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ABSTRACT

It is well-known that for sparse linear bandits, when ignoring the dependency
on sparsity which is much smaller than the ambient dimension, the worst-case
minimax regret is Θ̃

(√
dT
)

where d is the ambient dimension and T is the number
of rounds. On the other hand, in the benign setting where there is no noise and
the action set is the unit sphere, one can use divide-and-conquer to achieve Õ(1)
regret, which is (nearly) independent of d and T . In this paper, we present the first

variance-aware regret guarantee for sparse linear bandits: Õ
(√

d
∑T

t=1 σ
2
t + 1

)
,

where σ2
t is the variance of the noise at the t-th round. This bound naturally

interpolates the regret bounds for the worst-case constant-variance regime (i.e.,
σt ≡ Ω(1)) and the benign deterministic regimes (i.e., σt ≡ 0). To achieve this
variance-aware regret guarantee, we develop a general framework that converts any
variance-aware linear bandit algorithm to a variance-aware algorithm for sparse
linear bandits in a “black-box” manner. Specifically, we take two recent algorithms
as black boxes to illustrate that the claimed bounds indeed hold, where the first
algorithm can handle unknown-variance cases and the second one is more efficient.

1 INTRODUCTION

This paper studies the sparse linear stochastic bandit problem, which is a special case of linear
stochastic bandits. In linear bandits (Dani et al., 2008), the agent is facing a sequential decision-
making problem lasting for T rounds. For the t-th round, the agent chooses an action xt ∈ X ⊆ Rd,
where X is an action set, and receives a noisy reward rt = ⟨θ∗, xt⟩ + ηt where θ∗ ∈ X is the
(hidden) parameter of the game and ηt is random zero-mean noise. The goal of the agent is to
minimize her regret RT , that is, the difference between her cumulative reward

∑T
t=1⟨θ∗, xt⟩ and

maxx∈X
∑T

t=1⟨θ∗, x⟩ (check Eq. (1) for a definition). Dani et al. (2008) proved that the minimax
optimal regret for linear bandits is Θ̃(d

√
T ) when the noises are independent Gaussian random

variables with means 0 and variances 1 and both θ∗ and the actions xt lie in the unit sphere in Rd.1

In real-world applications such as recommendation systems, only a few features may be relevant
despite a large candidate feature space. In other words, the high-dimensional linear regime may
actually allow a low-dimensional structure. As a result, if we still use the linear bandit model, we
will always suffer Ω(d

√
T ) regret no matter how many features are useful. Motivated by this, the

sparse linear stochastic bandit problem was introduced (Abbasi-Yadkori et al., 2012; Carpentier &
Munos, 2012). This problem has an additional constraint that the hidden parameter, θ∗, is sparse,
i.e., ∥θ∗∥0 ≤ s for some s ≪ d. However, the agent has no prior knowledge about s and thus the
interaction protocol is exactly the same as that of linear bandits. The minimax optimal regret for

1Throughout the paper, we will use the notations Õ(·) and Θ̃(·) to hide log T, log d, log s (where s is the
sparsity parameter, which will be introduced later) and log log 1

δ
factors (where δ is the failure probability).
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sparse linear bandits is Θ̃(
√
sdT ) (Abbasi-Yadkori et al., 2012; Antos & Szepesvári, 2009).2 This

bound bypasses the Ω(d
√
T ) lower bound for linear bandits as we always have s = ∥θ∗∥0 ≤ d and

the agent does not have access to s either (though a few previous works assumed a known s).

However, both the Õ(d
√
T ) and the Õ(

√
sdT ) bounds are the worst-case regret bounds and sometime

are too pessimistic especially when d is large. On the other hand, many problems with delicate
structures permit a regret bound much smaller than the worst-case bound. The structure this paper
focuses on is the magnitude of the noise. Consider the following motivating example.

Motivating Example (Deterministic Sparse Linear Bandits). Consider the case where the action
set is the unit sphere X = Sd−1, and there is no noise, i.e., the feedback is rt = ⟨θ∗, xt⟩ for each
round t ∈ [T ]. In this case, one can identify all non-zero entries of θ∗ coordinates in O(s log d) steps
with high probability via a divide-and-conquer algorithm, and thus yield a dimension-free regret Õ(s)
(see Appendix C for more details about this).3 However, this divide-and-conquer algorithm is specific
for deterministic sparse linear bandit problems and does not work for noisy models. Henceforth, we
study the following natural question:

Can we design an algorithm whose regret adapts to the noise level such that the regret interpolates
the
√
dT -type bound in the worst case and the dimension-free bound in the deterministic case?

Before introducing our results, we would like to mention that there are recent works that studied
the noise-adaptivity in linear bandits (Zhou et al., 2021; Zhang et al., 2021; Kim et al., 2021). They

gave variance-aware regret bounds of the form Õ
(

poly(d)
√∑T

t=1 σ
2
t + poly(d)

)
where σ2

t is the

(conditional) variance of the noise ηt. This bound reduces to the standard Õ(poly(d)
√
T ) bound in

the worst-case when σt = Ω(1), and to a constant-type regret Õ(poly(d)) that is independent of T .
However, compared with the linear bandits setting, the variance-aware bound for sparse linear bandits
is more significant because it reduces to a dimension-free bound in the noiseless setting. Despite this,
to our knowledge, no variance-aware regret bounds exist for sparse linear bandits.

1.1 OUR CONTRIBUTIONS

This paper gives the first set of variance-aware regret bounds for sparse linear bandits. We design a
general framework, VASLB, to reduce variance-aware sparse linear bandits to variance-aware linear
bandits with little overhead in regret. For ease of presentation, we define the following notation to
characterize the variance-awareness of a sparse linear bandit algorithm:
Definition 1. A variance-aware sparse linear bandit algorithm F is (f(s, d), g(s, d))-variance-
aware, if for any given failure probability δ > 0, with probability 1− δ, F ensures

RF
T ≤ Õ

f(s, d)

√√√√ T∑
t=1

σ2
t polylog

1

δ
+ g(s, d) polylog

1

δ

 ,

whereRF
T is the regret of F in T rounds, d is the ambient dimension and s is the maximum number

of non-zero coordinates. Specifically, for linear bandits, f, g are functions only of d.

Hence, an (f, g)-variance-aware algorithm will achieve Õ(f(s, d)
√
T polylog 1

δ ) worst-case regret
and Õ(g(s, d) polylog 1

δ ) deterministic-case regret. Ideally, we would like g(s, d) being independent
of d, making the bound dimension-free in deterministic cases, as the divide-and-conquer approach.

In this paper, we provide a general framework that can convert any linear bandit algorithm F to a
corresponding sparse linear bandit algorithm G in a black-box manner. Moreover, it is variance-
aware-preserving, in the sense that, if F enjoys the variance-aware property, so does G. Generally

2Carpentier & Munos (2012) and Lattimore et al. (2015) obtained an O(s
√
T ) regret bound under different

models. The former one assumed a component-wise noise model, while the latter one assumed a ∥θ∗∥1 ≤ 1
ground-truth as well as a ∥xt∥∞ ≤ 1 action space. See Appendix A for more discussions on this.

3We also remark that some assumptions on the action is needed. For example, if every action can only query
one coordinate (each action corresponds to one vector of the standard basis) then an Ω(d) regret lower bound is
unavoidable. Hence, in this paper, we only consider the benign case that action set is the unit sphere.
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speaking, if the plug-in linear bandit algorithm F is (f(d), g(d))-variance-aware, then our framework
directly gives an (s(f(s) +

√
d), s(g(s) + 1))-variance-aware algorithm G for sparse linear bandits.

Besides presenting our framework, we also illustrate its usefulness by plugging in two existing
variance-aware linear bandit algorithms, where the first one is variance-aware (i.e., works in unknown-
variance cases) but computationally inefficient. In contrast, the second one is efficient but requires the
variance σ2

t to be delivered together with feedback rt. Their regret guarantees are stated as follows.

1. The first variance-aware linear bandit algorithm we plug in is VOFUL, which was proposed
by Zhang et al. (2021) and improved by Kim et al. (2021). This algorithm is computationally
inefficient but deals with unknown variances. Using this VOFUL, our framework generates a
(s2.5 + s

√
d, s3)-variance-aware algorithm for sparse linear bandits. Compared to the Ω(

√
sdT )

regret lower-bound for sparse linear bandits (Lattimore & Szepesvári, 2020, §24.3), our worst-case
regret bound is near-optimal up to a factor

√
s. Moreover, our bound is independent of d and T in

the deterministic case, nearly matching the bound of divide-and-conquer algorithm dedicated to
the deterministic setting up to poly(s) factors.

2. The second algorithm we plug in is Weighted OFUL (Zhou et al., 2021), which requires known
variances but is computationally efficient. We obtain an (s2 + s

√
d, s1.5

√
T )-variance-aware

efficient algorithm. In the deterministic case, this algorithm can only achieve a
√
T -type regret

bound (albeit still independent of d). We note that this is not due to our framework but due to
Weighted OFUL which itself cannot gives constant regret bound in the deterministic setting.

Moreover, we would like to remark that our deterministic regret can be further improved if a better
variance-aware linear bandit algorithm is deployed: The current ones either have Õ(d2) (Kim et al.,
2021) or Õ(

√
dT ) (Zhou et al., 2021) regret in the deterministic case, which are both sub-optimal

compared with the Ω(d) lower bound.

1.2 RELATED WORK

Linear Bandits. This problem was first introduced by Dani et al. (2008), where an algorithm with
regretO(d

√
T (log T )3/2) and a near-matching regret lower-bound Ω(d

√
T ) were given. After that, an

improved upper boundO(d
√
T log T ) (Abbasi-Yadkori et al., 2011) together with an improved lower

bound Ω(d
√
T log T ) (Li et al., 2019) were derived. An extension of it, namely linear contextual

bandits, where the action set allowed for each step can vary with time (Chu et al., 2011; Kannan
et al., 2018; Li et al., 2019; 2021), is receiving more and more attention. The best-arm identification
problem where the goal of the agent is to approximate θ∗ with as few samples as possible (Soare et al.,
2014; Degenne et al., 2019; Jedra & Proutiere, 2020; Alieva et al., 2021) is also of great interest.

Sparse Linear Bandits. Abbasi-Yadkori et al. (2011) and Carpentier & Munos (2012) concurrently
considered the sparse linear bandit problem, where the former work assumed a noise model of
rt = ⟨xt, θ

∗⟩+ ηt such that ηt is R-sub-Gaussian and achieved Õ(R
√
sdT ) regret, while the latter

one considered the noise model of rt = ⟨xt + ηt, θ
∗⟩ such that ∥ηt∥2 ≤ σ and ∥θ∗∥2 ≤ θ, achieving

Õ((σ + θ)2s
√
T ) regret. Lattimore et al. (2015) assumed an hypercube (i.e., X = [−1, 1]d) action

set and a ∥θ∗∥1 ≤ 1 ground-truth, yielding Õ(s
√
T ) regret. Antos & Szepesvári (2009) proved

a Ω(
√
dT ) lower-bound when s = 1 with the unit sphere as X . Some recent works considered

data-poor regimes where d≫ T (Hao et al., 2020; 2021a;b; Wang et al., 2020), which is beyond the
scope of this paper. Another work worth mentioning is the recent work by Dong et al. (2021), which
studies bandits or MDPs with deterministic rewards. Their result implies an Õ(T 15/16s1/16) bound
for deterministic sparse linear bandits, which is independent of d. They also provided an ad-hoc
divide-and-conquer algorithm, which achieves O(s log d) regret only for deterministic cases.

Variance-Aware Online Learning. For tabular MDPs, the variance information is widely used
in both discounted settings (Lattimore & Hutter, 2012) and episodic settings (Azar et al., 2017;
Jin et al., 2018), where Zanette & Brunskill (2019) used variance information to derive problem-
dependent regret bounds for tabular MDPs. For bandits, Audibert et al. (2009) made use of variance
information in multi-armed bandits, giving an algorithm outperforming existing ones when the
variances for suboptimal arms are relatively small. For bandits with high-dimensional structures,
Faury et al. (2020) studied variance adaptation for logistic bandits, Zhou et al. (2021) considered
linear bandits and linear mixture MDPs where the variance information is revealed to the agent,
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Table 1: An overview of the proposed algorithms/results and comparisons with related works.
Algorithm Setting Worst-case Regret a Deterministic-case Regret b Efficiency Variances

ConfidenceBall2 (Dani et al., 2008) LinBandit Õ(d
√
T )

N/A

✓

N/A
OFUL (Abbasi-Yadkori et al., 2012) Sparse LinBandit Õ(

√
sdT ) ✓

SL-UCB (Carpentier & Munos, 2012) Sparse LinBandit Õ(s
√
T ) c ✓

Lattimore et al. (2015, Algorithm 4) Sparse LinBandit Õ(s
√
T ) d ✓

Weighted OFUL (Zhou et al., 2021) LinBandit Õ(d
√
T ) Õ(

√
dT ) ✓ Known

VOFUL2 (Kim et al., 2021) LinBandit Õ(d1.5
√
T ) Õ(d2) ✗ Unknown

VASLB (This work)
Sparse LinBandit Õ(s2

√
T + s

√
dT ) Õ(s1.5

√
T ) ✓ Known

Sparse LinBandit Õ(s2.5
√
T + s

√
dT ) Õ(s3) ✗ Unknown

Lower Bound (Antos & Szepesvári, 2009) Sparse LinBandit Ω(
√
dT ) e N/A N/A N/A

a“Worst-case” means the variances σ2
t are all 1. Here, d is the ambient dimension, T is the number of rounds,

and s is the sparsity parameter (only applicable to sparse linear bandits).
b“Deterministic-case” means the variances σ2

t are all 0. Only applicable to variance-aware algorithms.
cWith a different feedback model; see Appendix A for more comparison.
dWith a different action set and an different assumption on θ∗; see Appendix A for more comparison.
eThis bound holds even if s = 1 and the action set is fixed to be the unit sphere.

giving an Õ(d
√∑T

t=1 σ
2
t +
√
dT ) guarantee for linear bandits, and Zhang et al. (2021) proposed

another algorithm for linear bandits and linear mixture MDPs, which does not require any variance

information, whose regret can be improved to be Õ(d1.5
√∑T

t=1 σ
2
t + d2) as shown by Kim et al.

(2021). The recent work by Hou et al. (2022) considered variance-constrained best arm identification,
where the feedback noise only depends on the action by the agent (whereas ours can depend on time,
which is more general than theirs). Another recent work (Zhao et al., 2022) studied variance-aware
regret bounds for bandits with general function approximation in the known variance case.

Stochastic Contextual Sparse Linear Bandits. In the setting, the action set for each round t is i.i.d.
sampled (called the “context”). It is known that Õ(

√
sT ) regret is achievable in this setting (Kim &

Paik, 2019; Ren & Zhou, 2020; Oh et al., 2021; Ariu et al., 2022). However, in our setting where both
action set X and ground-truth θ∗ are fixed, a polynomial dependency on d is in general unavoidable
because it is impossible to learn more than one parameter per arm (Bastani & Bayati, 2020), agreeing
with the Ω(

√
dT ) lower bound when s = 1 (Antos & Szepesvári, 2009; Abbasi-Yadkori et al., 2012).

2 PROBLEM SETUP

Notations. We use [N ] to denote the set {1, 2, . . . , N} where N ∈ N. For a vector x ∈ Rd, we use
∥x∥p to its Lp-norm, namely ∥x∥p ≜ (

∑d
i=1 x

p
i )

1/p. We use Sd−1 to denote the (d− 1)-dimensional
unit sphere, i.e., Sd−1 ≜ {x ∈ Rd | ∥x∥2 = 1}. We use Õ(·) and Θ̃(·) to hide all logarithmic factors
in T, s, d and log 1

δ (see Footnote 1). For a random event E , we denote its indicator by 1[E ].
We assume the action space and the ground-truth space are both the (d− 1)-dimensional unit sphere,
denoted by X ≜ Sd−1. Denote the ground-truth by θ∗ ∈ X . There will be T ≥ 1 rounds for the agent
to make decisions sequentially. At the beginning of round t ∈ [T ], the agent has to choose an action
xt ∈ X . At the end of step t, the agent receives a noisy feedback rt = ⟨xt, θ

∗⟩+ ηt, ∀t ∈ [T ], where
ηt is an independent zero-mean Gaussian random variable. Denote by σ2

t = Var(ηt) the variance of
ηt. For a fair comparison with non-variance-aware algorithms, we assume that σ2

t ≤ 1. The agent
then receives a (deterministic and unrevealed) reward of magnitude ⟨xt, θ

∗⟩ for this round.

The agent is allowed to make the decision xt based on all historical actions x1, . . . , xt−1, all historical
feedback r1, . . . , rt−1, and any amount of private randomness. The agent’s goal is to minimize the
regret, defined as follows.
Definition 2 (Regret). The following random variable is the regret of a linear bandit algorithm:

RT = max
x∈X

T∑
t=1

⟨x, θ∗⟩ −
T∑

t=1

⟨xt, θ
∗⟩ =

T∑
t=1

⟨θ∗ − xt, θ
∗⟩, (1)

where the second equality is due to our assumption that X = Sd−1.
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Algorithm 1 Variance-Aware Sparse Linear Bandits (VASLB) Framework

Input: Number of dimensions d, linear bandit algorithm F and its regret estimatorRF
n

1: Initialize gap threshold ∆← 1
4 , estimated “good” coordinates S ← ∅, current round t← 0.

2: while t < T do ▷ The algorithm automatically increases t by 1 per query.
3: if S ̸= ∅ then ▷ Have some coordinates to “commit”.
4: Initialize a new linear bandit instance F on coordinates S. ▷ “Commit” phase.
5: ExecuteF for na

∆ ≥ 1 steps & maintain pessimistic estimationRF
na
∆

, until 1
na
∆
RF

na
∆
< ∆2.

6: Suppose that F plays x1, x2, . . . , xna
∆

. Set θ̂ = 1
na
∆

∑na
∆

i=1 xi as the estimate for {θ∗i }i∈S .

7: if
∑

i∈S θ̂2i ≤ 1−∆2 then ▷ Still have undiscovered coordinates with θ∗i > ∆
2

8: Let R←
√

1−
∑

i∈S θ̂2i , K = d− |S|. ▷ “Explore” phase.

9: Perform nb
∆ ≥ 1 calls to RANDOMPROJECTION(K,R, S, θ̂) in Algorithm 2, until

2

√√√√2

nb
∆∑

k=1

(rk,i − ri)2 ln
4

δ
< nb

∆ ·
∆

4
, ∀1 ≤ i ≤ K, (2)

where rk is the k-th return vector of RANDOMPROJECTION and r ≜ 1
nb
∆

∑nb
∆

k=1 rk.
10: for i = 1, 2, . . . ,K do
11: if |ri| > ∆ where r = 1

nb
∆

∑nb
∆

k=1 rk then add the i-th element that is not in S to S.

Algorithm 2 The RANDOMPROJECTION Subroutine

1: function RANDOMPROJECTION(K,R, S, θ̂)
2: Generate K i.i.d. samples y1, y2, . . . , yK , each with equal probability being ± R√

K
.

3: Play x ∈ X constructed as xi =

{
θ̂i, i ∈ S

yj , i is the j-th element that is not in S

4: return K
R2 ((r −

∑
i∈S θ̂2i ) y) where r = ⟨x, θ∗⟩+ η is the (noisy) feedback.

For the sparse linear bandit problem, we have an additional restriction that ∥θ∗∥0 ≤ s, i.e., there are
at most s coordinates of θ∗ is non-zero. However, as mentioned in the introduction, the agent does not
know anything about s – she only knows that she is facing a (probably sparse) linear environment.

3 FRAMEWORK AND ANALYSIS

Our framework VASLB is presented in Algorithm 1. We explain its design in Section 3.1 and sketch
its analysis in Section 3.2. Then we give two applications using VOFUL2 (Kim et al., 2021) and
Weighted VOFUL (Zhou et al., 2021) as F , whose analyses are sketched in Sections 4.1 and 4.2.

3.1 MAIN DIFFICULTIES AND TECHNICAL OVERVIEW

At a high level, our framework follows the spirit of the classic “explore-then-commit” approach
(which is directly adopted by Carpentier & Munos (2012)), where the agent first identifies those
“huge” entries of θ∗ and then performs a linear bandit algorithm on them. However, it is hard to
incorporate variances into this vanilla idea to make it variance-aware – the desired regret depends on
variances and is thus unknown to the agent. Thus it is difficult to determine a “gap threshold” ∆ (that
is, the agent stops to “commit” after identifying all θ∗i ≥ ∆) within a few rounds. For example, in the
deterministic case, the agent must identify all non-zero entries to make the regret independent of T ;
on the other hand, in the worst case where σt ≡ 1, the agent only needs to identify all entries with
magnitude at least T−1/4 to yield

√
T -style regret bounds. At the same time, the actual setting might

be mixture of them (e.g., σt ≡ 0 for t ≤ t0 and σt ≡ 1 for t > t0 where t0 ∈ [T ]). As a result, such
an idea cannot always succeed in determining the correct threshold ∆ and getting the desired regret.
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In our proposed framework, we tackle this issue by “explore-then-commit” multiple times. We reduce
the uncertainty gently and alternate between “explore” and “commit” modes. We decrease a “gap
threshold” ∆ in a halving manner and, at the same time, maintain a set S of coordinates that we
believe to have a magnitude larger than ∆. For each ∆, we “explore” (estimating θ∗i and adding those
greater than ∆ into S) and “commit” (performing linear bandit algorithms on coordinates in S).

However, as we “explore” again after “committing”, we face a unique challenge: Suppose that some
entry i ∈ [d] is identified to be at least 2∆ by previous “explore” phases. During the next “explore”
phase, we cannot directly do pure exploration over the remaining unidentified coordinates – otherwise,
coordinate i will incur 4∆2 regret for each round. Fortunately, we can get an estimation θ̂i of θ∗i
during the previous “commit” phase thanks to the regret-to-sample-complexity conversion (Eq. (3)).
Guarded with this estimation, we can reserve θ̂i mass for arm i and subtract θ̂2i from the feedback in
subsequent “explore” phases. More preciously, we do the following.

1. In the “commit” phase where we apply the black-box F , we estimate {θ∗i }i∈S by the regret-to-
sample-complexity conversion: Suppose F plays x1, x2, . . . , xn and achieves regret RF

n , then

⟨θ∗ − θ̂, θ∗⟩ ≤ R
F
n

n
, where θ̂ ≜

1

n

n∑
i=1

xi. (3)

Hence, if we take {θ̂i}i∈S as an estimate of {θ∗i }i∈S , the estimation error shrinks asRF
n is sub-

linear and the LHS of Eq. (3) is non-negative. Moreover, as we can show that θ̂ is not away from
X by a lot (Lemma 18), we can safely use {θ̂i}i∈S to estimate {θ∗i }i∈S in subsequent phases.
More importantly, if we are granted access to RF

n , we know how close the estimate is; we can
proceed to the next stage once it becomes satisfactory. But it is unrevealed. Fortunately, we know
the regret guarantee of F , namelyRF

n , which can serve as a pessimistic estimation ofRF
n . Hence,

terminating when 1
nRF

n < ∆2 can ensure ⟨θ∗ − θ̂, θ∗⟩ < ∆2 to hold with high probability.
2. In the “exploration” phase, as mentioned before, we can keep the regret incurred by the coordinates

identified in S small by putting mass θ̂i for each i ∈ S. For the remaining ones, we use random
projection, an idea borrowed from compressed sensing literature (Blumensath & Davies, 2009;
Carpentier & Munos, 2012), to find those with large magnitudes to add them to S.
One may notice that putting mass θ̂i for all i ∈ S will induce bias to our estimation as

∑
i∈S θ̂2i ̸=∑

i∈S θ̂iθ
∗
i . However, as θ̂i is close to θ∗i , this bias will be bounded by O(∆2) and become

dominated by ∆
4 as ∆ decreases. Hence, if we omit this bias, we can overestimate the estimation

error due to standard concentration inequalities like Empirical Bernstein (Maurer & Pontil, 2009;
Zhang et al., 2021). Once it becomes small enough, we alternate to the “commit” phase again.

Therefore, with high probability, we can ensure all coordinates not in S have magnitudes no more
than O(∆) and all coordinates in S will together contribute regret bounded by O(∆2). Hence, the
regret in each step is (roughly) bounded by O(s∆2). Upper bounding the number of steps needed for
each stage and exploiting the regret guarantees of the chosen F then gives well-bounded regret.

3.2 ANALYSIS OF THE FRAMEWORK

Notations. For each ∆, let T∆ be the set of rounds associated with ∆. By our algorithm, each T∆
should be an interval. Moreover, {T∆}∆ forms a partition of [T ]. Define T a

∆ as all the rounds in the
“commit” phase when the gap threshold is ∆ (where F is executed), and T b

∆ as the “explore” phase

(i.e., those executing RANDOMPROJECTION). Let T̃ a
∆ and T̃ b

∆ be the steps that the agent decided not to

proceed in T a
∆ and T b

∆, respectively, which are formally defined as T̃ i
∆ = {t ∈ T i

∆ | t ̸= maxt′∈T i
∆
t′},

i = a, b. Define the final value of ∆ as ∆f . Denote na
∆ = |T a

∆| and nb
∆ = |T b

∆| (both are stopping
times). We have

∑
∆=2−2,...,∆f

(na
∆ + nb

∆) = T . We can then decomposeRT intoRa
T andRb

T :

Ra
T =

∑
∆=2−2,...,∆f

∑
t∈T a

∆

⟨θ∗ − xt, θ
∗⟩, Rb

T =
∑

∆=2−2,...,∆f

∑
t∈T b

∆

⟨θ∗ − xt, θ
∗⟩,

where Ra
T may depend on the choice of F and Rb

T only depends on the framework (Algorithm 1)
itself. We now show that, as long as the regret estimation RF

n is indeed an overestimation of RF
n

6
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with high probability, we can get a good upper bound ofRb
T , which is formally stated as Theorem 3.

The full proof of Theorem 3 will be presented in Appendix F and is only sketched here.

Theorem 3. Suppose that for any execution of F that last for n steps, RF
n ≥ RF

n holds with
probability 1− δ, i.e.,RF

n is pessimistic. Then the total regret incurred by the second phase satisfies

Rb
T = Õ

s
√
d

√√√√ T∑
t=1

σ2
t log

1

δ
+ s log

1

δ

 with probability 1− δ.

Remark. This theorem indicates that our framework itself will only induce an (s
√
d, s)-variance-

awareness to the resulting algorithm. As noticed by Abbasi-Yadkori et al. (2011), when σt ≡ 1,
Ω(
√
sdT ) regret is unavoidable, which means that it is only sub-optimal by a factor no more than√

s. Moreover, for deterministic cases, the Õ(s) regret also matches the aforementioned divide-and-
conquer algorithm, which is specially designed and can only work for deterministic cases.

Proof Sketch of Theorem 3. We define two good events with high probability for a given gap thresh-
old ∆: G∆ and H∆. Informally, G∆ means

∑
i∈S θ∗i (θ

∗
i − θ̂i) < ∆2 (i.e., θ̂ is close to θ∗ after

“commit”) andH∆ stands for |θ∗i | ≥ Ω(∆) if and only if i ∈ S (i.e., we “explore” correctly). Check
Eq. (10) in the appendix for formal definitions. For G∆, from Eq. (3), we know that it happens as
long asRF

n ≥ RF
n . It remains to argue that Pr{H∆ | G∆,H2∆} ≥ 1− sδ.

By Algorithm 2, the i-th coordinate of each rk (1 ≤ k ≤ nb
∆) is an independent sample of

K

R2
(yi)

2
θ∗i +

∑
j∈S

θ̂j(θ
∗
j − θ̂j) +

∑
j /∈S,j ̸=i

(
K

R2
yiyj

)
θ∗j +

(
K

R2
yi

)
ηn, (4)

where
√
K
R yi is an independent Rademacher random variable. After conditioning on G∆ andH2∆,∑

i∈S θ̂2i and
∑

i∈S θ̂iθ
∗
i will be close. Therefore, the first term is exactly θ∗i (the magnitude we want

to estimate), the second term is a small bias bounded by O(∆2) and the last two terms are zero-mean
noises, which are bounded by ∆

4 according to Empirical Bernstein Inequality (Theorem 10) and our
choice of nb

∆ (Eq. (2)). Hence, Pr{H∆ | G∆,H2∆} ≥ 1− sδ.

Let us focus on an arm i∗ never identified into S in Algorithm 1. By definition of nb
∆ (Eq. (2)),

(nb
∆ − 1)

∆

4
< 2

√√√√2
∑
t∈T̃ b

∆

(rt,i∗ − ri∗)2 ln
4

δ
≤ 2

√√√√2
∑
t∈T̃ b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ
,

where the second inequality is due to properties of sample variances. By G∆, those coordinates in
S will incur regret of

∑
i∈S(θ

∗
i − xt,i)θ

∗
i =

∑
i∈S(θ

∗
i − θ̂i)θ

∗
i < ∆2 for all t ∈ T b

∆. Moreover, by
H2∆, each arm outside S will roughly incur nb

∆(θ
∗
i )

2 = O(nb
∆∆

2) regret, as yi’s are independent
and zero-mean. As there are at most s non-zero coordinates, the total regret for T b

∆ will be roughly
bounded by O(nb

∆ · s∆2) (there exists another term due to randomized yi’s, which is dominated and
omitted here; check Lemma 21 for more details). Hence, the total regret is bounded by

Rb
T ≲

∑
∆

O(snb
∆∆

2) = s · Õ

∑
∆

∆

√√√√∑
t∈T b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ

+O(s).

To avoid undesired poly(T ) factors, we cannot directly apply Cauchy-Schwartz inequality to
the sum of square roots (as there are a lot of ∆’s). Instead, again by definition of nb

∆ (Eq.
(2)), we observe the following lower bound of nb

∆, which holds for all ∆’s except for ∆f :

nb
∆ ≥ O

(
1
∆

√∑
t∈T b

∆
(rt,i∗ − E[rt,i∗ ])2 ln 1

δ

)
. As

∑
∆ nb

∆ ≤ T , some arithmetic calculation gives

7
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(intuitively, by thresholding, we manage to “move” the summation over ∆ into the square root, though
suffering an extra logarithmic factor; see Eq. (15) in the appendix for more details)

∑
∆ ̸=∆f

∆

√∑
t∈T b

∆

(rt,i∗ − E[rt,i∗ ])2 = Õ

√ ∑
∆ ̸=∆f

∆2
∑
t∈T b

∆

(rt,i∗ − E[rt,i∗ ])2

 .

For a given ∆ and any 1 ≤ k ≤ nb
∆, the expectation of (rk,i∗ −E[rk,i∗ ])2 is bounded by

(
1 + K

R2σ
2
k

)
(Eq. (19) in the appendix), which is no more than

(
1 + 4d

∆2σ
2
k

)
. By concentration properties in the

sample variances (Theorem 14 in the appendix), the empirical (rk,i∗ −E[rk,i∗ ])2 should also be close
to (1 + 4

d2σ
2
k); hence, one can write (omitting all log 1

δ terms)

Rb
T = O

(∑
∆

snb
∆∆

2

)
= Õ

s

√∑
∆

nb
∆∆

2 + s

√√√√d

T∑
t=1

σ2
t

 .

As
∑

∆ nb
∆∆

2 appears on both sides, we can apply the “self-bounding” property (Efroni et al., 2020,

Lemma 38) to concludeRb
T = O(

∑
∆ snb

∆∆
2) = Õ

(
s
√
d
∑T

t=1 σ
2
t + s

)
, as claimed.

4 APPLICATIONS OF THE PROPOSED FRAMEWORK

After showing Theorem 16, it only remains to boundRa
T , which depends on the choice of the plug-in

algorithm F . In this section, we give two specific choices of F , VOFUL2 (Kim et al., 2021) and
Weighted OFUL (Zhou et al., 2021). The former algorithm does not require the information of
σt’s (i.e., it works in unknown-variance cases), albeit computationally inefficient. In contrast, the
latter is computationally efficient but requires σ2

t to be revealed with the feedback rt at round t.

4.1 COMPUTATIONALLY INEFFICIENT ALGORITHM FOR UNKNOWN VARIANCES

We first use the VOFUL2 algorithm from Kim et al. (2021) as the plug-in algorithm F , which has the
following regret guarantee. Note that this is slightly stronger than the original bound: We derive a
strengthened “self-bounding” version of it (the first inequality), which is critical to our analysis.
Proposition 4 (Kim et al. (2021, Variant of Theorem 2)). VOFUL2 executed for n rounds on d

dimensions guarantees, w.p. at least 1 − δ, there exists a constant C = Õ(1) such that RF
n ≤

C
(
d1.5

√∑n
k=1 η

2
k ln

1
δ + d2 ln 4

δ

)
= Õ

(
d1.5

√∑n
k=1 σ

2
k log

1
δ + d2 log 4

δ

)
, where n is a stopping

time finite a.s. and σ2
1 , σ

2
2 , . . . , σ

2
n are the variances of the independent Gaussians η1, η2, . . . , ηn.

We now construct the regret over-estimationRF
n . Due to unknown variances, it is not straightforward.

Our rescue is to use ridge linear regression β̂ ≜ argminβ∈Rd

(∑n
k=1(rk − ⟨xk, β⟩)2 + λ∥β∥2

)
for

samples {(xk, rk)}nk=1, which ensures that the empirical variance estimation
∑n

k=1(rk − ⟨xk, β̂⟩)2

differs from the true sample variance
∑n

k=1 η
2
k =

∑n
k=1(rk−⟨xk, β

∗⟩)2 by no more than Õ(s log 1
δ )

(check Appendix E for a formal version). Accordingly, from Proposition 4, we can see that

RF
n ≤ RF

n ≜ C

s1.5

√√√√ n∑
k=1

(rk − ⟨xk, β̂⟩)2 ln
1

δ
+ s2

√
2 ln

n

sδ2
ln

1

δ
+ s1.5

√
2 ln

1

δ
+ s2 ln

1

δ

 . (5)

Moreover, one can observe that the total sample variance
∑n

k=1 η
2
k is bounded by (a constant multiple

of) the total variance
∑n

k=1 σ
2
k (which is formally stated as Theorem 13 in the appendix). Therefore,

with Eq. (5) as our pessimistic regret estimationRF
n , we have the following regret guarantee.

Theorem 5 (Regret of Algorithm 1 with VOFUL2). Algorithm 1 with VOFUL2 as F andRF
n defined

in Eq. (5) ensures thatRT = Õ
(
(s2.5 + s

√
d)
√∑T

t=1 σ
2
t log

1
δ + s3 log 1

δ

)
with probability 1− δ.

Due to space limitations, we defer the full proof to Appendix G.1 and only sketch it here.

8
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Proof Sketch of Theorem 5. To boundRa
T , we consider the regret from the coordinates in and outside

S separately. For the former, the total regret in a single phase with gap threshold ∆ is simply controlled
by Õ

(
s1.5
√∑

t∈T a
∆
η2t log

1
δ + s2 log 1

δ

)
(thanks to Proposition 4). For the latter, each non-zero

coordinate outside S can at most incur O(∆2) regret for each t ∈ T a
∆ . By definition of na

∆ (Line 5),
we have na

∆ = |T a
∆| = O

(
s1.5

∆2

√∑
t∈T̃ a

∆
η2t ln

1
δ + s2

∆2 ln
1
δ

)
, just like the proof of Theorem 3. As

the regret from the second part is bounded by O(s∆2 · na
∆), these two parts together sum to

Ra
T ≤

∑
∆

O

s2.5

√√√√∑
t∈T a

∆

η2t log
1

δ
+ s3 log

1

δ
+ s∆2

 .

As in Theorem 3, we notice that na
∆ = Ω

(
s1.5

∆2

√∑
t∈T̃ a

∆
η2t ln

1
δ +

s2

∆2 ln
1
δ

)
for all ∆ ̸= ∆f again by

definition of na
∆. This will move the summation over ∆ into the square root. Moreover, by the fact

that η2t = O(σ2
t log

1
δ ) (Theorem 14 in the appendix), we have Ra

T = Õ
(
s2.5
√∑T

t=1 σ
2
t log

1
δ +

s3 log 1
δ

)
. Combining this with the bound ofRb

T provided by Theorem 3 concludes the proof.

4.2 COMPUTATIONALLY EFFICIENT ALGORITHM FOR KNOWN VARIANCES

In this section, we consider a computational efficient algorithm Weighted OFUL (Zhou et al.,
2021), which itself requires σ2

t to be presented at the end of round t. Their algorithm guarantees:
Proposition 6 (Zhou et al. (2021, Corollary 4.3)). With probability at least 1−δ, Weighted OFUL

executed for n steps on d dimensions guaranteesRF
T ≤ C(

√
dn log 1

δ + d
√∑n

k=1 σ
2
k log

1
δ ), where

C = Õ(1), n is a stopping time finite a.s., and σ2
1 , σ

2
2 , . . . , σ

2
n are the variances of η1, η2, . . . , ηn.

Taking F as Weighted OFUL, we will have the following regret guarantee for sparse linear bandits:
Theorem 7 (Regret of Algorithm 1 with Weighted OFUL). Algorithm 1 with Weighted

OFUL as F and RF
n defined as C

(√
sn ln 1

δ + s
√∑n

k=1 σ
2
k ln

1
δ

)
guarantees RT = Õ

(
(s2 +

s
√
d)
√∑T

t=1 σ
2
t log

1
δ + s1.5

√
T log 1

δ

)
with probability 1− δ.

The proof is similar to that of Theorem 5, i.e., bounding na
∆ by Line 5 of Algorithm 1 and then using

summation techniques to move the summation over ∆ into the square root. The only difference is
that we will need to bound O(

∑
∆ ∆−2), which seems to be as large as T if we follow the analysis

of Theorem 5. However, as we included an additive factor
√
sn ln 1

δ in the regret over-estimation

RF
n , we have na

∆ ≥ ∆−2
√

sna
∆ ln 1

δ , which means na
∆ = Ω(s∆−4). From

∑
∆ na

∆ ≤ T , we can

consequently bound
∑

∆ ∆−2 as O(
√

T
s ). The remaining part is just an analog of Theorem 5.

Therefore, the proof is omitted in the main text and postponed to Appendix H.

5 CONCLUSION

We considered the sparse linear bandit problem with heteroscedastic noises and provided a general
framework to reduce any variance-aware linear bandit algorithm F to an algorithm G for sparse linear
bandits that is also variance-aware. We first applied the computationally inefficient algorithm VOFUL
from Zhang et al. (2021) and Kim et al. (2021). The resulting algorithm works for the unknown-

variance case and gets Õ((s2.5 + s
√
d)
√∑T

t=1 σ
2
t log

1
δ + s3 log 1

δ ) regret, which, when regarding
the sparsity factor s≪ d as a constant, not only is worst-case optimal but also enjoys constant regret
in deterministic cases. We also applied the efficient algorithm Weighted OFUL by Zhou et al.

(2021) that requires known variance; we got Õ((s2 + s
√
d)
√∑T

t=1 σ
2
t log

1
δ + (

√
sT + s) log 1

δ )

regret, still independent of d in deterministic cases. See Appendix B for several future directions.
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A MORE ON RELATED WORKS

In this section, we briefly compare to several related works on sparse linear bandits in terms of regret
guarantees, noise assumptions and query models.

• The regret of Abbasi-Yadkori et al. (2012) is Õ(Rs
√
dT ) when assuming conditionally R-sub-

Gaussian noises (i.e., ηt | Ft−1 ∼ subG(R2), which will be formally defined in ??). At the same
time, they allow an arbitrary varying action set D1, D2, . . . , DT ⊆ Bd (though they in fact allows
arbitrary decision sets D1, D2, . . . , DT ⊆ Rd, their regret bound scales with maxx∈Dt∥x∥2, so
we assume Dt ⊆ Bd without loss of generality). This model is less strictive than ours, as we only
allow D1 = D2 = · · · = DT = Bd (as explained in Footnote 3 in the main text. When the noises
are Gaussian with variance 1 and the ground-truth θ∗ is one-hot (i.e., s = 1), their regret bound
reduces to Õ(

√
dT ), which matches the Ω(

√
dT ) bound in Antos & Szepesvári (2009) when the

actions sets are allowed to be the entire unit ball (which means the agent will be more powerful
than that of Abbasi-Yadkori et al. (2012)).
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• The regret of Carpentier & Munos (2012) is Õ((∥θ∥2 + ∥σ∥2)s
√
T ), assuming a unit-ball action

set, a ∥θ∗∥2 ≤ ∥θ∥2 ground-truth and ∥ηt∥2 ≤ ∥σ∥2 noises, where ηt will be defined later.
This bound seems to bypass the Ω(

√
dT ) lower bound when s = 1. However, this is due to a

different noise model: They assumed the noise is component-wise, i.e., rt = ⟨θ∗ + ηt, xt⟩ where
ηt ∈ Rd. In contrast, our model assumed a ⟨θ∗, xt⟩+ ηt noise model where ηt ∈ R. Therefore, the
maxt∥ηt∥2 dependency can be of order O(

√
d) to ensure a similar noise model as ours.

• The regret of Lattimore et al. (2015, Appendix G) is also of order Õ(s
√
T ), assuming a [−1, 1]-

bounded noises, a hypercube X = [−1, 1]d action set and a ∥θ∗∥1 ≤ 1 ground-truth. We will then
explain why this does not violate the Ω(

√
sdT ) regret lower bound as well.

Consider an extreme query (1, 1, . . . , 1) ∈ X , which is valid in their query model (in fact, their
algorithm is a random projection procedure with some carefully designed regularity conditions,
so this type of queries appears all the time). However, in our query model where the action set is
the unit ball Bd, we have to scale it by 1√

d
. As the noise will never be scaled, this will amplify

the noises by
√
d, so we will need poly(d) more times of queries to get the same confidence set,

making the regret bound have a polynomial dependency on d.
Moreover, their ground-truth θ∗ needs to satisfy ∥θ∗∥1 ≤ 1. However, an s-sparse ground-truth θ∗

with 2-norm 1 can have 1-norm as much as
√
s. Therefore, another

√
s should also be multiplied

for a fair comparison with our algorithm.

In conclusion, the second and the third work assumed different noise or query models to amplify the
signal-to-noise ratio and thus avoid a polynomial dependency on d, compared to the regret bounds of
Abbasi-Yadkori et al. (2012) and ours.

However, we have to admit that Abbasi-Yadkori et al. (2011) allows a drifting action set, whereas
ours only allow a unit-sphere action set, just like Carpentier & Munos (2012). The reason is discussed
in Footnote 3 in the main text.

B FUTURE DIRECTIONS

First of all, there is still a gap in the worst-case regret in terms of s, as the lower bound for sparse linear
bandits is Ω(

√
sdT ) instead of our Õ(s

√
dT ) when σt ≡ 1. Closing this gap in s is an interesting

future work. Our current algorithm, unfortunately, is incapable of aO(
√
sdT )-style worst-case regret

guarantee: Suppose that T = ds2, θ∗i = s−1/2 for i = 1, 2, . . . , s (so ∥θ∗∥2 ≤ 1), and σt ≡ 1. Then

we have nb
∆ ≈ ∆−1

√
nb
∆(1 + d∆−2), which gives nb

∆ ≈ d∆−4. Hence, the total regret will be∑s
i=1

∑
∆≥θ∗

i
nb
∆(θ

∗
i )

2 ≈ d
∑s

i=1(θ
∗
i )

2 = ds2 = O(s
√
dT ). Thus, algorithmic improvements must

be made to better dependency on s. We leave this for future research.

Moreover, the current work relies on the random projection procedure (Carpentier & Munos, 2012),
which only works when the action set is the unit sphere. Such an assumption is unrealistic in practice.
We wonder whether there is an alternative that only requires a looser condition.

At last, deriving a variance-aware lower bound rather than a minimax one is also important, as it
can better illustrate the inherent hardness of the problem with different noise levels. We remark that
extending the proof of current minimax lower bounds (see, e.g., (Antos & Szepesvári, 2009)) to
variance-aware ones is not straightforward.

C DIVIDE-AND-CONQUER ALGORITHM FOR DETERMINISTIC SETTINGS

In this section, we discuss how to solve the deterministic sparse linear bandit problem in Õ(s) steps
using a divide-and-conquer algorithm, as we briefly mentioned in the main text.

We mainly adopt the idea mentioned by Dong et al. (2021, Footnote 6). For each divide-and-
conquer subroutine working on several coordinates i1, i2, . . . , ik ∈ [d], we query half of them (e.g.,
i1, i2, . . . , ik/2 when assuming 2 | k) with

√
2/k mass on each coordinate. This will reveal whether

there is a non-zero coordinate among them. If the feedback is non-zero, we then conclude that there
exists a non-zero coordinate in this half. Hence, we dive into this half and conquer this sub-problem
(i.e., divide-and-conquer). Otherwise, we simply discard this half and consider the other half.
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However, this vanilla algorithm proposed by Dong et al. (2021) fails to consider the possibility
that two coordinates cancel each other (e.g., two coordinates with magnitude ±

√
1/2 will make the

feedback equal to zero). Fortunately, this problem can be resolved via randomly putting magnitude
±
√

2/k on each coordinate, which is similar to the idea illustrated in Algorithm 2. As the environment
is deterministic, each step will give the correct feedback with probability 1. Therefore, a constant
number of trials is enough to tell whether there exists a non-zero coordinate.

At last, we analyze the number of interactions needed for this approach. As it is guaranteed that each
divide-and-conquer subrountine will be working on a set of coordinates where at least one of them
is non-zero, we can bound the number of interactions as O

(∑
θ∗
i ̸=0 #subrountines containing i

)
.

As for each time we will divide the coordinates into half, there can be at most log2 d subrountines
containing i for each individual i. Therefore, the number of interactions will be O(s log d).
After that, we will be sure to find out all coordinates with non-zero magnitudes. Asking each of them
once then reveals their actual magnitude. Therefore, we can recover θ∗ inO(s log d+s) = O(s log d)
rounds and will not suffer any regret after that. So the regret of this algorithm will indeed be Õ(s),
which is (nearly) independent of d and T .

D CONCENTRATION INEQUALITIES

D.1 SAMPLE MEAN UPPER BOUND

We shall make use of the following self-normalizing result.

Proposition 8 (Fan et al. (2015, Remark 2.9)). Suppose that {ξi}ni=1 are independent and symmetric.
Then for all x > 0,

Pr

{
max

1≤k≤n

∑k
i=1 ξi√∑n
i=1 ξ

2
i

≥ x

}
≤ exp

(
−x2

2

)
.

Corollary 9. Let X1, X2, . . . , Xn be a sequence of independent and symmetric random variables
where n is a stopping time that is finite a.s. Then for any δ > 0, with probability 1− δ, we have∣∣∣∣∣

n∑
i=1

(Xi − µi)

∣∣∣∣∣ ≤
√√√√ n∑

i=1

(Xi − µi)2 ln
2

δ
.

Proof. This immediately follows by picking x = 2
√
ln 2

δ and then applying Fatou’s lemma.

Therefore, we can present our Empirical Bernstein Inequality for conditional symmetric stochastic
processes with a common mean, as follows:

Theorem 10 (Empirical Bernstein Inequality). For a sequence of independent and symmetric random
variables X1, X2, . . . , Xn that shares a common mean (i.e., E[Xi] = µ for some µ for all i), we
have the following inequality where n is a stopping time finite a.s.

Pr


∣∣∣∣∣

n∑
i=1

(Xi − µ)

∣∣∣∣∣ ≤
√√√√2

n∑
i=1

(Xi −X)2 ln
4

δ

 ≥ 1− δ, ∀δ ∈ (0, 1),

where X = 1
n

∑n
i=1 Xi is the sample mean.

Proof. By direct calculation, we have

n∑
i=1

(Xi −X)2 =

n∑
i=1

X2
i − 2nX

2
+ nX

2
=

n∑
i=1

X2
i − nX

2
=

n∑
i=1

(Xi − µ)2 − n(X − µ)2.
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Applying Corollary 9 to {Xi}ni=1 gives

Pr


∣∣∣∣∣

n∑
i=1

(Xi − µ)

∣∣∣∣∣ ≥
√√√√ n∑

i=1

(Xi − µ)2 ln
4

δ

 ≤ δ

2
.

Therefore, with probability 1− δ
2 , we have

n∑
i=1

(Xi −X)2 ≤
n∑

i=1

(Xi − µ)2 ≤
n∑

i=1

(Xi −X)2 +
4

n

n∑
i=1

(Xi − µ)2 ln
4

δ
. (6)

Hence, with probability 1− δ
2 , we have

n∑
i=1

(Xi − µ)2 ≤ 2

n∑
i=1

(Xi −X)2. (7)

By the union bound, with probability 1− δ, we thus have∣∣∣∣∣
n∑

i=1

(Xi − µ)

∣∣∣∣∣ ≤
√√√√2

n∑
i=1

(Xi −X)2 ln
4

δ
,

as claimed.

D.2 SAMPLE VARIANCE UPPER BOUND

Recall that a random variable X is sub-Gaussian with variance proxy σ2 if and only if E[exp(λ(X −
E[X]))] ≤ exp( 12λ

2σ2) for all λ > 0. We shall denote such a random variable by X ∼ subG(σ2).
We first state the following generalized Freedman’s inequality for sub-Gaussian random variables.
Proposition 11 (Fan et al. (2015, Theorem 2.6)). Suppose that {ξi}ni=1 is a sequence of zero-mean
random variables, i.e., E[ξi] = 0. Suppose that E[exp(λξi)] ≤ exp(f(λ)Vi) for some deterministic
function f(λ) and some fixed {Vi}ni=1 for all λ ∈ (0,∞), then, for all x, v > 0 and λ > 0, we have

Pr

{
∃1 ≤ k ≤ n :

k∑
i=1

ξi ≥ x ∧
k∑

i=1

Vi ≤ v2

}
≤ exp

(
−λx+ f(λ)v2

)
.

To derive a bound related to
∑

(Xi −X)2 and
∑

σ2
i , we will need to characterize the concentration

of the square of a sub-Gaussian random variable, which is a “sub-exponential” random variable:
Proposition 12 (Honorio & Jaakkola (2014, Appendix B)). For a sub-Gaussian random variable X
with variance proxy σ2 and mean µ, we have

E
[
exp

(
λ(X2 − E[X2])

)]
≤ exp

(
16λ2σ4

)
, ∀|λ| ≤ 1

4σ2
.

Theorem 13. For a sequence of sub-Gaussian random variables {Xi}ni=1 such that E[Xi] = µi,
Xi ∼ subG(σ2

i ), and n is a stopping time finite a.s.,

Pr

{∣∣∣∣∣
n∑

i=1

(
(Xi − µi)

2 − E[(Xi − µi)
2]
)∣∣∣∣∣ > 4

√
2

n∑
i=1

σ2
i ln

2

δ

}
≤ δ, ∀δ ∈ (0, 1).

Proof. We first consider a non-stopping time n. Apply Proposition 11 to the sequence {(Xi−µi)
2−

E[(Xi − µi)
2]} with Vi = σ4

i , f(λ) = 16λ2 for λ < 1
4σ2

max
and f(λ) =∞ otherwise, where σmax

is defined as max{σ1, σ2, . . . , σn}. Then for all x, v > 0 and λ ∈ (0, 1
σ2
max

), we have

Pr


n∑

i=1

(
(Xi − µi)

2 − E[(Xi − µi)
2]
)
> x ∧

√√√√ n∑
i=1

σ4
i ≤ v

 ≤ exp
(
−λx+ 16λ2v2

)
.
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Picking v2 =
∑n

i=1 σ
4
i

√
ln 2

δ and x = 4
√
2v ln 2

δ gives

Pr


n∑

i=1

(
(Xi − µi)

2 − E[(Xi − µi)
2]
)
> 4

√√√√2

n∑
i=1

σ4
i ln

2

δ

 ≤ exp

(
− x2

32v2

)

= exp

(
−
32v2 ln2 2

δ

32v2

)
=

δ

2
,

where λ is set to x
32v2 = 1

4
√
2v

< 1
σ2
max

(as v2 >
∑n

i=1 σ
4
i ≥ σ4

max). A union bound by applying
Proposition 11 to the sequence {E[(Xi−µi)

2]− (Xi−µi)
2} with the same parameters and noticing

the fact that
√∑n

i=1 σ
4
i ≤

∑n
i=1 σ

2
i then shows that our conclusion hold for any fixed n. By Fatou’s

lemma, we conclude that it also holds for a stopping time n that is finite a.s.

Theorem 14 (Variance Concentration). Let {Xi}ni=1 be a sequence of random variables with a
common mean µ such that Xi ∼ subG(σ2

i ), (Xi − µ) is symmetric, and n is a stopping time finite
a.s. Then, ∀δ ∈ (0, 1), with probability 1− δ, we have the following three inequalities:

n∑
i=1

(Xi −X)2 ≤
n∑

i=1

(Xi − µ)2

n∑
i=1

(Xi −X)2 ≥ 1

2

n∑
i=1

(Xi − µ)2

n∑
i=1

(Xi − µ)2 ≤ 8

n∑
i=1

σ2
i ln

2

δ
.

where X = 1
n

∑n
i=1 Xi is the sample mean.

Proof. The first two inequalities follow from Eqs. (6) and (7). The last one follows from Theorem 13
together with the fact that E[(Xi − µi)

2] ≤ σ2
i by definition of sub-Gaussian random variables.

E RIDGE LINEAR REGRESSION

Lemma 15. Suppose that we are given n samples yi = ⟨xi, β
∗⟩ + ϵi, i = 1, 2, . . . , n, where

β∗ ∈ Bd and {xi}ni=1, {ϵi}ni=1 are stochastic processes adapted to the filtration {Fi}ni=0 such that
ϵi is conditionally σ-Gaussian, i.e., ϵi | Fi−1 ∼ subG(σ2). Define the following quantity as the
estimate for β∗:

β̂ = argmin
β

(
n∑

i=1

(yi − xT
i β)

2 + λ∥β∥2

)
.

Then with probability 1− δ, the following inequality holds:∣∣∣∣∣
n∑

i=1

(yi − xT
i β

∗)2 −
n∑

i=1

(yi − xT
i β̂)

2

∣∣∣∣∣ ≤ 2dσ2 ln
n

λdδ2
+

1

λ
+ λ.

Proof. Denote y = (y1, y2, . . . , yn)
T, X = (XT

1 , X
T
2 , . . . , X

T
n ) and ϵ = (ϵ1, ϵ2, . . . , ϵn)

T. Denote
Var∗ =

∑n
i=1(yi − xT

i β
∗)2 and V̂ar =

∑n
i=1(yi − xT

i β̂)
2. We have the following representation of

β̂, which is by direct calculation (check, e.g., (Kirschner & Krause, 2018))

β̂ = (XTX + λI)−1XTy. (8)

Furthermore, by Abbasi-Yadkori et al. (2011, Proof of Theorem 2), we have

β̂ − β∗ = (XTX + λI)−1XTϵ− λ(XTX + λI)−1β∗. (9)
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Therefore, we can write

Var∗ − V̂ar = (y −Xβ∗)T(y −Xβ∗)− (y −Xβ̂)T(y −Xβ̂)

= (β∗)TXTXβ∗ − (β∗)TXTy − yTXβ∗ − β̂TXTXβ̂ + β̂TXTy + yTXβ̂

= β̂T(XTy −XTXβ̂)− (β∗)TXT(y −Xβ∗) + yTX(β̂ − β∗).

By Eq. (8), we have XTy = (XTX + λI)β̂. So the first term is just λβ̂Tβ̂. As y = Xβ∗ + ϵ, the
second term is just −(β∗)TXTϵ. By Eq. (9), the last term becomes

yTX(XTX + λI)−1XTϵ− λyTX(XTX + λI)−1β∗.

For the sake of simplicity, we define ⟨a, b⟩M = aT(XTX + λI)−1b (note that ⟨a, b⟩M = ⟨b, a⟩M as
XTX + λI is symmetric) and denote the induced norm by ∥·∥M . Therefore, we have

Var∗ − V̂ar = λβ̂Tβ̂ − (β∗)TXTϵ+ ⟨XTy,XTϵ⟩M − λ⟨XTy, β∗⟩M .

Again by Eq. (8), we have ⟨XTy,XTϵ⟩M = β̂TXTϵ. Therefore, the second and third term together
give

− (β∗)TXTϵ+ ⟨XTy,XTϵ⟩M = (β̂ − β∗)TXTϵ

=
(
(XTX + λI)−1XTϵ− λ(XTX + λI)−1β∗)T XTϵ

= ∥XTϵ∥2M − λ⟨β∗, XTϵ⟩ = ∥XTϵ∥2M − λ(β∗)T(β̂ − β∗) + λ2⟨β∗, β∗⟩M ,

where the last step is yielded from using Eq. (9) reversely. Then note that ⟨XTy, β∗⟩ = β̂∗β∗, so
taking expectation on both sides gives∣∣∣Var∗ − V̂ar

∣∣∣ = λβ̂Tβ̂ + ∥XTϵ∥2M − λ(β∗)T(β̂ − β∗) + λ2⟨β∗, β∗⟩M − λβ̂Tβ∗

= ∥XT ϵ∥2M + λ∥β̂ − β∗∥22 + λ2∥β∗∥2M .

By Cauchy-Schwartz inequality, we have

∥β̂ − β∗∥22 ≤ ∥XTϵ∥2M∥(XTX + λI)−1/2∥2 + ∥β∗∥2M∥(XTX + λI)−1/2∥2,

where the matrix norms can further be bounded by 1/λmin(X
TX + λI) ≤ 1

λ . Similarly, we can
conclude that ∥β∗∥2M ≤ 1/λmin(X

TX + λI)∥β∗∥22 ≤ 1/λ. Consequently, we have∣∣∣Var∗ − V̂ar
∣∣∣ = 2∥XT ϵ∥2M +

1

λ
+ λ.

As proved by Abbasi-Yadkori et al. (2011, Theorem 1), with probability 1− δ, we have

∥XTϵ∥2M ≤ 2σ2 ln

(
1

δ

√
det(XTX + λI)√

det(λI)

)
= σ2 ln

(
1

δ2
(λ+ n/s)s

λ

)
≤ dσ2 ln

(
1

δ2

(
1 +

n

λd

))
,

where σ2 is the (maximum) variance proxy and the second last step is due to the Determinant-Trace
Inequality (Abbasi-Yadkori et al., 2011, Lemma 10). Hence, with probability 1− δ, we have∣∣∣Var∗ − V̂ar

∣∣∣ ≤ 2dσ2 ln
n

λdδ2
+

1

λ
+ λ,

as claimed.
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F OMITTED PROOF IN SECTION 3.2 (ANALYSIS OF FRAMEWORK)

F.1 PROOF OF MAIN THEOREM

In this section, we prove Theorem 3, which is restated as follows for the ease of reading:

Theorem 16 (Restatement of Theorem 3). Suppose that for any execution of F that last for n steps,
RF

n ≥ RF
n holds with probability 1− δ, i.e.,RF

n is pessimistic. Then the total regret incurred by the
second phase satisfies

Rb
T = Õ

s
√
d

√√√√ T∑
t=1

σ2
t log

1

δ
+ s log

1

δ

 with probability 1− δ.

Proof. As mentioned in the main body, we define the following good events for each ∆ =
2−2, 2−2, . . . ,∆f where ∆f is the final value of ∆:

G∆ :
∑
i∈S

θ∗i (θ
∗
i − θ̂i) < ∆2 after T a

∆,

H∆ : (|θ∗i | > 3∆→ i ∈ S) ∧
(
i ∈ S → |θ∗i | >

1

2
∆

)
after T b

∆. (10)

It is by definition to see thatH 1
2

indeed holds, as all |θ∗i | < 3
2 and S is initially empty. We can then

use induction to prove that all good events hold with high probability.

Here, we list several technical lemmas we informally referred to in the main body, whose proofs are
left to subsequent sections. The first one is about the regret-to-sample-complexity conversion.

Lemma 17 (Regret-to-sample-complexity Conversion). If for any execution of F that lasts for n
steps, we haveRF

n ≥ RF
n with probability 1− δ, then we have Pr{G∆} ≥ 1− δ.

The second term bounds the ‘bias’ term, i.e., the second term of Eq. (4) for random projection.

Lemma 18 (Bias Term of the Random Projection). Conditioning on G∆ and H2∆, we have
|
∑

i∈S(θ̂
2
i − (θ∗i )

2)| < 3∆2, which further gives |
∑

i∈S θ̂i(θ
∗
i − θ̂i)| < 4∆2.

Furthermore, we can bound the estimation error of the random projection process.

Lemma 19 (Concentration of the Random Projection). For any given i ∈ [K], we will have

Pr

{
|ri − θ∗i | > 3∆2 +

∆

4

∣∣∣∣G∆,H2∆

}
≤ δ.

As long as the estimation errors are small, we can ensure, with high probability that the good event
for ∆, namelyH∆ will also hold.

Lemma 20 (Identification of Non-zero Coordinates). Pr{H∆ | G∆, H2∆} ≥ 1− dδ.

Therefore, by combining all lemmas above, we can ensure that all good events, namely {G∆ ∧
H∆}∆=2−2,...,∆f

, hold simultaneously with probability 1− dTδ.

At last, we bound the total regret incurred in Phase B for ∆.

Lemma 21 (Single-Phase Regret Bound). Conditioning on G∆ andH2∆, we have∑
t∈T b

∆

⟨θ∗ − xt, θ
∗⟩ ≤ 36snb

∆∆
2 + 6s∆

R√
K

√
2nb

∆ ln
1

δ
, with probability 1− sδ.
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Then we follow the analysis sketched in the main body. We assume, without loss of generality, that
s < d. Then, conditioning on all G∆ andH∆, some coordinate i∗ must never be included into S as
H∆ holds for all ∆.

Therefore, by property of the sample variances (Theorem 14), for such i∗ and for each phase, with
probability 1− δ, we have

∑N
n=1(rn,i∗ − ri∗)

2 ≤
∑N

n=1(rn,i∗ −E[rn,i∗ ])2. Together with Eq. (2),

2

√√√√2
∑
t∈T̃ b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ
> (nb

∆ − 1)
∆

4
. (11)

By using Lemma 21, the total regret from Phase B is bounded by

Rb
T ≤

∑
∆=20,2−2,...,∆f

(
36snb

∆∆
2 + 6s∆

R√
K

√
2nb

∆ ln
1

δ

)

By writing nb
∆ as (nb

∆ − 1) + 1, for any given ∆, the total regret of Phase b is bounded by

Rb
T ≤

∑
∆

∑
t∈T b

∆

⟨θ∗ − xt, θ
∗⟩

≤
∑
∆

36s∆2 ·

 4

∆
2

√√√√2
∑
t∈T̃ b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ
+ 1

+

∑
∆

6s∆
R√
K

√
2 ln

1

δ

√√√√√4∆ · 2
√√√√2

∑
t∈T̃ b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ
+ 1

≤
∑
∆

288
√
2s

√√√√∆2
∑
t∈T b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ
+ 36s∆2


︸ ︷︷ ︸

Part (a)

+ (12)

∑
∆

24s

√
ln

1

δ
∆ 4

√√√√∆2
∑
t∈T b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ
+ 12s∆

√
ln

1

δ


︸ ︷︷ ︸

Part (b)

. (13)

As mentioned in the main text, we make use of the following lower bound of nb
∆ which again follows

from Eq. (2) and holds for all ∆’s except ∆f :

nb
∆ ≥

4

∆
· 2
√√√√2

∑
t∈T b

∆

(rt,i∗ − ri∗)2 ln
4

δ
≥ 8

∆

√√√√2
∑
t∈T b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ
,

where the last step is due to Theorem 14. For simplicity, define S∆ = ∆2
∑

t∈T b
∆
(rn,i−E[rn,i])2 and

therefore nb
∆ ≥ C

∆2

√
S∆ where C = 8

√
2 ln 4

δ , a constant if we regard δ as a constant. Therefore,∑
∆ ̸=∆f

C

∆2

√
S∆ ≤

∑
∆ ̸=∆f

nb
∆ ≤ T (14)

and our goal is to upper bound
∑

∆

√
S∆. Define a threshold X = T/

(
C
√∑

∆ ̸=∆f
S∆

)
and

denote ∆X = 2−⌈log4 X⌉ so that ∆2
X ≤ 1

X . We will have∑
∆ ̸=∆f

√
S∆ =

∑
∆=2−2,...,∆X

√
S∆ +

∑
∆=∆X/2,...,2∆f

√
S∆
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(a)

≤
√
log4 X

√ ∑
∆=2−2,...,∆X

S∆ +
∑

∆X>∆>∆f

∆2
X

∆2
X

√
S∆

(b)

≤
√
log4 X

√ ∑
1
4≥∆≥∆X

S∆ +
1

X

∑
∆X>∆>∆f

√
S∆

∆2
X

(c)

≤
√
log4 X

√ ∑
1
4≥∆≥∆X

S∆ +
1

X

T

C
= (
√
log4 X + 1)

√ ∑
∆ ̸=∆f

S∆, (15)

where (a) applied Cauchy-Schwartz to the first summation, (b) applied the fact that ∆2
X ≤ 1

X and (c)
used Eq. (14). So Part (a) of the regret, namely Eq. (12), can be bounded by

∑
∆

288
√
2s

√√√√∆2
∑
t∈T b

∆

(rt,i − E[rt,i])2 ln
4

δ
+ 36s∆2


(a)

≤ 288
√
2s
∑
∆

√
S∆ ln

4

δ
+ 72s

(b)

≤ 288
√
2s

√
ln

4

δ

√log4(4T )
∑

∆ ̸=∆f

S∆ +
√

S∆f

+ 72s

(c)

≤ 576s

√√√√ ∑
∆=2−2,...,∆f

∆2
∑
t∈T b

∆

(rt,i∗ − E[rt,i∗ ])2 ln
4

δ
log4(4T ) + 72s

(d)

≤ 576s

√√√√ ∑
∆=2−2,...,∆f

8
∑
t∈T b

∆

(∆2 + dσ2
t ) ln

4

δ
log4(4T ) + 72s (16)

≤ 1152
√
2s
√
d

√√√√ T∑
t=1

σ2
t ln

4

δ
log4(4T ) + 1152

√
2s

√∑
∆

nb
∆∆

2 ln
1

δ
log4(4T ) + 72s.

where (a) used the fact that
∑

∆2 ≤ 2 as ∆ = 2−i, (b) used Eq. (15), (c) again used Cauchy-
Schwartz inequality and (d) used Theorem 14(3), the variance concentration result, Eq. (19), the
magnitude of the variance, and the facts that R ≥ ∆, K ≤ d. Therefore, we can conclude that

O(s) ·
∑
∆

nb
∆∆

2 ≤ Õ

s
√
d

√√√√ T∑
t=1

σ2
t log

4

δ
+ s

+ Õ

(
s

√
nb
∆∆

2 ln
1

δ

)
.

Notice that the left-handed-side and the right-handed-side has a common term (the RHS one is inside
the square-root sign). Hence, by the self-bounding property Lemma 37, we can conclude that (note
that we divided s on both sides)

∑
∆

nb
∆∆

2 ≤ Õ

√d
√√√√ T∑

t=1

σ2
t log

4

δ
+ 1

+ Õ
(
ln

1

δ

)
, (17)

which means that Part (a) (Eq. (12)), or equivalently O(s
∑

∆ nb
∆∆

2), is bounded by

Õ

s
√
d

√√√√ T∑
t=1

σ2
t log

4

δ
+ s log

4

δ

 .

Now consider Part (b) of the regret, namely Eq. (13). The second term in each summand will sum up

to O(s
√

log 1
δ ). For the first term, using the notation S∆, we want to bound

24s

(
ln

1

δ

)3/4∑
∆

∆ 4
√
S∆ ≤ 24s ln

1

δ

∑
∆

∆ 4

√∑
∆

S∆ ≤ 48s ln
1

δ
4

√∑
∆

S∆.
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Conditioning on the same events as in Eq. (16), we will have

∑
∆

S∆ ≤ O

(∑
∆

nb
∆∆

2 +

T∑
t=1

dσ2
t

)
≤ Õ

 T∑
t=1

dσ2
t +

√√√√ T∑
t=1

dσ2
t log

1

δ
+ log

1

δ

 ≤ Õ( T∑
t=1

dσ2
t log

1

δ

)
,

where the second step comes from Eq. (17). Therefore,

24s

(
ln

1

δ

)3/4∑
∆

∆ 4
√
S∆ ≤ Õ

s

√√√√√√d
√√√√ T∑

t=1

σ2
t log

1

δ

(
log

1

δ

)3/4

 = Õ

s 4

√√√√d

T∑
t=1

σ2
t log

1

δ

 ,

which gives (by combining the bound of Eq. (12) and Eq. (13) together):

Rb
T ≤ Õ

s
√
d

√√√√ T∑
t=1

σ2
t log

4

δ
+ s 4

√√√√d

T∑
t=1

σ2
t log

1

δ
+ s log

4

δ

 .

Further notice that, if d
∑T

t=1 σ
2
t ≥ 1, then the square-root is larger than the 4th-root. When

d
∑T

t=1 σ
2
t ≤ 1, then either root is bounded by s. Hence, in either case, the 4th-root will be hidden by

other factors. Henceforth, we indeed have the following conclusion with probability 1− (s+ 3T )δ:

Rb
T ≤ Õ

s

√√√√d

T∑
t=1

σ2
t log

1

δ
+ s log

1

δ

 .

By setting the actual δ as (s + 3T )δ, we will still have the same regret bound as O(log c
δ ) =

O(log 1
δ + log c) = Õ(log 1

δ ) as all logarithmic factors will be hidden by Õ.

F.2 REGRET-TO-SAMPLE-COMPLEXITY CONVERSION

Proof of Lemma 17. By Fatou’s lemma and the fact that nb
∆ is finite a.s. (as it is truncated according

to T ), the probability that RF
n is a pessimistic estimation for all n = 1, 2, . . . , nb

∆ is bounded by
1− δ. Conditioning on this, by definition, we will have

nb
∆∑

n=1

⟨θ∗i , θ∗i − xn⟩ ≤ RF
nb
∆
≤ RF

nb
∆

,

which means our stopping criterion (Line 5) will ensure

nb
∆∑

n=1

⟨θ∗i , θ∗i − θ̂⟩ ≤
RF

nb
∆

nb
∆

< ∆2

and thus G∆ is ensured.

F.3 RANDOM PROJECTION

Proof of Lemma 18. ByH2∆, we have |θ∗i | > ∆, ∀i ∈ S, which gives |θ∗i − θ̂i| < ∆ by G∆. So we
can bound |

∑
i∈S(θ̂

2
i − (θ∗i )

2)| by 2|
∑

i∈S θ∗i (θ
∗
i − θ̂i)|+ |

∑
i∈S(θ

∗
i − θ̂i)

2| < 2∆2 +∆2 = 3∆2.

The second claim is then straightforward as θ̂i(θ∗i − θ̂i) = −θ∗i (θ∗i − θ̂i)−
(
(θ̂2i − (θ∗i )

2)
)

.
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Proof of Lemma 19. In the random projection procedure, let r(n)i be the random variable defined as
(which is the i-th coordinate of rn in the algorithm)

r
(n)
i =

K

R2
y
(n)
i

⟨xn, θ
∗⟩+ ηn −

∑
j∈S

θ̂2j


=

K

R2

(
y
(n)
i

)2
θ∗i +

∑
j∈S

θ̂j(θ
∗
j − θ̂j) +

∑
j /∈S,j ̸=i

(
K

R2
y
(n)
i y

(n)
j

)
θ∗j +

(
K

R2
y
(n)
i

)
ηn. (18)

Then ri is just the sample mean estimator of {r(n)i }
nb
∆

n=1.

Firstly, observe that y2i is always R2

K , so the first term of Eq. (18) is just θ∗i , which is exactly the
magnitude we want to estimate. Moreover, by Lemma 18, the second term is a small (deterministic)
bias added to θ∗i and is bounded by 3∆2. For the third term, as each yj is independent, K

R2 yiyj is an
i.i.d. Rademacher random variable, denoted by z

(n)
j . Hence, the last two terms sum to∑

j /∈S,j ̸=i

z
(n)
j θ∗j +

(
K

R2
y
(n)
i

)
ηn.

By definition of Rademacher random variables, they are all zero-mean and symmetric. Henceforth
they can be viewed as noises with variances at most

E


 ∑

j ̸∈S,j ̸=i

z
(n)
j θ∗j +

K

R2
y
(n)
i ηn

2
 (a)

= E

∑
j ̸∈S

(
z
(n)
j θ∗j

)2
+

(
K

R2
y
(n)
i

)2

η2n

 ≤ 1 +
K

R2
σ2
n,

(19)

where (a) is due to the mutual independence between z
(n)
j and y

(n)
i .

Moreover, as each y
(n)
i is also redrawn for every n and i, we know that all {z(n)j }j ̸∈S,1≤n≤nb

∆
and

{y(n)i }1≤n≤nb
∆

are all mutually independent. Because the first two terms Eq. (18) is not random, all

{r(n)i }1≤n≤nb
∆

are independent, symmetric and sub-Gaussian (as θ∗j is bounded and ηn is Gaussian)
random variables. Therefore, as nb

∆ is indeed a stopping time finite a.s., we shall apply Empirical
Bernstein Inequality (Theorem 10) to {r(n)i }n where Var(r(n)i ) is characterized by Eq. (19), giving

Pr


∣∣∣∣∣∣
nb
∆∑

n=1

 ∑
j /∈S,j ̸=i

z
(n)
j θ∗j +

(
K

R2
y
(n)
i

)
ηn

∣∣∣∣∣∣ ≥ 2

√√√√
2

nb
∆∑

n=1

(rn,i − ri)2 ln
4

δ

 ≤ δ.

In other words, our choice of nb
∆ in Eq. (2) will ensure the average noise is bounded by ∆

2 . By
Lemma 18, we conclude that Pr{|ri − θ∗i | > 3∆2 + ∆

4 | G∆,H2∆} ≤ δ.

Proof of Lemma 20. If we skipped due to
∑

i∈S θ̂2i > 1−∆2, which is Line 7 of Algorithm 1, then
by Lemma 18, we will have∑

i∈S

(θ∗i )
2 > 1− 5∆2 conditioning on G∆ ∧H2∆,

and thus all remaining coordinates are smaller than 3∆. Moreover, byH2∆, all discovered coordinates
are with magnitude at least 2∆

2 > ∆
2 . HenceH∆ automatically holds in this case.

Otherwise, suppose that the conclusion of Lemma 19 holds for all i ∈ [K] (which happens with
probability 1−Kδ conditioning on G∆ andH2∆). As we only pick those coordinates with |ri| > ∆,
all coordinates with magnitude at last ∆ + ∆

4 + 3∆2 < 3∆ will be picked as ∆ ≤ 1
4 , so the first
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condition of H∆ indeed holds. Moreover, all picked coordinates will have magnitudes at least
∆ − (∆4 + 3∆2). But when ∆ = 1

4 , there will be no coordinates in S as it is initially empty. And
after that, we will have ∆2 ≤ ∆

8 . Hence, all coordinates with magnitude ∆
2 will surely be identified,

which means the second condition ofH∆ also holds.

We then have Pr{H∆ | G∆,H2∆} ≥ 1−Kδ by putting these two cases together.

F.4 SINGLE-PHASE REGRET

Proof of Lemma 21. Conditioning on G∆, as we are playing xt,i = θ̂i for all i ∈ S and t ∈ T b
∆, we

will have ∑
t∈T b

∆

∑
i∈S

(θ∗i − xt,i)θ
∗
i =

∑
t∈T b

∆

∑
i∈S

(θ∗i − θ̂i)θ
∗
i < nb

∆ ·∆2.

Now consider a single coordinate not in S. For each t ∈ T b
∆, we will equiprobably play ± R√

K
for

this coordinate. Hence, the total regret will become∑
t∈T b

∆

(
θ∗i ±

R√
K

)
θ∗i = nb

∆ · (θ∗i )
2
+ θ∗i

∑
t∈T b

∆

(
± R√

K

)
.

By H2∆, the first term is bounded by 36nb
∆∆

2. By Chernoff bound, the absolute value of the

summation in the second term will be bounded by R√
K

√
2nb

∆ ln 1
δ with probability 1− δ. As there

are at most s non-zero coordinates by sparsity, from a union bound, we can conclude that∑
t∈T b

∆

⟨θ∗ − xt, θ
∗⟩ ≤ 36snb

∆∆
2 + 6s∆

R√
K

√
2nb

∆ ln
1

δ

with probability 1− sδ.

G OMITTED PROOF IN SECTION 4.1 (ANALYSIS OF VOFUL2)

G.1 PROOF OF MAIN THEOREM

In this section, we prove Theorem 5, which is restated as Theorem 22. We first assume that
Proposition 4 is indeed correct, whose discussion is left to Appendix G.2.

Theorem 22 (Regret of Algorithm 1 with VOFUL2 in Unkown-Variance Case). Consider Algorithm 1
with F as VOFUL2 (Kim et al., 2021) andRF

n as

RF
n = C

s1.5

√√√√ n∑
k=1

(rk − ⟨xk, β̂⟩)2 ln
1

δ
+ s2

√
2 ln

n

sδ2
ln

1

δ
+ s1.5

√
2 ln

1

δ
+ s2 ln

1

δ

 , (20)

where C = Õ(1) is the constant hidden in the Õ notation of Proposition 4, x1, x2, . . . , xn are the
actions made by the agent, r1, r2, . . . , rn are the corresponding (noisy) feedback, and β̂ is defined as

β̂ = argmin
β∈Rs

(
n∑

k=1

(rk − ⟨xk, β⟩)2 + ∥β∥2

)
.

The algorithm ensures the following regret bound with probability 1− δ:

RT = Õ

(s2.5 + s
√
d)

√√√√ T∑
t=1

σ2
t log

1

δ
+ s3 log

1

δ

 .

24



Published as a conference paper at ICLR 2023

Proof. By Proposition 4, the total regret incurred by algorithm F satisfies

RF
n ≤ C

s1.5

√√√√ n∑
k=1

η2k ln
1

δ
+ s2 ln

1

δ

 ,

where C = Õ(1) is a constant (with some logarithmic factors) and ηk ∼ N (0, σ2
k) is the noise for

the k-th round executing F . We now consider our regret estimator RF
n . We show that, with high

probability, it is a pessimistic estimation.

Lemma 23. For any given ∆, with probability 1− δ,RF
n ≥ RF

n .

Therefore, for the “explore” phase, we can make use of Theorem 16 which only requiresRF
n to be an

over-estimate ofRF
n w.h.p., giving

Rb
T ≤ Õ

s
√
d

√√√√ T∑
t=1

σ2
t log

1

δ
+ s log

1

δ

 .

So we only need to bound the regret for the “commit” phase, namelyRa
T . As mentioned in the main

text, we will consider the regret contributed from inside and outside S seprately. Formally, we will
writeRa

T as

Ra
T =

∑
∆=2−2,...,∆f

∑
t∈T a

∆

(∑
i∈S

θ∗i (θ
∗
i − xt,i) +

∑
i/∈S

(θ∗i )
2

)
,

where the equality is because we will not put any mass on those i /∈ S during the “commit” phase.
We still assume the ‘good events’ G∆,H∆ hold for all ∆ (defined in Eq. (10)). ByH2∆, for a given
∆,
∑

i ̸∈S(θ
∗
i )

2 ≤ 36s∆2. Moreover, by Lemma 23, we will have

Ra
T ≤

∑
∆=2−2,...,∆f

RF
na
∆
+ 36s

∑
∆=2−2,...,∆f

na
∆∆

2.

By the terminating criterion 1
nRF

n < ∆2 (Line 5 of Algorithm 1), for all ∆, we will have na
∆ − 1 ≤

C
∆2RF

na
∆

, which means

na
∆ ≤

C

∆2

s1.5
√√√√∑

t∈T̃ a
∆

(rt − ⟨xt, β̂⟩)2 ln
1

δ
+ s2

√
2 ln

na
∆

sδ2
ln

1

δ
+ s1.5

√
2 ln

1

δ
+ s2 ln

1

δ

+ 1.

Therefore, plugging back into the expression ofRa
T gives (the term related withRF

na
∆

is dominated
by the second term, as intuitively explained in the main text):

Ra
T ≤

∑
∆=2−2,...,∆f

Õ

s2.5
√√√√∑

t∈T̃ a
∆

(rt − ⟨xt, β̂⟩)2 ln
1

δ
+ s3

(√
ln

1

δ
+ ln

1

δ

)
+ s∆2

 .

The last term is simply bounded by O(s) after summing up over ∆. Let us focus on the first term,
where we need to upper bound the magnitude ofRF

n . Applying Lemma 15 shows that the following
with probability 1− δ:

n∑
k=1

(
rk − ⟨xk, β̂⟩

)2
≤

n∑
k=1

η2k + 2s ln
n

sδ2
+ 2.
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Therefore, we can write the regret (conditioning on this good event holds for all ∆, which is with
probability at least 1− dTδ according to Theorem 16) as

Ra
T ≤

∑
∆=2−2,...,∆f

Õ

s2.5

√√√√∑
t∈T a

∆

η2t log
1

δ
+ s3

(√
log

1

δ
+ log

1

δ

)
+ s∆2

 . (21)

Again by the technique we used for Appendix F, we will need the following lower bound for all na
∆

except for the last one, which follows from the fact thatRF
n ≥ RF

n (Lemma 23):

na
∆ ≥

Cs1.5

∆2

√√√√∑
t∈T̃ a

∆

η2t ln
1

δ
.

By the summation technique that we used in Appendix F, more preciously, by the derivation of Eq.
(15), we will have the following derivation:

∑
∆ ̸=∆f

Cs1.5

√√√√∑
t∈T a

∆

η2t ln
1

δ
≤
√
log4 X

√√√√ ∑
1
4≥∆≥∆X

∑
t∈T a

∆

C2s3η2t ln
1

δ
+

1

X

∑
∆X>∆>∆f

Cs1.5

∆2

√√√√∑
t∈T a

∆

η2t ln
1

δ

where X is defined as

X = T

/√√√√ ∑
∆̸=∆f

∑
t∈T a

∆

C2s3η2t ln
1

δ

and ∆X = 2−⌈log4 X⌉, which means ∆2
X ≤ 1

X . Hence, we will have (the second summation will be
bounded by T

X as
∑

∆ na
∆ ≤ T )

∑
∆ ̸=∆f

Cs1.5

√√√√∑
t∈T a

∆

σ2
t ln

1

δ
≤ Õ

√√√√ ∑
∆ ̸=∆f

∑
t∈T a

∆

C2s3η2t log
1

δ

 = Õ

s1.5

√√√√ T∑
t=1

η2t log
1

δ

 .

In other words, the first term of Eq. (21) will be bounded by

s2.5
∑

∆=2−2,...,∆f

√√√√∑
t∈T a

∆

η2t ln
1

δ
≤ Õ

s2.5

√√√√ T∑
t=1

η2t log
1

δ

 .

So we are done with the first and the last term of Eq. (21). Now consider the second term, which
is equivalent to bounding

∑
∆ 1. Use the following property guaranteed by (again) Line 5 of

Algorithm 1: ∑
∆ ̸=∆f

∆−2Cs2 ln
4

δ
≤
∑

∆ ̸=∆f

na
∆ ≤ T,

which means
∑

∆ 1 ≤ log4(T/s
2) = Õ(1). Combining them together gives

Ra
T ≤ Õ

s2.5

√√√√ T∑
t=1

η2t log
1

δ
+ s3

(√
log

1

δ
+ log

1

δ

) ,

At last, due to Theorem 13, with probability 1− δ,
n∑

i=1

(ri − ⟨xi, β
∗⟩)2 =

n∑
k=1

η2k
(a)

≤
n∑

k=1

E[η2k | Fk−1] + 4
√
2

n∑
k=1

σ2
k ln

2

δ
≤ 8

n∑
k=1

σ2
k ln

2

δ
,
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Algorithm 3 VOFUL2 Algorithm (Kim et al., 2021)
1: for t = 1, 2, . . . , T do
2: Compute the action for the t-th round as

xt = argmax
x∈X

max
θ∈

⋂t−1
s=1 Θs

⟨x, θ⟩, (22)

where Θs is defined in Eq. (24).
3: Observe reward rt = ⟨xt, θ

∗⟩+ ηt.

where (a) is due to Theorem 13 and (b) is due to E[η2k | Fk−1] ≤ σ2
k. Hence,

Ra
T ≤ Õ

s2.5

√√√√ T∑
t=1

σ2
t log

1

δ
+ s3

(√
log

1

δ
+ log

1

δ

) .

Combining this with the regret forRb
T (Theorem 16) gives

RT ≤ O

(s2.5 + s
√
d)

√√√√ T∑
t=1

σt
t log

1

δ
+ s3

(√
log

1

δ
+ log

1

δ

)
+ s log

1

δ


= O

(s2.5 + s
√
d)

√√√√ T∑
t=1

σt
t log

1

δ
+ s3 log

1

δ

 ,

as claimed.

G.2 REGRET OVER-ESTIMATION

In this section, we first discuss why the strengthened Proposition 4 holds. After that, we argue that
our pessimistic estimationRF

n is indeed an over-estimation ofRF
n . We state the VOFUL2 algorithm

in Algorithm 3 and also restate Proposition 4 as Proposition 24 for the ease of presentation.

Proposition 24. VOFUL2 on d dimensions guarantees, with probability at least 1− δ,

RF
T = Õ

d1.5

√√√√ T∑
t=1

η2t log
1

δ
+ d2 log

1

δ

 = Õ

d1.5

√√√√ T∑
t=1

σ2
t log

1

δ
+ d2 log

1

δ

 , (23)

where T is a stopping time finite a.s. and σ2
1 , σ

2
2 , . . . , σ

2
T are the variances of η1, η2, . . . , ηT .

Proof. We will follow the proof of Kim et al. (2021) and highlight the different steps. We first argue
that an analog to their Empirical Bernstein Inequality (Zhang et al., 2021, Theorem 4) still holds.

Lemma 25 (Analog of Theorem 4 from Zhang et al. (2021)). Let {Xi}ni=1 be a sequence of zero-
mean Gaussian random variables such that n is a stopping time finite a.s. Then for all n ≥ 8 and
any δ ∈ (0, 1),

Pr


∣∣∣∣∣

n∑
i=1

Xi

∣∣∣∣∣ ≤ 8

√√√√ n∑
i=1

X2
i ln

4

δ

 ≥ 1− δ.

Proof. This is a direct corollary of Theorem 10.

Thanks to Theorem 14, the following analog of Lemma 17 from Zhang et al. (2021) also holds:
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Lemma 26 (Analog of Lemma 17 from Zhang et al. (2021)). Let {Xi}ni=1 be a sequence of zero-mean
Gaussian random variables such that n is a stopping time finite a.s. Then for all δ ∈ (0, 1),

Pr

{
n∑

i=1

X2
i ≥ 8

n∑
i=1

σ2
i ln

2

δ

}
≤ δ,

where σ2
i is the variance of Xi.

Then consider their Elliptical Potential Counting Lemma (Kim et al., 2021, Lemma 5), which holds
as long as ∥xt∥2 ≤ 1. In our setting, we indeed have this property as xt ∈ Bd (only the noises can be
unbounded, instead of actions). Hence, this lemma still holds.

Proposition 27 (Kim et al. (2021, Lemma 5)). Let x1, x2, . . . , xk ∈ Rd be such that ∥xi∥2 ≤ 1 for
all s ∈ [k]. Let Vk = λI +

∑k
i=1 xix

T
i . Let J = {i ∈ [k] | ∥xi∥2V −1

i−1

≥ q}, then

|J | ≤ 2d

ln(1 + q)
ln

(
1 +

2/e

ln(1 + q)

1

λ

)
.

Then consider the confidence set construction:

Θt =

L⋂
ℓ=1

θ ∈ Bd

∣∣∣∣∣∣
∣∣∣∣∣

t∑
s=1

(xT
sµ)ℓϵs(θ)

∣∣∣∣∣ ≤
√√√√ t∑

s=1

(xT
sµ)

2

ℓϵ
2
s(θ)ι, ∀µ ∈ Bd

 , (24)

where ϵs(θ) = rs − xT
s θ, ϵ2s(θ) = (ϵs(θ))

2, ι = 128 ln((12K2L)d+2/δ) = O(
√
d), L =

max{1, ⌊log2(1 + T
d )⌋} and (x)ℓ = min{|x|, 2−ℓ} x

|x| . By using Lemma 25 together with their
original ϵ-net coverage argument, we have θ∗ ∈ Θt for all t ∈ [T ] with high probability:

Lemma 28 (Analog of Lemma 1 from Kim et al. (2021)). The good event E1 = {∀t ∈ [T ], θ∗ ∈ Θt}
happens with probability 1− δ.

Similar to Kim et al. (2021), we define θt be the maximizer of Eq. (22) in the t-th round and define
µt = θt − θ∗. We also consider the following good event

E2 : ∀t ∈ [T ],

t∑
s=1

ϵ2s(θ
∗) ≤ 8

t∑
s=1

σ2
s ln

8T

δ
,

which happens with probability 1− δ due to Lemma 26. Define

Wℓ,t−1(µ) = 2−ℓλI +

t−1∑
s=1

(
1 ∧ 2−ℓ

|xT
sµ|

)
xsx

T
s .

Abbreviate Wℓ,t−1(µt) as Wℓ,t−1, then we have the following lemma, which is slightly different
from the original one, whose proof will be presented later.

Lemma 29 (Analog of Lemma 4 from Kim et al. (2021)). Conditioning on E1 and setting λ = 1, we
have

1. ∥µt∥2Wℓ,t−1
≤ C12

−ℓ(
√
At−1ι+ ι) for some absolute constant C1, where At ≜

∑t
s=1 η

2
s .

2. For all s ≤ t, we have ∥µt∥2Wℓ,s−1
≤ C12

−ℓ(
√

As−1ι+ ι).
3. There exists absolute constant C2 such that xtµt ≤ C2∥xT

t ∥2W−1
ℓ,t−1

(
√
At−1ι+ ι).

Therefore, as we have the same E1, Lemma 5 and a similar Lemma 4 (which uses ηs instead of σs),
we can conclude that

RF
T ≤ C


√√√√T−1∑

s=1

η2s ι+ ι

 d ln2

1 + C


√√√√T−1∑

s=1

η2s ι+ ι

(1 + T

d

)2

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= Õ

d1.5

√√√√ T∑
t=1

η2t log
1

δ
+ d2 log

1

δ

 ,

as in Kim et al. (2021, Theorem 2) (recall that ι = O(
√
d)). Conditioning on E2, we then further have

RF
T ≤ Õ

d1.5

√√√√ T∑
t=1

σ2
t log

1

δ
+ d2 log

1

δ

 ,

as claimed.

Proof of Lemma 29. By definition and abbreviating (·)ℓ as (·), we have

∥µt∥2Wℓ,t−1−2−ℓλI =

t−1∑
s=1

(xT
sµt)(x

T
sµt) =

t−1∑
s=1

(xT
sµs)(xsθt − rt + rt − xsθ

∗)

=

t−1∑
s=1

(xT
sµt)(−ϵs(θt) + ϵs(θ

∗))

(E1)

≤

√√√√t−1∑
s=1

(xT
sµt)2ϵ2s(θt)ι+

√√√√t−1∑
s=1

(xT
sµt)

2
ϵ2s(θ

∗)ι

(a)

≤

√√√√t−1∑
s=1

(xT
sµt)

2
2(xT

sµt)2ι+ 2

√√√√t−1∑
s=1

(xT
sµt)

2
2ϵ2s(θ

∗)ι

(b)

≤

√√√√2−ℓ

t−1∑
s=1

(xT
sµt)

2
2(xT

sµt)2ι+ 2−ℓ16

√√√√t−1∑
s=1

η2s ι

≤ 2

√√√√2

t−1∑
s=1

(xT
sµt)(xT

sµt)ι+ 2−ℓ16

√√√√t−1∑
s=1

η2s ι

=
√
2−ℓ8∥µt∥2Vt−1−λIι+ 2−ℓ16

√√√√t−1∑
s=1

η2s ι,

where (a) used ϵ2s(θt) = (rs − xsθt)
2 = (xT

s (θ
∗ − θt) + ϵ2s(θ

∗)) ≤ 2(xT
sµt)

2 + 2ϵ2s and (b) used
ϵ2s(θ

∗) = η2s . By the self-bounding property Lemma 37, we have

∥µt∥2Vt−1−λI ≤ 16

√√√√t−1∑
s=1

σ2
s + 8ι,

which means ∥µt∥2Vt−1
≤ 4λ+ 16

√∑t−1
s=1 σ

2
s ι+ 8ι. Setting λ = 1 gives the first conclusion. Based

on this, the second and third conclusion directly follow according to Kim et al. (2021).

G.3 EXTENSION TO UNKNOWN VARIANCE CASES

Based on Proposition 4, we then show that, our regret estimationRF
n Eq. (20) is indeed pessimistic

(i.e., Lemma 23).

Proof of Lemma 23. From Lemma 15 with λ = 1, with probability 1− δ, we will have (recall the
assumption that σ2

t ≤ 1 for all t ∈ [T ])
n∑

k=1

(rk − ⟨xk, β
∗⟩)2 =

n∑
k=1

η2k ≤
n∑

k=1

(rk − ⟨xk, β̂⟩)2 + 2s2 ln
n

sδ2
+ 2.
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Therefore we have

RF
n ≤ C

s1.5

√√√√ n∑
k=1

η2k ln
1

δ
+ s2 ln

1

δ


≤ C

s1.5

√√√√( n∑
k=1

(rk − ⟨xk, β̂⟩)2 + 2s ln
n

sδ2
+ 2

)
ln

1

δ
+ s2 ln

1

δ


≤ C

s1.5

√√√√ n∑
k=1

(rk − ⟨xk, β̂⟩)2 ln
1

δ
+ s2

√
2 ln

n

sδ2
ln

1

δ
+ s1.5

√
2 ln

1

δ
+ s2 ln

1

δ

 = RF
n .

In other words, ourRF
n is an over-estimation ofRF

n with probability 1− δ.

H OMITTED PROOF IN SECTION 4.2 (ANALYSIS OF WEIGHTED OFUL)

H.1 PROOF OF MAIN THEOREM

Similar to the VOFUL2 algorithm, we still assume Proposition 6 indeed holds and defer the discussions
to the next section. We restate the regret guarantee of Weighted OFUL (Zhou et al., 2021), namely
Theorem 7, for the ease of reading, as follows:

Theorem 30 (Regret of Algorithm 1 with Weighted OFUL in Known-Variance Case). Consider
Algorithm 1 with F as Weighted OFUL (Zhou et al., 2021) andRF

n as

RF
n ≜ C

√sn ln
1

δ
+ s

√√√√ n∑
k=1

σ2
k ln

1

δ

 .

The algorithm ensures the following regret bound with probability 1− δ:

RT = Õ

(s2 + s
√
d)

√√√√ T∑
t=1

σ2
t log

1

δ
+ s1.5

√
T log

1

δ

 .

Proof. Firstly, from Proposition 6, the condition of applying Theorem 16 holds. Therefore, we have

Rb
T ≤ Õ

s
√
d

√√√√ T∑
t=1

σ2
t log

1

δ
+ s log

1

δ

 .

ForRa
T , similar to Appendix H, we decompose it into two parts: those from S and from outside of S.

The former case is bounded by Proposition 6, as

Regret from S with gap threshold ∆ ≤ C

√sna
∆ ln

1

δ
+ s

√√√√∑
t∈T a

∆

σ2
t ln

1

δ

 .

For those outside S, we will bound it as O(sna
∆∆

2), where we only need to bound na
∆. From Line 5

of Algorithm 1, we have

na
∆ − 1 ≤ C

∆2

√s(na
∆ − 1) ln

1

δ
+ s

√√√√∑
t∈T̃ a

∆

σ2
t ln

1

δ

 .
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By the “self-bounding” property that x ≤ a+ b
√
x implies x ≤ O(a+ b2) (Lemma 37), we have

na
∆ − 1 ≤ 1

∆4
s ln

1

δ
+

s

∆2

√√√√∑
t∈T̃ a

∆

σ2
t ln

1

δ
.

Therefore, we can conclude that (the regret from S is dominated)

Ra
T ≤

∑
∆=2−2,...

O

 s2

∆2
log

1

δ
+ s2

√√√√∑
t∈T̃ a

∆

σ2
t log

1

δ
+ s∆2

 ,

where the last term is simply bounded by O(s). Again from Line 5 of Algorithm 1, we will have the
following property for all ∆ ̸= ∆f :

na
∆ >

C

∆2

√sna
∆ ln

1

δ
+ s

√√√√∑
t∈T a

∆

σ2
t ln

1

δ

 . (25)

We first bound the second term, which basically follow the summation technique (Eq. (15)) that we
used in Appendices F and G.1:∑
∆ ̸=∆f

Cs

√√√√∑
t∈T a

∆

σ2
t ln

1

δ
≤
√
log4 X

√√√√ ∑
1
4≥∆≥∆X

∑
t∈T a

∆

C2s2σ2
t ln

1

δ
+

1

X

∑
∆X>∆>∆f

Cs

∆2

√√√√∑
t∈T a

∆

σ2
t ln

1

δ

where X is defined as

X = T

/√√√√ ∑
∆ ̸=∆f

∑
t∈T a

∆

C2s2σ2
t ln

1

δ

and ∆X = 2−⌈log4 X⌉, which means ∆2
X ≤ 1

X . Hence, we will have (the second summation will be
bounded by T

X as
∑

∆ na
∆ ≤ T )

∑
∆ ̸=∆f

Cs

√√√√∑
t∈T a

∆

σ2
t ln

1

δ
≤ Õ

√√√√ ∑
∆ ̸=∆f

∑
t∈T a

∆

C2s2σ2
t log

1

δ

 = Õ

s

√√√√ T∑
t=1

σ2
t log

1

δ

 .

Hence, for the second term, we have

O

s2

√√√√ T∑
t=1

σ2
t log

1

δ
log T

 = Õ

s2

√√√√ T∑
t=1

σ2
t log

1

δ

 .

At last, we consider the first term. From the same lower bound of na
∆ (Eq. (25)), we will have

na
∆ >

C

∆2

√
sna

∆ ln
1

δ
=⇒ na

∆ >
C2

∆4
s ln

1

δ
.

By the fact that
∑

∆ ̸=∆f
na
∆ ≤ T , we will have

T ≥ C2s ln
1

δ

∑
∆ ̸=∆f

∆−4 = O(1)C2s ln
1

δ
(2∆f )

−4.

Henceforth,

O

s2 log
1

δ
·

∑
∆=2−2,...,∆f

∆−2

 = O
(
s2 log

1

δ
∆−2

f

)
≤ O

(
s2 log

1

δ

√
T

s ln 1
δ

)
= O

(
s1.5
√

T log
1

δ

)
.
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Algorithm 4 Weighted OFUL Algorithm (Zhou et al., 2021)

1: Intialize A0 ← λI , c0 ← 0, θ̂0 ← A−1
0 c0, β̂0 = 0 and Θ0 ← {θ | ∥θ − θ̂0∥A0

≤ β̂0 +
√
λB}.

2: for t = 1, 2, . . . , T do
3: Compute the action for the t-th round as

xt = argmax
x∈X

max
θ∈Θt−1

⟨x, θ⟩. (26)

4: Observe reward rt = ⟨xt, θ
∗⟩+ ηt and variance information σ2

t , set σt = max{1/
√
d, σt},

set confidence radius β̂t as

β̂t = 8

√√√√d ln

(
1 +

t

dλσ2
min,t

)
ln

4t2

δ
, (27)

where σmin,t ≜ mints=1 σs.
5: Calculate At ← At−1 + xtx

T
t /σ

2
t , ct ← ct−1 + rtxt/σ

2
t , θ̂t ← A−1

t ct and Θt ← {θ |
∥θ − θ̂t∥At

≤ β̂t +
√
λB}.

Combining all above together gives

RT = Ra
T +Rb

T ≤ O

s1.5
√

T log
1

δ
+ s2

√√√√ T∑
t=1

σ2
t log

1

δ
+ s

+ Õ

s
√
d

√√√√ T∑
t=1

σ2
t log

1

δ
+ s log

1

δ


≤ Õ

(s2 + s
√
d)

√√√√ T∑
t=1

σ2
t log

1

δ
+ s1.5

√
T log

1

δ

 ,

as claimed.

H.2 REGRET OVER-ESTIMATION

We again briefly argue that Proposition 6 holds under our noise model. We present their algorithm in
Algorithm 4.
Proposition 31. With probability at least 1 − δ, Weighted OFUL executed for T steps on d
dimensions guarantees

RF
T ≤ C

√dT log
1

δ
+ d

√√√√ T∑
t=1

σ2
t log

1

δ


where C = Õ(1), T is a stopping time finite a.s., and σ2

1 , σ
2
2 , . . . , σ

2
T are the variances of

η1, η2, . . . , ηT .

Proof Sketch. We mainly follow the original proof by Zhou et al. (2021) and highlight the differences.
We first highlight their Bernstein Inequality for vector-valued martingales also holds under our
assumptions, as:

Lemma 32 (Analog of Theorem 4.1 from Zhou et al. (2021)). Let {xi}ni=1 be sequence of d-
dimensional random vectoes such that ∥xt∥2 ≤ L. Let {ηi}ni=1 be a sequence of independent,
symmetric and {σ2

i }ni=1-sub-Gaussian random variables. Let rt = ⟨θ∗, xt⟩+ ηt for all t ∈ [n]. Set
Zt = λI +

∑t
s=1 xsx

T
s , bt =

∑t
s=1 rsxs and θt = Z−1

t bt. Let n be a stopping time finite a.s. Then,
∀δ ∈ (0, 1),

Pr


∥∥∥∥∥

t∑
s=1

xsηs

∥∥∥∥∥
Z−1

t

≤ βt, ∥θt − θ∗∥Zt ≤ βt +
√
λ∥θ∗∥2,∀t ∈ [n]

 ≥ 1− δ,
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where βt = 8σ
√

d ln(1 + tL2

dλ ) ln 8t2

δ .

The proof, which will be presented later, mainly follows from the idea of their proof of Theorem 4.1,
except that we are using Proposition 11. Check the proof below for more details about this.

With this theorem, we can consequently conclude that the confidence construction is indeed valid by
applying Lemma 32 to the sequence {ηt/σt}t∈[T ], which gives

∥θ̂t − θ∗∥At
≤ β̂t +

√
λ∥θ∗∥2 ≤ β̂t +

√
λ, ∀t ∈ [T ], with probability 1− δ,

where β̂t = 8
√
d ln(1 + t

dλσ2
min,t

) ln 4t2

δ , as defined in Eq. (27). Therefore, we can conclude their

(B.19) from exactly the same argument, namely

RF
T ≤ 2

T∑
t=1

min
{
1, σt(β̂t−1 +

√
λ)∥xt/σt∥A−1

t−1

}
.

Similar to their proof, define I1 = {t ∈ [T ] | ∥xt/σt∥A−1
t−1
≥ 1} and I2 = [T ] \ I1, then we have

(where σmin is the abbreviation of σmin,T = minTs=1 σs)

|I1| =
∑
t∈I1

min{1, ∥xt/σt∥2A−1
t−1

} ≤
T∑

t=1

min{1, ∥xt/σt∥2A−1
t−1

} ≤ 2d ln

(
1 +

T

dλσ2
min

)
,

where the last step uses Proposition 34 and the fact that ∥xt/σt∥2 ≤ σ−1
min. Therefore, we are having

the same Eq. (B.21) as theirs, which gives

RF
T ≤ 2

√
2d ln

(
1 +

T

dλσ2
min

)√√√√ T∑
t=1

(β̂t−1 +
√
λ)2σ2

t + 4d ln

(
1 +

T

dλσ2
min

)
.

By the choice of σt = max{1/
√
d, σt} and λ = 1, we have

ln

(
1 +

T

dλσ2
min

)
≤ ln

(
1 +

T

d

)
= Õ(1),

and that

β̂t +
√
λ = O

(√
d log T log

T

δ
+ 1

)
= Õ

(√
d log

1

δ

)
,

which gives

RF
T = Õ

d

√√√√ T∑
t=1

σ2
t log

1

δ

 = Õ

d

√√√√ T∑
t=1

(
1

d
+ σ2

t

)
log

1

δ


= Õ

√dT log
1

δ
+ d

√√√√ T∑
t=1

σ2
t log

1

δ

 ,

as claimed, while the second step uses σ2
t = min{ 1d , σ

2
t } ≤ 1

d + σ2
t .

Proof of Lemma 32. Their original proof mainly use the following two auxiliary results: The first one
is the well-known Freedman inequality (Freedman, 1975), which is originally for bounded martingale
difference sequences, while the second one is Lemma 11 from Abbasi-Yadkori et al. (2011). For the
former one, from its variant for sub-Gaussian random variables (Proposition 11), we have:
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Corollary 33. Suppose that {ξi}ni=1 is a sequence of zero-mean random variables where ξi ∼
subG(σ2

i ) for some sequence {σi}ni=1. Let n be a stopping time finite a.s. Then for all x, v > 0 and
λ > 0,

Pr

{
∃1 ≤ k ≤ n :

k∑
i=1

ξi ≥ x ∧
k∑

i=1

Vi ≤ v2

}
≤ exp

(
− x2

2v2

)
.

Moreover, for any δ ∈ (0, 1), with probability 1− δ, we have

n∑
i=1

ξi ≤ 2

√√√√ n∑
i=1

σ2
i ln

2

δ
.

Proof. The first conclusion is done by applying Proposition 11 optimally with f(λ) = 1
2λ

2, Vi = σ2
i

and λ = x
v2 . The second conclusion is consequently proved by taking v2 =

∑n
i=1 σ

2
i and x =

2v
√
ln 2

δ .

For their second auxiliary lemma (Abbasi-Yadkori et al., 2011, Lemma 11), one can see that the
original lemma indeed holds for sub-Gaussian random variables. Therefore, we still have the
following lemma:

Proposition 34 (Abbasi-Yadkori et al. (2011, Lemma 11)). Let {xt}Tt=1 be a sequence in Rd and
define Vt = λI +

∑t
s=1 xsx

T
s for some λ > 0. Then, if we have ∥xt∥2 ≤ L for all t ∈ [T ], then

T∑
t=1

min
{
1, ∥xt∥2V −1

t−1

}
≤ 2 log

det(Vt)

det(λI)
≤ 2d ln

dλ+ TL2

dλ
.

Recall the definition that Zt = λI +
∑t

s=1 xsx
T
s . Further define dt =

∑t
s=1 xiηi, wt = ∥xt∥Z−1

t−1

and let Et be the event that ∥ds∥Z−1
s−1
≤ βs for all s ≤ t. They proved the following lemma, which

still applies to our case:

Lemma 35 (Analog of Lemma B.3 from Zhou et al. (2021)). With probability 1 − δ
2 , with the

definitions of xt and ηt in Lemma 32, the following inequality holds for all t ≥ 1:
t∑

s=1

2ηsx
T
sZ

−1
s−1ds−1

1 + w2
s

1[Es−1] ≤
3

4
β2
t .

Proof. We only need to verify whether we can apply our Freedman’s inequality to ℓs ≜
2ηsx

T
sZ

−1
s−1ds−1

1+w2
s

1[Es−1]. It is obvious that E[ℓs | Fs−1] = 0. Moreover, from the following in-
equality (which is their Eq. (B.3))

|ℓs| ≤
2∥xs∥Z−1

s−1

1 + w2
s

∥ds−1∥Z−1
s−1

1[Es−1] ≤
2wi

1 + w2
i

βs−1 ≤ min{1, 2wi}βi−1,

and the fact that ηs | Fs−1 ∼ subG(σ2), we have ℓs | Fs−1 ∼ subG((σβs−1 min{1, 2ws})2).
Denote the sub-Gaussian parameter as σ̃s for simplicity. We have

t∑
s=1

σ̃2
s ≤ σ2β2

t

t∑
s=1

(min{1, 2ws})2 ≤ 4σ2β2
t

t∑
s=1

min{1, w2
s} ≤ 8σ2β2

t d ln

(
1 +

tL2

dλ

)
,

where the first inequality is due to the non-decreasing property of {βs} and the last one is due to
Proposition 34. Therefore, from our Freedman’s inequality (Corollary 33), we can conclude that with
probability 1− δ/(4t2),

t∑
s=1

ℓs ≤ 2

√√√√ t∑
s=1

8σ2β2
t d ln

(
1 +

tL2

dλ

)
ln

8t2

δ
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≤ β2
t

2
+ 16σ2d ln

(
1 +

tL2

dλ

)
ln

8t2

δ
=

3

4
β2
t .

Taking a union bound over t and make use of the fact that
∑∞

t=1 t
−2 < 2 completes the proof.

We also have the following lemma:

Lemma 36 (Analog of Lemma B.4 from Zhou et al. (2021)). Under the same conditions as the
previous lemma, with probability 1− δ

2 , we will have the following for all ≥ 1 simultaneously:

t∑
s=1

η2sw
2
s

1 + w2
s

≤ 1

4
β2
t .

Proof. We still need to apply our Freedman’s inequality (Corollary 33) to

ℓs = E
[

η2sw
2
s

1 + w2
s

∣∣∣∣Fs−1

]
− η2sw

2
s

1 + w2
s

.

As ηs | Fs−1 ∼ subG(σ2), η2s | Fs−1 is a sub-exponential random variable (Proposition 12) such
that

E
[
exp(λ(η2s − E[η2s ]))

∣∣Fs−1

]
≤ exp(16λ2σ4), ∀|λ| ≤ 1

4σ2
,

which consequently means

E [exp(λℓs)|Fs−1] ≤ exp
(
16λ2σ4(min{1, w2

s})2
)
, ∀|λ| ≤ 1

4σ2
.

where the second step used the fact that w2
s

1+w2
s
≤ min{1, w2

s} as we used in the proof of Lemma 35.
Again by Proposition 34, we can conclude that

t∑
s=1

σ4(min{1, w2
s})2 ≤ 2σ2d ln

(
1 +

tL2

dλ

)
.

Then, as we did in the proof of Theorem 13, we will apply Proposition 11 to the martingale difference
sequence {ℓs}ts=1 with Vs = σ4(min{1, w2

s})2, f(λ) = 16λ2 for λ < 1
4σ2 and f(λ) =∞ otherwise.

Then for all x, v > 0 and λ ∈ (0, 1
σ2 ), we have

Pr


t∑

s=1

ℓs > x ∧

√√√√ n∑
i=1

σ4
i (min{1, w2

s})2 ≤ v

 ≤ exp
(
−λx+ 16λ2v2

)
.

Picking v2 =
∑t

s=1 σ
4
i (min{1, w2

s})2 and x = 4
√
2v
√
ln 2

δ gives

Pr


t∑

s=1

ℓs > 4

√√√√2

t∑
s=1

σ4
i (min{1, w2

s})2 ln
2

δ

 ≤ exp

(
− x2

32v2

)
=

δ

2
,

where λ is set to x
32v2 < 1

σ2 . Hence, with probability 1− δ
4t2 , we indeed have

t∑
s=1

ℓs ≤ 4

√√√√2

t∑
s=1

σ4
i (min{1, w2

s})2 ln
2

δ
≤ 8

√
2σ2d ln

(
1 +

tL2

dλ

)
ln

8t2

δ
.

Moreover, due to Proposition 34, we have
t∑

s=1

E
[

η2sw
2
s

1 + w2
s

∣∣∣∣Fs−1

]
≤ σ2

t∑
s=1

w2
s

1 + ws
≤ 2σ2d ln

(
1 +

tL2

dλ

)
,
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which means, as η2
sw

2
s

1+w2
s
≤ ℓs + E[ η

2
sw

2
s

1+w2
s
],

t∑
s=1

η2sw
2
s

1 + w2
s

≤ 2σ2d ln

(
1 +

tL2

dλ

)
+ 8

√
2σ2d ln

(
1 +

tL2

dλ

)
ln

8t2

δ
≤ 1

4
β2
t .

Taking a union bound over all t and again making use of the fact that
∑∞

t=1 t
−2 < 2 gives our

conclusion.

Therefore, as long as their Lemmas B.3 and B.4 still hold, we can conclude exactly the same
conclusion from their derivation. One may refer to their proof for the details.

I AUXILLIARY LEMMAS

Lemma 37 (Self Bounding Inequality, Efroni et al. (2020, Lemma 38)). Let 0 ≤ x ≤ a+ b
√
x where

a, b, x ≥ 0, then we have
x ≤ 4a+ 2b2.

Proof. As x− b
√
x− a ≤ 0, we have

√
x ≤ b

2
+

√
1

4
b2 + 4a ≤ b

2
+

√
b2

4
+
√
4a = b+ 2

√
a

from the fact that
√
a+ b ≤

√
a+
√
b. As

√
x ≥ 0, we have

x ≤ (b+ 2
√
a)2 ≤ 2b2 + 4a

due to the relation that (a+ b)2 ≤ 2a2 + 2b2.
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