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ABSTRACT

Recent 3D Instance Segmentation methods typically follow a similar paradigm; they
encode hundreds of instance-wise candidates with instance-specific information
in various ways and refine them into final masks. However, they have yet to
fully explore the benefit of these candidates. They overlook the valuable cues
encoded in multiple candidates that represent different parts of the same instance,
resulting in fragmented instance masks. Also, they often fail to capture the precise
spatial range of complex 3D instances, primarily due to inherent fuzzy noises from
sparse and unordered point clouds. In this work, to address these challenges, we
propose IKEA, a novel instance-wise knowledge enhancement approach. We first
introduce an Instance-wise Knowledge Aggregation to associate scattered single
instance details by optimizing correlations among candidates representing the same
instance. Moreover, we present Instance-wise Structural Guidance to enhance
the spatial understanding of candidates using structural cues from ambiguity-
reduced features. Here, we utilize a simple yet effective truncated singular value
decomposition algorithm to minimize inherent noises of 3D features. Finally, our
instance-wise features are now highly informative for real-world 3D instances. In
our extensive experiments on large-scale benchmarks, ScanNetV2, ScanNet200,
S3DIS, and STPLS3D, IKEA outperforms existing works. We also demonstrate the
effectiveness of our modules based on both kernel and transformer architectures.

1 INTRODUCTION

3D Instance Segmentation (3DIS) is a fundamental 3D computer vision task that significantly
contributes to real-world applications such as autonomous driving (Zhou et al., 2020) and robotics
navigation (Xie et al., 2021a). Given 3D point cloud scenes, the 3DIS tasks identifies respective
instances and assigns semantic class labels with the goal of comprehensively understanding entire
spatial environments. In real-life 3D scenarios, substantial occlusion and truncation commonly arise,
especially when objects are overlapped or obscured by others. To tackle these challenges, early
approaches mainly concentrated on accurately generating region proposals (top-down) (Hou et al.,
2019; Yang et al., 2019; Yi et al., 2019) or effectively grouping points with clustering algorithms
(bottom-up) (Wang et al., 2018; Chen et al., 2021; Jiang et al., 2020). However, these methods
presuppose that the intermediate processes, such as bounding box detection (He et al., 2017) or
heuristic voting mechanism (Qi et al., 2019), generate near perfect results, which is often not the case.

Recently, kernel-based (Wu et al., 2022; He et al., 2021; 2022; Ngo et al., 2023) and transformer-
based (Sun et al., 2023; Schult et al., 2022; Lai et al., 2023; Lu et al., 2023) 3DIS approaches have
been proposed, aiming to overcome the limitations of traditional frameworks. Kernel-based methods
leverage instance-aware kernels for dynamic convolution, which decodes instance masks. They
represent instances as kernels, replacing clustering algorithms with point sampling processes. On the
other hand, transformer-based methods train instance queries to identify features about individual
objects using attention mechanisms. These queries enable the direct prediction of per-point categories
and instance labels. In both architectures, models utilize hundreds of instance-wise candidate features,
to estimate the final instance mask. For example, ISBNet (Ngo et al., 2023) (kernel-based) produces
256 instance kernels, and MAFT (Lai et al., 2023) (transformer-based) leverages 400 instance queries.
However, despite the significant improvements based on their architectural advantages, they have
yet to fully optimize the handling of these numerous candidates and still face several challenges, as
illustrated in Fig. 1. To tackle these challenges, we introduce two main modules, IKA and ISG, each
thoughtfully designed to enhance the informativeness of instance-wise candidates.
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Figure 1: Examples of two challenging cases of 3DIS. (a) Per-point masks of instance-wise candidates:
highly correlated instance-wise candidates usually represent incomplete fragments of the same single
instance. And (b) Instance misinterpretation cases: existing studies often confuse instances from
backgrounds (Scene1) or misunderstand the spatial range and appearance of instances (Scene2).

First, we empirically observe that multiple instance candidates from previous works often encode
cues from the same single instance, as shown in Fig. 1 (a) and Fig. 9. These candidates are then
typically decoded into considerable fragment masks representing different components for each
instance, such as the backrest or armrest of the sofa. In this work, to estimate the complete coverage
of each instance, we introduce a carefully designed Instance-wise Knowledge Aggregation (IKA)
network, which integrates the scattered intelligence from multiple fragments, beyond relying solely
on a few fragments based on confidence scores. Specifically, we optimize the correlations among
instance-wise candidate features, encouraging the network to be aware of the distributed instance-
specific knowledge. We initially identify candidates representing the same instance based on the
similarity of their features, as highly correlated candidates usually capture the information from the
same instance. Then, inspired by correlation regularization mechanisms (Zbontar et al., 2021; Bardes
et al., 2021; Jang et al., 2024), we softly guide identified candidates to be closer to each other in a
latent space, aiming to enhance solidarity among them. To this end, IKA enables the network to learn
relationships between candidates and aggregate their comprehensive cues, maximizing the benefits
of using hundreds of candidates. Through extensive experiments in Sec. 4 and Appendix C, we
demonstrate the effectiveness of our proposed IKA network on 3D instance segmentation.

In addition to IKA, we explore additional avenues to enrich the knowledge of instance-wise candidates.
Unlike the human visual cognitive system, which perceives instances with sufficient prior knowledge,
the network understands instances depending on their external properties from 3D features. However,
point features are frequently unstable, primarily due to ambiguous inherent noises (Feng et al., 2021;
Xie et al., 2021b; Wu et al., 2021; Ren et al., 2021) caused by sparse and incomplete point clouds.
Consequently, these noises are likely to confuse the models, making it difficult to precisely interpret
the specific spatial range and unique appearance of instances, as shown in Fig. 1 (b) and Fig. 10 . To
mitigate the negative impact of such noises, we propose an Instance-wise Structural Guidance (ISG)
network, which is specifically designed to improve the structural understanding of instance candidates
for 3D instances from point features. Here, we utilize the truncated singular value decomposition
(SVD) (Golub & Reinsch, 1971; Stewart, 1993) algorithm to strengthen essential cues (e.g., shape) of
instance features while explicitly reducing fuzzy noises. Then, we effectively transfer fundamental
clues for object cognition from ambiguity-minimized features to corresponding original features
based on the cross-correlation matrix, as in the IKA. Ultimately, our instance features are now highly
informative across complex 3D instances with aggregated and structural knowledge from IKA and
ISG. Note that our novel networks can be applied to methods that use considerable instance-wise
candidates, regardless of model structures, including kernel and transformer-based architectures.

Given landmark datasets for 3DIS, ScanNetV2 (Dai et al., 2017), ScanNet200 (Rozenberszki et al.,
2022), S3DIS (Armeni et al., 2016), and STPLS3D (Chen et al., 2022), we thoroughly validate
the effectiveness of our novel framework, IKEA. Above all, our method outperforms the existing
state-of-the-art methods. To summarize, our main contributions are listed as follows:

• To extend the benefits of producing multiple instance-wise candidates, we introduce the
Instance-wise Knowledge Aggregation (IKA) network, which associates scattered instance-
specific information of the same single instance by optimizing correlations among them.
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• We design the Instance-wise Structural Guidance (ISG) network to improve the structural
knowledge of candidates. Specifically, we use a simple yet strong truncated singular value
decomposition process to emphasize essential cues from features while filtering out noises.

• We analyze the effectiveness of our proposed methods on four challenging datasets, including
ScanNetV2, ScanNet200, S3DIS, and STPLS3D. Comprehensive experiments across various
3D scenarios demonstrate that ours achieves new State-of-the-Art performance on 3DIS.

2 RELATED WORK

3D Instance Segmentation (3DIS) aims to distinguish individual instances within 3D scenes and
assign corresponding semantic categories. Typically, 3DIS approaches can be categorized into four
types: proposal-based (Hou et al., 2019; Yang et al., 2019; Yi et al., 2019), grouping-based (Wang
et al., 2018; Elich et al., 2019; Chen et al., 2021; Engelmann et al., 2020; Jiang et al., 2020), kernel-
based (Wu et al., 2022; He et al., 2021; 2022; Ngo et al., 2023), and transformer-based (Sun et al.,
2023; Schult et al., 2022; Lai et al., 2023; Lu et al., 2023). Based on the impressive achievements
of detection methods (He et al., 2017; Wang et al., 2022), proposal-based approaches first detect
instances and employ proposed regions as hard references to predict masks. However, these strategies,
such as 3D-SIS (Hou et al., 2019) or 3D-BoNet (Yang et al., 2019), heavily rely on the quality
of the outputs from the detection process. On the other hand, grouping-based methods catch 3D
instances through a bottom-up pipeline, aggregating closely related points into instances using
predicted semantic categories and center offsets. Yet, they still depend on intermediate manually
tuned processing, such as point grouping (Jiang et al., 2020) or heuristic voting mechanisms (Qi et al.,
2019), to specify detailed geometric properties. To address these limitations, kernel-based approaches
have been introduced. For example, DyCo3D (He et al., 2021) employs a clustering algorithm to
generate kernels for dynamic convolutions to predict instance masks, while ISBNet (Ngo et al., 2023)
presents a cluster-free method using instance-wise kernels. Recently, Spherical Mask (Shin et al.,
2023) based on ISBNet has overcome the low-quality results of coarse-to-fine strategies by using
spherical representation to mitigate the propagation of false negatives and instance size overestimation
issues. Furthermore, transformer-based methods, Mask3D (Schult et al., 2022) and MAFT (Lai et al.,
2023), utilize instance-wise queries to encode information about individual objects based on attention
mechanisms. In this work, we focus on improving the quality of numerous instance-wise candidates
from recent studies and introduce novel instance-wise knowledge enhancement approaches.

Singular Value Decomposition (SVD) is a fundamental algorithm in linear algebra, widely used for
matrix factorization (Golub & Reinsch, 1971; Stewart, 1993; Klema & Laub, 1980), dimensionality
reduction (Wall et al., 2003; Yang et al., 2014; Howland et al., 2003), and 2D image processing (Ra-
jwade et al., 2012; Guo et al., 2015; Dian et al., 2020; Shi et al., 2021). SVD decomposes a matrix
A P Rmˆn into the dot product of three matrices, U P Rmˆm, Σ P Rmˆn, and V P Rnˆn, each
containing meaningful vectors and scalar values, as follows:

A “ U ¨ Σ ¨ V T (1)

where U and V are the matrices with orthonormal columns, satisfying UTU “ V TV “ I , and Σ is
a diagonal matrix with nonnegative singular values σ in descending order as σ1 ě σ2 ě ¨ ¨ ¨ ě σr.
Based on SVD, truncated SVD (Hansen, 1987) is an insightful dimension-reduction technique that
minimizes nonessential noise while highlighting essential cues from the original matrix A. It produces
a subset of the most important k singular values to derive a low-rank approximation Ã P Rmˆn as:

Ã “ Uk ¨ Σk ¨ V T
k (2)

where Uk P Rmˆk, Σk P Rkˆk, and Vk P Rnˆk are the truncated matrices with only top k values.

In the field of 2D image processing, SVD has been extensively utilized for low-rank approximation.
For instance, Rajwade et al. (2012); Guo et al. (2015) employ SVD to factorize and estimate low-rank
patches, effectively reducing noise and enhancing image quality. Similarly, Chang et al. (2005);
Kang & Wei (2008) operate SVD to detect tampering by extracting and analyzing low-dimensional
representations of images for image forensics. Also, SVD showcases robust performance in image
compression (Prasantha et al., 2007; Bryt & Elad, 2008) and recovery (Shi et al., 2021). Further, Dian
et al. (2020) leverages SVD within CNNs to learn subspace information for hyperspectral image
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Figure 2: An overview of IKEA framework. Built upon the modern kernel-based structure, IKEA
consists of four main modules: (1) Sparse Convolutional 3D Backbone; (2) Instance-wise Knowledge
Aggregation (IKA, Sec. 3.2), which softly associates scattered cues from highly correlated instance
features of Finst; (3) Instance-wise Structural Guidance (ISG, Sec. 3.3), which smartly instructs Finst

with essential clues from F̃inst, using an effective SVD algorithm; and (4) Dynamic Convolution.

reconstruction. However, despite these potential benefits, the introduction of SVD has received
limited attention in 3D vision, especially for point clouds. Based on these observations, we utilize
SVD to address point features containing inherent noises from unordered properties of point cloud
data, facilitating the network to become more robust against various ambiguities. To the best of our
knowledge, we are the first to introduce the usefulness of SVD in the feature space of 3DIS.

3 METHOD

In this section, we introduce a novel 3D Instance Segmentation (3DIS) framework, IKEA, which (1)
integrates scattered instance-specific knowledge across multiple instance-wise candidates and (2)
enhances the structural understanding of candidates with essential cues from noise-reduced features.
We first provide an overview of the whole pipeline (Sec. 3.1) and then present technical details:
(Sec. 3.2) Instance-wise Knowledge Aggregation and (Sec. 3.3) Instance-wise Structural Guidance.

3.1 OVERVIEW

Recent 3DIS frameworks (He et al., 2021; 2022; Ngo et al., 2023; Schult et al., 2022; Lai et al.,
2023; Lu et al., 2023) commonly follow a similar paradigm; they spread hundreds of instance-wise
candidates across 3D scenes to capture instance-specific information in various ways and refine them
into a final instance mask. In this work, we encourage these numerous instance candidates to be highly
informative, improving their understanding of diverse real-world instances. We describe our instance-
wise knowledge enhancement approaches based on the modern kernel-based architecture (Ngo et al.,
2023). As illustrated in Fig. 2, our model consists of four main modules: (1) Sparse Convolutional
3D Backbone; (2) Instance-wise Knowledge Aggregation network, which relates the scattered
information of individual instances; (3) Instance-wise Structural Guidance network, which effectively
instructs candidates with spatial cues from augmented instance features; and (4) Dynamic Convolution
network. Note that we also describe transformer-based IKEA architecture in the Appendix B.

Kernel-based 3DIS Architecture. First, sparse convolutional U-Net backbone (Graham et al.,
2018) takes a colored point cloud P P RNpˆ6 as input and voxelizes P into voxels to extract point-
wise feature maps Fp P RNpˆD. Given the point feature, the point aggregator samples a set of instance
candidate features, referring to point positions based on the Farthest Point Sampling (FPS) (Eldar et al.,
1997). Specifically, we employ two-stage point aggregator blocks to produce optimal instance features
across 3D scenes. In the first stage, N 1

k number of candidates F 1
inst P RN 1

kˆD are sampled from
full-resolution feature Fp, while in the second stage, Nk (ă N 1

k) instance features Finst P RNkˆD

are sampled based on the F 1
inst. We then classify the category Ci for i “ t1, 2, . . . , Ncu of each

instance from Finst via linear classification head fcls using following cross-entropy loss:

Lcls “ ´Ec,wc„D

«

ÿ

rPNc

wcrrs log fclspFinstqrrs

ff

(3)
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Figure 4: Instance-wise Structural Guidance: We
decompose F 1

inst into three matrices (U , Σ, V )
using the SVD algorithm and keep top t singular
vectors to filter out less important noises. Then,
we effectively enhance Finst with highlighted es-
sential cues from F̃inst by optimizing LSG.

where wc indicates one-hot encoded category labels and D represents (input) data distribution. Also,
we predict instance kernels K P RNkˆD based on Finst through MLPs. Furthermore, each point-wise
prediction head processes Fp to generate mask features Fmask P RNpˆD and axis-aligned bounding
boxes Fbox P RNpˆ6 as auxiliary information for mask prediction. Finally, the dynamic convolution
network produces the final instance mask M̂f using instance kernels K and Fmask. To optimize the
final mask, we formulate the following loss Lmask as a sum of the two losses LBCE and Ldice:

Lmask “ λBCELBCEpMf , M̂f q ` λdiceLdicepMf , M̂f q (4)

where Mf denotes the ground-truth instance mask, and Ldice represents Dice loss (Deng et al., 2018).

3.2 INSTANCE-WISE KNOWLEDGE AGGREGATION (IKA)

Recent studies (Wu et al., 2022; He et al., 2021; 2022; Ngo et al., 2023; Schult et al., 2022; Lai
et al., 2023; Lu et al., 2023) in 3DIS deal with instance-wise features Finst as essential components,
aiming to encode rich semantic and geometric information about instances. They spread hundreds
of candidates over expansive 3D scenes to cover as many instances as possible; this number Nk

far exceeds the total number Ni of instances present in any single scene (see Appendix Tab. 12).
Although these candidates provide practical information for mask prediction, they often represent
separate parts of each instance, resulting in fragmented instance masks. With these insights, we focus
on associating scattered knowledge to fully leverage the advantages of multiple instance candidates.

To handle multiple candidates, we first identify those representing the same instance based on their
pairwise affinity. Specifically, we compute a correlation matrix Ika P RNkˆNk using the dot product
of Finst and its transpose FT

inst, then normalize Ika to a range between 0 and 1. Here, we note that
candidates representing the same instance yield relatively high correlation values. Thus, based on
Ika, we consider pairwise candidates with correlation values surpassing a predefined threshold τ
as fragments from the same instance. Then, as shown in Fig, 3, we softly guide these candidates
by optimizing their correlations in Ika, motivated by the success of recent self-supervised learning
strategies (Zbontar et al., 2021; Bardes et al., 2021). We extend this approach to further enrich
coherence among highly correlated candidate features while also encouraging the network to be
aware of scattered cues for each instance. In particular, we dynamically construct a pseudo-binary
correlation label matrix I˚

ka P t0, 1uNkˆNk , where elements of highly correlated pairs (ą τ ) in
Ika are 1, while the rest (ď τ ) are 0 for all candidate pairs. Given Ika and I˚

ka, we formulate the
element-wise correlation regularization loss LKA as follows:

Ika “ Finst ¨ FT
inst, I˚

kapi, jq “

"

1 if Ikapi, jq ą τ

0 otherwise,
(5)

LKA “
ÿ

Ikaąτ

∥I˚
kapi, jq ´ Ikapi, jq∥2 ` w ¨

ÿ

Ikaďτ

∥I˚
kapi, jq ´ Ikapi, jq∥2 (6)

where ∥¨∥2 denotes the L2 norm, and w is the weight to balance between highly correlated pairs and
others. In Eq. 6, the first term facilitates candidates representing the identical instance closer together
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in latent space, whereas the second term decreases correlations with unrelated candidates, thereby
reducing confusion from irrelevant knowledge. In conclusion, IKA establishes valuable connections
that strengthen solidarity across multiple candidates with scattered cues by regularizing LKA.

3.3 INSTANCE-WISE STRUCTURAL GUIDANCE (ISG)

In real-world scenarios, 3D instances are usually placed near each other or overlapping, arranged
in inconsistent patterns without conventional standards. Also, these instances are represented as
sparse point clouds, which often induce fuzzy inherent noises in point-wise features. Therefore,
the instance-wise features Finst from these settings are unclear, resulting in misinterpretation of
the spatial extent of each instance. In this work, we explicitly reduce such ambiguity of Finst by
leveraging intelligent structural guidance from clarity-enhanced instance-wise feature F̃inst.

For accurate segmentation, it is crucial to capture the clear morphological shape of complex instances.
From this intuition, we aim to encourage the model to learn the structural appearance of instances
better. Thus, we implement effective structural guidance based on a truncated singular value decom-
position (SVD) (Stewart, 1993; Golub & Reinsch, 1971) algorithm primarily used for noise reduction.
As illustrated in Fig. 4, given F 1

inst P RN 1
kˆD from the first point aggregator, we initially decompose

F 1
inst into three matrices based on SVD: (1) U P RN 1

kˆN 1
k , (2) Σ P RN 1

kˆD, and (3) V P RDˆD, as:

F 1
inst “ U ¨ Σ ¨ V T “

N 1
k

ÿ

i

ui ¨ σi ¨ vTi (7)

where U “ pu1, . . . , unq and V “ pv1, . . . , vnq are the matrices with orthonormal columns, and
Σ “ diagpσ1, . . . , σnq is a diagonal matrix containing singular values, arranged in the descending
order. Typically, the higher singular values in Σ include meaningful information for object cognition,
while the lower-rank vectors are regarded as less important, potentially causing ambiguity. Then, we
preserve only the top t singular values, along with their corresponding singular vectors from U and V ,
facilitating an ambiguity-reduced yet information-rich representation of the original feature F 1

inst as:

F̃ 1
inst P RN 1

kˆD “ Ũ ¨ Σ̃ ¨ Ṽ T “

N 1
k

ÿ

i

ũi ¨ σ̃i ¨ ṽTi (8)

where Ũ P RN 1
kˆt, Σ̃ P Rtˆt, and Ṽ P RDˆt are truncated matrices using only t columns from U , Σ,

and V , then F̃ 1
inst is reconstructed from them. Based on both F 1

inst and F̃ 1
inst, we sample instance-

wise features Finst and F̃inst, respectively, employing the shared second stage point aggregator.
Given Finst and F̃inst, we calculate the cross-correlation matrix Isg P RNkˆNk and also generate
a pseudo-binary correlation label I˚

sg P t0, 1uNkˆNk , as in the IKA network. We then effectively
transfer structural clues from F̃inst, utilizing the correlation regularization loss LSG as follows:

Isg “ Finst ¨ F̃T
inst, I˚

sgpi, jq “

"

1 if Isgpi, jq ą τ

0 otherwise,
(9)

LSG “
ÿ

Isgąτ

∥∥I˚
sgpi, jq ´ Isgpi, jq

∥∥
2

` w̃ ¨
ÿ

Isgďτ

∥∥I˚
sgpi, jq ´ Isgpi, jq

∥∥
2

(10)

where w̃ represents the balancing hyper-parameter, and the role of each term in Eq. 10 follows Eq. 6.
By optimizing LSG, ISG conditionally instructs instance-wise features Finst to incorporate spatial
configuration details from clarity-enhanced features F̃inst, thereby improving discriminative power.

Loss Function. Finally, our framework is trained by minimizing the following loss function Ltotal:
Ltotal “ λmaskLmask ` λclsLcls ` λKALKA ` λSGLSG (11)

where each λ is a hyper-parameter from grid searches to handle the strength of respective loss term.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Datasets. In this study, we train and evaluate the overall performance using four landmark bench-
marks for 3D instance segmentation: ScanNetV2 (Dai et al., 2017), ScanNet200 (Rozenberszki et al.,
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Table 1: Comparison of 3DIS per-
formance with state-of-the-art ap-
proaches on the ScanNetV2 (Dai
et al., 2017) validation set.

ScanNetV2

Method mAP mAP50 mAP25

GSPN 19.3 37.8 53.4
3D-SIS – 18.7 35.7
MTML 20.3 40.2 55.4
3D-MPA 35.5 59.1 72.4
DyCo3D 35.4 57.6 72.9
PointGroup 34.8 56.7 71.3
MaskGroup 42.0 63.3 63.3
OccuSeg 44.2 60.7 71.9
SSTNet 49.4 64.3 74.0
SoftGroup 46.0 67.6 78.9
Mask3D 55.2 73.7 82.9
QueryFormer 56.5 74.2 83.3
ISBNet 56.8 73.3 81.3
MAFT 58.4 75.9 84.5
Spherical Mask 62.3 79.9 88.2

IKEA (Ours) 62.9 81.8 88.7

Table 2: Comparison of 3DIS performance with state-of-the-art
approaches on the S3DIS (Armeni et al., 2016) Area 5 and 6-fold
cross validation. For clarity and readability of Tab. 1 and Tab. 2,
we describe each method with references in Appendix C.1.

S3DIS Area 5 S3DIS 6-fold CV

Method AP AP50 Prec50 Rec50 AP AP50 Prec50 Rec50

SGPN – – 36.0 28.7 – – 38.2 31.2
ASIS – – 55.3 42.4 – – 63.6 47.5
3D-Bonet – – 57.5 40.2 – – 65.6 47.6
3D-MPA – – 63.1 58.0 – – 66.7 64.1
PointGroup – 57.8 61.9 62.1 – 64.0 69.6 69.2
DyCo3D – – 64.3 64.2 – – – –
MaskGroup – 65.0 62.9 64.7 – 69.9 66.6 69.6
SSTNet 42.7 59.3 65.5 64.2 54.1 67.8 73.5 73.4
SoftGroup 51.6 66.1 73.6 66.6 54.4 68.9 75.3 69.8
ISBNet 56.3 67.5 70.5 72.0 60.8 70.5 77.5 77.1
DKNet – – 70.8 65.3 – – 75.3 71.1
Mask3D 56.6 68.4 68.7 66.3 64.5 75.5 72.8 74.5
QueryFormer 57.7 69.9 70.5 72.2 62.0 73.3 72.7 73.4
MAFT – 69.1 – – – – – –
Spherical Mask 60.5 72.3 71.3 76.3 64.0 72.3 78.1 77.7

IKEA (Ours) 61.1 73.0 72.0 77.0 65.8 76.9 79.4 78.9

Table 3: Comparison of 3DIS performance
with state-of-the-art approaches on the Scan-
Net200 (Rozenberszki et al., 2022) validation
set, which contains 200 categories.

Method mAP mAP50 mAP25

SPFormer (Sun et al., 2023) 25.2 33.8 39.6
Mask3D (Schult et al., 2022) 27.4 37.0 42.3
QueryFormer (Lu et al., 2023) 28.1 37.1 43.4
MAFT (Lai et al., 2023) 29.2 38.2 43.3
IKEA (Ours) 29.9 38.9 44.9

Table 4: Comparison of 3DIS performance
with state-of-the-art approaches on the
STPLS3D (Chen et al., 2022) test dataset,
including large-scale aerial outdoor scenes.

Method mAP mAP50 mAP25

PointGroup (Jiang et al., 2020) 23.3 38.5 48.6
HAIS (Chen et al., 2021) 35.1 46.7 52.8
SoftGroup (Vu et al., 2022) 47.3 63.1 71.4
Mask3D (Schult et al., 2022) 63.4 79.2 85.6
IKEA (Ours) 64.9 81.2 87.6

2022), S3DIS (Armeni et al., 2016), and STPLS3D (Chen et al., 2022). These four datasets provide
3D point cloud scan data collected in diverse real-world environments. Note that detailed descriptions
of each dataset and all implementation details are provided in Appendix A.

Evaluation Metrics. We evaluate the 3D Instance Segmentation (3DIS) performance using the
Average Precision (AP), a conventional metric in computer vision tasks. We report the mean average
precision (mAP) across IoU (Intersection of Union) thresholds incremented by 5%, ranging from 50%
to 95%. Also, we assess mAP50 and mAP25, representing accuracy with IoU thresholds of 50% and
25%, respectively. For the S3DIS (Armeni et al., 2016) dataset, we further provide mean precision
(mPrec) and mean recall (mRec) with an IoU threshold of 50%, following previous methods.

4.2 PERFORMANCE COMPARISON WITH STATE-OF-THE-ART METHODS

In this section, we quantitatively compare our proposed framework IKEA with existing state-of-the-art
methods. Despite significant improvements with high scores in 3DIS, these methods, regardless of the
architecture, still waste considerable instance-wise candidates that may contain valuable information.
To maximize the benefits of using numerous candidates, we present novel instance-wise knowledge
aggregation (IKA) and guidance (ISG) networks. As shown in Tab. 1, we first evaluate mean average
precision (mAP) with different IoU thresholds across 18 classes on the ScanNetV2 (Dai et al., 2017)
validation set. IKEA generally outperforms other methods, achieving new state-of-the-art accuracy
in terms of mAP, mAP50, and mAP25 (62.9 / 81.8 / 88.7). In Tab. 2, we assess 3DIS performance
on Area 5 and the 6-fold cross-validation set of the S3DIS (Armeni et al., 2016) dataset. For Area 5
evaluation, we train with Areas 1 to 6, excluding 5, and validate with Area 5; in 6-fold cross-validation,
we average the validation scores across all 6 areas. Our method demonstrates impressive performance
in both evaluations, reaching 61.1 / 73.0 (Area 5) and 65.8 / 76.9 (6-fold) in mAP / mAP50. Also, in
Tab. 3, IKEA achieves robust scores on the ScanNet200 (Rozenberszki et al., 2022) dataset containing
fine-grained 200 categories. Remarkably, as shown in Tab. 4, IKEA surpasses existing methods on the
STPLS3D (Chen et al., 2022) dataset, including outdoor 3D scenes, with improvements of up to +1.5
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Table 5: Ablation study to see the effect of two
main modules based on kernel-based pipeline (K).

Method (Kernel-based) ScanNet Val S3DIS Area 5

Baseline (K) IKA ISG mAP / mAP50 mAP / mAP50

✓ - - 56.8 / 73.3 56.3 / 67.5
✓ ✓ - 62.7 / 80.8 60.4 / 72.6
✓ - ✓ 62.8 / 81.1 60.6 / 71.9
✓ ✓ ✓ 62.9 / 81.8 61.1 / 73.0

Table 6: Ablation study to see the effect of two
main modules based on transformer pipeline (T).

Method (Transformer) ScanNet Val S3DIS Area 5

Baseline (T) IKA ISG mAP / mAP50 mAP / mAP50

✓ - - 58.4 / 75.9 56.6 / 68.4
✓ ✓ - 59.1 / 76.2 58.8 / 70.7
✓ - ✓ 59.4 / 77.2 58.4 / 70.1
✓ ✓ ✓ 60.8 / 77.9 59.0 / 71.6

/ 2.0 / 2.0 in mAP / mAP50 / mAP25. These results highlight that IKEA successfully handles instance
candidates, improving their informativeness, as intended, in understanding real-world instances from
both indoor and outdoor environments. In each table, ”-” indicates unreported scores.

4.3 ABLATION STUDIES

Effect of IKA and ISG Networks. We evaluate variants of our method w/ and w/o IKA and ISG
modules based on kernel (K) and transformer-based (T) architectures. As shown in Tab. 5 and 6,
the addition of each module surpasses the score of baseline models (Ngo et al., 2023; Lai et al.,
2023; Schult et al., 2022) across all experiments, regardless of model structure. Specifically, IKA
boosts performance, with gains of up to +5.9 / 7.5 for ScanNetV2 (Dai et al., 2017) and +4.1 /
5.1 for S3DIS (Armeni et al., 2016) in mAP / mAP50, underscoring the importance of integrating
scattered clues from multiple candidates. Also, ISG contributes to the spatial understanding of
instance candidates via intelligent structural guidance from clarity-enhanced features, improving up
to +6.0 / 7.8 and +4.3 / 4.4. Eventually, utilizing all modules together gains further advancements,
resulting in the best performance with notable progress on both structures. These results demonstrate
each module plays a meaningful role in improving the discriminative ability of instance-wise features.

Table 7: Ablation study to see the effect of two
main modules across both pipelines, using the IoU
score on the ScanNetV2 (Dai et al., 2017) val set.

Method Kernel-based Transformer

Baseline IKA ISG Average IoU Average IoU

✓ - - 0.8627 0.8486
✓ ✓ - 0.8828 0.8728
✓ - ✓ 0.8825 0.8730
✓ ✓ ✓ 0.8904 0.8803

Furthermore, to assess how each module con-
tributes to accurately determining the coverage
of instance masks, we utilize the IoU metric,
which is closely associated with segmentation
performance. IoU measures the overlap between
the predicted and ground truth masks by cal-
culating the ratio of their intersection to their
union. In Tab. 7, we compare the average IoU
of our predicted instance masks and those of the
baselines for both architectures. We excluded
instance masks for walls and floors, as these are
not considered in the overall score evaluation.
As shown in Fig. 1 (a) and Fig. 9, for previous works, a single instance is often separated into
several fragments. These fragments potentially cause low IoU scores. To address this challenge,
IKA encourages the network to understand the full coverage of a single instance by applying knowl-
edge aggregation. The IoU improvements in using IKA across both architectures confirm that our
approach effectively minimizes the negative impact of multiple fragments and enhances the accuracy
of instance mask coverage. Also, the IoU tends to be low, particularly when instance masks include
the surrounding backgrounds or when adjacent instances are not clearly distinguished, as shown in
Fig. 1 (b) and Fig. 10, leading to overestimated or underestimated instance masks. To tackle these
confusions, ISG guides the instance candidates with structural guidance from noise-reduced features.
In addition to IKA, ISG enhances the IoU scores, verifying our guidance is sufficiently practical. We
further quantitatively and qualitatively validate the significance of ours in Appendix C.2 and C.4.

Table 8: Ablation study to compare our correlation
regularization terms with usual cross-entropy loss.

Method
ScanNet Val S3DIS Area 5

mAP / mAP50 mAP / mAP50

Baseline (Ngo et al., 2023) 56.8 / 73.3 56.3 / 67.5
IKEA w/ Cross Entropy 61.2 / 79.7 58.6 / 70.4

IKEA 62.9 / 81.8 61.1 / 73.0

Correlation Regularization Terms. Inspired
by the self-supervised mechanisms (Zbontar
et al., 2021), we softly guide highly correlated
instance-wise features to be closer to each other
in the latent space, enhancing their solidarity
(Eq. 6 and Eq. 10). Specifically, we utilize dy-
namically generated pseudo-binary labels to reg-
ularize correlations. This element-wise regu-
larizing strategy is conceptually comparable to
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Table 9: Ablation study to investigate the correla-
tion matrix threshold τ for determining instance-
wise candidates representing the same instance.

Architecture Threshold τ
ScanNet Val S3DIS Area 5

mAP / mAP50 mAP / mAP50

Baseline (K) - 56.8 / 73.3 56.3 / 67.5
Kernel-based 0.6 53.6 / 73.4 55.3 / 65.5
Kernel-based 0.7 57.2 / 76.4 59.1 / 69.2
Kernel-based 0.8 61.1 / 79.9 60.7 / 72.3
Kernel-based 0.9 62.9 / 81.8 61.1 / 73.0

Baseline (T) - 58.4 / 75.9 56.6 / 68.4
Transformer 0.6 57.9 / 75.8 56.3 / 67.5
Transformer 0.7 59.2 / 76.2 57.4 / 68.6
Transformer 0.8 59.9 / 77.1 58.6 / 70.4
Transformer 0.9 60.8 / 77.9 59.0 / 71.6

ScanNetV2 S3DIS
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Figure 5: Performance comparison to explore the
optimal top t value for reducing ambiguity while
keeping important cues of instance features.

standard cross-entropy loss, which measures the difference between predicted probabilities and
ground-truth distributions. Therefore, to compare the two loss functions, we replace our regulariza-
tion loss (LKA and LSG) with standard cross-entropy loss. Here, we set all other settings constant. In
Tab. 8, both approaches outperform the baseline (Ngo et al., 2023); however, IKEA with cross-entropy
loss yields lower performance than the original IKEA. We consider that this performance gap comes
from the differences in how each loss handles negative pairs. Cross-entropy loss aims to minimize
the disparity between predictions and true labels without explicitly addressing negative pairs. On
the other hand, ours considers both positive and negative pairs, reducing the position-wise distances
between predicted and target matrices. This strategy encourages the model to establish valuable con-
nections among highly correlated candidates, while minimizing confusion from irrelevant knowledge
of unrelated candidates. In conclusion, these results validate the effectiveness of our regularization.

Thresholds τ for Instance-wise Identification. To enhance the informativeness of instance fea-
tures, we utilize IKA and ISG networks. In the IKA, we compute the correlation matrix Ika between
Finst and FT

inst, while in the ISG, we calculate Isg between Finst and F̃inst. Then, we specify
candidates representing the same instance using predefined threshold τ . In Tab. 9, based on kernel (K)
and transformer (T) architectures (Ngo et al., 2023; Lai et al., 2023; Schult et al., 2022), we explore
the impact of τ for useful knowledge interaction. When τ is lower than 0.7, the performance gain
is insufficient for both architectures. Due to the inclusion of inaccurate information from different
instance representative features, scores even decrease. But, with more precise identification using
the higher τ (ě 0.8), our knowledge interaction yields considerable improvements. This result em-
phasizes that the knowledge from accurately identified candidates is precious for enhancing instance
interpretation. We also examine τ for the STPLS3D (Chen et al., 2022) dataset in Appendix C.3.

Analysis of the Top t values. In this work, we utilize a truncated SVD algorithm (Hansen, 1987)
to reduce inherent ambiguity from 3D features, clarifying the structural appearance of instances. We
truncate the top t vectors of (U,Σ, V ) and reconstruct F̃ 1

inst using truncated (Ũ , Σ̃, Ṽ ). Here, the
t value impacts the balance between data compression and information preservation. Therefore, it
is crucial to find the optimal value of t for proper balance. To this end, we conduct experiments
using various t for both kernel (blue) and transformer (orange) architectures in Fig. 5. We represent t
as a percentage, so the x-axis indicates the proportion of vectors retained during truncation across
three matrices. We observe that the trends of all experiments are similar. In settings with a lower
t percentage (0.1), the scores consistently decrease due to large information loss. However, with
a higher t (0.7), the effect of noise reduction is insufficient; thereby, performance is comparable
to baselines (Ngo et al., 2023; Lai et al., 2023). We ultimately set t as 0.5, resulting in the highest
accuracy while allowing us to keep meaningful information and effectively filter out inherent noises.

4.4 QUALITATIVE RESULTS

Visual Comparison. In Fig. 6, we qualitatively validate the effectiveness of our novel framework,
IKEA. We visualize the predicted semantic (Sem.) and instance (Inst.) masks of the state-of-the-art
kernel (K) (Ngo et al., 2023) and transformer (T) (Lai et al., 2023) baseline models with ours on the
ScanNetV2 dataset. We also provide the corresponding ground truth for solid comparisons. As shown
in Scene 1, ours accurately segments the cabinet as a single instance, whereas the baselines separate
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Figure 6: Qualitative comparison of instance (Inst.) and semantic (Sem.) masks between the baselines
(ISBNet (K) (Ngo et al., 2023), MAFT (T) (Lai et al., 2023)) and ours with Ground Truth masks on
the ScanNetV2 val set. The critical differences are highlighted using yellow boxes. Note that the
color map (right) represents semantic labels. We provide more qualitative results in the Appendix C.6.

it into multiple fragments. In Scene 2, ours correctly distinguishes multiple neighboring instances
(four chairs and a table), while baselines erroneously recognize two chairs as one (K) or a table and
a chair as one (T). Also, in Scene 3, where objects are disorderly adjacent, ours clearly captures the
spatial range of the desk and chairs compared to the baselines. These qualitative results verify that
our instance features contain highly informative cues for understanding complex 3D instances.

RGB Input Instance from 𝐹!"#$ Instance from "𝐹!"#$
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en

e1
Sc

en
e2

Sc
en

e3

Figure 7: Instance feature visualizations of the orig-
inal feature Finst and ambiguity-reduced F̃inst.

Structural Guidance from F̃inst. In the ISG
network, we guide the original instance features
Finst to learn structural cues from the noise-
reduced features F̃inst. Here, in Fig. 7, we qual-
itatively confirm the significance of this knowl-
edge. As shown in Scene 1 and 2, instance fea-
tures (red) from F̃inst accurately capture the spa-
tial range of instances (chair and desk), whereas
instance features (blue) from Finst struggle to
cover the complete coverage. Also, in Scene 3,
where the distinction is unclear (blue) from the
surroundings (curtain and wall), the candidate
feature (red) from F̃inst clearly segments such
instances. These findings highlight guidance
from clarity-enhanced features is worthwhile.

5 DISCUSSION AND CONCLUSION

In this paper, we introduce IKEA, a novel instance-wise knowledge enhancement approach for
the 3D Instance Segmentation task. We first focus on optimizing the efficiency of hundreds of
instance candidates by effectively handling those representing the same single instance. To address
these candidates, we propose an Instance-wise Knowledge Aggregation (IKA) to integrate spread
clues using the correlation matrix. Moreover, we present an Instance-wise Structural Guidance
(ISG), which enhances original instance features with fundamental cues for object understanding
from ambiguity-reduced instance features using the truncated singular value decomposition. Our
comprehensive experiments on large-scale benchmarks validate the effectiveness of our proposed
methods, achieving new state-of-the-art results on both kernel and transformer architectures. Though
IKEA significantly improves the 3D instance segmentation performance, it does not ensure perfect
predictions for all 3D scenarios. Thus, a thorough plan is essential when implementing IKEA in
contexts like autonomous driving or robotics navigation. In the future, we plan to further explore the
potential of IKEA in various 3D perception tasks, such as 3D object detection (Qian et al., 2022; Chen
et al., 2023) or 3D navigation (Liu et al., 2023; Zhang et al., 2023). It would be valuable to apply and
validate our instance-wise knowledge enhancement approach with diverse models that utilize instance
candidates. Further, we will investigate deep learning based denoising techniques (Tian et al., 2020;
Elad et al., 2023) to reduce noises and highlight structural cues from instance-wise features.
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APPENDIX

In this appendix, we provide further explanations and visualizations of our main paper, ”Instance-wise
Knowledge Enhancement for 3D Instance Segmentation”. We first explain more details about the
implementation and large-scale datasets (Appendix. A). Then, we describe the transformer-based
IKEA architecture (Appendix. B). Also, we supply more quantitative and qualitative experimental
results to validate the robustness of IKEA for 3D instance segmentation (Appendix. C).

A EXPERIMENTAL SETUP

A.1 DATASETS

We train and evaluate the overall performance using four landmark datasets for 3D instance segmen-
tation: ScanNetV2 (Dai et al., 2017), ScanNet200 (Rozenberszki et al., 2022), S3DIS (Armeni et al.,
2016), and STPLS3D (Chen et al., 2022).

ScanNetV2. The ScanNetV2 (Dai et al., 2017) dataset consists of high-quality, large-scale 3D point
data with 1613 scenes from various room types, including bedrooms, libraries, and offices. It includes
1201 training scenes, 312 validation scenes, and 100 hidden test scenes. Each scene is captured with
RGB-D cameras and categorized using 20 semantic classes and instance segmentation labels.

ScanNet200. To reflect diverse real-world scenarios, ScanNet200 (Rozenberszki et al., 2022)
extends the original ScanNetV2 (Dai et al., 2017) dataset with fine-grained 200 categories. Scan-
Net200 enables more practical assessments of how effectively methods can understand rare instances
(e.g.water cooler or keyboard piano) and challenging, long-tail distribution scenes. In our experi-
ments, we evaluate using 18 classes for ScanNetV2 and 198 classes for ScanNet200, excluding wall
and floor categories.

S3DIS. The S3DIS (Armeni et al., 2016) dataset is large-scale benchmark, comprising a wide range
of indoor environments, including 271 scenes from 6 areas within three different buildings. It is
annotated with 13 semantic categories, and we utilize all these classes for evaluation. Following the
standard validation protocol (Schult et al., 2022; Lai et al., 2023; Armeni et al., 2016), we report
segmentation performance on Area 5 (the scenes in Area 5 for validation and the others for training)
and 6-fold cross-validation (average across all 6 areas).

STPLS3D. The STPLS3D (Chen et al., 2022) dataset is a extensive aerial photogrammetry dataset
containing both real and synthetic 3D point clouds. It includes 25 urban scenes covering 6 km², with
14 semantic classes. We use scenes 5, 10, 15, 20, and 25 for evaluation and the rest for training,
following Vu et al. (2022); Chen et al. (2021).

A.2 IMPLEMENTATION DETAILS

In this work, we implement our experimental setup using the PyTorch prevalent deep learning
framework. For the kernel-based IKEA framework, we utilize two point aggregator blocks, each with
a ball query radius of 0.2 and 0.4 and 32 neighbors for both layers. We also implement three dynamic
convolution layers. We train our model for 120 epochs using a single RTX 3090 GPU 24GB (« 16
hours) with a batch size of 12 and applying the AdamW optimizer with a learning rate of 1 ˆ 10´3

and a weight decay of 1 ˆ 10´4. Furthermore, we set λ parameters rλmask, λcls, λKA, λSGs as
r5 ˆ 10´1, 5 ˆ 10´1, 1 ˆ 10´3, 1 ˆ 10´3s. For the transformer-based IKEA pipeline, we utilize a
transformer decoder with 6 layers and 8 heads to refine 400 instance queries. We use Fourier absolute
position encoding with a temperature set to 10,000. For training, we train for 512 epochs with a
batch size of 4, using the AdamW optimizer with a learning rate of 2 ˆ 10´4 and a weight decay
of 5 ˆ 10´2 on a single RTX 3090 GPU 24GB (« 24 hours). We set rλmask, λcls, λKA, λSGs as
r1, 1, 1 ˆ 10´3, 1 ˆ 10´3s. Regardless of each architecture, we set the voxel size to 0.02m for the
ScanNet (Dai et al., 2017) and S3DIS (Armeni et al., 2016) datasets, and 0.3m for the STPLS3D (Chen
et al., 2022) dataset. During training, points are randomly sampled for augmentation with a maximum
of 250,000 points, while all points are used for evaluation. This sampling technique is memory-
efficient and can also serve as a dropout. Moreover, we set the correlation matrix threshold value τ to
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Figure 8: An overview of transformer-based IKEA framework. Built upon the classic transformer-
based structure, IKEA consists of four main modules: (1) Sparse Convolutional 3D Backbone; (2)
Instance-wise Knowledge Aggregation (IKA); (3) Instance-wise Structural Guidance (ISG); and
(4) Mask Transformer Decoder, which iteratively refines instance-wise queries to contain instance-
specific information based on attention mechanisms and completes them into final instance masks.

0.9 (exceptionally 0.8 for STPLS3D) for precisely identifying instance-wise candidates representing
the same instance, and the top t value as 0.5 for an optimal balance between data compression and
information preservation. Also, for LKA and LSG, we set the balance hyperparameters w and w̃ to
5.1 ˆ 10´3 following (Zbontar et al., 2021; Jang et al., 2024).

B TRANSFORMER-BASED IKEA FRAMEWORK

In this section, we describe our instance-wise knowledge enhancement methods based on classic
transformer-based architecture (Schult et al., 2022; Lai et al., 2023). As illustrated in Fig. 8, our
model consists of four main modules: (1) Sparse Convolutional 3D Backbone; (2) Instance-wise
Knowledge Aggregation (IKA), which associates the scattered cues of the same single instance;
(3) Instance-wise Structural Guidance (ISG), which enhances the spatial understanding of instance
features using noise-reduced features; and (4) Mask Transformer Decoder, which refines hundreds of
instance candidate queries to contain instance-specific information based on attention mechanisms.

Transformer-based 3DIS Architecture. As in the kernel-based architecture (see Sec. 3), the sparse
convolutional U-Net backbone (Graham et al., 2018) first takes a colored point cloud P P RNpˆ6 as
input and extracts full-resolution feature maps F 1

p P RNpˆD. We then produce F 1
p into mask features

Fmask P RNpˆD and point features Fp P RNpˆD via MLP layers. Following Schult et al. (2022);
Misra et al. (2021), we set zero-initialized non-parametric instance queries Q P RNkˆD, referring to
point positions sampled with furthest point sampling (FPS) (Eldar et al., 1997). Given the Fmask, Fp

and Q, the transformer decoder layer iteratively enhances the queries Q using attention mechanisms.
Specifically, we employ the masked cross-attention with an intermediate foreground mask Mattn.
We compute the similarity between Q and Fmask using the dot product operation, then calculate the
probability of the instance mask using the sigmoid function as follows:

Mattn “ tmi,j “ rσpFmask ¨ QT qi,j ą 0.5su (12)

where the threshold value is 0.5 for binary attention mask. With Mattn, Q attends to point features
Fp in the cross-attention layer to contain instance-specific information as follows:

Q “ softmaxpQKT {
?
D ` MattnqV (13)

where K and V are linearly projected from Fp, and Q are from Q. Subsequently, we utilize the
standard self-attention layer. Here, the queries, keys, and values are all linear projections of Q. After
passing through these layers, we predict the final instance masks using the queries from the last layer.

IKEA Approach. In transformer-based architecture, iterative decoder layers attend point features,
which often contain inherent fuzzy noises due to the sparse and incomplete nature of point clouds.
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Thus, repetitive layers can lead to noise accumulation in the candidate features during the attention
operations, potentially resulting in spatial range misinterpretations. To tackle this challenge, we
introduce our ISG network, which leverages a simple yet effective truncated SVD (Hansen, 1987)
technique within the decoder layers to regularize the correlations between the original and clarity-
enhanced query features. Then, the iterative layers continuously enrich instance candidate queries
with structural cues, as detailed in Sec. 3.3. Also, we implement our IKA network, which is designed
to integrate scattered clues across query features representing the same single instance. The IKA
optimizes correlations among instance candidate queries, as outlined in Sec. 3.2. Ultimately, IKEA
predicts more accurate instance segmentation masks with highly informative instance query features.

C EXPERIMENTAL RESULTS
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Figure 9: Additional challenging cases from prior
works. Instance-wise candidates usually represent
incomplete fragments of the same single instance.
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Figure 10: Additional challenging cases from
prior works. They often confuse instances from
backgrounds or misunderstand the spatial range.

C.1 PRIOR WORKS IN TABLE 1 AND 2

In Tab. 1 and Tab. 2, we quantitatively compare our proposed framework IKEA with various existing
state-of-the-art methods. IKEA generally outperforms other approaches, including GSPN (Yi et al.,
2019), SGPN (Wang et al., 2018), ASIS (Wang et al., 2019), 3D-Bonet (Yang et al., 2019), 3D-
SIS (Hou et al., 2019), MTML (Lahoud et al., 2019), 3D-MPA (Engelmann et al., 2020), DyCo3D (He
et al., 2021), PointGroup (Jiang et al., 2020), MaskGroup (Zhong et al., 2022), OccuSeg (Han et al.,
2020), SSTNet (Liang et al., 2021), SoftGroup (Vu et al., 2022), Mask3D (Schult et al., 2022),
DKNet (Wu et al., 2022), QueryFormer (Lu et al., 2023), ISBNet (Ngo et al., 2023), MAFT (Lai
et al., 2023), and Spherical Mask (Shin et al., 2023), demonstrating impressive advancements.

C.2 EFFECTIVENESS OF THE IKA

Avg Var / StDev (Transformer)Avg Var / StDev (Kernel)

Figure 11: Distribution of the average variance and
standard deviation of instance features across base-
lines (blue) and those with IKA (orange) network.

To further validate the effectiveness of our IKA
network, we investigate the average variance and
standard deviation of instance candidate features
across both kernel and transformer architectures
of baselines (Ngo et al., 2023; Lai et al., 2023)
and those with IKA in Tab. 10 and Fig. 11. We
first identify candidates representing the same in-
stance using ground-truth instance masks to en-
sure fair and more precise comparisons between
predicted instance masks from each model. We
then calculate the variance and standard devi-
ation of features corresponding to identical in-
stances. Compared to baselines, incorporating
IKA consistently achieves lower variance and standard deviation, regardless of the architecture.
These results verify that our instance-wise aggregation approach effectively enhances the correlations
between candidates from the same instance, establishing meaningful associations.
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Table 10: Average variance and standard de-
viation of instance features across kernel and
transformer-based models and those with IKA.

Method Avg Variance Avg StDev

ISBNet (K) (Ngo et al., 2023) 2.8441 1.6152
ISBNet w/ IKA 2.4620 1.4199

MAFT (T) (Lai et al., 2023) 2.3613 1.5352
MAFT w/ IKA 2.1278 1.2743

Table 11: Analysis of the correlation matrix
threshold τ for instance-wise candidate identifica-
tion on the STPLS3D (Chen et al., 2022) dataset.

Architecture Threshold τ mAP mAP50

Baseline Schult et al. (2022) - 63.4 79.2
IKEA 0.6 61.8 78.8
IKEA 0.7 64.5 80.8
IKEA 0.8 64.9 81.2
IKEA 0.9 64.7 81.0

C.3 THRESHOLD τ FOR THE STPLS3D DATASET

In addition to analyzing threshold τ on the ScanNetV2 (Dai et al., 2017) and S3DIS (Armeni et al.,
2016) datasets presented in Tab. 9, we also conduct experiments across a range of τ values to find
the optimal threshold that facilitates robust identification of candidates representing the same single
instance for the STPLS3D (Chen et al., 2022) dataset. As shown in Tab. 11, the model effectively
determines instance candidates likely to represent the same instance with a somewhat lower threshold
of 0.8 for the STPLS3D, compared to 0.9 for both ScanNetV2 and S3DIS. This difference is probably
because STPLS3D includes relatively monotonous large instances, such as buildings and cars, unlike
ScanNetV2 or S3DIS, which contain more complex indoor props.

C.4 EFFECTIVENESS OF THE IKEA FRAMEWORK

We provide t-SNE (Van der Maaten & Hinton, 2008) visualizations of instance candidate features
clustered using the density-based spatial clustering (DBSCAN) (Ester et al., 1996) algorithm to further
qualitatively demonstrate the significance of the IKEA framework. As shown in Fig. 12, the candidate
features in the baseline method (Ngo et al., 2023) are wildly scattered without patterns in the feature
space, resulting in multiple fragments. In contrast, IKEA produces relatively distinctive clusters for
the same scene, with clusters that are accurate to the number of instances. These qualitative findings
confirm that our IKA and ISG networks handle hundreds of instance candidate features effectively.

C.5 DISCUSSION ON THE NUMBER OF INSTANCES

Table 12: Minimum, maximum, and average num-
ber of instances per scene from various datasets.

Dataset min Inst. max Inst. avg Inst.

ScanNetV2 (Dai et al., 2017) 3 104 15.2
S3DIS (Armeni et al., 2016) 6 90 34.5

STPLS3D (Chen et al., 2022) 2 93 25.2

We investigate the number of instances within
scenes from various benchmarks, including
ScanNetV2 (Dai et al., 2017), S3DIS (Armeni
et al., 2016), and STPlS3D (Chen et al., 2022).
We randomly sampled around 30% of scenes
from each dataset and computed the minimum,
maximum, and average number of instances. On
average, the S3DIS dataset, which consists of a
wide range of indoor environments such as exhibition and educational spaces, includes more instances
(34.5) per scene than the other two datasets. The ScanNetV2, containing rooms of various sizes, from
small bathrooms to large conference rooms, has relatively fewer average instances (15.2) per scene
but occasionally includes the maximum number (104) of instances. In Fig. 13, we also visualize
global view examples of scenes, especially with a large number of instances from each dataset. Since
our methods regularize features based on correlations among all hundreds of instance candidates,
IKEA is effective regardless of instance numbers. Although it might be less effective in extreme cases
where the number of objects in a scene exceeds hundreds of candidates, these scenarios are rare.

C.6 VISUAL COMPARISON

In this section, we present additional qualitative visualization results of our framework, IKEA,
compared to existing state-of-the-art models: ISBNet (kernel-based, K) (Ngo et al., 2023) and
MAFT (transformer-based, T) (Lai et al., 2023), in Fig. 14 and Fig. 15. We visualize the predicted
semantic (Sem.) and instance (Inst.) results with corresponding ground truth on the ScanNetV2 (Dai
et al., 2017) validation set, using red colored boxes to highlight the critical differences for better
comparison. First, as shown in Fig. 14, our method outperforms existing methods in precisely
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Figure 12: t-SNE (Van der Maaten & Hinton,
2008) visualization of instance candidate features
from kernel-based baseline (ISBNet) and IKEA.
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Figure 13: Global view visualizations of instance
masks with ground truth from scenes containing a
large number of instances across various datasets.

classifying a single instance into one category without fragments. In particular, compared to baseline
models, IKEA more accurately identifies large instances like a sofa (Scene 4) or cabinet (Scene
5). Furthermore, as shown in Fig. 15, ours consistently distinguishes single objects as a whole unit,
unlike the baselines, which often erroneously segment multiple fragments. For example, in Scenes
12-14, where objects are closely adjacent, ours clearly captures their spatial range. These outcomes
underscore the effectiveness of our proposed modules, which enhance instance-wise knowledge to
comprehend complex real-world situations.
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Figure 14: Qualitative comparisons of 3D Instance Segmentation performance on the ScanNetV2 (Dai
et al., 2017) validation set. We visualize semantic (Sem.) masks of ISBNet (kernel-based, K) (Ngo
et al., 2023), MAFT (transformer-based, T) (Lai et al., 2023) and ours based on both architecture
with Ground Truth (GT) masks. The critical differences are highlighted using red-colored boxes for
better comparison. Note that the color map (top right) represents semantic labels.
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Figure 15: Qualitative comparisons of 3D Instance Segmentation performance on the ScanNetV2 (Dai
et al., 2017) validation set. We visualize instance (Inst.) masks of ISBNet (kernel-based, K) (Ngo
et al., 2023), MAFT (transformer-based, T) (Lai et al., 2023) and ours based on both architecture
with Ground Truth (GT) masks. The critical differences are highlighted using red-colored boxes for
better comparison.
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