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RELAYOUT: INTEGRATING RELATION REASONING
FOR CONTENT-AWARE LAYOUT GENERATION WITH
MULTI-MODAL LARGE LANGUAGE MODELS
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Figure 1: Comparison with current SOTA PosterLlama 2024). (a) PosterLlama exhibits
structural issues: error alignment, missing parallelism, and overlap. (b) Our method generates more
diverse layouts across different seeds. (c) In the top figure, lower values indicate better performance
across all metrics. In the bottom figure, all metrics are from user studies, including the number of
usable images, best images, and images with one, two, or three styles. Evaluations are based on 50
images from PKU dataset using seeds 0, 1, and 2, with the first two metrics taken from seed 0.

ABSTRACT

Content-aware layout aims to arrange design elements appropriately on a given
canvas to convey information effectively. Recently, the trend for this task has
been to leverage large language models (LLMs) to generate layouts automatically,
achieving remarkable performance. However, existing LLM-based methods fail
to adequately interpret spatial relationships among visual themes and design ele-
ments, leading to structural and diverse problems in layout generation. To address
this issue, we introduce ReLayout, a novel method that leverages relation-CoT
to generate more reasonable and aesthetically coherent layouts by fundamentally
originating from design concepts. Specifically, we enhance layout annotations by
introducing explicit relation definitions, such as region, saliency, and margin be-
tween elements, with the goal of decomposing the layout into smaller, structured,
and recursive layouts, thereby enabling the generation of more structured layouts.
Furthermore, based on these defined relationships, we introduce a layout proto-
type rebalance sampler, which defines layout prototype features across three di-
mensions and quantifies distinct layout styles. This sampler addresses uniformity
issues in generation that arise from data bias in the prototype distribution balance
process. Extensive experimental results verify that ReLayout outperforms base-
lines and can generate structural and diverse layouts that are more aligned with
human aesthetics and more explainable.
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1 INTRODUCTION

Layout is an essential part of graphic design, aiming to convey information through the appropriate
arrangement of elements such as logos and texts. Due to its importance, layout has various applica-
tions, spanning scenarios like documents (Li et al.,|2019a), UIs (Raneburger et al., 2012;|Deka et al.}
2017), magazines (Yang et al. |2016; |Tabata et al., 2019) and posters (Guo et al., 2021} Lin et al.,
2023). Among these, when the main visual element flows into an application, such as advertising
posters, achieving harmony between the arrangement of elements and the canvas becomes one of
the key goals. We call layout generation under the above condition content-aware layout generation.

This field is particularly challenging because it requires the integration of design elements, such as
logos and text, with visual content to produce layouts that are both usable and aesthetically pleasing.
Furthermore, the model needs to generate diverse layouts to ensure diversity. To address these
challenges, researchers have proposed various methods (Zheng et al.,[2019a}; [Horita et al., 2024; |Hsu
et al.;,2023; Zhou et al.||2022) based on generative models (Goodfellow et al., 20205 Kingma, 2013;
Ho et al., [2020) to enhance the quality of generated layouts. Among these methods, RALF (Horita
et al.,[2024), as a transformer-based (Vaswani, 2017)) method, has achieved notable advancements. It
adopts a retrieval augmentation method to mitigate the data scarcity problem. Nevertheless, it treats
layout generation only as a numerical problem, failing to capture the semantics, which prevents the
model from generating visually and textually coherent layouts.

Recently, three LLM-based methods (Lin et al., 2024; Seol et al.| [2024; |Hsu & Peng| [2025) have
emerged, aiming to leverage the ability of large language models to generate high-quality layouts.
For instance, LayoutPrompter (Lin et al., |2024) employs dynamic exemplar selection to generate
layouts without requiring training but cannot take a canvas image as input, thereby missing out on
a significant amount of information. PosterLlama (Seol et al.| 2024)), as the current SOTA, trains
a mutli-modal large language model (MLLM) to generate visually and textually coherent layouts.
PosterO (Hsu & Peng| [2025) introduces a training-free method that leverages retrieval augmen-
tation and design intent maps to generate better layouts. However, these methods are limited to
predicting element-level coordinates (e.g., *where to place’ each individual element). They lack
a structural-level understanding that explicitly models the logical relationships between elements,
such as recursive grouping and hierarchy. This limitation hinders the incorporation of high-level
design concepts, maintaining overall visual harmony and ensuring layout diversity, thereby leading
to two critical issues in layout generation: (1) structural problem, in which related elements fail
to maintain proper spatial relationships, as illustrated in Figure [T(a), where PosterLlama produces
overlapping elements, incorrect alignments, and fails to capture parallel relationships; and (2) di-
versity problem, where the generated layouts lack the rich structural variation found, as shown in
Figure [T[(b), where these methods, without explicit modeling of element relationships, degrade to
similar structural arrangements. Also, the top part of Figure [T{c) shows that our method generates
better layouts, and the bottom part demonstrates its ability to produce more diverse styles for the
same canvas under different seeds.

To address this issue, we introduce ReLayout. Inspired by CoT, we internalize sequential reasoning
directly into the supervision data rather than relying on inference prompts, bridging the gap be-
tween static layout annotations and the dynamic design process. It decomposes the raw dataset into
a structured reasoning path: first identifying salient boundaries, then defining regional structures,
and finally placing elements. This transforms the layout generation task from a mere numerical
regression problem into a step-by-step logical derivation. Consequently, MLLMs learn to mimic
this expert logic, autonomously generating intermediate relation tokens during inference for more
coherent layouts. Additionally, we introduce the layout prototype rebalance sampler, which quan-
tifies the layout prototype into a three-dimensional feature space of saliency, region, and margin
between elements based on the layout relation-CoT construction. By integrating feature clustering
with weighted sampling, the sampler enables balanced learning of diverse layout prototypes, thereby
enhancing the diversity of generated layouts. User studies and visualization demonstrate that Re-
Layout outperforms state-of-the-art methods, achieving significant improvements in usability and
diversity. In summary, our contributions are as follows:

* We propose ReLayout, a relation-CoT paradigm designed to address hierarchical layout
design challenges, specifically tackling structural and diversity problems via explicit spatial
relations and layout prototype balancing.
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Figure 2: Pipeline of ReLayout. We adopt the layout relation-CoT construction to add relation
annotations on raw datasets. Then we use the layout prototype rebalance sampler to adjust the
distribution of the new dataset for training.

* We introduce a layout relation-CoT construction mechanism that decomposes layout ele-
ment relationships into a hierarchical structure while incorporating element relation anno-
tations into existing layout datasets, which we will release with richer layout information.

* We develop a layout prototype rebalance sampler, which quantifies layout prototypes
through feature clustering and employs weighted sampling to ensure adaptability across
diverse real-world scenarios.

2 RELATED WORK

2.1 AUTOMATIC LAYOUT GENERATION

Content-agnostic: Content-agnostic layout generation focuses on layouts without relying on spe-
cific content. LayoutGAN (Li et al., |2019b) is the first method to introduce GAN for this task; in
addition, approaches involving VAE (Jiang et al.,|2022} Jyothi et al.,[2019) or Diffusion models (Chai
et al., |2023; [Inoue et al.l 2023) have also been employed to solve this task. LayoutNUWA (Tang
et al.,[2024)), an LLM-based method using HTML format, also shows strong performance.

Content-aware: Content-aware layout generation emphasizes not only layout quality, like content-
agnostic methods, but also its harmony with the canvas. (O’Donovan et al. [2014) evaluated lay-
out quality using a function that explicitly incorporates various design principles and constraints.
(Zheng et al., 2019b) considered the empty space (or negative space) and overlapping among design
elements. ContentGAN (Zheng et al., |2019a)) first addressed the above problem. Later works, start-
ing from CGL-GAN (Zhou et al.} 2022), commonly use saliency maps. DS-GAN (Hsu et al., [2023))
uses a CNN-LSTM model to balance graphic and content-aware metrics. RADM (Li et al.| 2023a)) is
the first diffusion-based method to incorporate textual content into layout tasks. RALF (Horita et al.,
2024]) leverages a retrieval augmentation method to mitigate the data scarcity problem. Powered by
LLMs, LayoutPrompter (Lin et al., 2024)), PosterO (Hsu & Peng, 2025), and PosterL.lama (Seol
et al.} |2024) demonstrate remarkable capabilities in the field of layout generation. LayoutPrompter
uses prompt selection for training-free generation, PosterO introduces intent maps to avoid salient
objects, and PosterLlama fine-tunes the model for coherent visual-textual layouts.

Unlike previous LLM-based methods, our method explicitly represents relationships and decom-
poses a layout into smaller, structured, and recursive layouts. This leads to layouts that is both more
visually appealing and explainable.

2.2 MULTI-MODAL LARGE LANGUAGE MODELS

Advancements: LLMs have demonstrated remarkable capabilities in natural language understand-
ing. Based on this, MLLMs have achieved remarkable progress by integrating cross-modal data
including visual, auditory, and so on (Li et al.l [2023bj Radford et al.l 2021), thereby significantly
expanding their range of applications, such as GPT-4 (Achiam et al.|[2023) and Gemini (Team et al.,
2023)), as well as open-source models like InternVL (Chen et al.,[2024)) and QwenVL (Team, [2025)).

Techniques: In recent years, several techniques have enhanced LLM capabilities. Few-shot (Brown
et al.| |2020) allows models to adapt to new tasks with few examples. CoT (Wei et al.|[2022)) improves
reasoning by guiding models to break down complex problems step by step. LoRA fine-tuning (Hu
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Figure 3: (a) is ReLayout training process and its output distinction from previous methods. The
bottom part is two key components of ReLayout. (b) illustrates the relation labels construction logic.
(c) represents the layout dataset resampling process, which adjusts the dataset distribution to achieve
a more balanced layout dataset.

2022) efficiently adapts models by adding small trainable matrices, reducing memory and
computation costs while maintaining strong performance.

In this work, we adapt several MLLMs for layout generation and enhance output formats inspired
by CoT to produce more reasonable layouts. Results validate the effectiveness of ReLayout.

3 METHODS

3.1 OVERVIEW

Given a set of constraints, our goal is to generate a well-arranged layout. A layout £ can be repre-
sented as a set of NV elements: £ = {eq,...,ex} = {(c1,b1),..., (cn,bn)}, where each element
e; consists of its class ¢; and corresponding bounding box b; = [z;, y;, w;, h;]. In our work, multi-
modal inputs are a canvas image C and foreground elements F = {(t;, p;)}}_,, where t, represents
text and p; represents an element image.

The pipeline of ReLayout, shown in Figure [2] consists of two key components: layout relation-
CoT construction and layout prototype rebalance sampler. The layout relation-CoT construction
explicitly models the layout relations from three aspects: margin between elements, region, and
saliency. These relations will be used for the training of the MLLM to enhance the model’s usability.
Furthermore, these explicit relation models enable us to balance the samples in different clusters
from the perspective of design styles, so as to achieve better optimization and diverse results. The
inference procedure is illustrated in Figure [3{a). Unlike previous layout generation methods based
on LLMs to directly generate layout coordinates, our method first predicts the structured relations
(highlighted in orange) and then generates the layout coordinates based on the provided canvas
image C and foreground elements F.

3.2 LAYOUT RELATION-COT CONSTRUCTION

To fully leverage the extensive knowledge of LLMs in layout design, we choose HTML to represent
layouts. However, unlike previous LLM-based methods that represent layouts using HTML
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et al.} 2024; [Seol et al., [2024), we introduce two types of relation spaces: region (including margin
between elements) and saliency (see Figure [3(b)). These relational spaces are designed to address
the shortcomings of previous methods, which often generate layouts that are poorly structured and
lack human aesthetic appeal.

Region: Caused by the fact that LLMs are inherently more sensitive to highly structured data, we
introduce region. Region R serves as the fundamental unit of spatial arrangement, with its internal
structure adhering to a single direction pattern. It can be understood as individual small layouts,
similar to the structure of a tree. Thus it is both nestable and recursive. This makes the layout
annotations formed by it highly structured, allowing the generation of complex overall arrangements
through simple construction rules.

Region is defined by three key prop-
ertiess R = (d,a,b), where
d is the flex-direction, represent-
ing the arrangement direction of el-
ements within the region: d €
{row, column}, a represents align-
items, and b represents the region’s
position and size. As illustrated in
Step 2 and Step 2 + n of Figure[3(b),
regions are constructed step by step.
We use Figure E] as examples to de-  Input: Bounding Boxes Project to X/Y Axes ' ¥
scribe the specific steps of construct-
ing our region. (1) We first perform
the x-axis and y-axis projection op- Direction: Column
erations on each element. (2) Then O"'p'"{

we analyze the IoD (Intersection over
Detection) (Yu et all 2020) matrix of e e Here Group X-Axis
projections to group bounding boxes

into G (x-axis groups) and Gy (y- Figure 4: Visualization of region direction estimation

axis. groups)., where IoD is deﬁneq a8 heuristic algorithm in the layout relation-CoT construction.
the intersection between the detection

box and the ignored region divided by the area of the detection box. (3) Based on the group counts,
we determine the layout direction. At this point, we have obtained the direction of the level-1 region
in Step 2 of Figure [3[b). Finally, we only need to recursively apply this process to each group to
further subdivide the region, constructing a hierarchical structure like Step 2 + n of Figure [3(b).
Detailed steps of the heuristic algorithm are given in the supplementary material.
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Furthermore, parallel P (see the second column of Figure [I[a)) is a specialized type of region,
sharing the same fundamental attributes. It is typically employed for the parallel presentation of two
or more related elements. These elements maintain uniform visual sizes and align along a designated
axis (either row or column) to ensure consistency and symmetry within the layout.

For each element within a region, we introduce an additional attribute, margin, to represent relative
position, i.e., the spacing between elements. When the region is arranged in a row, this attribute is
defined as margin-left, whereas in a column, it is specified as margin-top. Using this property, we
can effectively control the overall layout compactness.

Saliency: Inspired by the goal that designers usually avoid placing elements over salient objects, we
introduce salient blocks S to help the model better grasp features of salient objects. These blocks are
represented as a series of bounding boxes and are integrated into an HTML-based representation. To
detect these salient blocks, we propose an algorithm that efficiently identifies salient areas through
integral image computation. This algorithm, detailed in the supplementary material, progressively
selects non-overlapping rectangular regions by evaluating their saliency scores based on the density
of white and black pixels, ensuring the captured regions align with natural visual attention. The
following ablation studies also explains that adding salient blocks is crucial.

Sequence formalization: Our input sequence comprises a primary instruction, a task descrip-
tion (e.g., "layout generation with given class"), and an input HTML format. Four
mask tokens (<X>, <Y>, <W>, <H>) are introduced to facilitate their prediction.
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We combine the Saliency and Region components into a unified HTML format as the output se-
quence (see Table[§]in the supplementary material).

3.3 LAYOUT PROTOTYPE REBALANCE SAMPLER

Building upon layout relation-CoT annotations, we propose the layout prototype rebalance sampler
to address the issue of limited diversity in previous methods. By the process, our method ensures a
more even distribution across diverse layout prototypes, providing the model with greater opportu-
nities to learn and generalize over a broader range of layouts. As shown in Figure 3|c), our layout
prototype rebalance sampler consists of three key operations: feature extraction, feature clustering,
and rebalance sampling. Below, we provide a detailed explanation of each operation.

Feature extraction: The i layout prototype is to be primarily characterized by three dimen-
sions: {S;,R;,&}. The set of saliency bounding boxes in the i" layout is denoted as S,
given by: §; = {bz) ]};; R The number of saliency bounding boxes in layout L; is given by

r; € {1,2,3,4}. The saliency feature vector f for layout L; captures the weighted center of all
saliency boxes in Equation [l We define the set of regions in a layout as R; = {b} jrdig ;i:p
where d; ; € {row, column} represents the region’s alignment direction. Then, we extract statistical
features f] from R; to describe their spatial distribution in Equation

si = R,

S r Si
Ti s w; j s s X __ r Wi i
2 (l’u + = ) w;i ;hi o = std ({xu + = ;
T4 S S
2jm Wi

G Rz. flr - y ( h' i Si
. B o; =std {yr» 4 ”} ,
Sy (wy + ) wighi, i R

Dy wi il 0 n = 30 1 (di ;= row),

i

K3

polumn ijl [(d;; = column),

)

We define the element set of the i layout as & = {c;; };I 1» where ¢; is the total number of
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Under review as a conference paper at ICLR 2026

elements, and ¢; ; represents the category of the j™ element in the i layout. We believe that the
layout is highly related to the types and numbers of elements. Therefore, we define element-level

K
features as follows: ff = (Z;Zl ey = ck)> , where K denotes the predefined number of
=
element categories (e.g., text, logo) in the dataset.
Feature cluster: The final feature is constructed by weighted concatenation of the three feature
dimensions:

fi = of] © Bf; ©f} 3)

Using these aggregated feature vectors, we apply K-means clustering with 8 clusters to group sim-
ilar layouts for analysis. Figure [3]illustrates eight layout clusters. Cluster 1 is characterized by a
centered salient object flanked by two regions, one of which is typically in a column arrangement.
Cluster 2 features a salient object that dominates the canvas, generally supported by one column
region and top/bottom banners. Cluster 3 also centers the salient object but contains only a single
region, usually encompassing two elements. Cluster 4 is defined by a complex, multi-element struc-
ture. Cluster 5 highlights layouts where elements are predominantly horizontally aligned. Cluster
6 contains layouts where the salient object is prominently situated on the left side of the canvas.
Cluster 7’s regions are uniquely distributed above and below the salient object. Cluster 8 is notable
for incorporating numerous banner elements that adhere tightly to the edges of the canvas.

Rebalance sampling: After obtaining 8 clusters, we apply weighted sampling to balance their
influence and avoid dominance by larger ones. Specifically, we assign a sampling weight to each
cluster based on its size:

cnt!/?

W=
lent' /7],

“4)

where |lcnt!/?||; = Zle cnt,lc/ % and cnty, represents the number of layouts in cluster k, and 6 is
a hyperparameter that controls the distribution of weights. Larger § makes sampling more uniform,
helping rare clusters be seen more, but too large may distort the data. Smaller 6 favors large clusters
and keeps the original distribution, but may miss rare cases.

4 EXPERIMENTS

4.1 DATASETS

We use two publicly available e-commerce datasets, CGL (Zhou et al.,|2022) and PKU (Hsu et al.|
2023)). The PKU dataset includes three element categories: Logo, Banner, and Text, while the CGL
dataset has an additional category called Embellishment. Notably, considering that when designing
text (especially text that needs an underlay), designers often treat the text and its underlay as a single
unified element. To better reflect the practical value of our work, “Banner” refers to elements where
Intersection over Union (IoU) or IoD between the text and its underlay is greater than 0.95. We
evaluate all baselines based on the above setting. Additionally, we create an extra hard split for each
dataset. This hard split is selected from the test and validation sets if any of the following conditions
are satisfied: (1) one region is nested within another, (2) a parallel relationship, and (3) the number
of elements exceeding four.

4.2 BASELINES

(1) RALF (Horita et al) |2024) uses retrieval augmentation to address data scarcity. Unlike the
original setting that limited PKU to 10 elements, we extend this to 20 for more complex layouts and
fairer comparison. (2) LayoutPrompter (Lin et al.,|2024) uses dynamic exemplar selection to avoid
LLM training. We adopt GPT-3.5 turbo since the original GPT-3 (text-davinci-003) is no longer
available. (3) PosterO (Hsu & Peng} 20235) is a training-free method built on Llama 3.1-8B (Dubey
et al.| 2024)). (4) PosterLlama (Seol et al.,|2024) is based on CodelLlama-7B (Roziere et al., 2023).

4.3 EVALUATION METRICS

Following the evaluation metrics from previous works (Zhou et al., 2022} Hsu et al.| [2023)), we apply
five metrics. Additionally, we refine the overlap metric to ensure a more reasonable evaluation.
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| Method AVal] Ovel FD| Real Occl
Real Data 0.0000 (+ 0.0000) 0.0047 (4 0.0000) - 0.1673 (4 0.0000) 0.0387 (+ 0.0000)
RALF 0.0000 (= 0.0000) 0.1740 (£ 0.0031)  26.7978 (+0.2282)  0.1728 (+ 0.0003) 0.0639 (+ 0.0010)
T | LayoutPrompter  0.0632 (+£00000)  0.0170 (£0.0000)  16.7438 (£ 0.0000)  0.1883 (£0.0000)  0.1530 (& 0.0000)
§ PosterO 0.0078 (& 0.0024) 0.1444 (4 0.0043) 15.3882 (£ 0.4792)  0.1688 (4 0.0014) 0.0601 (+ 0.0017)
£ | PosterLlama-7B 0.0007 (+ 0.0002) 0.0318 (& 0.0021) 5.9256 (+ 0.1448) 0.1727 (% 0.0003) 0.0659 (= 0.0006)
5 | Qwen2.5VL-7B 0.0007 (% 0.0003) 0.0202 (4 0.0010) 3.6874 (4 0.1903) 0.1686 (+ 0.0003) 0.0650 (+ 0.0008)
a InternVL2.5-8B 0.0050 (£ 0.0014) 0.0323 (£ 0.0014) 4.3106 (£ 0.2717) 0.1717 (% 0.0002) 0.0661 (= 0.0025)
A ReLayout® 0.0006 (£ 0.0002)*  0.0253 (£ 00018)"  4.8968 (+0.0891)*  0.1756 (£ 0.0013)  0.0647 (& 0.0017)*
ReLayout 0.0005 (£ 0.0004)*  0.0152 (£ 0.0016)*  2.3931 (= 0.1016)*  0.1687 (£ 0.0004)  0.0638 (£ 0.0011)*
ReLayout” 0.0004 (£ 0.0005)*  0.0109 (£ 0.0001)"  3.4615 (£ 0.1304)*  0.1727 (£0.0005)  0.0637 (& 0.0002)*
Real Data 0.0000 (+ 0.0000) 0.0100 (= 0.0000) - 0.1758 (+ 0.0000) 0.0540 (= 0.0000)
RALF 0.0213 (& 0.0001) 0.0478 (& 0.0010) 1.7152 (& 0.0557) 0.1760 (= 0.0002) 0.0518 (+ 0.0001)
T | LayoutPrompter 0.0184 (% 0.0000) 0.0124 (4 0.0000) 9.3699 (= 0.0000) 0.1932 (4 0.0000) 0.1313 (& 0.0000)
E PosterO 0.0025 (+ 0.0007) 0.1309 (= 0.0006) 13.8778 (£ 0.2224)  0.1761 (= 0.0001) 0.0545 (+ 0.0006)
% PosterLlama-7B 0.0017 (& 0.0004) 0.0183 (4 0.0013) 7.1272 (4 0.0236) 0.1799 (4 0.0003) 0.0747 (+ 0.0005)
& | Qwen2.5VL-7B7  0.0084 (+ 0.0013) 0.0174 (4 0.0006) 4.3242 (+0.0535) 0.1766 (4 0.0001) 0.0551 (& 0.0005)
5 InternVL2.5-8B  0.0098 (£0.0010)  0.0195 (£0.0009)  4.3051 (£0.0629)  0.1765 (£0.0002)  0.0588 (< 0.0007)
© ReLayout® 0.0014 (£ 0.0006)"  0.0161 (£0.0009)"  5.9611 (+00331)*  0.1794 (£ 0.0003)*  0.0691 (& 0.0011)*
ReLayout 0.0039 (£ 0.0004)*  0.0147 (£ 00011)*  3.3870 (£ 0.1013)*  0.1768 (£0.0003)  0.0545 (& 0.0003)"
ReLayout” 0.0023 (£0.0001)*  0.0117 (£ 0.0006)°  3.1917 (£ 0.0215)*  0.1760 (£ 0.0001)*  0.0580 (& 0.0004)*

Table 1: Performance comparison of the C — S + P layout generation task on the hard split of PKU
and CGL datasets. The best result is highlighted in bold, the second-best result is underlined. <, f,
and Q represent our method applied with PosterLlama, Qwen2.5VL, and InternVL2.5, respectively.

ReLayout mentioned below refers to the row highlighted in red.

RALF PosterLlama InternVL ReLayout

Score 41 47 36 56
cnt (18,23,9) (14,25,11) (21,22,7) (11,22,17)

LayoutPrompter PosterO RALF PosterLlama InternVL ReLayout

91.0%
64.7 %

36.0%
0.7%

44.7%
7.0%

50.3%
6.3%

71.3%
11.0%

78.3%
10.3%

Pyse
Poest

Table 3: User study on diversity evalua-
tion. cnt denotes the number of gener-
ated layout groups (across three differ-
ent seeds) that exhibit 1, 2, and 3 dis-
tinct styles, respectively.

Table 2: User study on structural evaluation. If P is
below 50%, the method is deemed unusable and will be
excluded from the diversity evaluation in the user study to
save human resources.

Graphic metrics: These metrics evaluate the graphic quality of the layout without considering the
canvas. Validity (Val) measures the proportion of elements larger than 0.1% of the canvas; other
metrics are computed on these valid elements. Due to the presence of small elements like embel-
lishments in CGL, we use AVal for evaluation. In previous works, Overlap (Ove) is the average
IoU across all element pairs. However, it has a key limitation: if a layout includes one fully over-
lapping pair amid many non-overlapping ones, the metric may not reflect poor quality. In reality,
heavy overlap between elements is directly seen as a failure. Therefore, we use the maximum IoU
to evaluate the generated layouts. We calculate Fréchet Distance (FD) in the feature space derived
from bounding boxes and categories to evaluate overall layout quality.

Content metrics: These metrics assess harmony between the generated layout and the canvas. Oc-
clusion (Occ) calculates the pixel coverage ratio of layout elements over saliency maps. Readability
(Rea) evaluates text clarity using average pixel gradients, where lower is better.

User study: In the layout generation field, the current metrics are insufficient to fully evaluate the
quality of a layout. Therefore, we conduct user studies. For user studies, we use images from the
PKU dataset and invite 6 professional designers as evaluators. For each image, layouts are generated
using five different methods and presented simultaneously in a shuffled order, with model names not
perceived by users. In terms of structure, 300 images are randomly selected. Users assess each
row of results based on two criteria: (1) identify all layouts that meet basic usability standards (e.g.,
no overlap, no occlusion), denoted as P,; and (2) select the single best layout according to pro-
fessional design principles, considering appropriate margin, relative size, distance from products,
reading order, visual priority and overall visual harmony, denoted as Pcg.

In terms of diversity, 50 images are randomly selected. Due to poor usability, LayoutPrompter and
PosterO are excluded, leaving four methods, each run with three different seeds (0, 1, 2). Users are
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instructed to evaluate diversity based on differences in relative position (e.g., alignment) and text
size—any variation in either aspect is considered a distinct style. Diversity is scored as 0 (one style),
1 (two styles), or 2 (three styles).

4.4 MAIN RESULTS

Since designers usually design ele-
ments first before arranging the over-
all layout, our experiments primarily
focus on generating the positions and
sizes of elements based on given cat-
egories that each model can support
as input.

Quantitative comparison: Table
presents a comparison of different
methods on the hard split of PKU
and CGL datasets. Our method im-
proves the performance of various
MLLMs, with ReLayout” achiev-
ing better results across all metrics.
Specifically, on the PKU dataset, it
demonstrates the best performance
on most metrics, with a particularly
notable improvement in the Ove met-
ric. On the CGL dataset, while
it does not achieve the best perfor-
mance across all metrics, it consis-
tently outperforms others on the Ove
metric. These improvements are at-
tributed to the annotations margin
property of our relation-CoT and re-
sampling strategy that effectively bal-
ances the dataset. It demonstrates .
that our method is better at gener- Distortion Occlusion ~ mmp Overlap ["] Elements
ating more structured layouts. Al- Figure 6: Qualitative comparison on the PKU and CGL
though RALF and PosterO perform datasets. Baselines layouts show noticeable errors, while
well on the Occ metrics, their higher  ours meet basic needs and better align with human aesthet-
Ove score significantly compromises ics in margm and arrangement.

their practical usability, as also illustrated in Figure [l  Plus, Table 2] shows that Re-
Layout performs significantly better in aligning with human aesthetic preferences.  Fur-
thermore, Table [3] demonstrates that ReLayout also achieves the highest diversity, exhibit-
ing a greater number and variety of distinct layout styles under different seed settings.

CGL Dataset

PKU Dafaset

o3 S5Ed
[Fism i)

_n

PosterLlama

Pl
>
[
S
+-
c
=]

ReLayout (Ours)

Q.uall?;atlve comparison: Flgure @ Region Saliency Resample AVal] Ovel FD| Real Occl
visualizes the generated layouts, pro- 5 - - 00025 00153 87960 0.1746 0.0821
viding a comparison across different V1 v - - 00021 00379 122290 0.1967 0.1188

V2o v : 00014 00150 7.3406 0.1769 0.0754
methods. It can be observed that, 3 v V00002 0.0097 49403 01755 0.0752

apart from the obvious errors marked
in Figure [6] other methods also fall ~ Table 4: Ablation study on the hard split of PKU dataset.
short in controlling element aspect ratio, element spacing, selecting layout arrangements, and
achieving overall harmony. In contrast, ReLayout aligns more closely with human aesthetic prefer-
ences. Additionally, our method excels at generating diverse layouts and handling layout generation
under various conditions, as shown in Figure[TT]in the supplementary material.

4.5 ABLATION STUDY AND ANALYSIS

Effect of Each Module: To simplify the setup, the ablation study uses a training set with only a
single main condition from PKU: generating position and size given the category, text, and aspect
ratio. As shown in Table ] V1 adds only region annotations, V2 builds on V1 by incorporating
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0 Avall Ovel FDJ Real Occl K AVal| Ovel FDJ| Real Occl Score

3 0.0009 0.0121 4.7920 0.1742 0.0633 3 0.0012 0.0223 5.0017 0.1800 0.0677 40
6 0.0004 0.0109 3.4615 0.1727 0.0637 6 0.0004 0.0141 4.4091 0.1796 0.0640 48
10 0.0082 0.0168 5.0655 0.1791 0.0703 8 0.0004 0.0109 3.4615 0.1727 0.0637 56
100 0.0075 0.0146 4.9287 0.1783 0.0808 10 0.0009 0.0183 4.9004 0.1724 0.0639 57

Table 6: Clust b lysi the hard
Table 5: Hyperparameter analysis on the hard s;)lliteof PKchslaigsrelzlt].m ef andtysis of He hdt

split of PKU dataset.

saliency annotations, and V3 builds on V2 by additionally introducing a layout prototype rebalance
sampler, several observations can be made. First, V1 demonstrates relatively poor overall metrics,
likely due to the model focusing on the structure of elements while neglecting salient objects. Since
no structure-related metrics, this effect cannot be quantified and must be analyzed via visualization
in the supplementary material. Second, V2 shows that FD improves compared to VO. Compared
to the Region-only setting, all metrics show an upward trend, particularly the Occ metric, which
demonstrates the importance of Saliency in content-aware tasks. Third, V3 achieves the best results.
Notably, the improvements in Ove and FD are particularly significant.

In addition, we conducted detailed ablation studies on the margin attribute and the feature vectors.
The results are presented in Table[7] It can be clearly observed that the margin attribute makes a
significant contribution to mitigating the element overlap problem. Simultaneously, the ablation of
the feature vectors suggests that the region feature vector may slightly degrade the Rea metric. We
hypothesize that this phenomenon occurs because the region feature tends to place elements in areas
that are semantically richer, which might incidentally contain stronger texture features, thus leading
to a minor reduction in Rea.

Hyperparameter Analysis: We analyze the
hyperparameter 6 on the hard split of PKU
dataset, as shown in Table El The results show
that & = 6 yields the best performance. A

AVal|  Ovel FDJ Real Occl
Ours 0.0004 0.0109 34615 0.1727 0.0637
w/o margin  0.0007 0.0301 4.1017 0.1733  0.0638

smaller @ better preserves the original distri- W;g ?: 8-88(1)% 8~8i§é gg% é 8;;% 8-82‘3‘3
. . W, i B . . . .
bution, causing rare layout prototypes to be |, fe 00009 00207 3.8430 01728 0.0638

treated as noise. In contrast, a larger 6 overly
balances the distribution, leading to repeated Table 7: Ablation study on margin attributes and
learning of rare prototypes and reduced perfor- feature vectors on the PKU dataset.

mance. We also analyze the hyperparameter K (the number of clusters) on the hard split of the
PKU dataset. As shown in Table[6] K = 3 results in poorly discriminative prototypes, which fail to
fully capture the underlying diversity of layout patterns. Although a setting of K = 10 achieves the
highest diversity score, its overall quantitative metrics are significantly worse compared to K = 8.
Therefore, setting iK' = 8 proves to be the optimal choice.

5 CONCLUSION

In this work, we study content-aware layout generation tasks and address the issue in LLM-based
methods where the relationships between elements have not been considered. We propose a novel
method ReLayout, which consists of two modules. First, we enhance the model’s understanding of
relationships by incorporating explicit relationship annotations, framed from the perspective of CoT.
Second, we utilize relation annotations to cluster the dataset and adjust its distribution, thereby en-
hancing the quality of generated layouts. Moreover, extensive experiments validate the effectiveness
of our method, particularly in visualization.

Furthermore, we identify some limitations in ReLayout. First, while current metrics can effectively
identify obviously inadequate layouts, they lack the capability to evaluate layout suitability for real-
world application scenarios. Second, the processing performance is constrained by the limitations of
multi-resolution datasets, resulting in suboptimal results. Third, the model demonstrates difficulty
in handling a large number of input elements. Furthermore, when earlier regions occupy the entire
available canvas, subsequent predictions are likely to overlap.

10
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A IMPLEMENTATION DETAILS

A.1 TRAINING SETS SETTING

Our method is applied to three MLLMs: PosterLlama-7B (Seol et al., [2024), Qwen2.5VL-
7B (Team, [2025), and InternVL2.5-8B (Chen et al. [2024). Each experiment is con-
ducted on 8 A800 GPUs. We follow their default settings for training and inference.

Image Inpainting Saliency Element Text

When training on the PKU dataset, we adopt BEE
a diverse set of seven conditional settings to ©
enable flexible and robust layout generation
under various input combinations.  These
include: cate_text_eimg_to_size_pos,
where the model predicts element size
and position based on category, tex-
tual description, and element images;
cond_cate_text_eimg_size_to_pos,

which infers only the position of elements
given their category, text, element images,

and sizes; text_eimg_recover_mask; [[PuIKES
text_eimg.refinement, which refines QIQQ 7
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where aspect ratio is additionally con-
sidered alongside category, text, and ele-
ment images to predict size and position;
text_eimg_completion, which completes
partially missing layout information; and
cate_text_to_size_pos, a relatively sim-
pler setting that predicts element size and po-
sition based only on category and text, without ~ SAmaI®

element images input. In contrast, when train- m . |
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ing on the CGL dataset, we use only one condi- BRT
tion: cate_text_eimg._ar_to_size_pos,
which focuses on predicting element size and
position from a complete set of multimodal
inputs including category, text, element images,
and aspect ratio, aligning with the structure and

requirements of the CGL dataset.

Figure 7: Visualization of Data Preprocessing.

A.2 DATA PREPROCESSING

We use LaMa (Suvorov et al.,|2022) for inpainting and PaddleOCR for text extraction on both PKU
and CGL datasets as shown in Figure [/l It can be observed that our inpainting results effectively
remove elements, and the text extraction is precise. The saliency map is crucial for Algorithm
We employ BASNet (Qin et al., [2019) and ISNet (Zhang et al., [2022)) to obtain the saliency map.
Figure [/| illustrates the original image, inpainting results, the saliency map generated by ISNet,
element extraction, and text extraction, respectively.

We define the algorithm for the Salient box as shown in Algorithm [T} which outlines the process
of detecting salient regions in an image. The algorithm iteratively searches for the most prominent
rectangles based on intensity thresholds and overlap constraints, ensuring that the selected regions
maximize their saliency scores while minimizing redundancy. This approach effectively identifies
the most important areas in the image.

Algorithm [2] determines whether the dominant layout direction is “row” or “column” by analyzing
the spatial distribution of the bounding boxes B. It first projects the boxes onto the x-axis and y-axis
to analyze horizontal and vertical alignment separately. For each axis, it groups overlapping boxes
using a specified IoD (Yu et al.| [2020) threshold ¢. If the layout forms a single group along one axis

14
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Algorithm 1 Salient Region Detection

Input: Image /, maximum rectangles [V, search step s
QOutput: List of salient rectangles R

1: B < I(I > 7) where 7 is intensity threshold
2: Iyhite, Toack < Computelntegrallmage(B)

3: V « 0, I, + Computelntegrallmage (V)

4: R+ 0

5: fori < 1to N do

6: max_score < 0, best_rect < null

7: for r € SearchSpace(s) do

8: if 3a € R : Overlap(a, r) then

9: continue
10: end if
11: w < RectSum(Iyhie, 7) — RectSum(Zy, r)
12: b+ RectSum(IblaCk, r)
13: score < ComputeScore(w, b, 1)
14: if score > max_score then
15: max_score, best_rect < score,r
16: end if

17: end for

18: R < RU {best_rect}, update V and I,
19: end for

20: return R

Algorithm 2 Estimate Layout Direction

Input: Bounding boxes B, overlap threshold ¢.
Output (Direction, )
: L, < project bounding boxes B to x-axis;
L, < project bounding boxes B to y-axis;
G, < GroupByOverlap(L,, ¢);
G, < GroupByOverlap(L,, ¢);
1f|G’ | =1AND |G, | > 1 then
return (“column”, G)
elseif |G| =1 AND \Gw\ > 1 then
return (“row”, G)
else
V, + ComputeGroup Variance(G,)
Vy <= ComputeGroupVariance(G)
if V, <V, then return (“row”, G,)
else
return (“column”, G)
end if
: end if
: function GROUPBYOVERLAP(L, ¢)
edges < ()
for each pair (¢, 7) in L do
if IoD(L[i], L[j]) > ¢ then
edges + edges U {(i,7)}
end if
end for
groups < FindConnectedComponents(edges)
return groups
: end function

°°\‘°U"‘>“’N~

W RN NN = = — o = — m = =
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but multiple groups along the other, it selects the direction with more structural variation (i.e., more
groups). If both axes have multiple groups, it compares the intra-group variance in each direction
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and chooses the one with smaller variance as the dominant direction. The algorithm returns both the
inferred direction (“row” or “column”) and the corresponding grouped structure.

A.3 HYPERPARAMETER SETTING

We set the feature clustering parameters «, (3, and v in the layout prototype rebalance sampler to 2,
1, and 10, respectively.

B INPUT-OUTPUT PROMPT EXAMPLE

Here, we present an example prompt for specifying a layout generation task. We illustrate a C — S
+ P example that provides an overview of all tasks.

C MORE QUANTITATIVE RESULTS

C.1 OUT-OF-DOMAIN GENERALIZATION

To verify the generalization of our method, we conduct experiments using PKU as the training set
and testing on CGL, and vice versa. As shown in Table[9] our method outperforms the current SOTA
PosterLlama on most metrics. This demonstrates that ReLayout adapts well to real-world scenarios
and demonstrates strong generalization performance.

C.2 RELAYOUT ON TEST SPLIT

In addition to evaluating the effectiveness of our method on the hard split, which focuses on more
challenging layout scenarios, we further conduct experiments on the test split of the PKU and CGL
datasets. This comprehensive evaluation aims to assess the generalization ability and robustness of
our approach across different task settings. From the results shown in Table[T0] our method achieves
consistently strong performance across different dataset splits, demonstrating that the proposed lay-
out relation-CoT construction and layout prototype rebalance sampler strategy enables our model to
adapt well to varying data partitions.

C.3 LAYOUTPROMPTER BASED ON GPT40

We follow prior work by first evaluating the performance of GPT-3.5-turbo using the same experi-
mental settings. In addition, we extend the evaluation to include GPT-40 on the PKU-test set after
making the necessary adjustments to ensure compatibility with our codebase. As shown in Table[TT}
GPT-40 achieves better results compared to GPT-3.5-turbo, demonstrating its stronger reasoning
and layout generation capabilities. However, despite these improvements, our proposed method
still outperforms both GPT-3.5-turbo and GPT-40, highlighting the effectiveness of our approach in
modeling layout relations more accurately.

C.4 SCALING LAW ANALYSIS

Based on the results in Table a clear scaling trend emerges: the 8B model consistently and
substantially outperforms the 4B model across all metrics and both test splits. This indicates that
increasing model size yields significant performance improvements, particularly on the hard split of
PKU dataset, where the 8B model shows a marked advantage. The consistent gains across metrics
and splits suggest that scaling up model size is an effective strategy for improving both capability
and robustness.

C.5 COMPUTATIONAL COST AND RUNNING TIME

Table reports the inference performance of different methods, evaluated on an NVIDIA L20
GPU using a single-sample test setting for fair comparison. Compared to PosterLlama, our method
achieves better performance while maintaining nearly the same inference time, indicating that the
improvements in layout quality do not come at the cost of efficiency. Although our method incurs
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Input

Task Definition

Given canvas image: <image>

Given elements Images: <image><image><image><image>

Please generate a layout based on the given information for the given canvas image. You need to
ensure that the generated layout (in html format) looks realistic, with elements well aligned and
avoiding unnecessary overlap.

Task Description
layout generation with given class.

Layout Domain
advertisement layout.

Input html

<div class="canvas" style="left:0px; _top:0px;width:683px;height:999%px">
<div class="logo" style="left:<X1>px;top:<Y¥1l>px;width:<W>px;height:<H>px">
</div>
<div class="text" style="left:<X1>px;top:<Y¥1l>px;width:<W>px;height:<H>px"
text="half"></div>
<div class="text" style="left:<X1>px;top:<Y¥1l>px;width:<W>px;height:<H>px"
text="announce"></div>
<div class="banner" style="left:<X1>px;top:<Y¥1l>px;width:<W>px;height:<H>px"
text="size"></div>

</div>

Output html

<div class="canvas" style="left:0px;top:0px;width:683px;height:999%px">
<div class="relation_salient">
<div class="salient" style="left:200px;top:450px;width:301lpx;height:450px">
</div>
</div>
<div class="layout">
<div class="relation_region" style="flex-direction:row;align-items:stretch;
left:32px;top:37px;width:631px;height:409px">
<div class="relation_region" style="flex-direction:column;align-items:center;
left:32px;top:37px;width:433px;height:331px">
<div class="logo" style="margin-top:0px;left:225px;top:37px;width:240px;
height:104px"></div>
<div class="text" style="margin-top:69px;left:32px;top:210px;width:328px;
height:83px"></div>
<div class="banner" style="margin-top:17px;left:51lpx;top:310px;
width:293px;height:58px"></div>
</div>
<div class="text" style="margin-left:-92px;left:373px;top:181lpx;
width:290px;height:265px"></div>
</div>
</div>
</div>

Table 8: Prompt example

slightly higher FLOPs, this is primarily due to the generation of longer outputs, which reflects the
richer relational information being modeled. As for LayoutPrompter, we do not report its inference
statistics because it relies on external calls to GPT API.

17



Under review as a conference paper at ICLR 2026

Train Test Method AVal] Ovel FD| Real Occl
PosterLlama 0.0225 (£ 0.0001)  0.0311 (£0.0004) 6.5679 (+0.1001)  0.1758 (x0.0004)  0.0688 (£ 0.0010)
ReLayout (Ours)  0.0167 (+0.0001)  0.0100 (+0.0004) 4.4413 (+0.0136) 0.1715 (+0.0001) 0.0631 (+ 0.0002)

PosterLlama 0.0019 (£0.0007)  0.0205 (+£0.0035) 7.1093 (+02796) 0.1726 (+0.0010) 0.0694 (+0.0016)
ReLayout (Ours)  0.0010 (+0.0005)  0.0120 (+0.0023)  5.9011 (+0.1120)  0.1730 (£ 0.0012)  0.0660 (= 0.0009)

PKU CGL-hard

CGL  PKU-hard

Table 9: Cross-dataset evaluation on PKU and CGL datasets.

Test Split
Method Graphic Content
AVal| Ovel FD| Real Occl
PKU Annotated Dataset
Real Data 0.0000 (+0000) 0.0035 (:+00000) - 0.1545 (£00000) 0.0639 (+00000)

LayoutPrompter (Lin et al.|

— 2024 ) 0.00 1 5 (i 0. !)0(!()) 0.0090 (i (),0(!()0) 8.0392 (i 0. !)0(!!)) 0 1683 (i 0.()00(!) 0. 1452 (i 0. 00("))
RALF (Horita et . D024}

0.0000 (=0000) 0.0915 (x0003) 15.5497 (z0149) 0.1617 (x0005) 0.0866 (= 00024)
PosterLlama-T l 2024 0.0002 (100003) 0.0211 (t ovoms) 3.5318 (iOZI()D) 0.1612 (1 0.0002) 0.0863 (tooow)
InternVL2.5-8B (Chen et al.[[2024;

0.0054 (s00m) 0.0175 (so00) 2.6175 (+omus) 0.1588 (soos) 0.0885 (zome)

ReLayout (Ours) 0.0001 (i 0.0002) 0.0086 (t n.oou) 1.7865 (tu.ms) 0.1600 (1 0.0004) 0.0857 (t n.oom)
CGL Annotated Dataset

Real Data 0.0000 (+0000) 0.0060 (- 0.0000) - 0.1654 (00000) 0.0771 (= 0.0000)
LayoutPrompter 1 0.0125 (LODOOU) 0.0094 (LUOOUO) 6.7951 (LOOOUD) 0.1787 (LOUOOU) 0.1510 (LUOOUO)
RALF (Horita et al.|[2024) 0.0147 (100001) 0.0283 (t n.mm) 0.9277 (immz) 0.1649 (i o.omz) 0.0744 (inmm)

PosterLlama-T (ISGO] et al.||2024b 0.0012 (100003) 0.0102 (i omlo) 4.4151 (iOOIZ‘J) 0.1674 (1 0.0001) 0.0931 (iOOOO-'l)
InternVL-2.5-8B (Chen et al] 2024p 0.0062 (i 0. nms) 0.0114 (in.mm) 2.8395 (i(! 1031) 0.1649 (i 0.0002) 0.0796 (i(! 0003)
ReLayout (Ours) 0.0004 (i 0.0002) 0.0088 (t o.ooos) 1.9311 (t 0. 0120) 0.1648 (1 0.0001) 0.0787 (t 01)001)

Table 10: Performance comparison of the C — S + P layout generation task on the PKU and CGL
datasets. The best result is highlighted in bold, the second-best result is underlined, and the row

corresponding to our method is marked in red.

| AVall  Ovel FDJ Rea]  Occl

3.5-turbo | 0.0015 0.0090 8.0392 0.1683 0.1452
40 0.0010 0.0066 7.6730 0.1648 0.1472
ReLayout | 0.0001 0.0086 1.7865 0.1600 0.0857

Table 11: LayoutPrompter based on GPT4o.

D MORE QUALITATIVE RESULTS

D.1 SOME SMALL DISCOVERIES

We also observe that ReLayout is capable of capturing
and understanding the underlying placement logic associ-

ated with certain specific types of advertising promotional RN N
terms. As illustrated in the red box in Figure [§] instances of '

EZ

Quantitative Advertising, such as “Over 3.49 mil- . A
lion units sold!”, or Sale Advertising, such as “GIFT”, = ]
are sometimes positioned in ways that partially occlude salient s
visual elements (e.g., product images or logos). While this . £z
may seem suboptimal from a purely visual clarity perspective, CEER CEe T
such placement actually conforms to common design conven- 5 2 AR

tions in advertising, where emphasis on promotional content
often takes precedence to attract user attention.

D.2 VISUALIZATION OF ABLATION STUDIES

Figure 8: Examples of place pro-
We conducted a visual analysis of the ablation studies. As motional terms.
shown in Figure 0] V2 has a more aesthetically pleasing lay-
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Params | AVal] Ovel FDJ Real]  Occl
PKU Test Split

4B 0.0207 0.1732 84.4993 0.2092 0.1774
8B 0.0001 0.0086 1.7865 0.1600 0.0857

PKU Hard Split

4B 0.0204 0.1804 97.0555 0.2114 0.1602
8B 0.0004 0.0109 3.4615 0.1727 0.0637
Table 12: Scaling law analysis on PKU dataset.

Method \ Params(B) Time(s) FLOPS(T)  Pyest
LayoutPrompter - 4.2 - 1.3%
PosterLlama 6.9 7.5 2.2 12.0%
InternVL 8.1 4.9 3.0 10.7%
ReLayout 8.1 7.5 4.0 66.3 %

Table 13: Computational cost and running time analysis.

out compared to VO and V1, in terms of margin, alignment,

and adherence to human visual preferences. Furthermore, as

shown in Figure[9] V2 exhibits a clearer understanding of ele-

ment sizes compared to V1, conveying information more effectively. Additionally, in the last column
of the figure, we can see that adding the Resample module in simple layout scenarios does not lead
to forgetting.

D.3 DIVERSE SEED GENERATION

To demonstrate the diversity of layout generation results, we adjust random seeds during the gener-
ation process as shown in Figure[I0} It can be observed that our method consistently meets the basic
layout requirements, such as avoiding overlap and occlusion, across different random seeds. At the
same time, the layouts generated by each seed are distinct while aligning with human aesthetic pref-
erences. Notably, variations in random seeds may lead to the enlargement of promotional keywords,
emphasis on functional slogans, or adjustments in regional alignment, which further demonstrate
the effectiveness and diversity of our approach in layout generation.

D.4 DIVERSE CONDITIONAL GENERATION

Our method is capable of generating high-quality layouts under various conditions. Specifically, we
visualize the generate layouts shown in Figure[IT|under the following conditions: (1) Unconditional:
Given only the canvas image, the model generates the entire layout; (2) C + S — P: Given the
category and position of input elements, the model predicts their sizes; (3) Completion: Provided
with a partial layout, the model generates a complete one; (4) Refinement: After applying Gaussian
perturbations to the layout, the model adjusts it to achieve the optimal arrangement. It can be
observed that ReLayout is capable of producing sufficiently high-quality layouts under various user-
defined constraints.

D.5 SPECIFIC RELATION VISUALIZATION

We performed a detailed parse of the relationships in the layouts generated by our method, as shown
in Figure [I2] It can be seen that our method handles salient positions with high accuracy and
organizes the arrangement within regions clearly. The overall layout exhibits a strong sense of
hierarchy and logical structure. Additionally, the spacing and proportions between elements are
well-controlled, fully reflecting an understanding of human aesthetics. This advantage makes our
method particularly effective in complex layout generation tasks.
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Figure 9: Examples of visualization for ablation studies.

E LLMsS USAGE

We only utilize LLMs for text polishing purposes. Specifically, LLMs are employed solely to as-
sist with language refinement, including grammar checking, sentence structure optimization, and
improving the overall readability and fluency of the manuscript. It is important to emphasize that
all core research contributions, including the conceptual framework, methodology, experimental de-
sign, data analysis, interpretation of results, and conclusions, are developed entirely by the authors
without any involvement of LLMs.
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Figure 10: Examples of visualization across diverse seed.
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Figure 11: Examples of visualization across diverse conditions.
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Figure 12: Comprehensive visualization and detailed analysis of the generated output to illustrate
relational elements.
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