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ABSTRACT

Text-to-image models can generate harmful images when presented with unsafe
prompts, posing significant safety and societal risks. Alignment methods aim
to modify these models to ensure they generate only non-harmful images, even
when exposed to unsafe prompts. A typical text-to-image model comprises two
main components: 1) a text encoder and 2) a diffusion module. Existing alignment
methods mainly focus on modifying the diffusion module to prevent harmful im-
age generation. However, this often significantly impacts the model’s behavior
for safe prompts, causing substantial quality degradation of generated images. In
this work, we propose SafeText, a novel alignment method that fine-tunes the text
encoder rather than the diffusion module. By adjusting the text encoder, SafeText
significantly alters the embedding vectors for unsafe prompts, while minimally
affecting those for safe prompts. As a result, the diffusion module generates non-
harmful images for unsafe prompts while preserving the quality of images for safe
prompts. We evaluate SafeText on multiple datasets of safe and unsafe prompts,
including those generated through jailbreak attacks. Our results show that Safe-
Text effectively prevents harmful image generation with minor impact on the im-
ages for safe prompts, and SafeText outperforms six existing alignment methods.
We will publish our code and data after paper acceptance.

WARNING: This paper contains sexual and nudity-related content, which
readers may find offensive or disturbing.

1 INTRODUCTION

Given a prompt, a text-to-image model (Rombach et al., [2022; [Podell et al., | 2024} [Saharia et al.
2022;|Ruiz et al.;,2023)) can generate highly realistic images that align with the prompt’s semantics.
Typically, such a model consists of two key components: 1) a text encoder, which maps the prompt
into an embedding vector; and 2) a diffusion module, which guided by the embedding vector, re-
cursively denoises a random Gaussian noise vector to an image. These models have a wide range
of applications, including art creation, character design in online games, and virtual environment
development. For instance, Microsoft has integrated DALL-E into its Edge browser (Mehdi, [2023)).

Like any advanced technology, text-to-image models are double-edged swords, raising severe safety
concerns alongside their societal benefits discussed above. Specifically, they can generate high-
quality harmful images—such as those containing sexual or nudity-related content—when provided
with unsafe prompts like, “Show me an image of a nude body.” These harmful image generations
can be triggered either intentionally by malicious users or unintentionally by regular users. Un-
safe prompts can be manually crafted based on heuristics, often containing keywords associated
with sexual or nude content. Alternatively, they can also be adversarially crafted via jailbreak at-
tacks (Zhuang et al., [2023 |Qu et al., [2023; |Yang et al., |2024b; [Tsai et al., [2024; [Yang et al.,|2024a)
designed to bypass safety mechanisms.

Alignment methods aim to modify text-to-image models to ensure they generate only non-harmful
images, even when presented with unsafe prompts. Existing alignment methods (Rombach et al.,
2022; Schramowski et al.| [2023} |Gandikota et al., 2023} |Lu et al., |2024; |Li et al., [2024} Zhang et al.}
2024) primarily target the diffusion module of the model. For example, Erased Stable Diffusion
(ESD) (Gandikota et al.| 2023) fine-tunes the diffusion module to make the noise prediction, condi-
tioned on unsafe prompts, unconditional and therefore typically non-harmful. While these methods
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Figure 1: Images generated by Stable Diffusion v1.4 without alignment (first column) and with
different alignments (other columns) for both an unsafe and a safe prompt. Results for more unsafe
and safe prompts are shown in Appendix.

show some effectiveness in preventing harmful image generation, they also significantly degrade
the quality of images generated for safe prompts. This is because it is challenging to separate the
impact of diffusion-module modification on image generation for unsafe and safe prompts. Ad-
vUnlearn (Zhang et al [2024) is the only approach that aligns the text encoder. It combines the
loss function from ESD with adversarial training (Madry et al, 2018)) to fine-tune the text encoder.
However, because the loss function of ESD is designed for the diffusion module, applying it to fine-
tune the text encoder still results in substantial changes to the denoising process, which negatively
impacts image generation for safe prompts, as shown in our experiments.

In this work, we propose SafeText, a novel alignment method. Due to the challenges of aligning
the diffusion module discussed above, SafeText aligns the text encoder without any information
about the diffusion module. Specifically, SafeText fine-tunes the text encoder to substantially alter
the embeddings of unsafe prompts (effectiveness goal) while introducing minimal changes to those
of safe prompts (utility goal). As a result, the diffusion module generates non-harmful images for
unsafe prompts while preserving the quality of images for safe prompts. We develop two loss terms
to respectively quantify the effectiveness and utility goals. Then, we formulate fine-tuning the text
encoder as an optimization problem, whose objective is to minimize a weighted sum of the two loss
terms. Furthermore, SafeText leverages a standard gradient-based method (e.g., Adam optimizer) to
solve the optimization problem, which fine-tunes the text encoder.

We evaluate SafeText on three datasets of safe prompts, four datasets of manually crafted unsafe
prompts, and adversarially crafted unsafe prompts generated by three state-of-the-art jailbreak at-
tacks (Yang et al., [2024b}, [Tsai et al, 2024} [Yang et al} 2024d). Additionally, we compare SafeText
with six leading alignment methods. The results demonstrate that SafeText outperforms all these
alignment methods, striking a balance between preventing harmful image generation for unsafe
prompts and preserving the quality of images generated for safe prompts. Figure [I] shows the im-
ages generated by an unaligned text-to-image model and the models aligned by different methods for
both an unsafe and a safe prompt. Results for more unsafe and safe prompts are shown in Figure 3]
and [in Appendix.

2 RELATED WORK

2.1 HARMFUL IMAGE GENERATION

A text-to-image model generates high-quality harmful images when presented with unsafe prompts,
which can be manually crafted based on heuristics or adversarially crafted using jailbreak attacks.

Manually crafted unsafe prompts: These unsafe prompts are manually crafted based on heuris-
tics, often containing keywords associated with sexual or nudity-related content. Additionally, multi-
modal large language models can be employed to generate captions for real-world harmful images,
with these captions being used as unsafe prompts. In our experiments, we utilize manually crafted
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unsafe prompts collected from online platforms like civitai.com and lexica.art, as well as captions
generated for harmful images, to test the effectiveness of safety alignment methods.

Adversarially crafted unsafe prompts: These unsafe prompts are generated through jailbreak
attacks and could include text that is either coherent or nonsensical to humans. A jailbreak attack
modifies a manually crafted unsafe prompt, which fails to bypass a model’s safety alignment, into an
adversarial prompt. This adversarial prompt is designed to circumvent the safety alignment, enabling
the text-to-image model to generate a harmful image that matches the semantics of the original un-
safe prompt. For instance, SneakyPrompt (Yang et al., 2024b) iteratively refines the adversarial
prompt via interacting with a given text-to-image model and leveraging reinforcement learning to
take the responses into consideration. Similarly, Ring-A-Bell (Tsai et al.||2024) employs a surrogate
text encoder and a genetic algorithm to generate an adversarial prompt that avoids explicit unsafe
words while keeping its embedding similar to the original unsafe prompt. MMA-Diffusion (Yang
et al.| [2024a) further leverages token-level gradients and word regularization to optimize an adver-
sarial prompt, ensuring it avoids explicit unsafe words while preserving embedding similarity to the
original unsafe prompt.

2.2  SAFETY ALIGNMENT

Depending on the text-to-image model’s component that is aligned, alignment methods can be
grouped into the following two categories:

Aligning the diffusion module: The most straightforward method (Rombach et al.,[2022)) to align
the diffusion module of a text-to-image model is to retrain it on a dataset containing only non-
harmful images and safe prompts. However, this safe retraining has limited effectiveness because
the retrained model can still piece together different parts of seemingly non-harmful images to gen-
erate harmful ones. Additionally, retraining is highly time-consuming. To address this, some align-
ment methods fine-tune the diffusion module (Gandikota et al., 2023 [Lu et al.| 2024; |Li1 et al., [2024)
or modify its image generation process (Schramowski et al., [2023). For instance, Erased Stable
Diffusion (ESD) (Gandikota et al., 2023) fine-tunes the diffusion module to make the noise pre-
diction, conditioned on unsafe concepts, unconditional and therefore typically non-harmful. Mass
Concept Erasure (MACE) (Lu et al., 2024) uses Low-Rank Adaptation (LoRA) (Hu et al.} 2022) to
fine-tune the cross-attention layer (Chen et al., 2021) within the diffusion module, preventing the
generation of images related to unsafe concepts. Similarly, SafeGen (Li et al., [2024) fine-tunes the
diffusion module using harmful images and their mosaic versions, prompting the model to generate
mosaic images when given unsafe prompts. For generation-time alignment, Safe Latent Diffusion
(SLD) (Schramowski et al.l [2023)) adds a safety guidance term to the classifier-free guidance noise
prediction process to remove harmful elements from the generated images. However, these align-
ment methods substantially affect the images generated for safe prompts as they significantly alter
the diffusion module’s behavior.

Aligning the text encoder: To the best of our knowledge, AdvUnlearn (Zhang et al.,|2024) is the
only method that aligns the text encoder. AdvUnlearn combines the loss function of ESD (Gandikota
et al., |2023)) with adversarial training (Madry et al., |2018)) to change the diffusion module’s noise
prediction process. Specifically, it fine-tunes the text encoder so that the diffusion module’s pre-
dicted noise conditioned on unsafe prompts approximates the unconditional predicted noise, while
the predicted noise conditioned on safe prompts remains close to that before fine-tuning. However,
because the loss function of ESD is based on classifier-free guidance and is designed for the diffu-
sion module, using it to fine-tune the text encoder still substantially changes the denoising process,
significantly affecting the image generation for safe prompts, as demonstrated in our experiments.

3 PROBLEM DEFINITION

Given a text-to-image model, our objective is to align it to meet two goals: 1) Effectiveness and 2)
Utility. The effectiveness goal ensures that the aligned model does not generate harmful images.
The utility goal focuses on maintaining the model’s ability to generate high-quality images for safe
prompts. Specifically, we aim for a high standard of utility: given the same safe prompt and seed,
the aligned and unaligned models should produce visually similar images. For instance, the LPIPS
score (Zhang et al.l 2018) between the images generated by the aligned and unaligned models is
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Figure 2: Overview of our SafeText. Given an unaligned text encoder 7, SafeText fine-tunes it

as 7, such that 75, and 7 produce substantially different embedding vectors for an unsafe prompt
(effectiveness goal) and similar embedding vectors for a safe prompt (utility goal).

small. Our SafeText achieves a balance between the two goals, i.e., between preventing harmful
image generation and preserving the model’s functionality for safe use cases.

4  QOUR SAFETEXT

4.1 OVERVIEW

Our SafeText (illustrated in Figure [2) achieves the effectiveness and utility goals via aligning the
text encoder of the text-to-image model. Since the diffusion module of the text-to-image model
is responsible for the denoising process and image generation, modifying its parameters may sig-
nificantly degrade image quality for safe prompts. Therefore, our SafeText fine-tunes only the text
encoder while keeping the diffusion module intact to largely preserve image quality for safe prompts.

Specifically, to achieve the effectiveness goal, we fine-tune the text encoder so that the embeddings
for unsafe prompts are altered substantially. Consequently, the images generated based on the em-
beddings produced by the aligned text encoder are much less likely to contain harmful content. To
achieve the utility goal, we ensure that the aligned text encoder and the original one produce similar
embeddings for a safe prompt. Formally, we propose two loss terms to respectively quantify the two
goals, and formulate fine-tuning the text encoder as an optimization problem, whose objective is to
minimize a weighted sum of the two loss terms. Finally, we solve the optimization problem via a
standard gradient-based method.

4.2 FORMULATING AN OPTIMIZATION PROBLEM
We use 7 to denote the original text encoder and 7, to denote our fine-tuned one.

Quantifying the effectiveness goal: For an unsafe prompt P,,, our objective is to ensure that
the embedding 75(P,,) produced by the fine-tuned encoder is highly likely to be safe. To achieve
this, we fine-tune the text encoder so that the embedding 7, (P,,) is substantially different from the
original embedding 7(P,,), given that 7(P,,,) is unsafe. Therefore, to achieve our effectiveness
goal, we fine-tune 7 as 75 such that the distance between 74(P,,,) and 7(P,,) is large, based on a
chosen distance metric. Formally, we quantify the effectiveness goal using the following loss term:

Le = Ep,,~b,, [de(Ts(Pun); T(Pun))], (D

where D,,,, represents the distribution of unsafe prompts, P,, ~ D,, means that P,, is an unsafe
prompt sampled from D,,,,, F stands for expectation, and d. denotes a distance metric between two
embedding vectors (e.g., Euclidean distance). The effectiveness goal may be better achieved when
the loss term L, is larger.

Quantifying the utility goal: For a safe prompt P, our objective is to keep its embeddings similar
before and after fine-tuning. To achieve this, we fine-tune the text encoder so that the distance
between the embeddings 7,(Ps) and 7(Ps) is small, based on a chosen distance metric. Formally,
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we quantify this utility using the following loss term:
L, = Ep,~p, [du(Ts(Ps)vT(Ps))]a 2

where D, represents the distribution of safe prompts, Ps; ~ D¢ means that P; is a safe prompt sam-
pled from D, E stands for expectation, and d,, denotes a distance metric between two embedding
vectors. The utility goal may be better achieved when the loss term L,, is smaller.

Optimization problem: To balance between the effectiveness and utility goals, we combine the
two loss terms L. and L,, to formulate an optimization problem as follows:

min L, — AL, 3)

where A is a hyper-parameter that controls the trade-off between the effectiveness goal and the
utility goal. The objective of this optimization problem is to fine-tune the text encoder to maximize
the effectiveness for unsafe prompts while preserving utility for safe prompts.

4.3  SOLVING THE OPTIMIZATION PROBLEM

We solve the optimization problem using a dataset of safe prompts (denoted as D) and a dataset
of unsafe prompts (denoted as D,,,,). The two datasets are used to approximate the expectations.
Specifically, given the two datasets, the optimization problem can be reformulated as follows:

A

|Dun ‘ Pun ED’U/VL

I’IllIlL Z du(Ts(Ps)7T(PS))

d@ S PHTL b Pun .
NIy (7s(Pun), 7(Pun)) )

We can use a standard gradient-based method (e.g., Adam optimizer) to solve this optimization
problem. Specifically, we initialize 75 as 7, and then update 75 for n epochs with a batch size of m
and a learning rate of a.

5 EXPERIMENT
5.1 EXPERIMENTAL SETUP

Fine-tuning datasets D, and D,,,,: We construct D, and D,,,, from Civitai-8M (AdamCodd, [2024)
with multi-stage safety filtering; full dataset construction details are in Appendix [A.2]

Testing unsafe prompt datasets: We consider both manually and adversarially crafted unsafe
prompts to evaluate the effectiveness of an alignment method.

e Manually crafted unsafe prompts. We acquire 4 datasets of manually crafted unsafe prompts:
Civitai-Unsafe, NSFW, I2P, and U-Prompt. Table@in Appendix summarizes them. Civitai-
Unsafe includes 1,000 unsafe prompts sampled from Civitai-8M (AdamCodd, 2024) exclud-
ing those in D,,, used for fine-tuning. NSFW consists of 1,000 unsafe prompts sampled from
NSFW-56k (Li et al.l [2024), a dataset of unsafe prompts generated by using BLIP2 (Li et al.,
2023) to caption a set of pornographic images. I2P (Schramowski et al., 2023) consists of
prompts collected from lexica.art using keyword matching. The original I2P dataset includes
many safe prompts. Thus, we use GPT-4o to filter and retain only those detected as unsafe, re-
sulting in 229 unsafe prompts. U-Prompt is collected by us and consists of 1,000 unsafe prompts
generated by using BLIP2-OPT (Salesforce, 2023)) to caption a sexual image dataset (Noktedan,
2020). Compared to other datasets, the unsafe prompts in U-Prompt are shorter, potentially
introducing additional challenges for alignment methods to defend against them.

e Adversarially crafted unsafe prompts. We use three state-of-the-art jailbreak attacks—
SneakyPrompt (Yang et al., 2024b), Ring-A-Bell (Tsai et al., [2024), and MMA-
Diffusion (Yang et al., [2024a)-to generate adversarially crafted unsafe prompts. The details
of these methods are shown in Appendix [A.3] Given a manually crafted unsafe prompt, these
attacks turn it into an adversarial prompt with a goal to bypass safety guardrails. We randomly
sample 200 unsafe prompts from NSFW-56k following |Li et al.[(2024)), and then use each at-
tack to generate 200 adversarially crafted unsafe prompts. We use the publicly available code
and default settings of the three attacks. Note that SneakyPrompt generates adversarial prompts
tailored to each (unaligned or aligned) text-to-image model.
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Table 1: Effectiveness results (NRR 1) of different alignment methods on Stable Diffusion v1.4.

Manually crafted unsafe prompts Adversarially crafted unsafe prompts

Method Civitai-Unsafe NSFW I2P  U-Prompt SneakyPrompt Ring-A-Bell MMA-Diffusion
SR 0.639 0.712 0.780  0.770 0.766 0.545 0.787
SLD 0.626 0.596 0.741  0.635 0.670 0.603 0.616
ESD 0.796 0.826 0.867  0.839 0.792 0.684 0.851
MACE 0.906 0.889 0.908  0.904 0.866 0.955 0.902
SafeGen 0.936 0.970 0.886  0.979 0.960 0.951 0.986
AdvUnlearn 0.972 0.944 0960  0.888 0.925 0.997 0.989
SafeText 0.990 0.987 0.990  0.994 0.984 1.000 0.992

Table 2: Utility results (LPIPS | / FID, | / FID, | / CLIP score 1) of different alignment methods
on Stable Diffusion v1.4.

Safe prompt dataset

Method Civitai-Safe MS-COCO Google-CC
SR 0.669/-/743/30.1 0.640/752/60.2/30.3 0.646/89.9/70.2/29.2
SLD 0.601/-/663/28.0 0.572/76.3/53.0/29.0 0.581/91.8/63.5/27.9
ESD 0.510/-/55.8/29.8 0.502/67.1/47.2/30.2 0.507/82.9/56.0/29.0
MACE 0.642/-/74.0/244 0.522/67.2/539/29.1 0.590/87.3/65.3/26.6
SafeGen 0.620/-/67.1/282 0.581/76.0/54.5/28.9 0.591/90.3/64.5/27.8
AdvUnlearn 0.669/-/84.3/220 0.512/71.2/48.6/29.1 0.594/86.9/64.2/25.7
SafeText 0.207/-/32.4/31.0 0.218/69.8/28.4/30.8 0.206/82.3/31.5/30.1

Testing safe prompt datasets: To evaluate utility of an alignment method, we use 3 datasets of
safe prompts: Civitai-Safe, MS-COCO, and Google-CC. Each dataset includes 1,000 safe prompts
from Civitai-8M (AdamCodd| 2024), MS-COCO (Lin et al., 2014), and Google’s Conceptual Cap-
tions (Sharma et al.| 2018)), respectively. Table@in Appendix summarizes these datasets.

Evaluation metrics: We evaluate both effectiveness and utility. For effectiveness, we adopt the
NSFW Removal Rate (NRR) following SafeGen (Li et al.| 2024) using NudeNet (notAl Techl 2019)
to count nude body parts. Let n(M (P,,)) and n(M,(P,,)) be the NudeNet counts for images
generated by the original model M and the aligned model M on an unsafe prompt P,,,,, respectively.
Given a test set D! of unsafe prompts,

un

NRR = 1-

1
o,

nEDE

where we fix the same random seed for M and M per prompt to control stochasticity; higher is
better.

For utility, besides the standard Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al.,
2018) and the CLIP score (Radford et al| 2021)) (definitions and computation details in Ap-
pendix , we report two Fréchet Inception Distance (FID) (Heusel et al., [2017) variants: FID,.
measures the distance between real images and images generated by M for the corresponding safe
prompts, and FID, measures the distance between images generated by M and those by M, on the
same safe prompts; lower is better.

Baseline alignment methods: We compare SafeText with six alignment methods—Safe Retrain-
ing (Rombach et al., 2022), Safe Latent Diffusion (Schramowski et al., 2023), Erased Stable
Diffusion (Gandikota et al., [2023)), Mass Concept Erasure (Lu et al., |2024), SafeGen (L1 et al.,
2024), and AdvUnlearn (Zhang et al. [2024); detailed descriptions are provided in Appendix [A.3]

Parameter settings: Unless otherwise noted, we use Euclidean distance as d,,, negative absolute
cosine similarity (NegCosine) as d., and A = 0.2; full parameter settings and baseline configura-
tions are in Appendix with ablations in Fig. 5]
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Table 3: Effectiveness results (NRR 1) of SafeText on other text-to-image models.

Manually crafted unsafe prompts Adversarially crafted unsafe prompts
Model Civitai-Unsafe NSFW I2P  U-Prompt SneakyPrompt Ring-A-Bell MMA-Diffusion
SDXL 0.973 0.945 0902 0.951 0.933 0.958 0911
DP 0.996 0986 0.950  0.995 0.988 0.997 0.987
LD 0.971 0951 0935  0.960 0.931 0.998 0.978
ol 0.948 0.963 0.906  0.958 0.950 0.970 0.962
X 0.986 0981 0936 0.985 0.963 0.998 0.988

Table 4: Utility results (LPIPS | / FID,. | (original FID,. |) / FID, | / CLIP score 1 (original CLIP
score 1)) of SafeText on other text-to-image models. Note that original LPIPS and original FID,, are
not applicable.

Safe prompt dataset
Model Civitai-Safe MS-COCO Google-CC

SDXL 0.319/-(-)/37.3/30.1 (30.0) 0.293/127.2(131.8)/38.9/28.5(28.2) 0.307/125.1 (127.2)/39.3 /26.5 (26.5)
DP  0326/-()/36.7/31.3(3L7)  0.340/74.7(75.0)/35.7/30.4 (30.8)  0.338/84.1 (84.0)/38.6/29.7 (30.0)
LD  0.129/-(-)/21.9/31.3(31.4)  0.158/73.2(73.2)/243/30.5(30.7)  0.153/92.5 (92.8)/24.8 /28.9 (29.0)
O]  0265/-(-)/33.0/32.4(32.8) 0.282/72.4(71.9)/32.3/31.0(31.6)  0.260/82.7 (81.5)/34.0/30.1 (30.5)
IX  0.344/-(-)/39.8/332(33.3) 0.338/68.4(67.1)/37.0/32.2(32.5)  0.329/83.6(82.1)/41.9/31.0 (31.2)

5.2 MAIN RESULTS

Our SafeText achieves both effectiveness and utility goals: Tables [I] shows the NRR of our
SafeText for manually and adversarially crafted unsafe prompts on Stable Diffusion v1.4. The
results demonstrate that SafeText achieves the effectiveness goal. Specifically, the NRR exceeds
98.7% across the four datasets of manually crafted unsafe prompts. For adversarially crafted unsafe
prompts, SafeText achieves an NRR larger than 98.4% across the three jailbreak attack methods.
Additionally, Table |2 shows the LPIPS, FID,., FID,4, and CLIP score of SafeText across the three
datasets of safe prompts. Note that Civitai-Safe consists of Al-generated images, making FID,. not
applicable. The results demonstrate that SafeText effectively preserves utility, achieving an LPIPS
below 0.218, an FID, below 82.3, an FID, below 32.4, and a CLIP score above 30.1 across all
datasets.

Our SafeText outperforms baseline alignment methods: Tables[I|and 2]also show the effective-
ness and utility results for the six baseline alignment methods. The results demonstrate that SafeText
outperforms all of them in terms of both effectiveness and utility. Specifically, SafeText achieves the
highest NRR across the four datasets of manually crafted unsafe prompts and adversarial prompts
crafted by the three jailbreak attack methods. Furthermore, across the three datasets of safe prompts,
SafeText achieves significantly lower LPIPS, comparable FID,., significantly lower FID, and larger
CLIP scores than the baseline methods. Notably, SafeText has the smallest impact on all utility
metrics of the original model compared to other baselines.

5.3 ABLATION STUDY

Other text-to-image models: Tables [3| shows the effectiveness results of our SafeText for manu-
ally and adversarially crafted unsafe prompts across another five text-to-image models. The results
demonstrate that our SafeText still achieves the effectiveness goal when applied to these models.
Specifically, our SafeText achieves an NRR larger than 90.2% for manually crafted unsafe prompts
and larger than 91.1% for adversarially crafted unsafe prompts across all five models. Additionally,
Table [ presents the utility results of SafeText across five text-to-image models, demonstrating that
SafeText preserves utility when applied to these models. To better illustrate its impact, we also report
the original FID,. and CLIP scores for the models before alignment. Specifically, SafeText achieves
an LPIPS below 0.344, an FID,. below 127.2, an FID, below 41.9, and a CLIP score above 26.5
across all three safe prompt datasets and five models, indicating minimal impact on utility. Sample
images generated with and without SafeText alignment are shown in Figures [6HI5]in the Appendix.
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Different distance metrics and \: Figures and in Appendix respectively compare the
NRR and LPIPS of SafeText when using different distance metrics as d,, and d., and different A on
Stable Diffusion v1.4. Each curve in the figures corresponds to a combination of distance metrics in
the form of d,-d.. For instance, Euclidean-NegCosine indicates that Euclidean distance is used as
d,,, while NegCosine is used as d.. For each of the 4 combinations of distance metrics, we show the
NRR and LPIPS results for different A, where the bottom x-axis indicates A when d. is NegCosine
and the top x-axis indicates A when d. is Euclidean distance. We observe a general trend: LPIPS
increases and NRR increases (and then stabilizes or fluctuates slightly) when X increases, indicating
that \ balances between the effectiveness and utility goals. In the figures, we show the ranges of A
that achieve good effectiveness-utility trade-offs for these combinations of distance metrics.

From Figure we observe that using Euclidean distance as d,, (i.e., Euclidean-NegCosine and
Euclidean-Euclidean) achieves much smaller LPIPS than using NegCosine as d,, (i.e., NegCosine-
NegCosine and NegCosine-Euclidean). This suggests that both the direction and magnitude of the
embedding are crucial for preserving utility for safe prompts. The two combinations Euclidean-
Euclidean and Euclidean-NegCosine achieve similar utility/LPIPS. However, Figure [I6a] shows
that using NegCosine as d. results in a higher NRR. In other words, the combination Euclidean-
NegCosine achieves the best performance among the four. This might be because the harmfulness
of a generated image is more sensitive to the direction of the embedding of an unsafe prompt than to
its magnitude. NegCosine only considers direction of embeddings, and thus outperforms Euclidean
distance when used as d,.

To investigate this further, we design a controlled experiment to explore the impact of varying di-
rection and magnitude of a prompt’s embedding on the generated image. Suppose we are given the
embedding of a prompt produced by an unaligned text encoder. For direction-only, we rotate the
embedding while preserving its magnitude, under a constraint on the ¢5-norm of the change to the
embedding. For magnitude-only, we increase the magnitude of the embedding while keeping its di-
rection, under the same /5-norm constraint. We generate an image using the unmodified embedding
and an image using the embedding modified by direction-only (or magnitude-only), and we calculate
NRR (for unsafe prompts) or LPIPS (for safe prompts) between the two images. Figures[I6c|and[I6d]
in Appendix respectively show the NRR and LPIPS of direction-only and magnitude-only averaged
over NSFW and MS-COCO given different /5-norm constraints. We observe that direction-only
achieves higher NRR under the same ¢5-norm constraint. For instance, direction-only achieves an
NRR of 99.3%, while magnitude-only reaches only 35.7% when the ¢»-norm constraint is 20. For
utility, we observe that both direction-only and magnitude-only have large impact on LPIPS. These
results demonstrate that harmfulness of a generated image is more sensitive to the direction of the
embedding of an unsafe prompt and the image quality for safe prompts is sensitive to both direction
and magnitude. Therefore, we choose Euclidean distance as d,, and NegCosine as d..

Different number of epochs n: Figure in Appendix shows the effectiveness and utility of
our SafeText across different numbers of fine-tuning epochs n on Stable Diffusion v1.4. For effec-
tiveness, we observe that the NRR initially increases and then stabilizes as the number of epochs
grows. This demonstrates that our SafeText can achieve high effectiveness when the text encoder
is fine-tuned for a sufficient number of epochs. For utility, the LPIPS increases with more epochs,
indicating a more significant visual change of images generated from safe prompts. This occurs
because excessive fine-tuning of the text encoder may significantly alter its parameters, causing the
generated images to visually deviate substantially from the original ones.

Different learning rate a: Figure in Appendix shows the effectiveness and utility of our
SafeText across different learning rates a on Stable Diffusion v1.4. For effectiveness, we observe
that the NRR initially increases and then stabilizes as the learning rate grows. This occurs because,
when the learning rate is too small, the embeddings of unsafe prompts cannot be effectively changed
from their original ones. For utility, the LPIPS consistently increases with larger learning rates. This
is due to the fact that larger learning rates cause substantial parameter shifts in the text encoder,
leading to lower visual similarity between the generated images before and after fine-tuning.

Different batch size m: Figure in Appendix shows the effectiveness and utility of our Safe-
Text across different batch sizes m on Stable Diffusion v1.4. For effectiveness, the NRR initially
increases and then stabilizes as the batch size grows. For utility, the LPIPS first decreases and then
increases with larger batch sizes. It is important to note that no specific patterns are expected for ef-
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Table 5: Effectiveness (False Negative Rate (FNR) |) and utility (False Positive Rate (FPR) |) results
of different safety filters.

(a) FNR for unsafe prompts

Manually crafted unsafe prompts Adversarially crafted unsafe prompts
Method Civitai-Unsafe NSFW  I2P  U-Prompt SneakyPrompt Ring-A-Bell MMA-Diffusion
CLIP + LR 0.01 0.01 031 0.00 0.20 0.00 0.02
CLIP + DNN 0.01 0.01  0.17 0.01 0.32 0.00 0.02
BERT 0.01 0.02 025 0.00 0.25 0.00 0.04
Latent Guard 0.18 045  0.62 0.24 0.73 0.31 0.40
(b) FPR for safe prompts
Safe prompt dataset

Method Civitai-Safe ~ MS-COCO  Google-CC

CLIP + LR 0.03 0.10 0.06

CLIP + DNN 0.02 0.05 0.05

BERT 0.01 0.15 0.14

Latent Guard 0.13 0.14 0.08

fectiveness and utility as batch size changes. The results demonstrate that our SafeText can achieve
satisfactory performance when the batch size m is within an appropriate range.

Comparison with NLP-based safety filters and Latent Guard: To highlight the novelty and
benefits of SafeText, we further evaluate several NLP-based safety filters (CLIP encoder + logistic
regression, CLIP encoder + DNN, BERT) and the SOTA safety filter Latent Guard (Liu et al.|
2024), all trained on the Civitai dataset (except Latent Guard, where we use the official model).
As shown in Table [3] these baselines generalize poorly to out-of-distribution unsafe prompts (e.g.,
high FNRs on I2P), are highly vulnerable to jailbreak attacks such as SneakyPrompt, and also suffer
from high false positive rates on safe prompts (e.g., MS-COCO). These observations underscore the
limitations of existing text-only safety filters and motivate the design of our method.

Other unsafe concepts: Our evaluation primarily focuses on nude or sexually explicit content.
However, our method is adaptable to other unsafe concepts by incorporating relevant training data.
Specifically, adding concept-specific prompts to the training set allows our approach to effectively
mitigate such issues. To demonstrate this adaptability, we conducted an experiment targeting violent
image generation. We constructed a safe training dataset with 30,000 prompts from Civitai-8M and
generated an unsafe dataset by using an uncensored Llama 3 (Orenguteng, |2024) to inject violence-
related elements into these prompts, yielding 30,000 unsafe prompts. Our method was then evalu-
ated on violence-related prompts from the I2P dataset using Stable Diffusion v1.4. After applying
our approach, the percentage of images classified as violent by a ResNet-50 model (fmskyl [2017)
trained for violence detection dropped significantly from 22.6% to 4.8%. Additionally, our method
preserved utility on safe prompts from MS-COCO, achieving an LPIPS of 0.267, an FID,. of 69.5,
an FID, of 33.1, and a CLIP score of 30.7.

6 CONCLUSION AND FUTURE WORK

In this work, we show that fine-tuning the text encoder of a text-to-image model can prevent it
from generating harmful images for unsafe prompts without compromising the quality of images
generated for safe prompts. This can be achieved by fine-tuning the text encoder to significantly alter
the embeddings for unsafe prompts while minimally affecting those for safe prompts. Extensive
evaluation shows that our fine-tuning of the text encoder outperforms the alignment methods that
directly modify the diffusion module or fine-tune the text encoder based on the diffusion module’s
noise prediction process. Interesting future work includes further improving the utility of SafeText
and designing stronger jailbreak attacks to SafeText.
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7 REPRODUCIBILITY STATEMENT

We have taken multiple steps to ensure the reproducibility of our work. Detailed descriptions of
our model architecture, training setup, and hyperparameters are provided in Appendix [A.6] Dataset
sources, preprocessing procedures, and prompt construction strategies are outlined in Appendix[A.2]
To promote fair comparison, we also document the training protocol of all baseline methods in
Appendix [A.6] We will make our code and data publicly available, together with evaluation scripts,
upon acceptance of the paper.
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A APPENDIX

A.1 USE OF LLMs

Large language models (LLMs) were used solely for sentence-level editing of this manuscript, in-
cluding grammar correction and rewording for clarity. No part of the research design, experimental
process, data analysis, or scientific claims relied on LLMs; all intellectual contributions are the
responsibility of the authors.

SafeText
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Prompt: A naked woman posing in her underwear

Figure 3: Images generated by Stable Diffusion v1.4 without alignment (first column) and with
different alignments (other columns) for two more unsafe prompts.

Original SR SLD ESD MACE SafeGen AdvUnlearn SafeText

Prompt: Many sheep and goats cross a road between grassy fields

Figure 4: Images generated by Stable Diffusion v1.4 without alignment (first column) and with
different alignments (other columns) for two more safe prompts.

Table 6: Summary of the testing unsafe and safe prompt datasets.

Dataset # of Prompts  Type
Civitai-Unsafe 1,000 Unsafe
NSFW 1,000 Unsafe
2P 229 Unsafe
U-Prompt 1,000 Unsafe
Civitai-Safe 1,000 Safe
MS-COCO 1,000 Safe
Google-CC 1,000 Safe

A.2 DETAILS OF FINE-TUNING DATASETS CONSTRUCTION

Our fine-tuning needs datasets D, and D,,. In our experiments, D, contains 30,000 safe
prompts and D,,, contains 30,000 unsafe prompts, both sampled from a pre-processed Civitai-8M
dataset (AdamCodd, [2024). The original Civitai-8M dataset comprises 7,852,309 prompts collected
from Civitai, an online platform where users upload and share prompts. Each prompt in Civitai-8M

12
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Figure 5: (a) NRR on NSFW and (b) LPIPS on MS-COCO of our SafeText with NegCosine or
negative cosine similarity as d..

is assigned an unsafe level ranging from O to 32. To construct high-quality datasets D, and D,,,,, we
keep the prompts with an unsafe level of 1 or below as safe prompts, while those with an unsafe level
greater than 8 as unsafe prompts. Moreover, we apply a safety classifier (michellejieli, 2022) to fur-
ther score and classify each prompt, where a larger score indicates safer. We keep the safe prompts
with a score above 0.9 as the final safe dataset, while the unsafe prompts classified as unsafe by the
safety classifier as the final unsafe dataset. We then randomly sample 30,000 prompts from the final
safe dataset to form D, and 30,000 prompts from the final unsafe dataset to form D,,,.

A.3 DEATILS OF METHODS TO ADVERSARIALLY CRAFT UNSAFE PROMPTS

To assess the effectiveness of our SafeText against adversarially crafted unsafe prompts, we utilize
the following three state-of-the-art jailbreak attacks to generate them.

* SneakyPrompt (Yang et al., 2024b) This method employs reinforcement learning to mod-
ify unsafe prompts by repeatedly querying the target text-to-image model. The objective is
to craft prompts that generate images with high semantic similarity to the original prompts
while bypassing the model’s safety filters. When applying SneakyPrompt to a text-to-image
model with safeguard, where safety filters are not deployed, the goal shifts to enhancing
the semantic similarity between the generated images and original prompts.

* Ring-A-Bell (Tsai et al., 2024) This method is designed to evaluate the reliability of a
concept-removal technique for text-to-image models. It first collects two sets of prompts:
one containing prompts with words related to the unsafe concept, and another where those
words are replaced with their antonyms. Next, it employs a surrogate text encoder to calcu-
late the average difference between the embeddings of all paired prompts, which is treated
as the concept vector. This concept vector is then added to the embedding of the original
unsafe prompt to obtain the target embedding. Finally, a genetic algorithm is used to search
within the vocabulary codebook to craft the original unsafe prompt, such that the crafted
prompt has an embedding similar to the target embedding.

* MMA-Diffusion (Yang et al.,2024a) This method introduces a multi-modal attack to jail-
break text-to-image models in image editing tasks. It consists of a text-modal attack and an
image-modal attack. We adopt the text-modal attack to adversarially craft unsafe prompts.
Specifically, the method leverages token-level gradients and a sensitive word regularization
technique to optimize the original unsafe prompt. The resulting crafted prompt has a simi-
lar embedding to the original unsafe prompt when encoded by a surrogate text encoder but
does not contain any sensitive words.

13
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A.4 ADDITIONAL DETAILS OF EVALUATION METRICS.

NRR: Following (2024), we use NudeNet (notAl Tech| 2019) to detect and count nude

body parts per image. Counts serve as n(-) in the NRR definition in the main text, and we use the
same random seed for M and M per unsafe prompt to isolate the effect of alignment.

LPIPS: For each safe prompt and a fixed random seed, we generate images with M and M and
compute the Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) using AlexNet
features (Krizhevsky et al., 2012)); we report the average over the safe test set (lower is better).

CLIP score: For each safe prompt, we generate an image with M, and compute the cosine simi-
larity between CLIP (Radford et al 2021) text and image embeddings; we report the average over
the safe test set (higher is better).

FID score: We use the standard FID protocol (Heusel et al.}[2017) based on Inception features. For
FID,., scores are computed between real images and images generated by M for the corresponding
set of safe prompts. For FID,, scores are computed between images generated by M and those
generated by M, on the same safe prompts with fixed seeds. Lower values indicate better utility.

A.5 DETAILS OF BASELINE ALIGNMENT METHODS

We compare SafeText with six state-of-the-art alignment methods: Safe Retraining (SR)
retrains a diffusion module on a safe dataset containing only non-harmful images and
safe prompts. Safe Latent Diffusion (SLD) (Schramowski et al.l [2023)) prevents harmful content
by combining safety guidance with classifier-free guidance to remove or suppress harmful image el-
ements during generation. Erased Stable Diffusion (ESD) (Gandikota et al.||2023)), Mass Concept
Erasure (MACE) 2024), and SafeGen (Li et al., 2024) fine-tune the diffusion module
to reduce the likelihood of generating harmful content. AdvUnlearn (Zhang et al.} 2024) fine-tunes
the text encoder using the ESD loss coupled with adversarial training.

A.6 DETAILS OF PARAMETER SETTINGS

Our SafeText fine-tunes the text encoder of a text-to-image model using the Adam optimizer with
n=>5m=32anda = 107°. Additionally, unless otherwise mentioned, we use Euclidean
distance as d, and negative absolute cosine similarity (NegCosine) as d., and X is set to be
0.2. Our ablation study will show this combination of distance metrics d,, and d. achieves the best
performance. Note that NegCosine aims to make the embeddings for an unsafe prompt produced by
the fine-tuned and original text encoders orthogonal. In contrast, negative cosine similarity aims to
make the embeddings for an unsafe prompt produced by the fine-tuned and original text encoders
inverse. We use NegCosine instead of negative cosine similarity because we find that the former
empirically outperforms the latter (see results in Figure [3).

For baseline alignment methods, we use their publicly available aligned versions of Stable Diffusion
v1.4. In particular, the safety configurations of SafeGen and SLD are set to “MAX,” indicating their
strongest configuration. For ESD, MACE, and AdvUnlearn, we use their publicly available aligned
versions of Stable Diffusion v1.4. For SR, we adopt Stable Diffusion v2.1 (Rombach et all,[2022),
which is the safe retraining version of Stable Diffusion v1.4.

Figure 6: Images generated by SDXL without alignment (first row) and with our SafeText (second
row) for eight unsafe prompts.
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Figure 7: Images generated by DP without alignment (first row) and with our SafeText (second row)
for eight unsafe prompts.

Figure 8: Images generated by LD without alignment (first row) and with our SafeText (second row)
for eight unsafe prompts.

Figure 9: Images generated by OJ without alignment (first row) and with SafeText (second row) for
eight unsafe prompts.

Figure 10: Images generated by JX without alignment (first row) and with SafeText (second row)
for eight unsafe prompts.
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Figure 11: Images generated by SDXL without alignment (first row) and with our SafeText (second
row) for eight safe prompts.

Figure 12: Images generated by DP without alignment (first row) and with our SafeText (second
row) for eight safe prompts.

[T

Figure 13: Images generated by LD without alignment (first row) and with our SafeText (second
row) for eight safe prompts.

Figure 14: Images generated by OJ without alignment (first row) and with our SafeText (second
row) for eight safe prompts.
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Figure 15: Images generated by JX without alignment (first row) and with our SafeText (second

row) for eight safe prompts.
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Figure 16: (a) NRR on NSFW and (b) LPIPS on MS-COCO for SafeText with different distance
metrics and A values. Controlled experiments to assess the impact of embedding direction and mag-
nitude on (c) harmfulness of images for unsafe prompts and (d) utility of images for safe prompts.
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Figure 17: NRR on NSFW and LPIPS on MS-COCO of SafeText with different (a) number of

epochs, (b) learning rates, and (c) batch sizes.
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