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ABSTRACT

Recognizing and telling similar objects apart is even hard for human beings. In
this paper, we show that there is a phenomenon of class interference with all deep
neural networks. Class interference represents the learning difficulty in data and
it constitutes the largest percentage of generalization errors by deep networks. To
understand class interference, we propose cross-class tests, class ego directions
and interference models. We show how to use these definitions to study minima
flatness and class interference of a trained model. We also show how to detect
class interference during training through label dancing pattern and class dancing
notes.

1 INTRODUCTION

Deep neural networks are very successful for classification (LeCun et al., 2015; Goodfellow et al.,
2016) and sequential decision making (Mnih et al., 2015; Silver et al., 2016). However, there lacks
a good understanding of why they work well and where is the bottleneck. For example, it is well
known that larger learning rates and smaller batch sizes can train models that generalize better.
Keskar et al. (2016) found that large batch sizes lead to models that look sharp around the min-
ima. According to Hochreiter & Schmidhuber (1997), flat minima generalize better because of the
minimum-description-length principle: low-complexity networks generalize well in practice.

However, some works have different opinions about this matter (Kawaguchi et al., 2017; Dinh et al.,
2017; Li et al., 2018). Dinh et al. (2017) showed that sharp minima can also generalize well and
a flat minimum can always be constructed from a sharp one by exploiting inherent geometric sym-
metry for ReLU based deep nets. Li et al. (2018) presented an experiment in which small batch
minimizer is considerably sharper but it still generalizes better than large batch minimizer by turn-
ing on weight decay. Large batch training with good generalization also exists in literature (De et al.,
2017; Goyal et al., 2017). By adjusting the number of iterations, Hoffer et al. (2017) showed there
is no generalization gap between small batch and large batch training.

These works greatly helped understand the generalization of deep networks better. However, it still
remains largely mythical. In this paper, we show there is an important phenomenon of deep neural
networks, in which certain classes pose a great challenge for classifiers to tell them apart at test time,
causing class interference.

Popular methods of understanding the generalization of deep neural networks are based on minima
flatness, usually by visualizing the loss using the interpolation between two models (Goodfellow
et al., 2015; Keskar et al., 2016; Im et al., 2016; Jastrzebski et al., 2017; Draxler et al., 2018; Li
et al., 2018; Lucas et al., 2021; Vlaar & Frankle, 2022; Doknic & Möller, 2022). Just plotting the
losses during training is not enough to understand generalization. Linearly interpolating between
the initial model and the final trained model provides more information on the minima.

A basic finding in this regard is the monotonic property: as the interpolation approaches the final
model, loss decreases monotonically (Goodfellow et al., 2015). Lucas et al. (2021) gave a deeper
study of the monotonic property on the sufficient conditions as well as counter-examples where it
does not hold. Vlaar & Frankle (2022) showed that certain hidden layers are more sensitive to the
initial model, and the shape of the linear path is not indicative of the generalization performance
of the final model. (Li et al., 2018) explored visualizing using two random directions and showed
that it is important to normalize the filter. However, taking random directions produces stochastic
loss contours. It is problematic when we compare models. We take a deterministic approach and
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study the loss function in the space of class ego directions, following which parameter update can
minimize the training loss for individual classes.

The contributions of this paper are as follows.

• Using a metric called CCTM that evaluates class interference on a test set, we show that
class interference is the major source of generalization error for deep network classifiers.
We show that class interference has a symmetry pattern. In particular, deep models have a
similar amount of trouble in telling “class A objects are not class B”, and “B objects are
not A”.

• To understand class interference, we introduce the definitions of class ego directions and
interference models.

• In the class ego spaces, small learning rates can lead to extremely sharp minima, while
learning rate annealing leads to minima that are located at large lowlands, in terrains that
are much bigger than the flat minima previously discovered for big learning rates.

• The loss shapes in class ego spaces are indicative of interference. Classes that share similar
loss shapes in other class ego spaces are likely to interfere.

• We show that class interference can also be observed in training. In particular, it can be
detected from a special pattern called label dancing, which can be further understood better
by plotting the dancing notes during training. Dancing notes show interesting interference
between classes. For example, a surprise is that we found FROG interferes CAT for good
reasons in the CIFAR-10 data set.

2 CLASS INTERFERENCE

2.1 GENERALIZATION TESTS AND THE CLASS INTERFERENCE PHENOMENON

Let c1 and c2 be class labels. We use the following cross-class test of generalization, which is the
percentage of c2 predictions for the c1 objects in the test set:

CCTM(c1, c2) =
# predicting as c2
#total c1 objects

,

Note this test being an accuracy or error metric depends on whether the two classes are the same
or not. Calculating the measure for all pairs of classes over the test set gives a matrix. We refer to
this measure the CCT matrix, and simply the CCTM for short. CCTM extends the confusion matrix
in literature by a probability measure, which can be viewed as a combination of the true positive
rates and false positive rates in a matrix format 1. This extension facilitates a visualization of the
generalization performance as a heat map.

Figure 1 shows the CCTM for VGG19 (Simonyan & Zisserman, 2015) and ResNet18 (He et al.,
2015) on the CIFAR-10 (Krizhevsky et al., 2009) test set with a heat map. Models were trained with
SGD (see Section 3 for the training details). From the map, we can see that the most significant
generalization errors are from CAT and DOG for both models. This difficulty is not specific to
models. It represents class similarity and learning difficulty in data. For example, in Table 1, the
accuracies in the columns of CAT and DOG are significantly lower than the other columns for all the
four deep models. It is also observable that class interference has a symmetry pattern: If a classifier
has trouble in recognizing that c1 objects are not class c2, it will also have a hard time in ruling out
class c1 for c2 objects. This can be observed from CAT and DOG in the plotted CCTM.

We call generalization difficulties of deep neural networks between classes like CAT and DOG the
class interference. If CCTM(c1, c2) is large, we say that class c2 interferes c1, or class c1 has
interference from c2. Class interference happens when classes are just similar. In this case, cats
and dogs are hard to recognize for humans as well, especially when the resolution of images is low.
Examining only the test error would not reveal the class interference phenomenon because it is an
overall measure of all classes. The classes have a much varied difference in their test accuracies. For
example, in VGG19, the recall accuracy of CAT, i.e., CCTM(CAT,CAT ), is only about 84.5%

1See https://en.wikipedia.org/wiki/Sensitivity_and_specificity for example.
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Figure 1: CCTM for VGG19 and ResNet18 on CIFAR-10 test set. There is severe class interference
between CAT and DOG for both models. A darker color means a higher interference from the
column class to the row class. The diagonal entries are not plotted for a clearer looking heat map.
ResNet18 has less interference than VGG19 between CAT and DOG, indicated by: (1) there are
fewer darker cells in the CAT row; and (2) the DOG-CAT cell is brighter (red vs. dark grey).

plane car bird cat deer dog frog horse ship truck
VGG19 96.0 96.6 91.9 84.5 94.7 89.0 96.0 96.4 95.2 96.3

ResNet18 96.9 97.9 94.2 86.5 97.0 92.6 96.9 96.3 96.5 97.3
GoogleNet 96.4 96.7 93.8 86.9 97.3 92.0 97.2 95.5 96.5 96.6

DLA 95.4 97.8 92.6 88.7 96.6 90.8 96.1 97.3 97.0 96.4

Table 1: Class recall accuracy (the diagonal entries of the CCTM) on CIFAR-10 test set. Classifying
CAT and DOG is the bottleneck for all the models. Figure 1 shows that this is due to all the models
suffer from the interference between CAT and DOG.

and DOG recall is about 89.0%. For the other classes the recall accuracy is much higher, e.g., CAR
is 96.6%. As shown in Table 1, ResNet18 (He et al., 2015), GoogleNet (Szegedy et al., 2014) and
DLA (Yu et al., 2017) have less class interference than VGG19 especially for CAT and DOG. For
example, for ResNet18, CCTM(CAT,CAT ) = 86.5% and CCTM(DOG,DOG) = 92.6%.

2.2 DEFINITIONS

Let w∗ be a trained neural network model, e.g., VGG19 or ResNet18. We use the following defini-
tions.
Definition 1 (Interference Model Set). Let Dc be the samples of class c in a data set. Define the
gradient of class c as the average gradient that is calculated on this set:

∇f (c)(w∗)
def
=

1

|Dc|
∑

(X,Y )∈Dc

f ′(w∗|X,Y ).

Accordingly, there are a set of class gradient directions for the model, {∇f (c)(w∗)|c = 1, 2, . . . , C},
where C is the number of classes.

An ego model of class c is generated by using a scalar αi in the class gradient direction:

w
(c)
i = w∗ − αi∇f (c)(w∗).

The set, Mc = {w(c)
i |i = 1, . . . ,mc}, is the ego model set of class c. The set union, M = ∪C

c=1Mc,
is called the ego model set.

This definition is based on that each w
(c)
i is in the direction of minimizing the loss for predicting

class c. Note that w(c)
i is a sample of “ego-centric” update, which minimizes the loss for class c
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only. It therefore could cause an increase in the prediction errors for the other classes. We refer
to the gradient of class c as the ego direction of the class. Measuring the loss on the interference
models thus tells the interference between classes.

Definition 2 (Interference Space). The model space {w(c1,c2)|(θ1, θ2) ∈ Θ1 × Θ2} is called the
interference model space of class c1 and c2, where an interference model is defined by

w(c1,c2) = w∗ −
(
θ1∇f (c1)(w∗) + θ2∇f (c2)(w∗)

)
.

Define F (c1,c2) = {f(w(c1,c2))|(θ1, θ2) ∈ Θ1×Θ2}, which is the set of interference losses between
the two classes. The 3D space, Θ1 × Θ2 × F (c1,c2), is the loss interference space, or simply, the
interference space (of class c1 and class c2 for model w∗).

Proposition 1. Any interference model is a convex combination of the ego models of the two classes.

Proof. Let w(c1)
i and w

(c2)
j be the ego model of class c1 and c2, respectively. According to their

definition,

λw
(c1)
i + (1− λ)w

(c2)
j = λw∗ − λαi∇f (c1)(w∗) + (1− λ)w∗ − (1− λ)αj∇f (c2)(w∗)

= w∗ −
(
λαi∇f (c1)(w∗) + (1− λ)αj∇f (c2)(w∗)

)
= w(c1,c2),

where setting θ1 = λαi and θ2 = (1− λ)αj finishes the proof.

3 MINIMA: FLAT OR SHARP?

Our first experiment is to understand minima sharpness of learning rate using class ego directions.
We will visualize in the interference space, Θ1 × Θ2 × F (c1,c2). We use this loss: the mistake
rate for the z-axis, which is the percentage of classification mistakes on the training set to give
a loss measure in the same range across different plots. We visualize the loss of the models on
the training set versus Θ1 × Θ2, which is a uniform grid over [−σ, σ] × [−σ, σ], with 19 points
in each direction. This gives 361 interference models between a given class pair. We use the ego
directions of CAT-DOG (the most interfering class pair), TRUCK-CAR (with a significant level of
interference), and HORSE-SHIP (with little interference). These plots measure how sensitive the
training loss changes with respect to the directions that focus on optimizing specially for individual
classes and the linear combinations of these directions. The center of each plot corresponds to the
origin, (θ1 = 0, θ2 = 0), at which a trained VGG19 or ResNet is located.

We study the models of VGG19 and ResNet18 trained with the following optimizer setups:

• big-lr. This optimizer uses a big learning rate, 0.01. The momentum and weight decay
are the same as the small-lr optimizer. Figure 2 shows for VGG19 (top row) and ResNet18
(bottom row).

• small-lr. This SGD optimizer uses a small learning rate 0.0001. It also has a momentum
(rate 0.9) and a weight decay (rate 0.0005).

• anneal-lr. Similar to the above optimizers, but with an even bigger (initial) learning rate.
A big constant learning rate 0.1 leads to oscillatory training loss and poor models. We thus
decay it with an initial value of 0.1 using a Cosine rule (Loshchilov & Hutter, 2016). This
is the optimizer setup used to train the models in Section 2.1.

The input images are transformed with RandomCrop and RandomHorizontalFlip and normalization.
The batch size is 128. The Cross Entropy loss is used. Each model is trained with 200 epochs. The
test accuracies for the models are shown in the following table.

VGG-small-lr VGG-big-lr VGG-anneal-lr ResNet-small-lr ResNet-big-lr ResNet-anneal-lr
84.99% 88.76% 93.87% 86.88% 91.31% 95.15%
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Figure 2: Loss visualized in the class ego directions for models optimized with big-lr. Model:
VGG19 (top row); ResNet18 (bottom row). Each point stands for the loss of an interference model
w(c1,c2).

This confirms that big learning rates generalize better than small ones as discovered by the com-
munity. Interestingly, the anneal learning rate leads to models that generalize even much better, for
which there has been no explanation to the best of our knowledge.

Let’s first take a look at VGG19 trained with big-lr, whose interference spaces are shown at the top
row of Figure 2. The loss exhibits strong sharpness in the CAT-DOG ego visualization. From the
minimum (the trained VGG19 at the center), a small step of optimizing the CAT predictions easily
deteriorates the loss, in particular the red flat plateau corresponds to an accuracy on the training
set down to merely 10%. The loss change is extremely sensitive in the CAT ego direction. It
is similarly sensitive in all directions except near the DOG ego direction, which looks still very
sensitive. According to Proposition 1, any interference model in this space is a convex combination
of a CAT ego model and a DOG ego model. This plot thus shows that the CAT ego is very influential
even the weight of the DOG ego is large.

The visualizations in the CAR-TRUCK and HORSE-SHIP ego spaces show that the loss changes
much less sensitively than for CAT and DOG when we update the model for the purpose of improv-
ing or even sacrificing the prediction accuracy of the four classes. However, close to the directions of
TRUCK ego plus negative CAR ego, and negative TRUCK ego plus CAR ego, the loss also changes
abruptly. If we cut the loss surface 135 degrees in the x-y axis, we end up getting a minimum that
looks sharp. On the other hand, a random cut likely renders a less sharp or even flat look of the
minimum. The case of HORSE-SHIP is similar. Thus whether the minimum looks flat or sharp is
dependent on how the loss contour is cut. Some care needs to be taken when we discuss minima
sharpness, especially the space in which the loss is plotted. Most previous discussions on minima
sharpness are based on the difference between an initial model and a trained model, or two random
directions. Both methods have randomization effects and yet they get descent loss contours. While
it is amazing, the reason why random cuts render reflective loss contours is unclear. Our guess is
that most directions renders sharpness and sampling a random one is likely fine. However, when we
compare the levels of sharpness between models, random cuts may not be accurate.

Figure 2 bottom row shows for ResNet18 optimized with the big-lr optimizer. The loss change near
the minimum is also extremely sensitive in the CAT-DOG ego space. Interestingly, for ResNet18, the
loss in the DOG ego direction is more sensitive than in the CAT direction. This seems a “transposed”
effect of VGG19, because the influence of the DOG ego is stronger on the loss now. For both VGG19
and ResNet18, the loss visualized in the CAT-DOG ego space has a clear narrow valley structure near
the minimum. This kind of loss functions are known to be very challenging for gradient descent,
e.g., see the Rosenbrock function also known as the Banana function (Rosenbrock, 1960). In the
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Figure 3: Loss visualized in the class ego directions for models optimized with small-lr. ResNet18
is a spiky (extremely sharp) minimum according to the visualization in the ego spaces, even though
the area of the illustration is 1/100 of Figure 2 (big-lr).

Figure 4: Loss visualized in the class ego directions for models optimized with anneal-lr. In this
illustration area 100 times of Figure 2 (big-lr), both minima are located at a large flat lowland. The
ResNet18 has an extremely large flat area.

CAR-TRUCK space, the loss of ResNet18 is much less curvy up than that of VGG19. In particular,
for VGG19 it is sensitive in both the ego directions, while for ResNet18, only near the direction
about 135 degrees (x-y axis) it is sensitive. For VGG19, the SHIP direction has lots of sensitivity.
For ResNet18, the HORSE direction instead is more sensitive.

Our results show the minima being flat or sharp is dependent on what spaces the loss is illustrated.
We think a better way of discussing generalization is the area of flatness around the minima in crit-
ical directions. Our plots in different class ego spaces show that a minimum can be a flat minimum
in certain visualization spaces (e.g., ResNet18 in the CAR-TRUCK ego space), while at the same
time it can look very sharp in other spaces (e.g., ResNet18 in the CAT-DOG space).
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Figure 5: Class-wise losses. This shows all class prediction losses are more sensitive in the CAR-
TRUCK space than in the CAT-DOG space. In particular, the CAR ego direction is very sensitive,
which means all the other class prediction losses are greatly influenced by the movement in mini-
mizing or maximizing (gradient ascent) the CAR loss. Model: VGG19. Optimizer: anneal-lr.

Figure 3 shows the small learning rate. This time ResNet18 is an extremely sharp minimum in all the
three ego spaces. In a small area around the minimum in ego spaces, the loss changes dramatically.
Beyond that small area, the loss is invariantly high (plateau). VGG19, instead, has a more smooth
change of loss in a small area although in the CAT ego direction the loss changes abruptly too (which
forms a cliff). This shows when the learning rate is small, the loss contour can be near non-smooth
and sharp minima do not necessarily generalize worse (comparing to VGG19). This confirms the
findings by Dinh et al. (2017) and (Li et al., 2018) that there exist models that are sharp minima
and yet they still generalize well. In particular, ResNet18 has a better generalization than VGG19,
86.88% versus 84.99% in this case. Our results show that flat minima generalize better when the
learning rate is well tuned (not too small). However, when the learning rate is small, the minima can
be sharp and they can generalize even better than less sharp ones.

Finally, Figure 4 shows for the models optimized with learning rate annealing. These two models
have superior generalization, with 93.87% for VGG19 and 95.15% for ResNet18. The visualization
in the ego spaces show that the area of flatness is very large, especially ResNet18. Comparing to a
fixed big learning rate, the models trained by annealing have a much higher level of in-sensitiveness
to parameter changes in the class ego directions. Presumably, the big initial learning rate helps
establish a larger flat area. This level of flatness has not been observed before, especially in previous
experiments of learning rates. We may thus refer to minima located in a large flat terrain the lowland
minima.

4 ANALYZING CLASS INTERFERENCE

4.1 INTERFERENCE FROM ONE CLASS TO THE OTHERS

We also would like to understand the interference from one class to the others for a trained model.
Figure 5 shows the interference of CAT, DOG, CAR and TRUCK to all the classes. First let’s look at
the CAT loss in the CAT-DOG space (first plot). It shows CAT loss increases in the cat ego direction,
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Figure 6: The CAT-DOG dance. Each red arrow is a moment that DOG interferes CAT, with a local
high DOG recall rate (cyan dashed line) and a drop of the CAT recall rate (black line), and a local
peak of mis-classified cats as DOG (red cross). Each blue arrow is a sample moment that both recall
rates drop, in response to a high mis-classification rate of cats as a third class, e.g., BIRD (black
rectangle). Model: VGG19. Optimizer: anneal-lr.

i.e., the gradient ascent direction, which is intuitive. It also shows the CAT loss increases most when
we minimize the DOG loss. This is another verification that DOG interferes CAT. Interestingly,
following the joint direction of gradient ascent directions to maximize the CAT loss and the DOG
loss doesn’t increase the CAT loss much. In the case of CAR loss in the CAR-TRUCK space, the
situation is a little different. In particular, CAR loss increases significantly whether we follow the
gradient descent or ascent direction of TRUCK as long as we move in the ascent direction of CAR.
TRUCK loss is more complicated. The loss increases in the joint direction of ascent directions of
CAR and TRUCK losses. In addition, TRUCK loss also increases if we follow the the descent
direction of CAR. This means minimizing the CAR loss has the effect of increasing the TRUCK
loss. This is also a sign that CAR and TRUCK interferes. For the other classes, their prediction
losses respond more sensitively to the ego directions of CAR-TRUCK than those of CAT-DOG.

In the CAT-DOG space, CAR, TRUCK, PLANE, and SHIP all increase their losses in one same
corner. HORSE and DEER losses both increase as we get closer to the corner where DOG loss
increases; in addition, the increase of HORSE is more than DEER in this process.

In the CAR-TRUCK space, CAT, FROG, DOG, and DEER losses have very similar shapes. This
suggests these losses increase in roughly the same directions in the CAR-TRUCK space. HORSE’s
loss shape is also similar to these four classes, but the similarity is less. CAR and PLANE losses have
very similar shapes. TRUCK and SHIP losses have a similar wing-like structure too. CAR, PLANE,
TRUCK and SHIP have similar loss shapes on the left side of the plots shown. These observations
suggest that loss shapes in class ego spaces are indicative of interference. Classes that share similar
loss shapes in other class ego spaces are likely to interfere. This is going to be discussed further in
the next experiment.

4.2 CLASS INTERFERENCE IN TRAINING

The above experiments are for a trained model. We were wondering whether class interference
can be observed in training. To study this, we plot the per-class training accuracy which is the
recall rate for each class. Figure 6 shows for CAT and DOG. The two recall rates are both highly
oscillatory, especially in the beginning stage of training. Importantly, there are many moments that
one rate being high while the other being low at the same time, which we call label dance or CAT-
DOG dance for this particular case. This dancing pattern is a strong indicator that CAT and DOG
interfere. To further confirm this, we plot in the same figure the row of the CCTM for the training set
that correspond to CAT, i.e., CCTM(CAT, c), for each non-CAT class c, during the same training
process. As the caption of the figure shows, a rise in the DOG recall rate is often caused by a high
interference of DOG to CAT. After some (about 118) epochs, DOG interference dominates CAT
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Figure 7: The dancing notes for CAT, DOG, CAR and TRUCK. A data point of the CAT notes
curve is the most often false prediction at that epoch. Model: VGG19. Optimizer: anneal-lr.

predictions errors and eventually weeds out following the other classes. In this phase of training
(as circled in the figure), the recall rates of CAT and DOG are highly symmetric to each other
(horizontally), further indicating that DOG interference is the major source of error in predicting
cats and vice versa.

Figure 7 plots the “argmax” operation of the CCTM for the rows corresponding to four classes at
each epoch, excluding the diagonal part. The plot looks similar to music notes. So we term this
plot “dancing notes”. For DOG notes, there are many pink markers at the line y = 3, which is the
class label corresponding to CAT. The stretched markers laying continuously is a clear sign of CAT
interference to DOG. In the CAT notes, continual red crosses also persist at y = 5, which is the class
label of DOG, showing interference of DOG to CAT. It also shows that CAT interference to DOG
persists longer than the other way. For a better presentation of the results, we plot y = −2 if no
class interferes more than 0.1%.

The notes of CAR (class label 1) and TRUCK (class label 9) show similar duration of interference,
and it appears the interference from CAT to TRUCK seems to have a close strength to the other way
around. It is also interesting to observe that both CAR and TRUCK have interference from class
labels y = 0 and y = 8, which correspond to PLANE and SHIP. This is intuitive because these are
all human made metallic crafts. It appears that the interference from PLANE to TRUCK is more
often than to CAR, probably because trucks are bigger in size than cars.

CAT has interference from BIRD (2) given their similar fluffy looks. Surprisingly, FROG (6) also
interferes CAT pretty often. We checked the CIFAR-10 images visually and it is probably because
the images are mostly close looks of the objects; in this case cats have two pointy ears which are
easily confused with frogs who have their eyes positioned atop. Besides CAT, DOG has interference
from HORSE (7) and DEER (4) because they are all four-legged. It is interesting to observe that
CAT, on the other hand, almost does not have interference from HORSE, with only two or three
moments of interference out of 200 epochs. This means HORSE is very helpful to differentiate be-
tween CAT and DOG, which is the largest source of generalization error as we discussed in Section
2.1. DOG also has a little interference from BIRD (2) similar to CAT does.

5 CONCLUSION

This paper illustrates a phenomenon called class interference of deep neural networks. We show
it is the bottleneck of classification, which represents learning difficulty in data. The proposed
cross-class generalization tests, class ego directions, interference models and the study of class-wise
losses in class ego directions provide a tool set for studying the generalization of trained deep neural
networks. The study of label dancing via the dancing notes provides a method of detecting class
interference during training. With the provided tools in these two dimensions, we hope this paper is
useful to understand the generalization of deep nets, improve existing models and training methods,
and understand the data better as well as the learning difficulty of recognition.
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Figure 8: CCTM heatmaps for GoogleNet and DLA on CIFAR-10 test set. CAT and DOG still have
the largest generalization errors among all the class pairs. GoogleNet wins DLA in the DOG class.
However, it loses in the CAT class. See Table 1 for the recall rates of individual classes.

APPENDIX 2

The CCTM heatmaps of GoogleNet and DLA are shown in Figure 8. The interference between CAT
and DOG is similarly high (see Figure 1 for VGG19 and ResNet18).

Let us examine the CAR row in details this time. The CAR-TRUCK cell stands out. For GoogleNet,
the color is a distinct Orange while other cells have very light colors. By looking at the colorbar,
Orange color is about 0.025, which is 2.5%. In Table 1, GoogleNet’s CAR recall is 96.7%. If we
add them together, 96.7% + 2.5% = 99.2%. (For the TRUCK-CAR cell, it shows symmetry.) This
means the majority of the generalization errors happen for predicting cars as TRUCK and vice versa.
According to our experiments, CAR and TRUCK also interfere and we investigate their individual
losses and illustrate their interference in training. Relevant discussions are Section 4.1 (Figure 5)
and Section 4.2 (Figure 7).

For DLA, the color of CAR-TRUCK is much brighter than GoogleNet, which is more Yellow than
Orange. Note the colorbar range of the two nets is the same and the colors across the two plots are
comparable. This color is about 0.018 according to the colorbar. In Table 1, DLA’s recall for CAR
is 97.8%. We have 97.8% + 1.8% = 99.6%. This shows most of DLA’s mistakes for cars happen for
predicting them as TRUCK, similar to GoogleNet. We can also observe here that the CAR-TRUCK
mistake of DLA (1.8%) is better than that of GoogleNet (2.5%). This leads to an overall better
classification of cars for DLA (97.8%) than GoogleNet (96.7%).

Reviewer question: If interference is something bad for classification (as you say “interference is the
bottleneck”), then why PLANE/BIRD with lower interference (brighter colors) than CAR/TRUCK
have better numbers in Table 1, e.g. for GoogleNet? PLANE/BIRD: 96.4/93.8 vs CAR/TRUCK
96.7/96.6?

We take a look at the raw CCTM data for GoogleNet, in particular the rows for PLANE, CAR,
BIRD, and TRUCK. The data is shown in Table 2. So this confirms the recall rates in Table 1 are
correct, in particular, PLANE/BIRD: 96.4%/93.8% vs. CAR/TRUCK 96.7%/96.6%.

Regarding why CAR/TRUCK have better recall rates than PLANE/BIRD, we can look at the CAR
row first: All the numbers are low (0.00X or 0) except for the TRUCK column. This means
GoogleNet rarely mistakes cars for classes other than TRUCK. Class interference is mainly for
comparing the column classes for each row class. For the CAR row, TRUCK intereferes it a lot,
much more than the other classes.

2This section benefits from the discussions with one reviewer of ICLR 2023. It was added due to his
suggestions.
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Class PLANE CAR BIRD CAT DEER DOG FROG HORSE SHIP TRUCK
PLANE 0.964 0.001 0.012 0.001 0. 0.002 0.002 0.001 0.011 0.006
CAR 0.004 0.967 0. 0.001 0.001 0. 0. 0.001 0.005 0.021
BIRD 0.01 0. 0.938 0.01 0.023 0.009 0.009 0. 0.001 0.
TRUCK 0.004 0.021 0.001 0.003 0. 0. 0. 0. 0.005 0.966

Table 2: Sampled rows of GoogleNet for Figure 8.

For the PLANE row, (PLANE, BIRD) and (PLANE,SHIP) are both over 0.01. It makes sense
because they both have sky background in the data set. (PLANE, TRUCK) is also a bit high, 0.006,
because both are metallic.

That is, for the PLANE row, there are three other classes that interfere it, while for CAR/TRUCK,
there is only one class that interferes it (let’s say we use an interference threshold 0.005. Class B
interferes class A if the cell (A, B) is bigger than 0.5%). Although the errors of (CAR, TRUCK)
and (TRUCK, CAR) are high, the model does not make much other mistake for predicting cars and
trucks. Thus their recall rates are high.

For the BIRD row, there are five classes with high interference to it too. Thus for PLANE and BIRD,
there is also significant interference from other classes besides the most interfering class (the most
dark color cell in a row). This leads to lower recall rates for PLANE/BIRD than for CAR/TRUCK.

This question and discussion shows that “many interfering classes for a class” is also bad for the
class in addition to a single, strong “most interfering class”. In short, “interference is the bottleneck”
means the certain classes have strong interference from one or multiple other classes.
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