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Abstract
The ability of agents to collaborate with previ-
ously unknown teammates on the fly, known as
ad hoc teamwork (AHT), is crucial in many real-
world applications. Existing approaches to AHT
require online interactions with the environment
and some carefully designed teammates. How-
ever, these prerequisites can be infeasible in prac-
tice. In this work, we extend the AHT problem
to the offline setting, where the policy of the ego
agent is directly learned from a multi-agent in-
teraction dataset. We propose a hierarchical se-
quence modeling framework called TAGET that
addresses critical challenges in the offline setting,
including limited data, partial observability and
online adaptation. The core idea of TAGET is to
dynamically predict teammate-aware rewards-to-
go and sub-goals, so that the ego agent can adapt
to the changes of teammates’ behaviors in real
time. Extensive experimental results show that
TAGET significantly outperforms existing solu-
tions to AHT in the offline setting.

1. Introduction
Ad hoc teamwork (AHT) refers to enabling autonomous
agents to collaborate with unknown teammates without prior
coordination (Stone et al., 2010). This capability is crucial
in dynamic and uncertain environments where agents must
quickly form teams, adapt to new teammates and achieve
common goals efficiently (Barrett et al., 2017). For instance,
rescue robots should form an ad hoc team in real time to
survey affected areas, locate survivors, and deliver supplies.
Each robot must adapt to the changes in teammates’ policies
caused by some unpredictable events. Another typical appli-
cation of AHT is autonomous driving, where each car must
collaborate with random cars nearby to accomplish tasks
such as cross-passing and overtaking (Teng et al., 2023).
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Previous research on AHT primarily focuses on online rein-
forcement learning (RL) methods (Barrett & Stone, 2015;
Durugkar et al., 2020; Mirsky et al., 2020; Ye et al., 2020),
which typically require the access to the environment in-
volving various pre-trained teammates. However, these
approaches face significant challenges in practice. First, the
teammates’ joint policy space could be extremely large, and
it is impossible to simulate all combinations of teammates’
policies during training. Existing works (Gu et al., 2021)
usually train the ego agent’s policy against a subset of team-
mates’ policies, which greatly reduces the generalization
ability of the learned policy. Second, environmental sim-
ulators are often unavailable or expensive, especially for
real-world environments, without which the online RL ap-
proaches cannot be applied. Fortunately, in many cases, of-
fline data collection provides a safer and more cost-effective
alternative. For instance, numerous traffic data is recorded
by cameras and road sensors every day. This motivates us
to study the problem of AHT in an offline setting.

However, addressing AHT problems in the offline setting
remains challenging: (1) Offline RL heavily relies on the pre-
collected datasets, which can hardly cover diverse teammate
behaviors and environmental dynamics, leading to a poor
generalization of the learned policy; (2) In partially observ-
able environments, incomplete information makes it more
challenging to accurate teammates modeling. This issue is
aggravated in the offline setting because we cannot compen-
sate for missing information through active exploration; (3)
Existing sequence modeling methods for decision-making
(e.g., Decision Transformer (Chen et al., 2021)) primarily
rely on the return-guided action generation. However, a sim-
ple return signal fails to capture enough information about
the frequently changing teammates’ intentions and policies
in the setting of AHT.

To address the issues mentioned above, we introduce a novel
framework called TAGET, which stands for Teammate-
Aware Goal driven hiErarchical Decision Transformers.
Specifically, TAGET adopts a hierarchical framework con-
sisting of a high-level module for teammate-aware sub-goal
prediction and a low-level module for action generation.
The key innovations of TAGET are as follows. (1) We adopt
a trajectory mirroring strategy to improve data efficiency,
where each agent plays as the ego agent in turn, so that one
piece of multi-agent trajectory can be used multiple times
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for training; (2) We employ two separate state encoders for
the ego agent and all the agents respectively. By regular-
izing the output of the two encoders, the ego agent is able
to infer the teamwork information based only on its local
observations; (3) We extend the conventional return-to-go
(RTG) to teammate-aware return-to-go (TA-RTG), which
accurately reflects the team return-to-go conditioned on the
current global state. Based on the TA-RTG, a teammate-
aware sub-goal (TA-Goal) is decoded and used to guide the
low-level Decision Transformer to generate corresponding
actions. By dynamically predicting the TA-RTG and the
TA-Goal at every step, the ego agent is able to adapt to the
changes of teammates in real time. The main contributions
of our work are summarized as follows.

1. We extend the AHT problem to the offline setting,
where an ego agent needs to learn a policy that adapts
to various teammates from the offline dataset.

2. We propose a hierarchical sequence modeling frame-
work called TAGET, which successfully addresses the
offline AHT problem using a teammate-aware goal-
conditioned Decision Transformer.

3. We empirically validate TAGET in three classic envi-
ronments. The results show that TAGET achieves the
best performance against strong baselines, with an av-
erage improvement of 37.83% across all environments.

2. Related Work
Ad hoc teamwork. Existing works on AHT predominantly
rely on online interaction with the environment and associ-
ated teammates. Early approaches assume fully observable
environments with a fixed small number of teammates, and
train an agent to collaborate with them through plenty of
online interactions (Barrett et al., 2017; Chen et al., 2020;
Rahman et al., 2021b; Huang et al., 2021). Recent works
consider more realistic settings. For example, ODITS (Gu
et al., 2021) and LIAM (Papoudakis et al., 2021) improve
the adaptability of the ego agent in partially observable en-
vironments. GPL (Rahman et al., 2021a) and OAHT (Wang
et al., 2024) learn to address the open ad hoc problem, where
the number of teammates can change. TEAMSTER lever-
ages model-based RL methods to approximate the poten-
tially complex environments and teammates (Ribeiro et al.,
2023). However, these online approaches perform poorly
in the offline setting, because they heavily rely on online
explorations to estimate the environments and teammates.

Offline reinforcement learning. Offline RL (Levine et al.,
2020) aims to learn policies from static datasets without on-
line exploration, effectively reducing data costs and safety
risks (Xu et al., 2022a), with notable success in single-agent
settings (Qu et al., 2023; Wei et al., 2021). Traditional of-
fline RL algorithms, such as Batch-Constrained Q-learning

(BCQ) (Fujimoto et al., 2019) and Conservative Q-learning
(CQL) (Kumar et al., 2020), focus on addressing the out-of-
distribution (OOD) problem by constraining policy learning.
Decision Transformer (DT) (Chen et al., 2021; Li et al.; Xie
et al., 2023) and Trajectory Transformer (TT) (Janner et al.,
2021; Xu et al., 2021) reframe offline RL as a sequence
modeling problem, achieving performance comparable to
state-of-the-art offline RL methods while providing a novel
perspective on policy learning (Zheng et al., 2022; Xu et al.,
2022b; Reed et al., 2022; Badrinath et al., 2024; Ma et al.,
2023). Furthermore, recent works (Yang et al., 2021; Meng
et al., 2021; Tseng et al., 2022; Jiang & Lu, 2023) have ex-
tended offline RL to multi-agent settings and tried to learn
an optimal joint policy from the offline datasets. However,
these works do not apply to the ad hoc setting, where the
teammates’ policies may not follow the optimal joint policy.
By contrast, we try to learn a teammate-aware policy that
can adapt to the changes to teammates’ policies in real time.

Teammate modeling. Teammate modeling (Barrett et al.,
2012) greatly facilitates multi-agent learning by helping the
agents to understand each other. Traditional AHT methods
primarily rely on accurate teammate modeling to adapt to
unknown teammates, which refines teammate models in real
time through online interaction using approaches such as
meta-learning (Al-Shedivat et al., 2017; Kim et al., 2021),
Bayesian inference (Zintgraf et al., 2021), and value decom-
position (Zhang et al., 2023; Gu et al., 2021). While these
methods perform well in online settings, they struggle in
offline settings due to the inability to constantly improve the
teammate models by interacting with the environment (Ma
et al., 2024). Although some offline teammate modeling
approaches leverage methods like in-context learning (Jing
et al., 2023) to compensate for the inability to learn from
online interactions, they still struggle with low accuracy.
In our work, instead of predicting each teammate’s policy,
we directly predict the future global states, which are more
informative to the ego agent as they effectively summarize
the influence of teammates’ policies on the environment.

3. Problem Statement
Our objective is to train an ego agent to collaborate with
unknown teammates in partially observable environments
from a fixed dataset. To this end, we formulate the problem
as a decentralized partially observable Markov decision pro-
cess (Dec-POMDP) with an additional joint policy space
of teammates, which can be formally described as a tuple
⟨N,S,O,A, T , P,R,O,Γ⟩, where N = {1, 2, . . . , n} rep-
resents the set of agents involved in the task and S denotes
the global state space. We consider a partially observable set-
ting in which each agent receives an individual observation
oi ∈ O via an observation function Oi : S × A 7→ ∆(Oi).
The joint action space is defined asA = A1×A2×· · ·×AN .
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Figure 1. Comparison of Online and Offline Ad Hoc Teamwork
Frameworks. (a) shows the online AHT framework, where the
ego agent learns through real-time interaction, collecting data and
updating its policy continuously. (b) illustrates the offline AHT
framework, where the agent trains on a pre-collected dataset.

τ i ∈ T ≡ (O×A)∗ represents the observation-action trajec-
tory of agent i. The transition function P : S ×A 7→ ∆(S)
determines the probability distribution over the next state,
given the current state and joint action. In cooperative
scenarios, all agents share the common reward function
R : S × A 7→ ∆(R). We denote by Γ the joint policy
space of teammates. In practice, Γ can be approximated by
sampling from a pre-collected diverse policy pool.

Figure 1 presents the comparison between online AHT and
offline AHT. Unlike online methods, where agents interact
with the environment during training, our approach uses an
offline dataset D to train an ego agent policy πiθ(a

i|oi;D).
The trained ego agent is then deployed with unknown team-
mates, whose policies are randomly sampled from the joint
policy space Γ. The goal for the ego agent is to achieve the
maximum expected return:

max
θ

Eπ−i∼Γ,D

[ ∞∑
t=0

rt

∣∣∣∣ ait ∼ πiθ,π−i

]
. (1)

4. Method
The offline AHT problem faces many practical challenges,
including limited data, inaccurate teammate modeling in
partially observable environments, and online adaptation to
previously unknown teammates. In this section, we intro-
duce a hierarchical goal-based Decision Transformer frame-
work called TAGET, which addresses the above challenges
by a unified sequence modeling approach.

4.1. Overview

TAGET aims to train an ego agent from an offline dataset
so that it can maximize the expected team reward given any
teammates’ policies. Figure 2 illustrates the framework of
TAGET, which comprises three main modules. First, the
offline data pre-processing module mitigates the issue of
limited data through a trajectory mirroring strategy, where
each agent alternates as the ego agent to make the most
use of multi-agent trajectory data. Second, the high-level
teammate-aware sub-goal prediction module learns a la-
tent variable from local observations to capture the core
information of teamwork situations. Specifically, it pre-
dicts teammate-aware return-to-go and then combines it
with the latent variable to predict teammate-aware sub-goal,
which guides decision making and improves the adapta-
tion to dynamic teammate behaviors. Finally, the low-level
goal-conditioned action generation module utilizes the De-
cision Transformer to predict actions conditioned on the
high-level TA-Goal, ensuring flexibility and robustness in
non-stationary environments.

4.2. Offline data collection and pre-processing

As illustrated in Figure 2, to enable policy learning without
online interaction, we first collect a comprehensive offline
dataset of multi-agent interaction trajectories, denoted as
D = {τ1, τ2, . . . , τM}. Each trajectory τj represents a com-
plete episode of interaction and is structured as follows:

τj = {R̂1,o1,a1, . . . , R̂T ,oT ,aT }. (2)

Here, ot denotes the joint observations, at denotes the joint
actions, and R̂t =

∑T
t′=t rt′ represents the return-to-go

at time step t. Such offline datasets are relatively easy to
collect in real-world scenarios, as they can be obtained by
recording interactions during task execution.

Note that, the raw multi-agent interaction trajectories treat
all agents equally without differentiating the ego agent and
the teammates. If any agent is arbitrarily selected as the ego
agent, it would ignore the decision-making perspective of
other agents as the ego agent. Therefore, we propose a data
pre-processing technique called trajectory mirroring strat-
egy, which reorders the positions of states and observations
within a trajectory so that each agent alternates as the ego
agent. This strategy effectively utilizes the dataset to extract
information from multiple decision-making perspectives
and mitigates the challenge of limited data.

Formally, for a trajectory τj with N agents, the trajectory
mirroring strategy generates N trajectories by re-ordering
the positions of the states and observations. For each mir-
rored trajectory τj,i, agent i is treated as the ego agent,
while the remaining agents are considered as teammates.
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Figure 2. Training overview of the proposed TAGET. First, the (1) Offline data collection and pre-processing module collects trajectories
and then generates mirrored trajectories by treating each agent as the ego agent. These processed trajectories are then learned by the
hierarchical decision framework. At each time step t, the (2) High-level: Teammate-aware goal prediction module extracts a latent
representation zit from local observation oit, approximating the team context hi

t by regularization. The module predicts TA-RTG Rt based
on hi

t and then utilizes Rt and hi
t to predict TA-Goal Gt. Finally, the (3) Low-level: Goal-conditioned decision-making module employs

a Causal Transformer to condition on the predicted goal Gt, generating the next action for the ego agent.

The transformation is defined as:

τj,i = fmirror(τj , i) = {R̂t, oit,o−i
t , ait,a

−i
t }Tt=1, (3)

where oit and ait are the observation and action of the ego
agent, while o−it and a−it represent the joint observations
and actions of all the other agents. For example, as shown in
Figure 2, if a trajectory involves three agents, the trajectory
mirroring strategy generates three trajectories: τj,1, τj,2, and
τj,3. These trajectories are distinct in downstream modules
because the information of the ego agent and the teammates
is processed in different ways.

4.3. High-level: teammate-aware goal prediction

For decision making, vanilla DT relies on a scalar return-
to-go (RTG) signal to guide policies. However, teammates
may exhibit highly dynamic and unpredictable behaviors
in AHT, so a simple RTG can hardly capture uncertain-
ties in teammates and the environment. To this end, we
introduce a new concept called teammate-aware sub-goal
(TA-Goal), the predicted global state at a future step that
serves as a high-level objective. TA-Goal captures the dy-
namics of teammate behaviors, providing more robust and
adaptive guidance than RTG in complex multi-agent set-
tings. To predict the TA-Goal, we use the team context and

the teammate-aware RTG (TA-RTG) as inputs. The team
context encodes the current global state, while the TA-RTG
estimates the expected return. Taking these two as inputs,
the TA-Goal prediction captures both the current state and
future return, serving as the high-level objective to guide
the ego agent action generation.

First, we learn to represent team context under partial ob-
servability. In multi-agent scenarios, each agent typically
has access only to local observations, which hinders under-
standing of teammates’ intentions. We propose two state
encoders: team context encoder for all agents and proxy
encoder for the ego agent. With the regularization between
the outputs of the two encoders, the ego agent is able to
infer the team context based only on its local observations.

Team context encoder: The team context is a high-level se-
mantic representation derived from the current observations
of all agents. To model this, we represent the team context
in a stochastic embedding spaceH, where it is encoded as
a latent probabilistic variable hi drawn from a multivariate
Gaussian distribution. We utilize a function f to learn the
parameters of the multivariate Gaussian distribution:

(µhi , σhi) = fφ(o
i
t,o

−i
t ), hi ∼ N (µhi , σhi). (4)
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Proxy encoder: Due to the partial observability during
execution, directly applying f to capture the team context
is infeasible. To overcome this limitation, we introduce a
Proxy Encoder f∗ that approximates the team context from
only local observations oit, assuming that oit can partially
capture the cooperative context as it inherently reflects team-
mate interactions and behavioral features. Similarly, zi, as
an approximation of hi, is encoded into a stochastic embed-
ding space, where it is represented as a latent probabilistic
variable drawn from a multivariate Gaussian distribution.
The Proxy Encoder f∗ is used to learn the parameters of
this Gaussian distribution:

(µzi , σzi) = fθ(o
i
t), zi ∼ N (µzi , σzi). (5)

Here, zi serves as a latent representation of teammate dy-
namics, robustly guiding decision-making when global ob-
servations are unavailable.

Latent variable regularization: To ensure zit to effectively
represent the team context under partial observability, we
aim for zit to remain consistent with hit. Inspired by pre-
vious works (Ajay et al., 2020; Pertsch et al., 2021; Xie
et al., 2023), we use the following objective to minimize the
discrepancy between the two representations and stabilize
the high-level representation:

LReg(θ, φ) = Eτ∼D

[
T∑
t=1

DKL

(
fφ(· | oit,o−i

t )∥N (0, I)
)]

+ βEτ∼D

[
T∑
t=1

DKL

(
⌊fφ(· | oit,o−i

t )⌋∥fθ(zit | oit)
)]
,

(6)

where DKL denotes the Kullback-Leibler (KL) divergence,
⌊·⌋ indicates the stop-gradient operator, and β is a hyperpa-
rameter balancing the two regularization terms. The first
KL-divergence term DKL

(
fφ(· | oit, o−it ) ∥N (0, I)

)
is de-

signed as a reverse KL to enforce a compact latent space.
Following the beta-VAE framework (Higgins et al., 2017),
reverse KL encourages the learned latent distribution to
concentrate around the modes of the prior standard normal
distribution, effectively preventing overfitting to noisy obser-
vations and improving generalization to unseen teammates.
In contrast, the second term employs forward KL, which
aligns the proxy encoder’s output with the team context
encoder by minimizing the divergence in expectation. This
hybrid regularization ensures the latent space regularity and
the consistency between local and global representations
under partial observability.

Then, we learn to predict TA-RTG, which is conditioned on
the team context. Unlike traditional RTG in single-agent
settings, TA-RTG captures the influence of dynamic team-
mates, making it better suited for AHT scenarios. This

enables a more accurate and adaptable estimate of future
performance and informs the TA-Goal generation process.

Teammate-aware return-to-go (TA-RTG): The TA-RTG
Rt represents the predicted return-to-go based on the team
context hit, which quantifies the contribution of teamwork
situation to long-term task impact. It provides critical dy-
namic optimization feedback for generating TA-Goal. To
predict the TA-RTG, we design an RTG predictor Rϕ that
takes hit as input: Rφ(Rt|hit). The training objective of
the predictor is to minimize the discrepancy between the
predicted RTG Rt and the ground truth R̂t. Specifically, we
use the following MSE loss function:

LRTG = Eτ∼D

[
T∑
t=1

(
Rϕ(h

i
t)− R̂t

)2
]
, (7)

Although the TA-RTG provides more accurate information
than conventional RTG by considering teammates’ behav-
iors, it is still less informative for downstream action genera-
tion, especially in environments with sparse rewards. There-
fore, we further predict the TA-Goal, which is represented
by the future global state and provides richer contextual in-
formation than the TA-RTG. Based on the team context and
the TA-RTG, we predict the TA-Goal to guide the decision
of the ego agent. The TA-Goal enables the ego agent to
coordinate its actions with dynamic teammate behaviors,
thereby enhancing robust collaboration in complex multi-
agent environments.

Teammate-aware goal (TA-Goal): The TA-Goal Gt repre-
sents the predicted global state at time t+k, which provides
a high-level objective to guide low-level decision-making.
It is predicted based on the team context hit and the pre-
dicted TA-RTG Rt. To predict the TA-Goal, we designed
the TA-Goal decoder Gξ that takes hit and Rt as inputs:
Gξ(Gt|hit, Rt). The TA-Goal decoder is trained by min-
imizing the difference between the predicted Ĝt and the
ground-truth Gt in the dataset. Gt is constructed by con-
catenating the discretized and one-hot encoded observations
of all agents at time step t+ k, representing the global state
at that future moment. The loss function is defined as:

LTA-Goal = Eτ∼D

[
− 1

N

T∑
t=1

N∑
i=1

(
Gt,i log Ĝt,i

+ (1−Gt,i) log(1− Ĝt,i)
)]

,

(8)

where Gt,i = st+k = Concat
(
{oit+k}ni=1

)
. In total, the

overall loss function LHigh-level for the high-level network is
defined as:

LHigh-level = λRegLReg +λRTGLRTG +λTA-GoalLTA-Goal, (9)

where λMI, λRTG, λTA-Goal are weighting parameters used to
balance the contributions of different loss terms.

5



Ad Hoc Teamwork via Offline Goal-Based Decision Transformers

4.4. Low-level: Goal-conditioned action generation

We use a goal-based Decision Transformer as the low-level
policy network and solve the offline AHT problem through
conditioned sequence modeling. The context for the low-
level module is composed of two inputs: the TA-Goals
predicted by the high-level network and the pre-processed
trajectory segments. Specifically, the inputs to the low-level
DT are constructed as follows:

τ∗j,i = {Gt′ , oit′ , ait′}tt′=t−K+1, (10)

where K denotes the context length, i.e., the number of past
time steps included in the sequence. The causal Transformer
processes this sequence and outputs the predicted action ait
for the current time step. The training of the low-level mod-
ule aims to minimize the deviation between the predicted
action and the ground-truth action from the dataset. The
loss function for training is defined as:

LDT(ψ) = E τ∼D
Gt∼Gξ

[
− logPψ

(
ait | τ1:t−1, oit, Gt

)]
.

(11)
We replace RTG with TA-Goal as the prompt to overcome
the limitations of DT in AHT problems. Compared to RTG,
TA-Goal empowers the model to take actions based on the
future state adapted to dynamic teammate behaviors. This
allows the model to effectively collaborate with unknown
teammates in dynamic MARL environments.

5. Experiments
5.1. Environments and Data Collection

To evaluate the effectiveness of our proposed method, we
conducted experiments in three widely used multi-agent
reinforcement learning (MARL) environments: Predator-
prey (PP), Level-Based Foraging (LBF) and Overcooked.
These environments allow manipulation of teammates’ poli-
cies, thus are suitable for evaluating AHT methods. The
Predator-Prey environment is a classic MARL benchmark
where a team of predators must collaborate to capture prey
in a partially observable grid world(Lowe et al., 2017). Suc-
cessful teamwork requires coordination, as the prey can
evade capture without a joint effort. In the LBF environ-
ment, agents are tasked with collecting food items scattered
randomly in a grid-world. Each agent and food item is as-
signed a level and a group of agents can collect an item
only if the sum of their levels meets or exceeds the level
of the item (Papoudakis et al., 2020). The Overcooked
environment requires agents to prepare and deliver dishes
efficiently in complex kitchen layouts (Carroll et al., 2019).
Detailed information about the environments is provided in
the Appendix A for further reference.

To train our model in an offline setting, we utilize pre-
collected interaction trajectories. To ensure the model’s

adaptability to diverse teammate strategies, we adopt the
Soft-Value Diversity (SVD) method proposed in CSP (Ding
et al., 2023) to collect data. This method encourages the in-
clusion of a wide range of behavioral policies in the dataset.
We trained four distinct populations of multi-agent rein-
forcement learning (MARL) policies for each environment.
From these, one population was randomly sampled as the
testing teammate set, while the remaining three were used to
collect interaction trajectories for the offline dataset. Each
training population consists of three unique checkpoints,
while each testing population includes eight checkpoints.
Each checkpoint represents a distinct joint strategy, captur-
ing a diverse range of behaviors and interaction patterns. By
separating training and testing populations, this approach
ensures a rigorous evaluation of the model’s ability to adapt
to unseen teammate policies.

To enhance the coverage of offline datasets, we employed
a trajectory mirroring strategy, as we suggested above. For
each trajectory in the dataset, this method treats every agent
as the ego agent in turn, generating additional trajectories
from different perspectives. The resulting dataset enables
more robust policy learning in dynamic and partially observ-
able environments, as demonstrated in our experiments.

5.2. Baselines

We compare our method against several state-of-the-art
baselines commonly used in offline reinforcement learn-
ing and ad hoc teamwork tasks: Decision Transformer
(DT), Prompt-DT, ODITS-off and LIAM-off. These base-
lines are representative as they address the AHT problem
from different perspectives.

• Decision Transformer (DT) (Chen et al., 2021) refor-
mulates reinforcement learning as a sequence modeling
task, where the policy is learned by predicting the next
action given a sequence of observations, actions and
return-to-go. DT has demonstrated strong performance
in offline reinforcement learning settings by leverag-
ing the transformer architecture to model long-term
dependencies in sequential data.

• Prompt-DT (Xu et al., 2022b) is an extension of
DT that incorporates additional prompts to guide the
decision-making process to achieve a few-shot adap-
tation. This method has been shown to enhance gen-
eralization and adaptability, making it an appropriate
baseline for our approach, which also deals with di-
verse and dynamic teammate behaviors.

• ODITS-off is a variant of the ODITS framework (Gu
et al., 2021) which uses mutual information regulariza-
tion to infer teammates’ behaviors from local obser-
vation. We treat the trajectories in the offline dataset
as if they were obtained through online interactions,
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replacing online interaction and buffer-based learning
with direct learning from the offline dataset.

• LIAM-off (Papoudakis et al., 2021) is another offline-
variant of online AHT method. To adapt LIAM into
LIAM-off, we modify it to learn how to reconstruct
global information from local observations directly
from an offline dataset instead of a replay buffer, en-
abling the extraction of strong representational latent
variables that guide the controlled agent’s actions with-
out requiring online interactions.

• Conservative Q-Learning (CQL) (Kumar et al., 2020)
is a widely used offline RL algorithm that effectively
addresses the overestimation issue by learning conser-

vative value functions. It penalizes unseen actions in
the Q-function optimization, thus ensuring safer policy
learning from static datasets. We adapt CQL to the
AHT settings by training the ego agent in the offline
data collected under diverse teammate behaviors.

• Multi-Agent Decision Transformer (MADT) (Meng
et al., 2023) extends the Decision Transformer frame-
work to multi-agent scenarios. It models the joint tra-
jectory of all agents and leverages inter-agent depen-
dencies using a unified transformer-based policy. We
adapt it to the AHT settings, providing a strong base-
line for evaluating offline AHT performance in settings
where coordination and adaptation are essential.
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Figure 5. Impact of Model Components on Performance

5.3. Comparisons with Baselines

Results. We evaluate our trained model by interacting with
teammates in the test teammates sets. These teammates are
not involved in the collection of the offline training dataset,
making this evaluation an effective measure of the model’s
generalization ability. Performance across different sizes of
test teammate sets is evaluated for three environments. In
the case of PP-8, one teammate set was randomly selected
from eight distinct teammate sets to test our method in the
PP environment, one teammate set represents a group of
agents that interact with our ego agent in one episode, and
similarly for other cases. The returns from each evaluation
are averaged over fifty episodes of interaction. The shaded
region represents the 95% confidence interval. The results,
summarized in Appendix B, show that our method achieves
superior performance across all testing environments.

Analysis. The results in Figure 3 provide a comprehen-
sive comparison of five evaluated methods: TAGET, DT,
Prompt-DT, ODITS, and LIAM. Returns are averaged
over 50 trials, with shaded regions representing 95% confi-
dence intervals using the standard normal distribution for-
mula: x̄ = ±1.96 · σ√

n
, where σ is the sample standard

deviation and n = 50. TAGET consistently achieves the
highest returns and demonstrates superior stability across
all environments and test teammate set sizes, underscoring
its strong generalization ability to unseen teammates, as
evidenced by its higher curves. The consistent gap between
TAGET and baselines such as DT and Prompt-DT demon-
strates the ability of TAGET to effectively model diverse
teammate behaviors, a critical challenge in AHT. DT and
Prompt-DT show limited performance, with returns plateau-
ing at lower levels. They lack explicit mechanisms to adapt
to dynamically changing teammates in ad hoc scenarios.
Prompt-DT, in particular, shows limited performance in en-
vironments where teammate behaviors change rapidly, as
it relies on static prompts for guidance. In contrast, our

method introduces sub-goals as tokens that dynamically
guide the agent’s actions. These TA-Goals, predicted based
on dynamic team context and TA-RTG, enable the ego agent
to adapt to real-time changes in teammate behaviors effec-
tively. Figure 4 shows a real trajectory sampled from the PP
game environment, where the yellow pentagram represents
the TA-Goal. It demonstrates how the TA-Goal guides the
ego agent in cooperating with teammates and capturing the
prey effectively. ODITS and LIAM occasionally achieve
moderate returns but are characterized by higher variabil-
ity and instability, particularly in larger test teammate sets
(e.g., PP-8 and Overcooked-8). LIAM exhibits notable
fluctuations, likely due to overfitting to specific teammate
behaviors during training.

In summary, TAGET outperforms all baselines in terms of
return, stability, and generalization across a wide range of
multi-agent environments. This indicates that TAGET is
better equipped to handle the complexities of cooperative
tasks with diverse and unseen teammates, addressing key
limitations observed in the baseline methods.

5.4. Ablation Study

To evaluate the contribution of each component in our pro-
posed method, we conducted an ablation study by systemat-
ically removing individual components and observing the
impact on performance across three benchmark environ-
ments. The results are summarized in Figure 5.

Across all environments, the full method (TAGET) consis-
tently outperformed its ablated variants, demonstrating the
importance of each component. Notably, the removal of the
TA-Goal decoder led to the most significant performance
drop, especially in the overcooked environment, where goal-
driven actions are crucial due to poor teammate strategy.
The absence of data pre-processing also led to consistent per-
formance degradation in all three environments, underscor-
ing its fundamental contribution to the model’s generaliza-
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tion ability. The impact was particularly evident in the LBF
environment. By generating diverse interaction trajectories,
our trajectory mirroring strategy effectively mitigates overfit-
ting, enhancing the adaptability to unknown teammates and
the effectiveness of offline learning. These findings strongly
validate the design choices in our method, demonstrating
that each component of our method contributes synergisti-
cally to its overall performance. This collective contribution
significantly improves its adaptability in AHT scenarios.

6. Conclusion
In this work, we introduced TAGET, a novel hierarchical
framework that effectively addresses the challenging prob-
lem of offline ad hoc teamwork. Through extensive exper-
iments, we demonstrated that TAGET successfully over-
comes three critical challenges: limited offline data through
our mirrored data pre-processing strategy, partial observ-
ability via regularization of two state encoders, and online
adaptation through teammate-aware return-to-go prediction.
The strong empirical results across diverse cooperative en-
vironments validate the effectiveness of our hierarchical
approach combining teammate-aware goal prediction with
goal-conditioned decision making.
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A. Details of Environments.
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Figure 6. Impact of different goal steps

Level-based foraging. In the Level-based Foraging (LBF) environment, two agents forage within a 20 × 20 grid world
containing four food items. Each agent perceives the environment through a local observation space defined by a 5 × 5
window centered on its current position. The action space for each agent includes five discrete actions: four directional
movements (up, down, left, right) and a “collect” action. The agents share a team reward, which is proportional to the level
of the collected food and normalized to 1. An episode ends either when all food items are collected or after 50 timesteps. To
enhance the challenge, a strict coordination rule is imposed: food can only be collected when both agents are adjacent to the
same food item and simultaneously perform the ”collect” action. This rule forces agents to synchronize both spatially and
temporally, making cooperation essential. During evaluation, TAGET or baseline methods control one agent, while the other
agent’s behavior is governed by teammates sampled from predefined policy sets. The variability in coordination strategies is
reflected in the sequence in which agents collect all food items.

Predatory prey. The Predator-Prey (PP) environment is a more complex variant of the LBF. In this scenario, two predator
agents operate within a 10 × 10 grid world, each with a local 5 × 5 observation space centered on its current position. The
objective is for the predators to capture four prey, which move randomly across the grid throughout the episode. The action
space for each predator consists of four directional movement actions (up, down, left, and right). An episode ends either
when all prey have been captured or after 200 timesteps. The random movement of the prey increases the difficulty of the
task, as predators must maintain continuous coordination to effectively chase and surround them. To simplify the interaction,
explicit “capture” actions are removed, and prey are considered captured once they are fully surrounded by both predators.
This eliminates the risk of failed captures but still requires precise spatiotemporal coordination. The coordination strategies
adopted by the predators are reflected in how they organize their pursuit and divide roles, as well as in the sequence in which
prey are captured. This design highlights the importance of cooperative behaviors in multi-agent environments.

Overcooked. In the Overcooked environment, two agents must collaborate in a virtual kitchen to complete cooking tasks.
Preparing a dish requires a series of actions and includes a waiting period. Once the dish is cooked, an agent must pick
it up, transport it to the designated delivery point, and place it to complete an order. In this environment, both agents
share an action space consisting of six discrete actions: moving in four directions, interacting with the object in front, and
remaining idle. The objective is to complete as many orders as possible within 400 timesteps through efficient collaboration.
Specifically, in our environment, we adopted the ”Surrounding” layout, as shown in Fig. In this layout, only the green agent
can operate the cookware, while only the blue agent can reach the delivery point. Since a single agent cannot independently
complete the entire task, the two agents must cooperate closely to fulfill the orders. In this layout, coordination is mandatory,
and agents must adapt to each other’s behavior and preferences to complete the tasks.
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B. Experiment Results

Methods PP-4 LBF-4 Overcooked-4 PP-8 LBF-8 Overcooked-8
DT 54.6 ± 0.6 0.098 ± 0.008 0.16 ± 0.19 55.4 ± 1.6 0.055 ± 0.009 0.08 ± 0.03
Prompt-DT 56.3 ± 0.7 0.102 ± 0.010 0.40 ± 0.19 54.4 ± 1.2 0.045 ± 0.008 0.64 ± 0.15
ODITS-off 55.6 ± 1.6 0.065 ± 0.036 0.24 ± 0.28 54.7 ± 1.4 0.000 ± 0.000 0.06 ± 0.03
LIAM-off 58.2 ± 1.8 0.005 ± 0.009 0.42 ± 0.26 55.3 ± 1.8 0.040 ± 0.010 0.24± 0.09
CQL 60.6 ± 1.0 0.065 ± 0.036 0.46 ± 0.08 59.0 ± 0.8 0.005 ± 0.009 0.36± 0.08
MADT 61.4 ± 1.1 0.010 ± 0.008 0.12 ± 0.09 62.4 ± 0.6 0.025 ± 0.008 0.12± 0.09

TAGET 63.2 ± 1.1
+2.93%

0.140 ± 0.080
+37.25%

0.98 ± 0.15
+113.04%

62.9 ± 1.3
+8.01%

0.080 ± 0.010
+45.45%

0.77 ± 0.15
+20.31%

Table 1. Average Return Comparison with Baselines

C. Impact of Goal Steps
The hyper-parameter goal steps plays a crucial role in our algorithm, as it determines how far into the future the teammate
observations are considered when generating sub-goals. Specifically, we define goal steps as the number of steps ahead
whose teammate observations are concatenated to form the sub-goal. These sub-goals are then used for supervised learning,
guiding the agent to align its actions with future team objectives.

We evaluate the impact of different goal steps by testing the values of 1, 2, 3, and 6 across three environments, the results
are shown in Table 2. We observe that the optimal value of goal steps depends on the complexity and dynamics of the
environment. In Predator-Prey, the environment’s simplicity and need for long-term planning result in the best performance
with goal steps = 6. A larger goal steps enables the agent to make farsighted decisions, coordinating with teammates over
extended horizons. In Level-Based Foraging, goal steps = 2 achieves optimal results. In Overcooked, a highly complex
environment, goal steps = 3 performs best. Larger goal steps such as 6 lead to reduced accuracy in sub-goal prediction, as
the rapidly changing environment introduces noise and mismatches between predicted and actual teammate behaviors.

PP LBF Overcooked
Step=1 61.4 ± 0.8 0.145 ± 0.009 0.42 ± 0.04
Step=2 60.1 ± 0.7 0.153 ± 0.010 0.90 ± 0.07
Step=3 59.6 ± 0.7 0.137 ± 0.009 0.98 ± 0.15
Step=6 63.2 ± 1.1 0.123 ± 0.008 0.30 ± 0.03

Table 2. Average Return Comparison between different goal steps

D. Pseudocode of Algorithm
Algorithm 1 demonstrates our trajectory mirroring strategy for pre-processing the offline dataset. This process iterates
through all trajectories, generating new trajectories and adding them to the new dataset.

Algorithm 1 Offline Data Pre-processing

Input: Pre-collected dataset D = {τ1, τ2, . . . , τm}
Output: Offline dataset D′

Initialize D′ ← ∅
for j = 1 to m do

for i = 1 to n do
Apply trajectory mirroring strategy to generate trajectory τj :
τj,i = fmirror(τj , i)
Add τj,i to D′: D′ ← D′ ∪ {τj,i}

end for
end for
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Algorithm 2 demonstrates the offline training process of TAGET. It involves sampling trajectory batches from the offline
dataset, computing team context and TA-RTG, generating TA-Goal and action predictions, and optimizing both high-level
and low-level objectives using gradient descent. The training is repeated until the high-level and low-level losses converge.

Algorithm 2 Offline training of TAGET

Require: Offline dataset D′

repeat
Sample a batch of trajectories B ⊆ D′

for each trajectory τ ∈ B do
Randomly select a sub-sequence of length 3K
LHigh-level ← 0, LDT ← 0
for each time step t in sub-sequence do

Compute (µzi , σzi) = f∗θ (o
i
t) , Sample zit ∼ N (µzi , σzi)

Compute (µhi , σhi) = fφ(o
i
t, o

−i
t ) , Sample hit ∼ N (µhi , σhi)

Compute TA-RTG: Rt = Rϕ(h
i
t)

Compute TA-Goal: Gt = Gξ(h
i
t, Rt)

Predict action ait using the low-level network
Compute LReg , LRTG, LTA−Goal, LDT using Eq.6, Eq.7, Eq.8, Eq.10
Accumulate high-level loss LHigh-level using Eq. 9
Accumulate low-level loss LDT using Eq. 10

end for
Update parameters ψ,φ, θ, ϕ, ξ using gradient descent

end for
until convergence of high-level loss LHigh-level and low-level loss LDT

Algorithm 3 illustrates the online testing process of TAGET. It updates the sequence iteratively using TA-Goal, observations,
and actions. Based on the updated sequence, the low-level network generates action decisions, enabling adaptive and
context-aware decision-making throughout the testing phase.

Algorithm 3 Online testing of TAGET

Require: parameters ψ, θ, ϕ, ξ
Initialize sequence S ← ∅
for t = 1, . . . , T do

Keep the length of the sequence S as 3K
Compute (µzi , σzi) = f∗θ (o

i
t) , Sample Team Context zit ∼ N (µzi , σzi)

Compute TA-RTG: R̂t = Rϕ(z
i
t)

Compute TA-Goal: Ĝt = Gξ(z
i
t, R̂t)

Add {Ĝt, oit} into sequence S
Generate the action ait through low-level network using S
Add {ait} into sequence S

end for

E. Network Architecture and Implementation Details
We illustrate the overall network structure of our method in Figure 7. Our model adopts the Decision Transformer (DT)
backbone, with the following configurations: an embedding dimension of 64, context window length K = 30, 2 transformer
layers with 1 attention head each, ReLU activation, and a dropout rate of 0.3. The network is optimized using AdamW with a
learning rate of 0.01, batch size of 2048, and a weight decay of 0.0001. There are several task-specific coefficients to balance
different learning objectives in our training loss. Specifically, we set the weighting parameters as follows: α = 0.0001,
β = 100, γ = 100, and σ = 0.001
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Figure 7. Architectural details of TAGET
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