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ABSTRACT

Domain shift remains a key challenge in deploying machine learning models to the
real world. Unsupervised domain adaptation (UDA) aims to address this by min-
imising domain discrepancy during training, but the discrepancy estimates suffer
from high variance in stochastic settings, which can stifle the theoretical bene-
fits of the method. This paper proposes Optimal Reordering of Data for Error-
Reduced Estimation of Discrepancy (ORDERED), a novel unbiased stochastic
variance reduction technique which reduces the discrepancy estimation error by
optimising the order in which the training data are sampled. We consider two spe-
cific domain discrepancy losses (correlation alignment and the maximum mean
discrepancy), formulate their stochastic estimation error as a function of the data
sampling order, and propose a practical optimisation algorithm. Our simulations
demonstrate reduced variance compared to related methods, and experiments on a
domain shift image classification benchmark show improved target domain accu-
racy.

1 INTRODUCTION

Machine learning models often underperform when the test data distribution differs from the training
distribution, a phenomenon known as domain shift. Improving robustness to domain shift has been a
longstanding goal in machine learning, and is crucial to the widespread deployment of AI (Gulrajani
& Lopez-Paz, 2021; Koh et al., 2021).

Unsupervised domain adaptation (UDA) is a popular strategy to addressing this problem, in which
the aim is to learn feature representations which are invariant across a source and target domain. This
can be achieved by minimising a “domain discrepancy” term during training, which characterises the
mismatch between the source and target feature distributions. This paper will consider two specific
and notable examples: the correlation alignment (CORAL) loss, which measures distance between
covariance matrices (Sun & Saenko, 2016); and the maximum mean discrepancy (MMD), which
measures distance between kernel mean embeddings of the distributions (Tzeng et al., 2014; Long
et al., 2015; Li et al., 2018).

Although theoretically well-grounded (Ben-David et al., 2006; 2010; Redko et al., 2022), a key lim-
itation to these methods is that empirically estimating the discrepancy term is subject to extremely
high levels of noise (i.e., the estimators have high variance). This is especially the case when the
features are high-dimensional and the sample sizes are small (as when training via minibatch gradi-
ent descent), and can lead to unstable training, suboptimal adaptation, and thus poor target domain
model performance. Indeed, a large body of work has reported finding these methods to have a neg-
ligible or even negative impact on training compared to vanilla empirical risk minimisation (ERM)
(Dubey et al., 2021; Gao et al., 2023; Gulrajani & Lopez-Paz, 2021; Koh et al., 2021; Napoli &
White, 2023; 2024; Wang et al., 2019).

The estimator noise can be lowered through the use of variance reduction, and this has previously
been shown to improve performance in the UDA setting (Napoli & White, 2024; Anonymous, 2025).
Although a large number of such techniques exist, many require the loss to be additive over indi-
vidual training examples, which renders them incompatible with UDA losses (which fundamentally
depend on the interrelation between training examples). We defer to Anonymous (2025); Gower
et al. (2020) for a full review of these techniques.
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Our approach builds on Anonymous (2025), who reduce the variance via stratified sampling (Zhao &
Zhang, 2014; Liu et al., 2020): the data are stratified using discrepancy-specific clustering objectives,
and minibatches are formed by drawing a single instance uniformly and independently at random
from each stratum. Weighted loss functions are then used to correct for imbalanced stratum sizes
and ensure the losses remain unbiased.

This approach has three main shortcomings: 1) the strata are formed by clustering based on a sur-
rogate objective, which does not always directly correspond to the estimator variance; 2) the strata
are sampled independently, which limits the degree of variance reduction which can be achieved; 3)
if the stratum sizes are highly imbalanced, convergence will be slow since it will take more training
iterations to “see” all the examples in the larger strata.

To address Shortcomings 1 and 2, our paper proposes an additional step which directly and jointly
optimises the sampling order of the data in each stratum. This step minimises a new surrogate
objective closer to the true estimator variance. We call this method Optimal Reordering of Data for
Error-Reduced Estimation of Discrepancy (ORDERED). To address Shortcoming 3, we also slightly
amend the clustering algorithm to enforce a minimum cluster size.

Modification of the training data sampling order is a common area of research, though not normally
with the specific goal of reducing variance. For example, curriculum learning (Bengio et al., 2009)
is a well-known paradigm which presents examples in increasing order of difficulty, and a large
literature of derived work exists (Wang et al., 2020). The ordering of priming prompts for large
language models has also been shown to significantly affect performance; prior works have proposed
genetic algorithms (Kumar & Talukdar, 2021) or entropy-based metrics (Lu et al., 2022) to find the
optimal permutation. Relatedly, the training distribution can also be varied using a weight schedule
to mix multi-domain data (Rukhovich et al., 2024). However, to our knowledge, our work is the first
to choose the sampling order by explicitly solving a permutation problem with respect to variance,
and certainly the first to do so in the context of UDA losses.

In the following sections, we introduce UDA variance reduction via stratified sampling, and propose
a modified clustering algorithm with cluster size constraints. We then formulate the stochastic esti-
mation errors of the MMD and CORAL losses as a function of the data order, and propose a practical
optimisation algorithm. We conduct analyses of all novel elements using Monte Carlo simulations,
and demonstrate the superiority of our method on a high-quality domain shift image classification
benchmark.

2 METHOD

2.1 PRELIMINARIES

Given labelled source examples xs,i, ys,i indexed by i ∈ Is = {1, . . . , ns}, and unlabelled target
examples xt,j indexed by j ∈ It = {1, . . . , nt}, the goal of UDA is to learn a model h that
minimises some task loss Ltask on the target domain. It is assumed h decomposes into a featuriser
f and prediction head g, such that h = g ◦ f . Since the target data are unlabelled, UDA methods
instead minimise Ltask on the source domain, alongside a domain discrepancy loss Ldisc which
aligns the source and target feature distributions:

min
h

E [Ltask (h (xs) , ys) + λLdisc (f (xs) , f (xt))], (1)

where λ ∈ R+ controls the trade-off between the task and domain alignment objectives. This paper
considers two specific options for Ldisc, the MMD and CORAL. The MMD is defined as

LMMD (f (xs) , f (xt)) = ∥E [ϕ (f (xs))]−E [ϕ (f (xt))]∥2H (2)
where H is a reproducing kernel Hilbert space, and ϕ : Z → H is an implicit mapping. H is
associated with a unique positive-definite kernel κ : Z × Z→ R for which the reproducing property
κ(z, z′) = ⟨ϕ(z), ϕ(z′)⟩H is satisfied. On the other hand, CORAL aims to minimise the (squared)
Frobenius distance between the source and target feature covariance matrices:

LCORAL (f (xs) , f (xt)) = ∥Cov [f (xs)]− Cov [f (xt)]∥2F . (3)

At training iteration m, we select index subsets B
(m)
s ⊆ Is and B

(m)
t ⊆ It, each of cardinality

k, and construct minibatches B(m)
s =

{
(xs,i, ys,i) | i ∈ B

(m)
s

}
and B(m)

t =
{
xt,j | j ∈ B

(m)
t

}
.

2
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Extract features Stratify data
according to (4)

Draw M examples
per stratum

Arrange into M
minibatches by (6)

Train next M
iterations

Figure 1: ORDERED training pipeline.

These are then used to compute stochastic losses L̂
(m)
task and L̂

(m)
disc, and update h. Our aim is to

reduce the discrepancy estimation error
∑

m

(
L̂
(m)
disc − L

(m)
disc

)2

over the course of the training, by

optimising how B
(m)
s and B

(m)
t are chosen.

2.2 METHOD OVERVIEW

Unfortunately, L̂(m)
disc and L

(m)
disc depend on the features at iteration m, making it hard to optimise

them directly. However, they can be well-approximated using features from previous iterations, so
long as the loss surface is locally smooth and the learning rate is sufficiently small (Liu et al., 2020).
Intuitively, it can be assumed that features that are close to each other at iteration m will still tend to
be close at iteration m+ 1. Therefore, future minibatches are predetermined in sets of M , based on
features zs,i = f (xs,i) , zt,j = f (xt,j) extracted at the current training iteration.

We build ORDERED on top of stratified sampling (Anonymous, 2025). That is, we first partition Is
and It each into k strata, S1, . . . , Sk and T1, . . . , Tk respectively. We then sample M -tuples S̃h, T̃h

uniformly at random from each stratum, which will form the next M source and target minibatches.
Specifically, the mth minibatches are defined as B(m)

s =
⋃

h S̃
(m)
h , B(m)

t =
⋃

h T̃
(m)
h , comprising

the mth element from each tuple, and the tuple orderings jointly minimise a surrogate discrepancy
estimation error based on zs,i, zt,j . This approach ensures that the losses over the whole training
remain unbiased. The overall training pipeline is shown in Figure 1.

2.3 STRATIFICATION

We construct the strata using dynamically-weighted kernel k-means clustering (Anonymous, 2025).
To address Shortcoming 3, we add minimum cluster size constraints – this sacrifices some variance
reduction in return for faster convergence during training. This section describes the clustering for
Is; the same procedure can be repeated analogously for It. For the MMD, the clustering objective
is

arg min
S1,...,Sk

k∑
h=1

|Sh|
∑
i∈Sh

∥∥∥∥∥ϕ (zs,i)−
1

|Sh|
∑
i∈Sh

ϕ (zs,i)

∥∥∥∥∥
2

H

(4)

subject to |Sh| ≥ nmin. For CORAL, the objective is of the same form, but uses the specific
mapping ϕc(z) = (z − z)(z − z)

T . These objectives are derived from the variance expressions
of L̂(m)

disc, and are shown to be good surrogates for minimising the true variances when the data are
sampled independently for each stratum and iteration (Anonymous, 2025).

(4) can be solved in a similar manner to Anonymous (2025), using a Lloyd’s-style alternating opti-
misation algorithm (Lloyd, 1982). Specifically, the algorithm alternates between 2 steps:

1. Distance Update: Compute the distance matrix P ∈ Rns×k from each datapoint to the
centroid of each cluster using the kernel trick.

2. Dynamically Weighted Assignment: Compute the one-hot cluster assignment matrix U ∈
{0, 1}ns×k that assigns each point to exactly one of the k clusters.

3
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U is the solution to the quadratic program

argmin
U

∑
i,h

[
UihPih

∑
i

Uih

]

subject to 0 ≤ Uih ≤ 1,
∑
h

Uih = 1,
∑
i

Uih ≥ nmin.

(5)

Since the Hessian of (5) is indefinite in general, this problem is nonconvex and thus finding the
global minimum is NP-hard. Although the problem as currently defined could be readily input to a
gradient-based interior point method (to find a local minimum), these have O

(
(kns)

3
)

complexity,
and are impractical above a few hundred data points. Instead, we solve (5) using a greedy heuristic
in a similar manner to Anonymous (2025), but with an extra condition to satisfy the cluster size
constraints. The algorithm constructs U incrementally row-by-row, weighting the clusters using
interim cluster size values. Indices are assigned freely while there are sufficient remaining datapoints
to satisfy the constraints, after which point the possible allocations are restricted to clusters that do
not yet reach the minimum size. This algorithm runs in O (kns) time, and is listed in Algorithm 1,

where R(x) =

{
x, x ≥ 0;
0, x < 0

is the ramp function.

Algorithm 1 Constrained weighted cluster assignments

Require: P ∈ Rns×k, nmin ∈ N+

Ensure: U ∈ {0, 1}ns×k
,
∑

h Uih = 1
1: U ← 0ns×k

2: n1, . . . , nk ← 0 ▷ Interim cluster sizes
3: r ← ns ▷ Number of remaining assignments
4: for all i ∈ {1, . . . , ns} do
5: H ←

{
h ∈ {1, . . . , k} : nh < nmin or r ≥

∑k
h=1 R (nmin − nh)

}
6: h← argminh∈H Pih (nh + 1)
7: Uih ← 1
8: nh ← nh + 1
9: r ← r − 1

10: end for
11: return U

Figure 2 shows how the loss attained by minimising (5) is affected by the hyperparameter nmin. The
input comprises Euclidean distances between samples from a 2D standard normal distribution. We
use a small problem with ns = 200 and k = 5, which allows us to compare Algorithm 1 with a com-
mercial interior point solver (The MathWorks Inc., 2021). We also test an unweighted constrained
assignment, which is a linear problem and can thus be solved quickly using linear programming, but
does not optimise the same objective. As expected, increasing nmin restricts the feasible problem
space, which tends to increase the achievable loss; however, the greedy algorithm appears less af-
fected by this than the interior point method. Note that as nmin approaches ns/k, the clusters tend
to equal sizes, which is why the unweighted optimiser approaches the weighted optimisers at this
point.

2.4 OPTIMISING SAMPLE ORDER

First, we present the sampling order optimisation problem in canonical integer programming form.
To proceed, let α ∈ {0, 1}ns×M

, β ∈ {0, 1}nt×M be binary indicator variables for the source and

target indices respectively, such that αim =

{
1, i ∈ B

(m)
s ;

0, otherwise.
, and likewise for β. Define also

cluster size vectors S ∈ Nns ,T ∈ Nnt , where Si = |Sh| ⇔ i ∈ Sh (i.e., Si is the size of the cluster
containing index i), and equivalently for Tj , used to weight the distance estimates to correct the
sampling bias introduced by the imbalanced clusters. Finally, let B̃s =

⋃
h S̃h =

⋃
m B

(m)
s and

4
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Figure 2: Objective value of (5) vs minimum cluster size nmin for three different optimisation
algorithms.

B̃t =
⋃

h T̃h =
⋃

m B
(m)
t be the union of all source and target indices for the next M minibatches.

The optimisation problem is thus

min
α,β

M∑
m=1

(
D̂(m) −D0

)2

(6)

subject to
∑
m

αim = 1, i ∈ B̃s,
∑
m

βjm = 1, j ∈ B̃t (7)

∑
m

αim = 0, i /∈ B̃s,
∑
m

βjm = 0, j /∈ B̃t (8)

∑
i∈Sh

αim = 1,
∑
j∈Th

βjm = 1, (9)

αim, βjm ∈ {0, 1} , (10)

where D0 is the surrogate “reference” discrepancy over the full dataset (approximating L
(m)
disc), and

D̂(m) expresses the stochastic losses in terms of α and β (approximating L̂
(m)
disc). The reference

(squared) MMD is given by

D0,MMD =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

ϕ (zs,i)−
1

nt

nt∑
j=1

ϕ (zt,j)

∥∥∥∥∥∥
2

H

, (11)

and the stochastic estimates are

D̂
(m)
MMD =

∥∥∥∥∥∥ 1

ns

ns∑
i=1

αimSiϕ (zs,i)−
1

nt

nt∑
j=1

βjmTjϕ (zt,j)

∥∥∥∥∥∥
2

H

, (12)

or, in terms of kernel evaluations,

D̂
(m)
MMD =

1

n2
s

ns∑
i,i′=1

αimαi′mSiSi′κ (zs,i, zs,i′) +
1

n2
t

nt∑
j,j′=1

βjmβj′mTjTj′κ (zt,j , zt,j′)

− 2

nsnt

ns,nt∑
i,j=1

αimβjmSiTjκ (zs,i, zt,j). (13)

The reference CORAL loss is

D0,CORAL = ∥Cs,0 − Ct,0∥2F , (14)

5
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where Cs,0 and Ct,0 are the sample covariance matrices of zs and zt respectively. The stochastic
estimates are

D̂
(m)
CORAL =

∥∥∥Ĉ(m)
s − Ĉ

(m)
t

∥∥∥2
F

Ĉ(m)
s =

1

ns − 1

ns∑
i=1

αimSi
(
zs,i − µ̂(m)

s

)(
zs,i − µ̂(m)

s

)T

Ĉ
(m)
t =

1

nt − 1

nt∑
j=1

βjmTj

(
zt,j − µ̂

(m)
t

)(
zt,j − µ̂

(m)
t

)T

µ̂(m)
s =

1

ns

ns∑
i=1

αimSizs,i, µ̂
(m)
t =

1

nt

nt∑
j=1

βjmTjzt,j .

(15)

Note that the MMD objective is a quartic matrix polynomial in α and β, whereas the CORAL
objective is of order 8. However, since α and β are binary variables, the problem can be linearised
via standard methods (Balas & Mazzola, 1984). At this point, the problem could be input as-is into
a standard integer programming solver. However, this will not be practical for large datasets due to
the size of the problem. Instead, by considering the specific structure of the problem, we propose a
faster heuristic which searches for a local minimum using a greedy strategy.

The approach begins with an initial random data order and reduces the objective by iteratively swap-
ping pairs of indices. Specifically, the algorithm executes a single pass through the data, choosing
the optimal swap out of the remaining elements in the same stratum via exhaustive search. This
means M(M−1)

2 objective comparisons are performed per stratum, and thus kM(M − 1) compar-
isons in total (for both B̃s and B̃t). This algorithm is guaranteed to find a permutation at least as
good as the initial permutation. The algorithm is listed fully in Algorithm 2.

Algorithm 2 ORDERED

1: Initialise each M -tuple S̃1, T̃1, ..., S̃k, T̃k with a random permutation
2: for all m ∈ {1, . . . ,M} do ▷ Iteration index
3: for all h ∈ {1, . . . , k} do ▷ Stratum index
4: Swap elements S̃(m)

h and S̃
(ms)
h , where ms ∈ {m, . . . ,M} and minimises (6).

5: Swap elements T̃ (m)
h and T̃

(mt)
h , where mt ∈ {m, . . . ,M} and minimises (6).

6: end for
7: end for
8: return S̃1, T̃1, ..., S̃k, T̃k

We use Monte Carlo simulations to analyse the performance characteristics of Algorithm 2 with
respect to the parameters k and M . Specifically, we compute the variance of stochastic MMD
estimates using a linear kernel (that is, estimating the squared Euclidean distance between dis-
tribution means) between a source and target dataset comprising 2D standard normal data with
ns = nt = 4, 000. Figure 3a compares the variance across different values of k for 3 samplers: uni-
form random sampling, stratified sampling (Anonymous, 2025), and ORDERED, with M = 100.
ORDERED achieves up to 2 orders of magnitude reduction in variance compared to stratified sam-
pling, and 4 orders of magnitude reduction compared to uniform random sampling.

Figure 3b shows how the variance changes with M , with k = 20. As expected, the variance re-
duces significantly at first, since the optimisation has greater degrees of freedom. However, perhaps
counter-intuitively, it can be seen to increase again for M > 50. We posit that this is because the
smaller problem size induces more noise, which helps to avoid local minima and achieve a better

global solution. Furthermore, for lower M , the surrogate objective being optimised
(
D̂(m) −D0

)2

is closer on average to the true deviation
(
L̂
(m)
disc − L

(m)
disc

)2

, which also improves reduction in vari-
ance. As well as the solution quality, M is a trade-off in computational cost: lower M requires more
frequent extraction of features, but higher M increases the complexity of Algorithm 2 quadratically.
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Figure 3: The performance characteristics of Algorithm 2.

Thus, the choice of M is influenced by a complex combination of factors. For simplicity, we choose
to fix M = 100 for the remainder of the experiments, which is the same update frequency chosen
by Anonymous (2025), and based on empirical observations from previous work (Liu et al., 2020).

3 EXPERIMENTS

In this section, the proposed method is evaluated in realistic training conditions, to assess whether the
observed reduction in variance translates to an increase in test accuracy. Experiments are conducted
using the DomainBed framework (Gulrajani & Lopez-Paz, 2021) on the Spawrious domain shift
benchmark (Lynch et al., 2023). The task comprises classifying images of dogs into four breeds,
across six domains characterised by the background environments (desert, jungle, snow etc.). The
images are synthetically generated, which allows for controlled introduction of spurious correlations,
and results in a higher-quality benchmark than earlier options. A random subset of 18,664 images
from the full dataset is used to speed up testing. The benchmark defines six training-evaluation
splits, covering two spurious correlation types (One-to-One (O2O) and Many-to-Many (M2M)) and
three difficulty levels (Easy, Medium, Hard).

The domain discrepancies are measured between the union of all training data and a held-out subset
of the evaluation set. For the MMD, we use a radial basis function (RBF) mixture kernel (Li et al.,
2018), given by κ(z, z′) =

∑
γ∈G e−γ∥z−z′∥2with G = {0.001, 0.01, 0.1, 1, 10}. For the cluster-

ing, we set nmin = M = 100, and sample S̃h, T̃h without replacement, which provides a further
reduction in variance (Gower et al., 2020).

The model comprises a pretrained ResNet-18 architecture (He et al., 2015), which is finetuned on the
training data using the Adam optimiser (Kingma & Ba, 2014) for 3,000 iterations. Hyperparameters
are tuned with a random search of size 10 using an in-distribution (training domain) validation set,
independently for each sampler. The entire set of experiments is repeated 3 times for reproducibility,
using different random seeds for hyperparameters, weight initialisations, and dataset splits. All other
hyperparameter choices and training details follow the DomainBed default options.

In total, 3 sampling methods are compared. These are: uniform random sampling; stratified sam-
pling (Anonymous, 2025); and ORDERED. Table 1 shows the average test accuracy and standard
errors over the 3 repeats for each of the 6 data splits, for both the CORAL and MMD algorithms. The
results confirm the importance of effective variance reduction when estimating UDA losses. Com-
pared to uniform random sampling, ORDERED increases average accuracy by 7.5 and 13.4 percent-
age points for CORAL and MMD respectively, and by 2.1 and 3.7 percentage points compared to
stratified sampling. The performance gains are consistently higher for the MMD than for CORAL
(note that the average accuracy without variance reduction is the same for both). We posit that this is
because the MMD estimates are noisier due to their incorporation of higher-order statistics, making
the benefits of variance reduction more pronounced. Overall, there is no clear relationship between
the type or difficulty of the data split, and the magnitude of accuracy improvement.
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Table 1: Average test accuracy for each data split and training algorithm.

(a) CORAL

Sampler O2O-Easy O2O-Medium O2O-Hard M2M-Easy M2M-Medium M2M-Hard Average

Uniform 69.4 ± 3.6 56.0 ± 2.0 64.9 ± 0.6 79.1 ± 2.3 54.4 ± 2.0 48.3 ± 0.8 62.0 ± 0.9
Stratified 83.4 ± 7.1 61.9 ± 1.6 71.2 ± 8.4 85.2 ± 3.6 59.4 ± 1.6 49.4 ± 2.4 68.4 ± 2.0
ORDERED 88.2 ± 2.2 61.6 ± 1.6 78.1 ± 3.5 84.1 ± 5.0 60.5 ± 2.6 50.5 ± 2.1 70.5 ± 1.3

(b) MMD

Sampler O2O-Easy O2O-Medium O2O-Hard M2M-Easy M2M-Medium M2M-Hard Average

Uniform 73.8 ± 2.2 61.9 ± 1.9 60.5 ± 1.9 80.5 ± 4.0 51.3 ± 2.4 48.1 ± 0.7 62.7 ± 1.0
Stratified 91.7 ± 2.8 60.8 ± 0.4 83.4 ± 3.7 84.2 ± 1.2 60.0 ± 11.3 54.1 ± 4.8 72.4 ± 2.2
ORDERED 93.5 ± 1.3 56.4 ± 2.4 85.1 ± 1.9 88.6 ± 0.8 70.5 ± 7.8 62.1 ± 10.9 76.1 ± 2.3

4 CONCLUSION

This paper introduced ORDERED, a novel stochastic variance reduction method for UDA based on
reordering the training data. We showed that the training data sampling order drastically influences
the stochastic estimation error of the MMD and CORAL losses, which in turn significantly affects
target domain performance. To address this, we formulated the estimation error as a function of the
data order, and proposed a practical optimisation algorithm.

We believe the most promising direction for future work is in improving the optimisation procedure,
for instance by applying metaheuristics such as simulated annealing or tabu search to enhance ro-
bustness against local minima. The approach could also be extended to other UDA objectives or a
domain generalisation setting.
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