passed through a four-layer Multi-Layer Perceptron
(MLP) with hidden dimension 1024, 521, 256, 128. We use four NVIDIA A100 GPU to train the
model. The batch size is 384, the max number of epochs is 50, the optimizer is Adam, the learning
rate is le-4.

For ProFSA model, we use the pretrained model weights provided. The pretrained molecular encoder
and pocket encoder outputs are concatenated and passed through a four-layer MLP with hidden
dimension 1024, 521, 256, 128. We use four NVIDIA A100 GPU to train the model. The batch size
is 384, the max number of epochs is 50, the optimizer is Adam, the learning rate is le-4.

F ADDITIONAL RESULTS FOR USING THE DOCKED STRUCTURE OF PDBBIND

Table 5: Results for single task training with different label types. We show the results with Uni-Mol
model on PDBbind dataset, our SIU 0.6 version and 0.9 version dataset. Pdocked is the model trained
on PDBbind but with the docked structure instead of original complex structure.

Train Set | RMSE MAE  Pearson Pearson* Spearman Spearman*

PDBbind | 1.575 1279 0430  0.245 0.425 0.229
IC50  Pdocked | 1.600 1304 0439 0241 0.436 0.229
SIUO0.6 | 1407 1.138  0.461 0.317 0.463 0311
SIU09 | 1357 1.099 0470  0.345 0.474 0.347
B, SIU0G6 | 1400 1163 0280 071 0.284 0.150
SIU09 | 1340 1.096 0384  0.196 0.379 0.142
PDBbind | 1315 1.085 0368  0.040 0.323 0.026
Ki  Pdocked | 1301 1059 0365  0.035 0.311 -0.001
SIU0.6 | 1255 1.034 0407  0.106 0.452 0.112
SIU09 | 1235 1.017 0385  0.036 0.452 0.041
PDBbind | 1.565 1308 0.041 0.010 0.004 0.006
K, Pdocked | 1447 1231 -0015 0034 -0.062 0.011
SIU0.6 | 1389 1.192  -0.049  0.052 -0.206 0.022
SIU09 | 1364 1.141 0033  0.103 -0.082 0.065

G ADDITIONAL RESULTS FOR DIFFERENT SPLITTING

H DETAILED DESCRIPTION FOR DATASET USAGE

Dataset splits

Splits for the training and test sets of our task are provided. However, we do not impose a fixed split
for the dataset, allowing users the flexibility to perform their own splits. The updated version of the
dataset includes four different predefined splitting strategies:

1. 90% Sequence Identity Filter: A fixed test set is provided, and proteins with a sequence
identity greater than 90% to the test set are removed from the training set.
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Table 6: Results for single task training with different label types. We show the results with Uni-Mol
model on SIU that is splitter in to 10 folds based on sequence identity. The result is trained on 8§ folds,
validate on 1 fold, and tested on another fold.

RMSE MAE Pearson Pearson® Spearman Spearman®

|
ICs0 | 1.332 1.046  0.421 0.216 0.408 0.203
ECso | 1322 1.123  0.49%4 0.227 0.520 0.228
K; | 1.545 1281 0.356 0.143 0.355 0.133
K; | 1.678 1369 0474 0.149 0.347 0.153

Table 7: Results for single task training with different label types. We show the results with Uni-Mol
model on SIU that is based on our original split, with FLAPP to remove additional similar pockets
from the train set.

RMSE MAE Pearson Pearson® Spearman Spearman®

|
ICs50 | 1.389 1.117 0411 0.353 0.412 0.355
ECs | 1.399 1.164  0.212 0.165 0.232 0.154
K; | 1.318 1.096 0456 0.122 0.443 0.118
Ky | 1.349 1.154 -0.087 -0.042 -0.123 -0.14

2. 60% Sequence Identity Filter: A fixed test set is provided, and proteins with a sequence
identity greater than 60% to the test set are removed from the training set.

3. 60% Sequence Identity + Structural Similarity Filter: A fixed test set is provided, and
proteins with a sequence identity greater than 60% to the test set are removed from the
training set. Additionally, protein pockets with a structural similarity greater than 20% to
the test set are also excluded from the training set.

4. 10-Fold Cross-Validation Split: The dataset is divided into 10 clusters. Any pair of proteins
with a sequence identity greater than 60% are placed within the same cluster. This split can
be used for 10-fold cross-validation.

These options provide users with the flexibility to evaluate models under various levels of sequence
and structural similarity constraints.

A Pickle File that Contains Processed Data and Labels for the Dataset

The dataset is provided as a dictionary containing processed information. Each key represents a
UniProt ID, and the corresponding value is a list of dictionaries. Each dictionary represents a data
point and contains the following keys:

{

source data : PDB ID and UniProt ID information,
label : A dictionary for different labels,
including Ki, Kd, IC50, EC50,

ik : InChIKey of the ligand,

smi : SMILES of the ligand

Structure Files

The structure files are organized as follows:

DIR
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uniprotid
pdb_id

pocket_pdb_file

inchikeyl

posel.sdf
pose2.sdf
pose3.sdf

inchikey?2

posel.sdf
pose2.sdf
pose3.sdf

Users can use this structure to process their own data for their models.

I ADDITIONAL STATISTIC

Name Pocket-Molecule Pairs | Avg. Molecules per Pocket | Unique Pocket Number | Unique Molecule Number
PDBbind 19,443 1 19,443 19,443
SIU 1,312,827 137.6 9,544 214,686

Table 8: Comparison of PDBbind and SIU datasets.
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