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Inference-Time Alignment via Hypothesis Reweighting
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Abstract

Chat assistants must handle diverse and often
conflicting user preferences, requiring adapt-
ability to various user needs. We propose a
lightweight framework to address the general
challenge of aligning models to user intent at
inference time. Our approach involves training
an efficient ensemble, i.e., a single neural net-
work with multiple prediction heads, each rep-
resenting a different function consistent with the
training data. Our main contribution is HYRE,
a simple adaptation technique that dynamically
reweights ensemble members at test time using a
small set of labeled examples from the target dis-
tribution, which can be labeled in advance or ac-
tively queried from a larger unlabeled pool. The
computational cost of our training procedure is
comparable to fine-tuning a single model, and
thus scales to large pretrained backbones. We em-
pirically validate HYRE in several target evalua-
tion distributions. With as few as five preference
pairs from each target distribution, adaptation via
HYRE surpasses state-of-the-art reward models
on RewardBench at both the 2B and 8B parame-
ter scales.

1 Introduction
Task specification—describing precisely what a machine
learning model should do—is inherently iterative and fun-
damentally incomplete under any finite set of instructions
or training examples. As models grow more powerful and
are applied to increasingly complex and nuanced tasks, this
problem arises in many forms, from spurious correlations
in the data to conflicting user preferences. Consider a chat-
bot trained via Reinforcement Learning from Human Feed-
back (RLHF) (Siththaranjan et al., 2023) on a broad distri-
bution of user preferences. Such models often perform ad-
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equately in aggregate but systemtically fail to address spe-
cific users’ needs, since different individuals have distinct,
sometimes contradictory, notions of desirable responses.
Meeting these user-specific requirements necessitates rapid
model adaptation with minimal supervision. However, ex-
isting adaptation strategies, such as prompt-based meth-
ods (Gao et al., 2020; Khattab et al., 2023; Yuksekgonul
et al., 2024) and fine-tuning (Houlsby et al., 2019; Hu et al.,
2021; Liu et al., 2024; Wu et al., 2024), can be computation-
ally heavy, typically requiring multiple forward-backward
passes or large-scale gradient updates. This renders them
unsuitable for on-the-fly adaptation at test time.

To efficiently resolve ambiguity at test time, we draw on
recent progress in efficient ensemble architectures (Osband
et al., 2023). These methods let a single backbone network
represent a broad range of plausible functions at a small
overhead, capturing the different ways the model can inter-
pret the training set. While prior work focuses largely on
using ensembles for uncertainty estimation, we propose us-
ing them to disambiguate tasks in real time: by quickly as-
sessing which members of the ensemble best match a new
distribution, we can “pick the right interpretation” for that
scenario.

We introduce Hypothesis Reweighting (HYRE), a two-step
approach that scales to large models. First, we train an en-
semble of function heads on top of a shared backbone, en-
suring each head individually fits the training data. Next, at
inference time, we gather a few labeled examples from the
target distribution—either proactively queried or provided
in advance—and measure each head’s performance. We
then reweight the ensemble using a generalized Bayesian
update that favors the heads performing best on the adapta-
tion set. Crucially, this update supports non-differentiable
metrics like 0-1 error, and it requires only a single forward
pass over the adaptation set, making it far more efficient
than conventional fine-tuning.

We evaluate HYRE across over 20 target distributions in-
cluding preference personalization tasks and benchmarks
for response safety and usefulness. With just 1-5 adaptation
examples, HYRE reweights a 100-head ensemble at negli-
gible (< 1%) overhead, improving the state-of-the-art re-
ward model by an average of 20% absolute accuracy across
32 tasks. Adaptation via HYRE also outperforms the state-
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Figure 1: Motivating observation: the ensemble average often performs worse than a single well-chosen member. This tendency is
particularly pronounced further away from the training distribution. HYRE goes further than selecting the best head—it finds a
continuous weighting of all heads.

Algorithm 1 HYRE (Inference Time)

Require: Ensemble members f1..K , unlabeled dataset
x1..N , query budget B

1: Initialize weights w ← [ 1K , . . . , 1
K ], query set Q← ∅

2: for i← 1 to B do
3: (Optional) Query label yn for argmaxn c(xn) and

add (xn, yn) to Q (Appendix F)
4: Compute accuracy acck =

∑
n∈Q acc(fk, xn, yn)

for each k
5: Update ensemble weight wk ∝ exp(acck + p) (Sec-

tion 2)
6: end for
7: Return final weighted ensemble function fw : x 7→∑K

k=1 wkfk(x)

of-the-art models on RewardBench (Lambert et al., 2024)
at both the 2B and 8B parameter scales. These findings
demonstrate that fast inference-time reweighting of a well-
chosen ensemble can effectively adapt to new tasks with
minimal supervision.

2 HYRE: Fast Inference-Time Ensemble
Reweighting

In this section, we motivate and describe Hypothesis
Reweighting (HYRE), a simple and computationally effi-
cient method for few-shot adaptation to new tasks. HYRE
dynamically adjusts the weights assigned to different en-
semble members at test time based on a few labeled sam-
ples from the new task. HYRE leverages the ensemble’s
diversity—each member representing a different function
that fits the training data—to efficiently adapt without re-
training any model parameters.

Our method is motivated by Figure 1, which shows that the
ensemble average often performs substantially worse than
the best weighted ensemble. This tendency is particularly
pronounced further away from the training distribution.

Given an ensemble of K models f1, . . . , fK , we aim to
dynamically update their weights based on adaptation data.
As a practical test-time assumption in settings where we
cannot further train neural networks, we can think of the
“best” model as being one of the K ensemble particles that
performs best on the evaluation distribution. Starting with
uniform weights wk = 1

K , we update them as new labeled
data from Peval becomes available.

The weighted ensemble prediction is fw(x) =∑K
i=1 wifi(x), where each wi ≥ 0 and

∑K
i=1 wi = 1. We

measure each member’s performance using a loss function
l(fk, x, y) and compute their cumulative loss on adaptation
data L(fk,Dadapt) =

∑
(x,y)∈Dadapt

l(fk, x, y). The weights
are updated using a softmax on negative cumulative loss:

wk =
exp(−L(fk,Dadapt))∑K
i=1 exp(−L(fi,Dadapt))

. (1)

As the loss l(fk, x, y), we use 0-1 error for classification
and mean squared error for regression, though HYRE sup-
ports any performance metric since the weight update re-
mains valid for non-differentiable functions. The complete
adaptation procedure is summarized in Algorithm 1.

3 Experiments
We now empirically validate HYRE. We focus on three key
questions: (1) Can HYRE effectively handle mild covariate
shift? (2) Does HYRE scale to large models? (3) How ro-
bust and computationally efficient is HYRE? We describe
the detailed setup for each experiment in the appendix.

3.1 Regression Data with Mild Covariate Shift

We evaluate HYRE on three UCI regression datasets (Kelly
et al.)—Energy Efficiency, Kin8nm, and CCPP—using the
protocol of Sharma et al. (2023): the top and bottom 5%
of the data (sorted by mean input features) form an OOD
target set, while the central 90% is split into train and vali-
dation sets. All methods employ 100 two-layer MLPs with
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Model Type Overall Chat Chat Hard Safety Reasoning

Tulu-2-DPO-70B DPO 79.1 97.5 60.5 84.5 74.1
StableLM-2-12B-Chat DPO 79.9 96.6 55.5 78.1 89.4
Claude-3 Sonnet (June 2024) Gen 84.2 96.4 74.0 81.6 84.7
GPT-4 (May 2024) Gen 84.6 96.6 70.4 86.5 84.9
GPT-4 (Aug 2024) Gen 86.7 96.1 76.1 88.1 86.6
Gemini-1.5-Pro-0924 Gen 86.8 94.1 77.0 85.8 90.2
Skywork-Reward-Gemma-2-27B Seq 94.3 96.1 89.9 93.0 98.1
INF-ORM-Llama3.1-70B Seq 95.1 96.6 91.0 93.6 99.1

GRM-Gemma2-2B Seq 88.4 93.0 77.2 92.2 91.2
+ Ours (uniform) Seq 87.1 96.4 73.1 87.4 89.8
+ Ours (N=1) Seq + HYRE 86.5 92.4 71.5 85.1 92.5
+ Ours (N=5) Seq + HYRE 88.5 95.0 72.5 90.3 93.1
+ Ours (N=10) Seq + HYRE 89.7 96.4 74.7 92.4 93.5
+ Ours (best head oracle)* Seq + Oracle 91.8 97.2 80.0 96.2 94.2
+ Ours (best weight oracle)* Seq + Oracle 93.1 98.3 83.4 96.7 94.9

Skywork–Llama-3.1-8B Seq 94.0 94.7 88.6 92.7 96.7
+ Ours (uniform) Seq 94.0 95.0 87.2 93.0 96.8
+ Ours (N=1) Seq + HYRE 94.3 95.2 87.8 93.0 97.5
+ Ours (N=5) Seq + HYRE 94.7 95.5 88.6 93.2 97.8
+ Ours (N=10) Seq + HYRE 95.0 95.9 89.3 93.5 97.9
+ Ours (best head oracle)* Seq + Oracle 96.4 98.3 91.2 95.7 98.4
+ Ours (best weight oracle)* Seq + Oracle 97.2 99.2 93.0 96.5 98.8

∗ Oracle methods show an upper bound on performance, using the test set.

Table 1: Accuracy across tasks in RewardBench. We report overall performance and breakdowns by task category for all models. HYRE
improves upon the state-of-the-art models at the 2B and 8B parameter scales with as few as 1-5 labeled samples per distribution.

50 units each. As baselines, we consider a vanilla ensem-
ble of independently trained models and MC Dropout (Gal
& Ghahramani, 2016). We report the best-performing MC
Dropout results across all architectures. Results in Table 4
demonstrate that uniform ensembles perform strongly in
these OOD generalization settings and that HYRE consis-
tently improves over the uniform ensemble.

3.2 Scalable Personalization of Preference Models

Experimental setup. We evaluate personalization using
four sets of human preference benchmarks: Elix (Singh
et al., 2025), RewardBench (Lambert et al., 2024), PER-
SONA (Castricato et al., 2024), and Anthropic HH (Bai
et al., 2022). Together, these benchmarks contain 32
datasets, each encoding a different aspect of human pref-
erences. To train HYRE on preference data, we attach
Shared-Base ensemble heads to a pretrained 2B reward
model and fine-tune it on the UltraFeedback (Cui et al.,
2023) dataset, a standard dataset for reward model train-
ing. We use two public finetune checkpoints of Gemma 2B
models, which achieve state-of-the-art performance on Re-
wardBench at the 2B parameter scale, even outperforming
GPT-4o (Achiam et al., 2023). Refer to Appendix G for our
detailed setup.

We first evaluate the effectiveness of HYRE in adapting our
reward model ensemble to new distributions at test time,
comparing its performance to that of the original reward
model. As shown in Figure 2, a simple uniform ensemble
initially underperforms the original model, indicating that
naive ensembling alone cannot ensure broad generalization.
Nevertheless, HYRE quickly surpasses the baseline with
just a few labeled examples per distribution. We show de-
tailed dataset-level results in the appendix (Figure 9).

We compare HYRE against state-of-the-art reward models
on the RewardBench leaderboard at both the 2B and 8B pa-
rameter scales. As shown in Table 8, HYRE—with only
1-5 labeled examples per distribution—exceeds the perfor-
mance of many much larger reward models. We note that
these reward models outperform strong generative reward
models including Claude 3.5 Sonnet, GPT-4, and Gemini-
1.5-Pro (Achiam et al., 2023; Anthropic, 2024; Team et al.,
2024). This indicates that inference-time alignment can be
a powerful alternative to naively scaling up reward models.

3.3 Comparison with Alternative Adaptation
Methods

Few-shot prompting. We compare HYRE with few-shot
prompting using GPT-4o-mini on two datasets from Re-
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Figure 2: Average reward model accuracy as a function of adaptation set size. The dashed line shows the best available static 2B reward
model for each dataset group. HYRE consistently outperforms the state-of-the-art reward model with as few as 1-5 examples per
distribution.

Dataset N=0 N=1 N=5 N=10 N=20 N=40 N=80

GPT-4o-mini N-Shot Prompting
donotanswer 44.4 50.3 60.2 64.7 68.7 66.4 67.0
refusals 79.4 82.7 80.5 82.2 82.1 78.0 82.1

Llama-3.1-8B N-Shot Prompting
donotanswer 46.6 52.8 59.6 63.4 41.2 62.6 *
refusals 61.6 82.4 80.0 72.2 44.4 79.0 *

Llama-3.1-8B + HYRE
donotanswer 58.6 60.8 69.1 71.3
refusals 88.9 90.0 94.0 95.2

Table 2: Comparison with few-shot prompting on two datasets from
RewardBench. (*) exceeds Together AI API token limit. We see a
degradation in performance for both GPT-4o-mini and Llama-3.1-8B
as we increase the number of examples, whereas HYRE consistently
outperforms both across all sample sizes. HYRE provides reliable
test-time alignment, unlike few-shot prompting, which can degrade
with too much context.

donotanswer xstest-sr refusals

HYRE w/ Cross-Entropy
N=0 58.60 ± 4.93 82.80 ± 2.43 88.90 ± 3.25
N=1 62.53 ± 4.00 85.78 ± 3.06 92.49 ± 3.28
N=5 62.57 ± 1.88 87.38 ± 1.26 93.17 ± 2.19
N=10 62.25 ± 1.71 87.51 ± 1.19 93.21 ± 1.77

HYRE w/ Accuracy
N=0 58.60 ± 4.93 82.80 ± 2.43 88.90 ± 3.25
N=1 60.81 ± 5.29 85.80 ± 2.45 90.00 ± 3.63
N=5 69.12 ± 5.81 89.28 ± 2.86 94.00 ± 2.45
N=10 71.32 ± 6.33 90.32 ± 3.20 95.20 ± 2.32

Oracle 76.54 ± 2.35 90.32 ± 1.91 99.50 ± 0.87

Table 3: Cross-entropy ablation experiment. We report av-
erage and std of accuracy (%) with varying numbers of adap-
tation examples (N) on three datasets. Using accuracy as
the adaptation objective for HYRE significantly improves
post-adaptation performance.

wardBench. As shown in Table 2, HYRE consistently
outperforms GPT-4o-mini across all sample sizes. Even
in the zero-shot setting, specialized reward models like
HYRE achieve higher performance than general-purpose
language models like GPT-4o-mini. Notably, we observe
that too many few-shot examples can actually harm perfor-
mance, as seen with GPT-4o-mini’s performance drop after
N=10 for donotanswer and N=20 for refusals. These results
demonstrate that specialized reward models with inference-
time adaptation can more efficiently leverage few-shot ex-
amples than general-purpose language models.

Fine-tuning on target data. We compare HYRE against
models fine-tuned on the helpful-base and harmless-base
training sets in the Anthropic-HH dataset. Results in Ta-
ble 5 indicate that while targeted fine-tuning models
achieve higher performance in their respective target met-
rics, they significantly reduce performance in the other. In
contrast, our HYRE-adapted ensemble not only increases
performance across each data distribution but also retains
or slightly improves performance in the other split. We
emphasize that we show fine-tuning performance only as
a point of comparison; fine-tuning a model for a target
distribution is usually too computationally expensive to
be done at inference time, and is thus not a practical

solution for inference-time alignment.

3.4 Ablation Studies and Analysis

Ablation on reweighting criteria. We investigate the im-
pact of using binary cross entropy instead of accuracy for
reweighting. As shown in Table 3, using cross-entropy loss
for reweighting significantly degrades performance across
three representative RewardBench datasets. This is because
cross-entropy loss is sensitive to outliers as it is unbounded
from above, and thus can quickly overfit to a head.

Computational overhead. HYRE is designed to be effi-
cient enough to be used at inference time. We use a sin-
gle pre-trained backbone with K prediction heads, where
each head is a very small MLP compared to the backbone.
The parameter overhead is negligible: in our reward model
experiments, 100 ensemble heads (5.5 × 105 parameters)
add less than 0.03% to the parameter count of the Gemma-
2B backbone (2.0 × 109 parameters). At inference time,
reweighting requires only a single forward pass through
the backbone and heads, with the subsequent weight cal-
culation being minimal. The total cost increase in time
and memory for using HYRE compared to the single base
model is less than 1%.
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Figure 3: Overview of HYRE. We train multiple prediction heads on a shared backbone. (Left) At inference time, we evaluate each
head on a small labeled adaptation set drawn from the target distribution. (Right) We reweight the heads according to the sum of their
accuracies on the adaptation set, and use the weighted ensemble to make predictions on new inputs.

A Preliminaries
Problem setup. We consider a general supervised learning setting that includes classification, preference learning, and
regression tasks. Let X represent the input space and Y the output space, with training distribution Ptrain and evaluation
distribution Peval defined over X × Y . The training dataset Dtrain = {(xi, yi)}Ni=1 consists of N examples drawn from
Ptrain. We explore few-shot adaptation settings such as chatbot personalization, where a small adaptation set Dadapt ∼ Peval
only partially informs model performance under Peval. The adaptation set Dadapt can be labeled in advance or actively
queried, and is much smaller than the training set (|Dadapt| � |Dtrain|). For instance, in our main experiment, |Dadapt| = 16
compared to |Dtrain| > 300, 000, with adaptation occurring near-instantly after a single forward pass through the network.

Ensemble architectures. We train an ensemble of K models f1, . . . , fK on the training dataDtrain. We consider parameter-
izations of the ensemble that aim to represent a distribution over functions by training multiple models on the same dataset
Dtrain, ensuring diversity without computational overhead beyond training a single model. To achieve this, we employ prior
networks (Osband et al., 2023): fixed, randomly initialized models whose outputs are added to each ensemble member’s
output. This mechanism preserves diversity among ensemble members during training, even as individual models converge.
We consider two computationally efficient ensemble architectures:

1. Shared-Base Ensemble: A single neural network that parameterizes both the prior and ensemble components by shar-
ing a common base.

2. Epinet: A base network augmented by a small auxiliary network that introduces diversity via a learned index.

We train all ensemble members jointly by minimizing
∑K

k=1 L(fk,Dtrain) using SGD. These architectures have negligible
overhead—in our reward model experiments, 100 ensemble heads add only 550K parameters (0.03%) to the 2B-parameter
Gemma backbone. Please refer to Appendix H for architectural details.

B When is Ensemble Reweighting Effective, and Why?
This section explores the conditions under which ensemble reweighting is effective through three illustrative examples:
analyzing ensemble diversity through PCA, examining decision boundaries in classification, and comparing adaptation
strategies.

Ensemble diversity reflects task ambiguity. We visualize how an ensemble’s diversity reflects the axes of task ambiguity.
We consider a synthetic regression task where the training data is sampled from a Gaussian Process (GP) prior. For target
inputs x1, . . . , xM , each ensemble member fk produces predictions vk ∈ RM . We perform Principal Component Analysis
(PCA) on the prediction matrix V = (v1, . . . , vK) ∈ RM×K to yield components u1, . . . , um ∈ RM that capture the main
variations between ensemble members.

Using an ensemble of 100 models trained on 7 inputs and evaluated on 1000 test inputs, we visualize the first three
principal components in Figure 4. Each component represents a distinct mode of variation while preserving smoothness
and fit to training data. Like wavelets, these components are localized in input space and form a basis for approximating
the ensemble. See Appendix J for further analysis of PCA applied to ensemble predictions.

Ensembles as diverse sharp decision boundaries. We build on an alternative interpretation of the Bradley-Terry model,
where the model can be seen as representing a population of deterministic decision-makers. For items i and j with param-
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Method Energy Kin8nm CCPP

MC Dropout 0.3033 0.6494 0.3761

Vanilla 0.1664 0.4514 0.2920
+ HYRE 0.1572 (-0.0092) 0.4498 (-0.0016) 0.2902 (-0.0018)

Epinet 0.1396 0.4823 0.3068
+ HYRE 0.1345 (-0.0051) 0.4814 (-0.0009) 0.3036 (-0.0032)

Shared-Base 0.1508 0.5316 0.2976
+ HYRE 0.1431 (-0.0077) 0.5314 (-0.0002) 0.2955 (-0.0021)

Table 4: RMSE (lower is better) on test data with distribution shifts across
three UCI datasets. We compare the performance of various ensemble archi-
tectures with test-time adaptation using HYRE. We find that for all three
ensemble architectures, HYRE is consistently able to adapt to the distri-
bution shift between training and test data.

Model Helpful Harmless

Fine-Tune (Helpful) 73.03 32.59
Fine-Tune (Harmless) 32.06 73.30

Pretrained RM 68.01 52.16
Ensemble 66.34 50.90
+ HYRE (Helpful) 68.44 51.21
+ HYRE (Harmless) 64.24 57.66

Table 5: Helpful vs harmless tradeoff. To establish an
upper bound on performance, we fine-tune the reward
model on the helpful and harmless datasets separately.
Reweighting an ensemble model with HYRE allows
us to flexibly trade off between the two desiderata.

eters θi, θj ∈ R, the preference probability under the Bradley-Terry model is:

P (i � j) =
eθi

eθi + eθj
= P (θi + ϵi > θj + ϵj) , (2)

where ϵi, ϵj ∼ Gumbel(0, 1). Rather than a single stochastic decision-maker, the model can be seen as representing a
population of deterministic decision-makers. Each decision-maker is characterized by a pair (ϵi, ϵj), and makes sharp
choices based on which among θi + ϵi and θj + ϵj is larger. The model’s probabilistic behavior emerges from averaging
across this population.

We hypothesize that diverse ensembles can learn such sharp decision boundaries from aggregate data across a population
of annotators. To test this, we construct a synthetic preference learning task with conflicting labelers. We sample inputs
(x1, x2) from [0, 1]2 and generate diverse linear decision boundaries w1x1+w2x2 > 0, with w1, w2 ∼ N(0, 1). As shown
in Figure 6, our ensemble quickly adapts to new decision boundaries, outperforming single models. The average ensemble
prediction matches the “average” decision-maker, while individual members capture distinct boundaries. In particular,
higher diversity coefficients for the prior network yields sharper boundaries per ensemble member. In Section 3, we show
this enables rapid personalization in real-world preference tasks.

HYRE outperforms fine-tuning in low-data regimes. We compare HYRE to model fine-tuning on a synthetic binary
classification task. The training set contains inputs from [0, 1]5 labeled as 1 and inputs from [−1, 0]5 labeled as 0. The
target distribution is uniform over [−1, 1]5 with a random linear decision boundary. Results in Figure 5 show that HYRE
outperforms fine-tuning in the low-data regime, achieving high accuracy with few queries. Fine-tuning eventually surpasses
reweighting with more data due to its higher capacity. This illustrates a bias-variance tradeoff: reweighting reduces variance
by restricting solutions to the ensemble’s span, providing an advantage with limited data. Additionally, HYRE requires
only a single forward pass and negligible weight computation cost (1), making it especially suitable for large models and
resource-constrained settings.

Interpreting HYRE as generalized Bayesian inference. The weight update in (1) can be interpreted as a form of gener-
alized Bayesian inference (Bissiri et al., 2016). Given an initial belief state π(w), the updated belief after observing Dadapt
is:

π(w|Dadapt) ∝ exp (−L(w,Dadapt))π(w), (3)

which generalizes classical Bayesian inference by allowing arbitrary loss functions. Standard Bayes is recovered when
l(w, x) is the negative log-likelihood. Under mild conditions like i.i.d. sampling, these updates are consistent and coher-
ent: they converge to the optimal weighting and yield identical posteriors whether applied incrementally or in batches. For
classification tasks, using 0-1 loss instead of log-likelihood provides more stable updates by avoiding outlier dominance (Iz-
mailov et al., 2021). This makes HYRE particularly suitable for robust adaptation with non-differentiable metrics.

C Related Work
Ensembles and mixture-of-experts. A long-standing theme in machine learning is using ensembles to improve predictive
performance and uncertainty estimates when different members make independent mistakes (Krogh & Vedelsby, 1994;
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Lakshminarayanan et al., 2017). This principle underlies Mixture-of-Experts (MoE) models, where a gating mechanism
dynamically selects experts (Jacobs et al., 1991; Jordan & Jacobs, 1994; Yuksel et al., 2012), recently scaled to large neural
networks via conditional activation (Fedus et al., 2022; Jiang et al., 2024; Lepikhin et al., 2020; Shazeer et al., 2017).
Our approach diverges from these methods in a fundamental way: rather than learning a routing function during training,
we perform adaptive reweighting of ensemble members at test time. Building on efficient ensemble methods with shared
backbones (Osband et al., 2023), we extend prior work on dynamic ensemble weighting (Jimenez, 1998; Shahhosseini et al.,
2022), though these typically focus on differentiable loss-based objectives. In contrast, our method dynamically adjusts
ensemble weights based on non-differentiable evaluation metrics, allowing for more effective inference-time alignment.

Task underspecification and scalable alignment. In many machine learning tasks, the training data fails to fully define
desired model behavior (D’Amour et al., 2022; Geirhos et al., 2020). This challenge intensifies under limited data or
distribution shifts, where multiple hypotheses remain consistent with observations. Reinforcement learning faces similar
issues: reward specification is difficult in open-ended environments, and optimizing misspecified objectives can lead to
unintended behaviors (Gao et al., 2023; Pan et al., 2022; Skalse et al., 2022; Zhuang & Hadfield-Menell, 2020). Instead
of fully defining a task upfront, one can collect human demonstrations or pairwise preferences, framing task specification
as a cooperative game between agents and humans (Hadfield-Menell et al., 2016). Reinforcement Learning from Human
Feedback (RLHF) operationalizes this idea by using user preferences to guide post-training (Christiano et al., 2017; Ouyang
et al., 2022; Rafailov et al., 2024; Wirth et al., 2017), with some using ensembles (Ahmed et al., 2024; Coste et al., 2023;
Zhang et al., 2024). Recent work on pluralistic alignment (Sorensen et al., 2024) uses explicit domain labels or per-user
data to improve personalization (Barreto et al., 2025; Chen et al., 2024; Jang et al., 2023; Li et al., 2024; Poddar et al.,
2024). However, these methods require explicit domain labels or per-user data. HYRE demonstrates that this additional
information is not necessary during training: a diverse ensemble trained on aggregate data can capture ambiguity, which
we can use to directly adapt to new users. Our experiments show this insight generalizes across several problem settings.

D Discussion
Our results demonstrate how efficient ensemble architectures can offer a practical path to inference-time alignment in large
models. By attaching lightweight ensemble heads to a shared backbone, we can capture multiple plausible interpretations
of the training distribution at negligible extra cost. Then, through a simple reweighting step that leverages just a handful of
target-domain examples, the ensemble can effectively pick out the functions that align best with a new task. Our findings
complement recent efforts that flexibly distribute compute at inference time (Brown et al., 2024; Snell et al., 2024). A
natural next step is to close the loop by pairing our approach with a parameterization of the reward model that allows for
direct behavior adjustments (Rafailov et al., 2024).

Our method currently relies on a small batch of labeled examples from the target distribution, and does not address single-
sample or online streaming adaptation. Furthermore, while relying on minimal data, our reweighting still assumes that
the ensemble’s functional diversity covers the new domain’s core behaviors. Extending our framework to dynamically
expand or augment the ensemble as new tasks emerge is an exciting direction. Nevertheless, our results demonstrate that
lightweight ensembles with inference-time reweighting offer a promising and practical approach for aligning large models
at inference time.

Limitations. On the WILDS (Koh et al., 2021) benchmark, we observe limited gains over the uniform ensemble in four
out of the five datasets we tested(see Table 9). We attribute this to insufficient functional diversity relevant to these specific
natural distribution shifts. Thus, while HYRE significantly improves performance on personalization tasks, its effectiveness
is limited on settings with more severe distribution shifts. We leave the exploration of how to best approach inference-time
adaptation in such settings to future work.

E Additional Experiments
Effect of sampling strategy. In Table 6, we compare the performance of different active learning criteria for selecting
adaptation data points. We consider random sampling, BALD, and entropy, measuring their performance over 0 to 40
target examples. Across the acquisition of 40 examples, active learning methods (BALD and entropy) demonstrated slightly
better performance compared to random sampling. Even random sampling consistently improves performance, indicating
that HYRE can be used with data collected before inference without sacrificing performance.

WILDS experiments. We evaluate a trained Shared-Base ensemble, both with and without HYRE on the WILDS-
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Figure 4: Principal component analysis of an ensemble of regression models. Left: Each
gray line is the prediction of an ensemble member; the dashed line shows the ensemble mean.
Right: The top three principal components of the ensemble’s predictions reveal distinct axes
of variation in predictive behavior. Searching among ensemble weights like HYRE acts as
a strong inductive bias towards simple functions consistent with the training data.

1 4 16 64 256
Additional Target Samples

65

70

75

80

85

90

Ta
rg

et
 A

cc
ur

ac
y 

(%
)

Fast Adaptation (ours)
Retrain on Target
Best Head

Figure 5: HYRE vs. fine-tuning with
different amounts of adaptation data.
Despite using only a single forward
pass, HYRE outperforms fine-tuning
in low-data regimes.
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Figure 6: Ensemble behavior under label ambiguity. (Left) We simulate conflicting preferences between labelers on a synthetic dataset.
(Center) Ensemble-averaged predictions approximate the consensus, smoothing over disagreements. (Right) We measure the maximum
agreement between an ensemble and a held-out labeler: increasing model diversity improves alignment with individual labelers.

Camelyon17 dataset (Koh et al., 2021), comparing against several representative methods for OOD generalization from the
official WILDS benchmark. As shown in Table 7, test-time adaptation with HYRE consistently outperforms other methods
that do not use domain labels and remains competitive with LISA (Yao et al., 2022), a strong method that leverages domain
labels for targeted data augmentation. We also test Shared-Base ensembles on four additional WILDS datasets (CivilCom-
ments, Amazon, FMoW, iWildCam), but did not observe further improvements from ensemble reweighting via HYRE, as
detailed in Table 9. Nonetheless, training a diverse ensemble consistently improved OOD generalization in these datasets.
We attribute the limited benefit of ensemble reweighting in these cases to some natural distribution shifts behaving similarly
to in-distribution data in terms of task underspecification. For further discussion on the conditions that can make a single
model outperform the ensemble, see Appendix B.

We further compare the performance of HYRE with few-shot fine-tuning with the same amount of adaptation data. We
evaluate both HYRE and fine-tuning with {4, 8, 16, 32} datapoints from the OOD test set. Our results in Figure 7 show
that ensemble reweighting outperforms fine-tuning in the low-data regime (4 and 8) examples, and fine-tuning eventually
surpasses the performance of ensemble reweighting.

F Active Learning Details
We also consider an active learning setup in which the N datapoints to label for HYRE are chosen at test time from a larger
unlabeled pool of data. Rather than choosing all datapoints at once, we choose one datapoint at the time based on one of
the following three criteria:
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Method N=0 N=1 N=5 N=10 N=20 N=40

HYRE + Random 84.40 85.33 86.97 87.34 88.01 88.83
HYRE + Entropy 84.40 84.25 86.73 87.54 88.60 89.76
HYRE + BALD 84.40 84.28 87.13 87.78 88.60 88.99

Table 6: Accuracies on RewardBench with different datapoint selection strategies. While active sampling methods perform slightly

better, even random sampling consistently improves performance with the HYRE reweighting process.

Algorithm DL Test Acc

IRM O 64.2 (8.1)
CORAL O 59.5 (7.7)
Group DRO O 68.4 (7.3)
Fish O 74.7 (7.1)
LISA O 77.1 (6.9)

ERM X 70.3 (6.4)
Evading X 73.6 (3.7)
Ensemble X 71.5 (3.4)
Ensemble + HYRE X 75.2 (5.3)

Table 7: Test set accuracy on Camelyon17. HYRE achieves competitive performance without using domain labels (DL).

• Entropy (classification): H
(∑H

h=1 whfh(x)
)

. This criterion selects datapoints where the weighted ensemble is most
uncertain, promoting the exploration of ambiguous regions.

• BALD (classification): H
(∑H

i=1 wifi(x)
)
−

∑H
i=1 wiH(fi(x)). BALD considers both ensemble uncertainty and dis-

agreement among members, balancing exploration and exploitation (Gal et al., 2017; Houlsby et al., 2011).

• Variance (regression):
∑H

i=1 wi(fi(x) − f̄(x))2, where f̄(x) =
∑H

i=1 wifi(x). This criterion focuses on points where
ensemble predictions have the highest variance, which is a good indicator of uncertainty in regression tasks.

Each of these criteria can be computed quickly. Because the belief states w has a closed-form update that can be computed
very quickly, we can efficiently recompute the next best data point after each active label query.

We note that the first criterion (Entropy) does not distinguish between so-called aleatoric uncertainty and epistemic uncer-
tainty. Therefore, this criterion is susceptible to the “noisy TV problem”, where an agent fixates on a source of uncertainty
that cannot be resolved (Burda et al., 2018; Laskin et al., 2021). In practice, we find that HYRE is robust to the choice of
active learning criterion, and even random selection is effective at adapting to the target distribution.

G Experimental Details
Unless specified otherwise, we use the following configuration for the ensemble networks. We use an ensemble of 100
models. The learnable and prior networks are each a one-hidden-layer MLP with 128 units. For the epinet, the epistemic
index is 10-dimensional. For ensemble reweighting via HYRE, we use 32 examples from the target dataset, actively queried
based on the BALD (classification) or Variance (regression) criterion. We found that final performance is not very sensitive
to the choice of active learning criterion, and even random sampling resulted in consistent benefits.

WILDS. We closely follow the reference WILDS implementation for each dataset (Koh et al., 2021), including the choice
of backbone, learning rate, and weight decay. We briefly describe the baseline methods used in our experiments:

• CORrelation ALignment (Sun et al., 2017, CORAL): CORAL is an unsupervised domain adaptation method that aligns
the second-order statistics (covariances) of source and target feature distributions.
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Figure 7: Comparison of HYRE and few-shot fine-tuning on the Camelyon17 OOD test set. HYRE outperforms fine-tuning in the
low-data regime despite requiring significantly less computational cost.

• Invariant Risk Minimization (Arjovsky et al., 2019, IRM): IRM aims to learn data representations that capture invariant
correlations across multiple training distributions.

• Group Distributionally Robust Optimization (Sagawa et al., 2019, Group DRO): Group DRO seeks to minimize the
worst-case training loss over predefined groups within the data.

• Fish (Shi et al., 2021): Fish is a domain generalization technique that approximates inter-domain gradient matching by
maximizing the inner product between gradients from different domains.

• LISA (Yao et al., 2022): LISA builds on MixUp and selectively interpolates data samples to achieve domain invariance.

LLM Preference Learning We finetune three reward model checkpoints (Yang et al., 2024):

• https://huggingface.co/Ray2333/GRM-Gemma-2B-rewardmodel-ft

• https://huggingface.co/Ray2333/GRM-Gemma2-2B-rewardmodel-ft

• https://huggingface.co/Skywork/Skywork-Reward-Llama-3.1-8B-v0.2

Our ensemble architecture uses these networks as the backbone, and small MLPs for the learnable and prior networks
which take the backbone’s final embedding as input. We use the TRL codebase for reward model training (von Werra et al.,
2020). We train with bfloat16 mixed precision. We use a learning rate of 0.0001, no weight decay, a batch size of 16, and
train for 5000 steps. We consider four collections of preference datasets:

• Elix (Singh et al., 2025) is inspired by the “Explain like I’m 5” subreddit. It consists of questions answered at five
educational levels: elementary, middle, high, college, and expert. Preference pairs are created by scoring how different
pairs of GPT-4 generated responses meet the expected comprehension at each level.

• RewardBench (Lambert et al., 2024) is a suite of 27 preference datasets designed to test reward models on a broad spec-
trum of tasks, including chat quality, safety, reasoning, coding, and refusal handling. In our aggregate results Figure 2,
we drop datasets with less than 100 examples. In our RewardBench experiments Table 8, we use all datasets to ensure a
fair comparison with existing methods.

• PERSONA (Castricato et al., 2024) contains preference data derived from a collection of synthetic personas with diverse
demographic attributes and values. We sample 10 personas and treat each as a target distribution. Further details are
in Appendix K.

• Anthropic HH (Bai et al., 2022) contains human-labeled preferences focused on helpfulness and harmlessness. We use
the helpfulness-base and harmlessness-base splits as evaluation distributions to measure the tradeoff between the two
objectives.
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Model Type Overall Chat Chat Hard Safety Reasoning

Mixtral-8x7B-Instruct-v0.1 DPO 77.6 95.0 64.0 72.6 78.7
LLaMA-3-Tulu-2-DPO-70B DPO 77.2 96.4 57.5 74.9 80.2
Tulu-2-DPO-13B DPO 76.7 95.8 58.3 79.5 73.2
Tulu-2-DPO-70B DPO 79.1 97.5 60.5 84.5 74.1
StableLM-2-12B-Chat DPO 79.9 96.6 55.5 78.1 89.4
Claude-3 Sonnet (June 2024) Gen 84.2 96.4 74.0 81.6 84.7
GPT-4 (May 2024) Gen 84.6 96.6 70.4 86.5 84.9
GPT-4 (Aug 2024) Gen 86.7 96.1 76.1 88.1 86.6
Gemini-1.5-Pro-0924 Gen 86.8 94.1 77.0 85.8 90.2
Skywork-Reward-Gemma-2-27B Seq 94.3 96.1 89.9 93.0 98.1
INF-ORM-Llama3.1-70B Seq 95.1 96.6 91.0 93.6 99.1

GRM-Gemma-2B Seq 84.5 89.4 75.2 84.5 88.8
+ Ours (uniform) Seq 84.5 88.6 72.9 83.7 89.8
+ Ours (N=1) Seq + HYRE 85.3 88.5 72.7 85.5 91.4
+ Ours (N=5) Seq + HYRE 86.4 90.3 72.6 89.1 91.4
+ Ours (N=10) Seq + HYRE 87.2 90.4 72.5 90.0 92.3
+ Ours (best head oracle)* Seq + Oracle 88.6 91.1 78.1 91.9 92.3
+ Ours (best weight oracle)* Seq + Oracle 90.0 92.3 81.8 92.5 93.1

GRM-Gemma2-2B Seq 88.4 93.0 77.2 92.2 91.2
+ Ours (uniform) Seq 87.1 96.4 73.1 87.4 89.8
+ Ours (N=1) Seq + HYRE 86.5 92.4 71.5 85.1 92.5
+ Ours (N=5) Seq + HYRE 88.5 95.0 72.5 90.3 93.1
+ Ours (N=10) Seq + HYRE 89.7 96.4 74.7 92.4 93.5
+ Ours (best head oracle)* Seq + Oracle 91.8 97.2 80.0 96.2 94.2
+ Ours (best weight oracle)* Seq + Oracle 93.1 98.3 83.4 96.7 94.9

Skywork–Llama-3.1-8B Seq 94.0 94.7 88.6 92.7 96.7
+ Ours (uniform) Seq 94.0 95.0 87.2 93.0 96.8
+ Ours (N=1) Seq + HYRE 94.3 95.2 87.8 93.0 97.5
+ Ours (N=5) Seq + HYRE 94.7 95.5 88.6 93.2 97.8
+ Ours (N=10) Seq + HYRE 95.0 95.9 89.3 93.5 97.9
+ Ours (best head oracle)* Seq + Oracle 96.4 98.3 91.2 95.7 98.4
+ Ours (best weight oracle)* Seq + Oracle 97.2 99.2 93.0 96.5 98.8

∗ Oracle methods show an upper bound on performance, using the test set.

Table 8: Accuracy across tasks in RewardBench. We report overall performance and breakdowns by task category for all models. HYRE
improves upon the state-of-the-art models at the 2B and 8B parameter scales with as few as 1-5 labeled samples per distribution.

For the few-shot prompting experiments, we use GPT-4o-mini. For each number of “shots” N ∈ {0, 1, 5, 10, 20, 40, 80},
we sample 1000 examples from the target distribution and use them to prompt GPT-4o-mini.

H Diverse Ensemble Architectures
We describe the diverse ensemble architectures used in our experiments. Each architecture is designed to parameterize
an ensemble of H models, whose outputs are later combined to form an ensemble prediction. The key goal of these
architectures is to produce diverse predictions across the ensemble at a low computational cost.

All architectures are trained end-to-end by minimizing the sum of a standard loss function (cross-entropy for classification,
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CivilComments Amazon FMoW iWildCam
Algorithm DL Worst-Group Acc 10% Acc Worst-Reg Acc Macro F1

IRM O 66.3 (2.1) 52.4 (0.8) 32.8 (2.09) 15.1 (4.9)
IRMX O 73.4 (1.4) - 33.7 (0.95) 26.7 (1.1)
IRMX (PAIR) O 74.2 (1.4) - 35.4 (1.3) 27.9 (0.9)
CORAL O 65.6 (1.3) 52.9 (0.8) 32.8 (0.66) 32.7 (0.2)
Group DRO O 70.0 (2.0) 53.3 (0.0) 31.1 (1.66) 23.8 (2.0)
DFR O 72.5 (0.9) - 42.8 (0.42) -
Fish O 75.3 (0.6) 53.3 (0.0) 34.6 (0.18) 22.0 (1.8)
LISA O 72.9 (1.0) 54.7 (0.0) 35.5 (0.81) -

ERM X 56.0 (3.6) 53.8 (0.8) 31.3 (0.17) 30.8 (1.3)
Shared-Base X 58.1 (2.2) 54.2 (0.6) 32.8 (0.4) 30.9 (0.8)
Shared-Base + HYRE X 58.1 (0.2) 54.2 (0.6) 32.8 (0.4) 31.0 (0.8)

Table 9: Performance on additional WILDS benchmark datasets. The DL column indicates whether the algorithm uses domain labels.
Using a Shared-Base ensemble consistently results in gains in OOD generalization metrics over prior methods. However, we observe no
further benefits from reweighting the ensemble via HYRE on these datasets.

MSE for regression) over all ensemble members:

H∑
h=1

L (fh(x), y) . (4)

Here, x is an input example, y is the true label, and f i is the i-th ensemble member. While each individual model
minimizes the training loss, we want the ensemble members to extrapolate to unseen data in diverse ways. The specific
ensemble parameterizations, which we describe below, are designed to achieve this goal.

H.1 Vanilla Ensemble

A vanilla ensemble consists of H independently initialized and trained neural networks with identical architectures. Each
network fh takes an input x and produces an output fh(x). No parameters are shared. While simple to implement, this
approach scales poorly as H increases since both memory and computation scale linearly with H .

H.2 Shared-Base Ensemble

We propose a scalable neural network architecture that can represent thousands of diverse ensemble members. The network
outputs H real-valued predictions in parallel, with the output space being RH . The architecture comprises a frozen prior
network fp and a learnable network fθ, both of which produce outputs of shape RH . Although the architectures of fp and
fθ are identical in our experiments, this is not a requirement.

For a given input x, the network output is

fp(z) + fθ(z) =


fp
1 (z) + fθ

1 (z)
fp
2 (z) + fθ

2 (z)
...

fp
H(z) + fθ

H(z)

 ∈ RH (5)

where each prediction fp
i (z) + fθ

i (z) is compared against the ground-truth label y. The parameters of fp are fixed at
initialization and do not change during training; the parameters of fθ are learnable.

Using the frozen prior network fp is crucial to the diversity in this architecture. If we were to only train fθ, the ensemble
of the H predictions would have low diversity due to co-adaptation. To understand why this architecture produces a diverse
ensemble, note that each learnable head solves a shifted task determined by the corresponding prior network head. Since
we undo this shifting when producing the final prediction, we can view the different learnable heads as solving a different
yet equivalent task.
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H.3 Epinet

The epinet architecture combines a base model f base : X → RK with an epistemic network f epi : Z × Rdftrs × X → RK .
The base model can be any regular neural network, including a large pretrained model, and is used to extract features
through a feature extractor ϕ : X → Rdftrs . Here, dftrs is the dimension of the extracted intermediate representations.

The epistemic network (epinet) is composed of two parts:

• A frozen prior network f epi-frozen : X → R1,...,dindex×K . The parameters of this network are fixed at initialization and do
not change during training.

• A trainable network f epi-trainable : Z × Rdftrs ×X → RK .

Given an epistemic index z ∈ Rd and input x ∈ X , we compute the model output as:

f(z, x) = f base(x) + vf epi-frozen(x) · z + f epi-trainable(z, ϕ(x), x) · z (6)

where · is the dot product and v ∈ (0,∞) is the so-called prior scale. At each step, we sample multiple epistemic indices
z to form an ensemble, i.e., f1(x), . . . , fH(x) = f(z1, x), . . . , f(zH , x). This architecture efficiently generates diverse
predictions by sampling different epistemic indices z while leveraging a potentially large pretrained base model.

I Repulsion vs Random Priors for Diversity
A line of prior work use repulsion for enforcing diversity between ensemble members. The high-level idea is to add a
regularization term to the loss function that is minimized when the ensemble members are sufficiently “different” according
to some distance metric. For example, Teney et al. (2022) uses a repulsion term that maximizes the cosine distance between
the gradient of each ensemble member, and Lee et al. (2023) maximizes the mutual information of ensemble predictions on
OOD inputs. While these techniqueshave seen success in certain settings, our early experiments indicate that such explicit
regularization often results in a suboptimal ensemble. The repulsion term can overpower the learning signal in the training
data, leading to ensemble members that are diverse but inaccurate.

In contrast, diversification via random priors (Osband et al., 2023) provides a more balanced approach. The key idea is to
initialize each ensemble member with a different random prior function which is fixed throughout training. This introduces
diversity from the start without explicitly optimizing for it during training. This approach maintains diversity without
sacrificing accuracy on the training data, and the degree of diversification is easily controlled by scaling the prior functions.

J Function-Space Dimensionality Reduction
Here, we expand on the idea of PCA on ensemble predictions. A central challenge with large model ensembles is un-
derstanding the commonalities and differences among the individual models. The high-level idea is that PCA applied to
ensemble predictions reveals the major direction of variation within an ensemble of models. This dimensionality reduction
allows us to clearly interpret model behaviors and identify groups of related datapoints Additionally, PCA enables the
generation of new functions with similar statistical properties by parameterizing a low-rank Gaussian distribution in the
joint prediction space, which we can sample from.

J.1 Motivating Example

Consider three models f1, . . . , f3 and five inputs z1, . . . , z5. Denoting each model’s predicted probability for an input as
pnh = σ(fh(zn)) ∈ [0, 1], assume that the matrix of predictions isp11 p12 p13 p14 p15

p21 p22 p23 p24 p25
p31 p32 p33 p34 p35

 =

 1 0 1 0 1/2
0 1 1/2 1/2 1/2
1/2 1/2 0 1 1/2

 . (7)

Each row of this matrix shows one model’s prediction on the entire pool of inputs, and each column shows every model’s
prediction on a single input. We can analyze such a matrix of predictions on three levels, each revealing increasing amounts
of structure within the ensemble:
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Level 1: Per-sample ensemble uncertainty. We can first compute the average prediction p̄(x) = 1
H

∑
h pnh for each

datapoint. For the predictions in (7), the average prediction is p̄(x) = 1/2 for every input x, and thus the collection of
models may be viewed as equally uncertain about each of the 5 inputs. This is the measure of ensemble uncertainty
commonly used for ensembles (Lakshminarayanan et al., 2017).

Level 2: Per-sample disagreement. We can further account for the amount of disagreement among ensemble members
for each datapoint. Note that for the four inputs z1, z2, z3, z4, there is strong disagreement between two functions where
one predicts 0 and the other predicts 1. This is not true of z5, where all functions predict 1/2. Uncertainty metrics that
take disagreement into account, such as the BALD criterion (Houlsby et al., 2011), will reveal that the ensemble is more
uncertain about z1, z2, z3, z4 than it is about z5.

Level 3: Joint predictions. First, note that the two approaches above discard all information about which ensemble
member made which individual prediction for a given input, by (1) averaging all predictions or (2) considering only the
unordered set of predictions. There is additional structure to the differences among ensemble members that we can extract
by considering the joint predictions, i.e., viewing each column of (7) as an object in itself. The pair of inputs (z1, z2)
are closely related since they deviate from the ensemble prediction in the same “direction” in the joint prediction space
(RH ). We can make the same observation about the pair (z3, z4). To see this structure more clearly, consider the matrix of
deviations from the ensemble prediction δnh = pnh − 1

H

∑
h pnh:δ11 δ12 δ13 δ14 δ15

δ21 δ22 δ23 δ24 δ25
δ31 δ32 δ33 δ34 δ35

 =
1

2

 1 −1 1 −1 0
−1 1 0 0 0
0 0 −1 1 0

 . (8)

This clearly shows that the vector of joint deviations (δ11, δ12, δ13) is the negative of that of (δ21, δ22, δ23). More generally,
we can view the vector of deviations (δ1n, δ2n, δ3n) as a representation of the datapoint zn in the joint prediction space. In
this sense, the matrix of predictions {pnh} can be explained by the mean prediction 0.5 for each datapoint, together with
two factors of variation (1,−1, 0) and (1, 0,−1) appropriately applied to each input. We next describe how to automatically
extract such consistent high-level factors in an ensemble from the matrix of predictions.

J.2 PCA on Ensemble Predictions

We propose to apply PCA to the H ×N matrix of residual predictions to obtain P principal components. Each principle
component is a vector of size H that captures the orthogonal factors of variation in how ensemble members extrapolated
from the training data. Given a set of weights w1, . . . , wP over principal components, we can “reconstruct” a set of joint
predictions as

p(x) = p̄(x) +
(
w1 · · · wP

)

c11 · · · c1H
c21 · · · c2H

...
. . .

...
cP1 · · · cPH




p1(x)− p̄(x)
p2(x)− p̄(x)

...
pH(x)− p̄(x)

 , (9)

where we denote the mean prediction as p̄(x) = 1
H

∑
h pnh and the P principal components as C ∈ RP×H .

We highlight two known interpretations of PCA that have interesting implications for our goal of summarizing ensemble
predictions:

Maximum mutual information / variance after projection. PCA finds the linear projection y = w⊤x with unit vector w
that achieves maximum mutual information I(x; y), or equivalently, maximum variance Var(y). Each principal component
finds the linear combination of ensemble members that preserves the most information about the set of joint ensemble
predictions. This is closely related to the disagreement term in Bayesian active learning (Houlsby et al., 2011).

Factor model. The principal components are maximum likelihood parameters under a linear Gaussian factor model of the
data (Tipping & Bishop, 1999). Indeed, we can view our principal components as orthogonal modifications to the mean
prediction p̄(x). The distribution of ensemble members is closely approximated by “reconstructed predictions” (9), where
z1:P ∼ N (0, IP ). We can view each principal component as a consistent high-level direction of functional variation in
which the training data provided insufficient information.
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K PERSONA Dataset Details
Below, we list the personas used in our PERSONA (Castricato et al., 2024) experiments. The dataset includes 1000
personas in total, each with 200 preference pairs. We subsampled 10 personas from the original dataset of 1000, ensuring
a diverse set of backgrounds, ages, and lifestyles.

Persona 1. Age: 1. Sex: Male. Race: White alone. Ancestry: Irish. Household language: English only. Education:
Not applicable. Employment status: Not applicable. Class of worker: Not applicable. Industry category: Not applicable.
Occupation category: Not applicable. Detailed job description: Not applicable. Income: Not applicable. Marital status:
Too young to be married. Household type: Cohabiting couple household with children of the householder less than 18.
Family presence and age: With related children under 5 years only. Place of birth: Missouri/MO. Citizenship: Born in
the United States. Veteran status: Not applicable. Disability: None. Health insurance: With health insurance coverage.
Fertility: Not applicable. Hearing difficulty: None. Vision difficulty: None. Cognitive difficulty: None. Ability to speak
english: Not applicable. Big five scores: Openness: High, Conscientiousness: High, Extraversion: Low, Agreeableness:
Extremely High, Neuroticism: Extremely Low. Defining quirks: Loves to play with his food. Mannerisms: Waves hands
when excited. Personal time: Spends most of his time playing, sleeping, and learning to walk. Lifestyle: Lives a carefree
and playful lifestyle. Ideology: Not applicable. Political views: Not applicable. Religion: Other Christian.

Persona 2. Age: 11. Sex: Male. Race: White alone. Ancestry: Irish. Household language: English only. Education: Grade
4. Employment status: Unemployed. Class of worker: Not applicable. Industry category: Not applicable. occupation
category: Not applicable Detailed job description: Student. Income: 0. Marital status: Never married or under 15 years
old. Household type: Cohabiting couple household with children of the householder less than 18. Family presence and
age: With related children 5 to 17 years only. Place of birth: Louisiana/LA. Citizenship: Born in the United States. Veteran
status: Not applicable. Disability: None. Health insurance: With health insurance coverage. Big five scores: Openness:
Low, Conscientiousness: Low, Extraversion: High, Agreeableness: High, Neuroticism: Average. defining quirks: Loves
to draw and create stories Mannerisms: Often seen doodling or daydreaming. Personal time: Spends free time drawing or
playing video games. Lifestyle: Active and playful, enjoys school and spending time with friends. Ideology: Undeveloped.
Political views: Undeveloped. Religion: Religiously Unaffiliated.

Persona 3. Age: 19. Sex: Male. Race: Asian Indian alone. Ancestry: Indian. Household language: Hindi. Education: 1 or
more years of college credit, no degree. Employment status: Not in labor force. Class of worker: Not Applicable. Industry
category: Not Applicable. Occupation category: Not Applicable. Detailed job description: Not Applicable. Income: -
60000.0. Marital status: Never married or under 15 years old. Household type: Living with parents. Family presence and
age: Living with two parents. Place of birth: India. Citizenship: Not a U.S. citizen. Veteran status: Non-Veteran. Disability:
None. Health insurance: With health insurance coverage. Big five scores: Openness: Average, Conscientiousness: High,
Extraversion: Extremely Low, Agreeableness: Extremely High, Neuroticism: Extremely Low. defining quirks: Passionate
about music Mannerisms: Expressive hand gestures when speaking. Personal time: Practicing music or studying. Lifestyle:
Student and Music Enthusiast. Ideology: Liberal. Political views: Liberal. Religion: Other Christian.

Persona 4. Age: 29. Sex: Female. Race: Laotian alone. Ancestry: Laotian. Household language: Asian and Pacific
Island languages. Education: Some college, but less than 1 year. Employment status: Armed forces, at work. Class of
worker: Federal government employee. Industry category: MIL-U.S. Navy. Occupation category: MIL-Military Enlisted
Tactical Operations And Air/Weapons Specialists And Crew Members. Detailed job description: Maintains and operates
tactical weapons systems. Income: 81000.0. Marital status: Married. Household type: Married couple household with
children of the householder less than 18. Family presence and age: With related children 5 to 17 years only. Place of
birth: California/CA. Citizenship: Born in the United States. Veteran status: Now on active duty. Disability: None. Health
insurance: With health insurance coverage. Big five scores: Openness: Average, Conscientiousness: High, Extraversion:
Average, Agreeableness: High, Neuroticism: Average. Defining quirks: Collects military memorabilia. Mannerisms:
Frequently uses military jargon. Personal time: Spends time with family and collecting military memorabilia. Lifestyle:
Disciplined and active. Ideology: Conservative. Political views: Republican. Religion: Protestant.

Persona 5. Age: 36. Sex: Female. Race: Some Other Race alone. Ancestry: Hispanic. Household language: English.
Education: Regular high school diploma. Employment status: Civilian employed, at work. Class of worker: Employee of
a private for-profit company or business, or of an individual, for wages, salary, or commissions. Industry category: FIN-
Insurance Carriers. Occupation category: OFF-Insurance Claims And Policy Processing Clerks. Detailed job description:
Processes insurance claims and policies. Income: 182000.0. Marital status: Married. Household type: Married couple
household with children of the householder less than 18. Family presence and age: With related children under 5 years
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only. Place of birth: New Mexico/NM. Citizenship: Born in the United States. veteran status: Non-Veteran Disability:
None. Health insurance: With health insurance coverage. Big five scores: Openness: Extremely Low, Conscientiousness:
Extremely High, Extraversion: Extremely High, Agreeableness: High, Neuroticism: Average. Defining quirks: Enjoys
bird-watching. Mannerisms: Often taps foot when thinking. Personal time: Spends free time with family or in nature.
Lifestyle: Active and family-oriented. Ideology: Conservative. Political views: Republican. Religion: Other Christian.

Persona 6. Age: 44. Sex: Female. Race: Black or African American alone. Ancestry: Haitian. household language:
Other Indo-European languages education: Associate’s degree Employment status: Civilian employed, at work. Class
of worker: Employee of a private not-for-profit, tax-exempt, or charitable organization. Industry category: FIN-Banking
And Related Activities. Occupation category: OFF-Tellers. Detailed job description: Handles customer transactions at the
bank, including deposits, withdrawals, and loan payments. Income: 40000.0. Marital status: Separated. Household type:
Female householder, no spouse/partner present, with children of the householder less than 18. Family presence and age:
With related children 5 to 17 years only. Place of birth: Haiti. Citizenship: Not a U.S. citizen. Veteran status: Non-Veteran.
Disability: None. Health insurance: With health insurance coverage. Big five scores: Openness: High, Conscientiousness:
Extremely Low, Extraversion: Average, Agreeableness: Average, Neuroticism: Extremely Low. Defining quirks: Loves
to cook Haitian cuisine. Mannerisms: Often taps her foot when stressed. Personal time: Taking care of her children,
Pursuing further education. Lifestyle: Busy, Family-oriented. Ideology: Egalitarian. Political views: Democrat. Religion:
Protestant.

Persona 7. Age: 52. Sex: Female. Race: Korean alone. Ancestry: Korean. Household language: Asian and Pacific Island
languages. Education: Regular high school diploma. Employment status: Civilian employed, at work. Class of worker:
State government employee. Industry category: ENT-Restaurants And Other Food Services. Occupation category: EAT-
First-Line Supervisors Of Food Preparation And Serving Workers. Detailed job description: Supervises food preparation
and serving workers in a state government facility. Income: 133900.0. Marital status: Married. Household type: Married
couple household, no children of the householder less than 18. Family presence and age: No related children. Place of
birth: Korea. Citizenship: U.S. citizen by naturalization. Veteran status: Non-Veteran. Disability: None. Health insurance:
With health insurance coverage. big five scores: Openness: Average, Conscientiousness: Extremely High, Extraversion:
Extremely Low, Agreeableness: Extremely Low, Neuroticism: Average defining quirks: Deep love for literature and
reading Mannerisms: Constantly adjusts her glasses. Personal time: Spends free time reading or engaging in community
activism. Lifestyle: Quiet and community-oriented. Ideology: Liberal. Political views: Democratic. Religion: Protestant.

Persona 8. Age: 58. Sex: Male. Race: White. Ancestry: Scottish. Household language: English. Education: Bachelor’s
Degree. Employment status: Employed. Class of worker: Private. industry category: Investigation And Security Ser-
vices Occupation category: Sales Manager. Detailed job description: Oversees sales teams, sets sales goals, and develops
strategies to achieve these goals. Income: 198200. Marital status: Married. Household type: Married couple household,
no children under 18. Family presence and age: No related children. Place of birth: Florida. Citizenship: US Citizen.
veteran status: Non-Veteran Disability: With a disability. Health insurance: With health insurance coverage. Big five
scores: Openness: High, Conscientiousness: Extremely High, Extraversion: Average, Agreeableness: Average, Neuroti-
cism: Average. Defining quirks: Keen interest in security technology and crime novels. mannerisms: Constantly checks
his surroundings Personal time: Researching the latest security technologies or enjoying a round of golf. Lifestyle: Active
and health-conscious. Ideology: Conservative. Political views: Republican. Religion: Catholic.

Persona 9. Age: 65. Sex: Female. Race: White alone. Ancestry: Italian. Household language: Other Indo-European
languages. Education: Master’s degree. Employment status: Civilian employed, at work. Class of worker: Self-employed
in own incorporated business, professional practice or farm. Industry category: ENT-Traveler Accommodation. Occu-
pation category: FIN-Accountants And Auditors. Detailed job description: Manages financial records and tax data for
her own travel accommodation business. Income: 188600.0. Marital status: Married. Household type: Married couple
household, no children of the householder less than 18. Family presence and age: No related children. Place of birth:
Delaware/DE. Citizenship: Born in the United States. Veteran status: Non-veteran. Disability: None. Health insurance:
With health insurance coverage. ability to speak english: Well. Big five scores: Openness: Average, Conscientiousness:
Low, Extraversion: Low, Agreeableness: Average, Neuroticism: Extremely High. Defining quirks: Has an extensive col-
lection of vintage travel posters. Mannerisms: Tends to use Italian phrases in conversation. Personal time: Spends her
free time exploring new places, trying new cuisines, and learning about different cultures. Lifestyle: Leads a busy lifestyle
managing her business, but always finds time for her passion for travel and culture. Ideology: Believes in the importance
of understanding and appreciating different cultures. Political views: Liberal. Religion: Protestant.
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Persona 10. Age: 75. Sex: Female. Race: White alone. ancestry: Scottish Household language: English only. Education:
Professional degree beyond a bachelor’s degree. Employment status: Not in labor force. Class of worker: Retired. Industry
category: Healthcare. Occupation category: Doctor. Detailed job description: Retired pediatrician. Income: 98000.0.
Marital status: Never married. Household type: Female householder, no spouse/partner present, living alone. Family
presence and age: No family. Place of birth: Massachusetts/MA. citizenship: Born in the United States veteran status:
Non-Veteran Disability: None. Health insurance: With health insurance coverage. Big five scores: Openness: Average,
Conscientiousness: Average, Extraversion: High, Agreeableness: Extremely High, Neuroticism: Average. Defining quirks:
Enjoys cooking traditional Scottish meals. Mannerisms: Often hums traditional Scottish tunes. Personal time: Spends free
time volunteering at the local church and community center. Lifestyle: Active but relaxed, with a focus on maintaining
health and staying involved in the community. Ideology: Conservative. Political views: Republican. Religion: Catholic.
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OOD Dataset Best Head, Scale=100 Best Head, Scale=102 Best Head, Scale=104

Figure 8: Additional visualizations for the toy conflicting classification example. Increasing the scale hyperparameter results produces
heads with sharper decision boundaries.
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Figure 9: Detailed results for the personalizing preference reward models experiment in Figure 2. Target dataset accuracy (y-axis) after
observing different numbers of adaptation samples (x-axis). The dashed line represents the performance of the pretrained reward model.
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