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Figure 1: Comparison with current SOTA PosterLlama (Seol et al., 2024). (a) PosterLlama exhibits
structural issues: error alignment, missing parallelism, and overlap. (b) Our method generates more
diverse layouts across different seeds. (c) In the top figure, lower values indicate better performance
across all metrics. In the bottom figure, all metrics are from user studies, including the number of
usable images, best images, and images with one, two, or three styles. Evaluations are based on 50
images from PKU dataset using seeds 0, 1, and 2, with the first two metrics taken from seed 0.

ABSTRACT

Content-aware layout aims to arrange design elements appropriately on a given
canvas to convey information effectively. Recently, the trend for this task has
been to leverage large language models (LLMs) to generate layouts automatically,
achieving remarkable performance. However, existing LLM-based methods fail
to adequately interpret spatial relationships among visual themes and design ele-
ments, leading to structural and diverse problems in layout generation. To address
this issue, we introduce ReLayout, a novel method that leverages relation-CoT
to generate more reasonable and aesthetically coherent layouts by fundamentally
originating from design concepts. Specifically, we enhance layout annotations by
introducing explicit relation definitions, such as region, saliency, and margin be-
tween elements, with the goal of decomposing the layout into smaller, structured,
and recursive layouts, thereby enabling the generation of more structured layouts.
Furthermore, based on these defined relationships, we introduce a layout proto-
type rebalance sampler, which defines layout prototype features across three di-
mensions and quantifies distinct layout styles. This sampler addresses uniformity
issues in generation that arise from data bias in the prototype distribution balance
process. Extensive experimental results verify that ReLayout outperforms base-
lines and can generate structural and diverse layouts that are more aligned with
human aesthetics and more explainable.
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1 INTRODUCTION

Layout is an essential part of graphic design, aiming to convey information through the appropriate
arrangement of elements such as logos and texts. Due to its importance, layout has various applica-
tions, spanning scenarios like documents (Li et al., 2019a), UIs (Raneburger et al., 2012; Deka et al.,
2017), magazines (Yang et al., 2016; Tabata et al., 2019) and posters (Guo et al., 2021; Lin et al.,
2023). Among these, when the main visual element flows into an application, such as advertising
posters, achieving harmony between the arrangement of elements and the canvas becomes one of
the key goals. We call layout generation under the above condition content-aware layout generation.

This field is particularly challenging because it requires the integration of design elements, such as
logos and text, with visual content to produce layouts that are both usable and aesthetically pleasing.
Furthermore, the model needs to generate diverse layouts to ensure diversity. To address these
challenges, researchers have proposed various methods (Zheng et al., 2019; Horita et al., 2024; Hsu
et al., 2023; Zhou et al., 2022) based on generative models (Goodfellow et al., 2020; Kingma, 2013;
Ho et al., 2020) to enhance the quality of generated layouts. Among these methods, RALF (Horita
et al., 2024), as a transformer-based (Vaswani, 2017) method, has achieved notable advancements. It
adopts a retrieval augmentation method to mitigate the data scarcity problem. Nevertheless, it treats
layout generation only as a numerical problem, failing to capture the semantics, which prevents the
model from generating visually and textually coherent layouts.

Recently, three LLM-based methods (Lin et al., 2024; Seol et al., 2024; Hsu & Peng, 2025) have
emerged, aiming to leverage the ability of large language models to generate high-quality layouts.
For instance, LayoutPrompter (Lin et al., 2024) employs dynamic exemplar selection to generate
layouts without requiring training but cannot take a canvas image as input, thereby missing out on
a significant amount of information. PosterLlama (Seol et al., 2024), as the current SOTA, trains
a mutli-modal large language model (MLLM) to generate visually and textually coherent layouts.
PosterO (Hsu & Peng, 2025) introduces a training-free method that leverages retrieval augmentation
and design intent maps to generate better layouts. However, these methods are limited to predicting
element-level coordinates (e.g., ”where to place” each individual element) and focusing on layout-
level such as overall visual harmony. They lack a structural-level understanding that explicitly mod-
els the relationships between elements, which is essential for connecting element-level positioning
with higher-level layout design concepts. This limitation leads to two critical issues in layout gener-
ation: (1) structural problem, where related elements fail to maintain proper spatial relationships, as
illustrated in Figure 1(a), where PosterLlama produces overlapping elements, incorrect alignments,
and fails to capture parallel relationships; and (2) diversity problem, where the generated layouts
lack the rich structural variation found, as shown in Figure 1(b), where these methods, without ex-
plicit modeling of element relationships, degrade to similar structural arrangements. Also, the top
part of Figure 1(c) shows that our method generates better layouts, and the bottom part demonstrates
its ability to produce more diverse styles for the same canvas under different seeds.

To address these issues, we propose ReLayout, a content-aware layout generation framework based
on a MLLM, drawing inspiration from how designers organize layouts through structural element
relations. Our core contribution lies in explicitly modeling design logic by progressively outputting
element relations step by step, inspired by the CoT. As illustrated in the layout relation-CoT con-
struction in Figure 2, it decomposes layouts into recursive, nested hierarchical structures (e.g., tree
representations) by defining a relation space encompassing saliency, region, and element. This struc-
tured approach enhances the model’s ability to generate semantically coherent layouts by leveraging
relations between elements. Additionally, we introduce the layout prototype rebalance sampler,
which quantifies the layout prototype into a three-dimensional feature space of saliency, region, and
margin between elements based on the layout relation-CoT construction. By integrating feature clus-
tering with weighted sampling, the sampler enables balanced learning of diverse layout prototypes,
thereby enhancing the diversity of generated layouts. User studies and visualization demonstrate that
ReLayout outperforms state-of-the-art methods, achieving significant improvements in usability and
diversity. In summary, our contributions are as follows:

• We propose ReLayout, a relation-CoT paradigm designed to address hierarchical layout
design challenges, specifically tackling structural and diversity problems via explicit spatial
relations and layout prototype balancing.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Raw
Dataset

Layout Relation-CoT 
Construction

S
alie

ncy

R
e
gion

E
le
m
e
nt

Layout Prototype 
Rebalance Sampler

Relation-CoT
Dataset

E
x
tract

C
luste

r

R
e
b
alance

M
L
L
M

Figure 2: Pipeline of ReLayout. We adopt the layout relation-CoT construction to add relation
annotations on raw datasets. Then we use the layout prototype rebalance sampler to adjust the
distribution of the new dataset for training.

• We introduce a layout relation-CoT construction mechanism that decomposes layout ele-
ment relationships into a hierarchical structure while incorporating element relation anno-
tations into existing layout datasets, which we will release with richer layout information.

• We develop a layout prototype rebalance sampler, which quantifies layout prototypes
through feature clustering and employs weighted sampling to ensure adaptability across
diverse real-world scenarios.

2 RELATED WORK

2.1 AUTOMATIC LAYOUT GENERATION

Content-agnostic: Content-agnostic layout generation focuses on layouts without relying on spe-
cific content. LayoutGAN (Li et al., 2019b) is the first method to introduce GAN for addressing
this task; in addition, approaches involving VAE (Jiang et al., 2022; Jyothi et al., 2019) or Diffusion
models (Chai et al., 2023; Zhang et al., 2023; Inoue et al., 2023) have also been employed to solve
this task. LayoutNUWA (Tang et al., 2024), an LLM-based method using HTML format, also shows
strong performance.

Content-aware: Content-aware layout generation emphasizes not only layout quality, like content-
agnostic methods, but also its harmony with the canvas. ContentGAN (Zheng et al., 2019) first
addressed the above problem. Later works, starting from CGL-GAN (Zhou et al., 2022), commonly
use saliency maps. DS-GAN (Hsu et al., 2023) uses a CNN-LSTM model to balance graphic and
content-aware metrics. RADM (Li et al., 2023a) is the first diffusion-based method to incorpo-
rate textual content into layout tasks. RALF (Horita et al., 2024) leverages a retrieval augmenta-
tion method to mitigate the data scarcity problem. Powered by LLMs, LayoutPrompter (Lin et al.,
2024), PosterO (Hsu & Peng, 2025), and PosterLlama (Seol et al., 2024) demonstrate remarkable
capabilities in the field of layout generation. LayoutPrompter uses prompt selection for training-free
generation, PosterO introduces intent maps to avoid salient objects, and PosterLlama fine-tunes the
model for coherent visual-textual layouts.

Unlike previous LLM-based methods, our method explicitly represents relationships and decom-
poses a layout into smaller, structured, and recursive layouts. This leads to layouts that is both more
visually appealing and explainable.

2.2 MULTI-MODAL LARGE LANGUAGE MODELS

Advancements: LLMs have demonstrated remarkable capabilities in natural language understand-
ing. Based on this, MLLMs have achieved remarkable progress by integrating cross-modal data
including visual, auditory, and other sensory data streams (Li et al., 2023b; Radford et al., 2021),
thereby significantly expanding their range of applications, such as GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2023), and Claude 3, as well as open-source models like InternVL (Chen et al.,
2024) and Qwen2.5VL (Team, 2025).

Techniques: In recent years, several techniques have enhanced LLM capabilities. Few-shot (Brown
et al., 2020) allows models to adapt to new tasks with few examples. CoT (Wei et al., 2022) improves
reasoning by guiding models to break down complex problems step by step. LoRA fine-tuning (Hu

3
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  <div class="layout">
    <div class="region" style="flex-direction:column;align-items:center;${box}">
       <div class=“logo" style="margin-top:0px; ${box}"></div>
       <div class="banner" style="margin-top:20px; ${box}"></div>
    <div class="region" style="flex-direction:row;align-items:center;${box}"> (Nest)
    <...>
    </div>
  </div>
</div>

LLM

LoRA

Decode

: Relation Tokens : Normal Tokens

Find Element Boxes

Render

ISNet

Region Logo
Region

Banner

Text

Text
Tree
Format  

Figure 3: (a) is ReLayout training process and its output distinction from previous methods. The
bottom part is two key components of ReLayout. (b) illustrates the relation labels construction logic.
(c) represents the layout dataset resampling process, which adjusts the dataset distribution to achieve
a more balanced layout dataset.

et al., 2022) efficiently adapts models by adding small trainable matrices, reducing memory and
computation costs while maintaining strong performance.

In this work, we adapt several MLLMs for layout generation and enhance output formats inspired
by CoT to produce more reasonable layouts. Results validate the effectiveness of ReLayout.

3 METHODS

3.1 OVERVIEW

Given a set of constraints, our goal is to generate a well-arranged layout. A layout L can be repre-
sented as a set of N elements: L = {e1, . . . , eN} = {(c1,b1), . . . , (cN ,bN )}, where each element
ei consists of its class ci and corresponding bounding box bi = [xi, yi, wi, hi]. In our work, multi-
modal inputs are a canvas image C and foreground elementsF = {(ti,pi)}Ni=1, where ti represents
text and pi represents an element image.

The pipeline of ReLayout, shown in Figure 2, consists of two key components: layout relation-
CoT construction and layout prototype rebalance sampler. The layout relation-CoT construction
explicitly models the layout relations from three aspects: margin between elements, region, and
saliency. These relations will be used for the training of the MLLM to enhance the model’s usability.
Furthermore, these explicit relation models enable us to balance the samples in different clusters
from the perspective of design styles, so as to achieve better optimization and diverse results. The
inference procedure is illustrated in Figure 3(a). Unlike previous layout generation methods based
on LLMs to directly generate layout coordinates, our method first predicts the structured relations
(highlighted in orange) and then generates the layout coordinates based on the provided canvas
image C and foreground elements F .

3.2 LAYOUT RELATION-COT CONSTRUCTION

To fully leverage the extensive knowledge of LLMs in layout design, we choose HTML to represent
layouts. However, unlike previous LLM-based methods that represent layouts using HTML (Lin
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et al., 2024; Seol et al., 2024), we introduce two types of relation spaces: region (including margin
between elements) and saliency (see Figure 3(b)). These relational spaces are designed to address
the shortcomings of previous methods, which often generate layouts that are poorly structured and
lack human aesthetic appeal.

Region: Caused by the fact that LLMs are inherently more sensitive to highly structured data, we
introduce region. Region R serves as the fundamental unit of spatial arrangement, with its internal
structure adhering to a single direction pattern. It can be understood as individual small layouts,
similar to the structure of a tree. Thus it is both nestable and recursive. This makes the layout
annotations formed by it highly structured, allowing the generation of complex overall arrangements
through simple construction rules.

Input: Bounding Boxes Project to X/Y Axes 
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Figure 4: Visualization of region direction estimation
heuristic algorithm in the layout relation-CoT construction.

Region is defined by three key prop-
erties: R = (d, a,b), where
d is the flex-direction, represent-
ing the arrangement direction of el-
ements within the region: d ∈
{row, column}, a represents align-
items, and b represents the region’s
position and size. As illustrated in
Step 2 and Step 2 + n of Figure 3(b),
regions are constructed step by step.
We use Figure 4 as examples to de-
scribe the specific steps of construct-
ing our region. (1) We first perform
the x-axis and y-axis projection op-
erations on each element. (2) Then
we analyze the IoD (Intersection over
Detection) (Yu et al., 2020) matrix of
projections to group bounding boxes
into Gx (x-axis groups) and Gy (y-
axis groups), where IoD is defined as
the intersection between the detection
box and the ignored region divided by the area of the detection box. (3) Based on the group counts,
we determine the layout direction. At this point, we have obtained the direction of the level-1 region
in Step 2 of Figure 3(b). Finally, we only need to recursively apply this process to each group to
further subdivide the region, constructing a hierarchical structure like Step 2 + n of Figure 3(b).
Detailed steps of the heuristic algorithm are given in the supplementary material.

Furthermore, parallel P (see the second column of Figure 1(a)) is a specialized type of region,
sharing the same fundamental attributes. It is typically employed for the parallel presentation of two
or more related elements. These elements maintain uniform visual sizes and align along a designated
axis (either row or column) to ensure consistency and symmetry within the layout.

For each element within a region, we introduce an additional attribute, margin, to represent relative
position, i.e., the spacing between elements. When the region is arranged in a row, this attribute is
defined as margin-left, whereas in a column, it is specified as margin-top. Using this property, we
can effectively control the overall layout compactness.

Saliency: Inspired by the goal that designers usually avoid placing elements over salient objects, we
introduce salient blocks S to help the model better grasp features of salient objects. These blocks are
represented as a series of bounding boxes and are integrated into an HTML-based representation. To
detect these salient blocks, we propose an algorithm that efficiently identifies salient areas through
integral image computation. This algorithm, detailed in the supplementary material, progressively
selects non-overlapping rectangular regions by evaluating their saliency scores based on the density
of white and black pixels, ensuring the captured regions align with natural visual attention. The
following ablation studies also explains that adding salient blocks is crucial.

Sequence formalization: Our input sequence comprises a primary instruction, a task descrip-
tion (e.g., "layout generation with given class"), and an input HTML format. Four
mask tokens (<X>, <Y>, <W>, <H>) are introduced to facilitate their prediction.

5
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We combine the Saliency and Region components into a unified HTML format as the output se-
quence (see Table 6 in the supplementary material).

3.3 LAYOUT PROTOTYPE REBALANCE SAMPLER

Building upon layout relation-CoT annotations, we propose the layout prototype rebalance sampler
to address the issue of limited diversity in previous methods. By the process, our method ensures a
more even distribution across diverse layout prototypes, providing the model with greater opportu-
nities to learn and generalize over a broader range of layouts. As shown in Figure 3(c), our layout
prototype rebalance sampler consists of three key operations: feature extraction, feature clustering,
and rebalance sampling. Below, we provide a detailed explanation of each operation.
Feature extraction: The ith layout prototype is to be primarily characterized by three di-
mensions: {Si,Ri, Ei}. The set of saliency bounding boxes in the ith layout is denoted
as Si, given by: Si =

{
bs
i,j

}ri

j=1
. The number of saliency bounding boxes in lay-

out Li is given by ri ∈ {1, 2, 3, 4}. The saliency feature vector for layout Li captures
the weighted center of all saliency boxes. We define the set of regions in a layout as
Ri = {br

i,j , di,j}
si
j=1, where di,j ∈ {row, column} represents the region’s alignment di-

rection. Then, we extract statistical features from Ri to describe their spatial distribution.

Cluster 1

Cluster 2

Cluster 3

Figure 5: Example layouts from three clusters
showing distinct characteristics in saliency, re-
gion, and element dimensions.

We define the element set of the ith layout as
Ei = {ci,j}tij=1, where ti is the total num-
ber of elements, and ci,j represents the cate-
gory of the jth element in the ith layout. We
believe that the layout is highly related to the
types and numbers of elements. Therefore, we
define element-level features as follows: f e

i =(∑ti
j=1 I(ci,j = ck)

)K

k=1
, where K denotes the

predefined number of element categories (e.g.,
text, logo) in the dataset.
Feature cluster: The final feature is con-
structed by weighted concatenation of the three
feature dimensions:

fi = αf s
i ⊕ βf r

i ⊕ γf e
i (1)

Using these aggregated feature vectors, we ap-
ply K-means clustering with 8 clusters to group
similar layouts for analysis. Figure 5 shows
three layout clusters, each with five samples. In
the first row, the salient object is centered, with two regions, one in column layout. In the second,
the salient object dominates the canvas, with one column region and a banner in each layout. In the
third, the salient object is also centered, with a single region usually holding two elements.

Rebalance sampling: After obtaining 8 clusters, we apply weighted sampling to balance their
influence and avoid dominance by larger ones. Specifically, we assign a sampling weight to each
cluster based on its size:

w =
cnt1/θ

∥cnt1/θ∥1
, (2)

where ∥cnt1/θ∥1 =
∑K

k=1 cnt1/θk and cntk represents the number of layouts in cluster k, and θ is
a hyperparameter that controls the distribution of weights. Larger θ makes sampling more uniform,
helping rare clusters be seen more, but too large may distort the data. Smaller θ favors large clusters
and keeps the original distribution, but may miss rare cases.

4 EXPERIMENTS

4.1 DATASETS

We use two publicly available e-commerce datasets, CGL (Zhou et al., 2022) and PKU (Hsu et al.,
2023). The PKU dataset includes three element categories: Logo, Banner, and Text, while the CGL

6
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Method ∆Val↓ Ove↓ FD↓ Rea↓ Occ↓

PK
U

an
no

ta
te

d

Real Data 0.0000 (± 0.0000) 0.0047 (± 0.0000) - 0.1673 (± 0.0000) 0.0387 (± 0.0000)
RALF 0.0000 (± 0.0000) 0.1740 (± 0.0031) 26.7978 (± 0.2282) 0.1728 (± 0.0003) 0.0639 (± 0.0010)

LayoutPrompter 0.0632 (± 0.0000) 0.0170 (± 0.0000) 16.7438 (± 0.0000) 0.1883 (± 0.0000) 0.1530 (± 0.0000)
PosterO 0.0078 (± 0.0024) 0.1444 (± 0.0043) 15.3882 (± 0.4792) 0.1688 (± 0.0014) 0.0601 (± 0.0017)

PosterLlama-7B 0.0007 (± 0.0002) 0.0318 (± 0.0021) 5.9256 (± 0.1448) 0.1727 (± 0.0003) 0.0659 (± 0.0006)
Qwen2.5VL-7B 0.0007 (± 0.0003) 0.0202 (± 0.0010) 3.6874 (± 0.1903) 0.1686 (± 0.0003) 0.0650 (± 0.0008)
InternVL2.5-8B 0.0050 (± 0.0014) 0.0323 (± 0.0014) 4.3106 (± 0.2717) 0.1717 (± 0.0002) 0.0661 (± 0.0025)

ReLayout♢ 0.0006 (± 0.0002)↓ 0.0253 (± 0.0018)↓ 4.8968 (± 0.0891)↓ 0.1756 (± 0.0013) 0.0647 (± 0.0017)↓

ReLayout† 0.0005 (± 0.0004)↓ 0.0152 (± 0.0016)↓ 2.3931 (± 0.1016)↓ 0.1687 (± 0.0004) 0.0638 (± 0.0011)↓

ReLayout♡ 0.0004 (± 0.0005)↓ 0.0109 (± 0.0001)↓ 3.4615 (± 0.1304)↓ 0.1727 (± 0.0005) 0.0637 (± 0.0002)↓

C
G

L
an

no
ta

te
d

Real Data 0.0000 (± 0.0000) 0.0100 (± 0.0000) - 0.1758 (± 0.0000) 0.0540 (± 0.0000)
RALF 0.0213 (± 0.0001) 0.0478 (± 0.0010) 1.7152 (± 0.0557) 0.1760 (± 0.0002) 0.0518 (± 0.0001)

LayoutPrompter 0.0184 (± 0.0000) 0.0124 (± 0.0000) 9.3699 (± 0.0000) 0.1932 (± 0.0000) 0.1313 (± 0.0000)
PosterO 0.0025 (± 0.0007) 0.1309 (± 0.0006) 13.8778 (± 0.2224) 0.1761 (± 0.0001) 0.0545 (± 0.0006)

PosterLlama-7B 0.0017 (± 0.0004) 0.0183 (± 0.0013) 7.1272 (± 0.0236) 0.1799 (± 0.0003) 0.0747 (± 0.0005)
Qwen2.5VL-7B7 0.0084 (± 0.0013) 0.0174 (± 0.0006) 4.3242 (± 0.0535) 0.1766 (± 0.0001) 0.0551 (± 0.0005)
InternVL2.5-8B 0.0098 (± 0.0010) 0.0195 (± 0.0009) 4.3051 (± 0.0629) 0.1765 (± 0.0002) 0.0588 (± 0.0007)

ReLayout♢ 0.0014 (± 0.0006)↓ 0.0161 (± 0.0009)↓ 5.9611 (± 0.0331)↓ 0.1794 (± 0.0003)↓ 0.0691 (± 0.0011)↓

ReLayout† 0.0039 (± 0.0004)↓ 0.0147 (± 0.0011)↓ 3.3870 (± 0.1013)↓ 0.1768 (± 0.0003) 0.0545 (± 0.0003)↓

ReLayout♡ 0.0023 (± 0.0001)↓ 0.0117 (± 0.0006)↓ 3.1917 (± 0.0215)↓ 0.1760 (± 0.0001)↓ 0.0580 (± 0.0004)↓

Table 1: Performance comparison of the C −→ S + P layout generation task on the hard split of PKU
and CGL datasets. The best result is highlighted in bold, the second-best result is underlined. ♢, †,
and ♡ represent our method applied with PosterLlama, Qwen2.5VL, and InternVL2.5, respectively.
ReLayout mentioned below refers to the row highlighted in red.

dataset has an additional category called Embellishment. Notably, considering that when designing
text (especially text that needs an underlay), designers often treat the text and its underlay as a single
unified element. To better reflect the practical value of our work, “Banner” refers to elements where
Intersection over Union (IoU) or IoD between the text and its underlay is greater than 0.95. We
evaluate all baselines based on the above setting. Additionally, we create an extra hard split for each
dataset. This hard split is selected from the test and validation sets if any of the following conditions
are satisfied: (1) one region is nested within another, (2) a parallel relationship, and (3) the number
of elements exceeding four.

4.2 BASELINES

(1) RALF (Horita et al., 2024) uses retrieval augmentation to address data scarcity. Unlike the
original setting that limited PKU to 10 elements, we extend this to 20 for more complex layouts and
fairer comparison. (2) LayoutPrompter (Lin et al., 2024) uses dynamic exemplar selection to avoid
LLM training. We adopt GPT-3.5 turbo since the original GPT-3 (text-davinci-003) is no longer
available. (3) PosterO (Hsu & Peng, 2025) is a training-free method built on Llama 3.1-8B (Dubey
et al., 2024). (4) PosterLlama (Seol et al., 2024) is based on CodeLlama-7B (Roziere et al., 2023).

4.3 EVALUATION METRICS

Following the evaluation metrics from previous works (Zhou et al., 2022; Hsu et al., 2023), we apply
five metrics. Additionally, we refine the overlap metric to ensure a more reasonable evaluation.
Graphic metrics: These metrics evaluate the graphic quality of the layout without considering the
canvas. Validity (Val) measures the proportion of elements larger than 0.1% of the canvas; other
metrics are computed on these valid elements. Due to the presence of small elements like embel-
lishments in CGL, we use ∆Val for evaluation. In previous works, Overlap (Ove) is the average
IoU across all element pairs. However, it has a key limitation: if a layout includes one fully over-
lapping pair amid many non-overlapping ones, the metric may not reflect poor quality. In reality,
heavy overlap between elements is directly seen as a failure. Therefore, we use the maximum IoU
to evaluate the generated layouts. We calculate Fréchet Distance (FD) in the feature space derived
from bounding boxes and categories to evaluate overall layout quality.
Content metrics: These metrics assess harmony between the generated layout and the canvas. Oc-
clusion (Occ) calculates the pixel coverage ratio of layout elements over saliency maps. Readability
(Rea) evaluates text clarity using average pixel gradients, where lower is better.
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LayoutPrompter PosterO RALF PosterLlama InternVL ReLayout

Puse 36.0% 44.7% 50.3% 71.3% 78.3% 91.0%
Pbest 0.7% 7.0% 6.3% 11.0% 10.3% 64.7%

Table 2: User study on structural evaluation. If Puse is
below 50%, the method is deemed unusable and will be
excluded from the diversity evaluation in the user study to
save human resources.

RALF PosterLlama InternVL ReLayout

Score 41 47 36 56
cnt (18, 23, 9) (14, 25, 11) (21, 22, 7) (11, 22, 17)

Table 3: User study on diversity evalua-
tion. cnt denotes the number of gener-
ated layout groups (across three differ-
ent seeds) that exhibit 1, 2, and 3 dis-
tinct styles, respectively.

User study: In the layout generation field, the current metrics are insufficient to fully evaluate the
quality of a layout. Therefore, we conduct user studies. For user studies, we use images from the
PKU dataset and invite 6 professional designers as evaluators. For each image, layouts are generated
using five different methods and presented simultaneously in a shuffled order, with model names not
perceived by users. In terms of structure, 300 images are randomly selected. Users assess each row
of results based on two criteria: (1) identify all layouts that meet basic usability standards (e.g., no
overlap, no occlusion), denoted as Puse; and (2) select the single best layout according to profes-
sional design principles, considering appropriate margin, relative size, distance from products and
overall visual harmony, denoted as Pbest.
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Figure 6: Qualitative comparison on the PKU and CGL
datasets. Baselines layouts show noticeable errors, while
ours meet basic needs and better align with human aesthet-
ics in margin and arrangement.

In terms of diversity, 50 images are
randomly selected. Due to poor us-
ability, LayoutPrompter and PosterO
are excluded, leaving four methods,
each run with three different seeds (0,
1, 2). Users are instructed to evalu-
ate diversity based on differences in
relative position (e.g., alignment) and
text size—any variation in either as-
pect is considered a distinct style. Di-
versity is scored as 0 (one style), 1
(two styles), or 2 (three styles).

4.4 MAIN RESULTS

Since designers usually design ele-
ments first before arranging the over-
all layout, our experiments primarily
focus on generating the positions and
sizes of elements based on given cat-
egories that each model can support
as input.
Quantitative comparison: Table 1
presents a comparison of different
methods on the hard split of PKU and
CGL datasets. Our method improves
the performance of various MLLMs,
with ReLayout♡ achieving better re-
sults across all metrics. Specifically,
on the PKU dataset, it demonstrates
the best performance on most met-
rics, with a particularly notable im-
provement in the Ove metric. On the CGL dataset, while it does not achieve the best performance
across all metrics, it consistently outperforms others on the Ove metric. These improvements are
attributed to the annotations margin property of our relation-CoT and resampling strategy that effec-
tively balances the dataset. It demonstrates that our method is better at generating more structured
layouts. Although RALF and PosterO perform well on the Occ metrics, their higher Ove score sig-
nificantly compromises their practical usability, as also illustrated in Figure 6. Plus, Table 2 shows
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Region Saliency Resample ∆Val↓ Ove↓ FD↓ Rea↓ Occ↓
V0 - - - 0.0025 0.0153 8.7960 0.1746 0.0821
V1 ✓ - - 0.0021 0.0379 12.2290 0.1967 0.1188
V2 ✓ ✓ - 0.0014 0.0150 7.3406 0.1769 0.0754
V3 ✓ ✓ ✓ 0.0002 0.0097 4.9403 0.1755 0.0752

Table 4: Ablation study on the hard split of PKU dataset.

that ReLayout performs significantly better in aligning with human aesthetic preferences. Further-
more, Table 3 demonstrates that ReLayout also achieves the highest diversity, exhibiting a greater
number and variety of distinct layout styles under different seed settings.

Qualitative comparison: Figure 6 visualizes the generated layouts, providing a comparison across
different methods. It can be observed that, apart from the obvious errors marked in Figure 6, other
methods also fall short in controlling element aspect ratio, element spacing, selecting layout ar-
rangements, and achieving overall harmony. In contrast, ReLayout aligns more closely with human
aesthetic preferences. Additionally, our method excels at generating diverse layouts and handling
layout generation under various conditions, as shown in Figure 11 in the supplementary material.

4.5 ABLATION STUDY AND ANALYSIS

Effect of Each Module: To simplify the setup, the ablation study uses a training set with only
a single main condition from PKU: generating position and size given the category, text, and as-
pect ratio. As shown in Table 4, V1 adds only region annotations, V2 builds on V1 by incorpo-
rating saliency annotations, and V3 builds on V2 by additionally introducing a layout prototype
rebalance sampler, several observations can be made. First, V1 demonstrates relatively poor over-
all metrics, likely due to the model focusing on the structure of elements while neglecting salient
objects. Since no structure-related metrics, this effect cannot be quantified and must be analyzed
via visualization in the supplementary material. Second, V2 shows that FD improves compared
to V0. Compared to the Region-only setting, all metrics show an upward trend, particularly the
Occ metric, which demonstrates the importance of Saliency in content-aware tasks. Third, V3
achieves the best results. Notably, the improvements in Ove and FD are particularly significant.

θ ∆Val↓ Ove↓ FD↓ Rea↓ Occ↓
3 0.0009 0.0121 4.7920 0.1742 0.0633
6 0.0004 0.0109 3.4615 0.1727 0.0637
10 0.0082 0.0168 5.0655 0.1791 0.0703
100 0.0075 0.0146 4.9287 0.1783 0.0808

Table 5: Hyperparameter analysis on the hard split of
PKU dataset.

Hyperparameter Analysis: We analyze
the hyperparameter θ on the hard split of
PKU dataset, as shown in Table 5. The
results show that θ = 6 yields the best
performance. A smaller θ better preserves
the original distribution, causing rare lay-
out prototypes to be treated as noise. In
contrast, a larger θ overly balances the dis-
tribution, leading to repeated learning of
rare prototypes and reduced performance.

5 CONCLUSION

In this work, we study content-aware layout generation tasks and address the issue in LLM-based
methods where the relationships between elements have not been considered. We propose a novel
method ReLayout, which consists of two modules. First, we enhance the model’s understanding of
relationships by incorporating explicit relationship annotations, framed from the perspective of CoT.
Second, we utilize relation annotations to cluster the dataset and adjust its distribution, thereby en-
hancing the quality of generated layouts. Moreover, extensive experiments validate the effectiveness
of our method, particularly in visualization.

Furthermore, we identify two limitations in ReLayout. First, while current metrics can effectively
identify obviously inadequate layouts, they lack the capability to evaluate layout suitability for real-
world application scenarios. Second, the processing performance is constrained by the limitations
of multi-resolution datasets, resulting in suboptimal results.
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A IMPLEMENTATION DETAILS

A.1 TRAINING SETS SETTING

Our method is applied to three MLLMs: PosterLlama-7B (Seol et al., 2024), Qwen2.5VL-
7B (Team, 2025), and InternVL2.5-8B (Chen et al., 2024). Each experiment is con-
ducted on 8 A800 GPUs. We follow their default settings for training and inference.

Image Inpainting TextElement
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Figure 7: Visualization of Data Preprocessing.

When training on the PKU dataset, we adopt
a diverse set of seven conditional settings to
enable flexible and robust layout generation
under various input combinations. These
include: cate text eimg to size pos,
where the model predicts element size
and position based on category, tex-
tual description, and element images;
cond cate text eimg size to pos,
which infers only the position of elements
given their category, text, element images,
and sizes; text eimg recover mask;
text eimg refinement, which refines
initial coarse predictions based on multimodal
input; cate text eimg ar to size pos,
where aspect ratio is additionally con-
sidered alongside category, text, and ele-
ment images to predict size and position;
text eimg completion, which completes
partially missing layout information; and
cate text to size pos, a relatively sim-
pler setting that predicts element size and po-
sition based only on category and text, without
element images input. In contrast, when train-
ing on the CGL dataset, we use only one condi-
tion: cate text eimg ar to size pos,
which focuses on predicting element size and
position from a complete set of multimodal
inputs including category, text, element images,
and aspect ratio, aligning with the structure and
requirements of the CGL dataset.

A.2 DATA PREPROCESSING

We use LaMa (Suvorov et al., 2022) for inpainting and PaddleOCR for text extraction on both PKU
and CGL datasets as shown in Figure 7. It can be observed that our inpainting results effectively
remove elements, and the text extraction is precise. The saliency map is crucial for Algorithm 1.
We employ BASNet (Qin et al., 2019) and ISNet (Zhang et al., 2022) to obtain the saliency map.
Figure 7 illustrates the original image, inpainting results, the saliency map generated by ISNet,
element extraction, and text extraction, respectively.

We define the algorithm for the Salient box as shown in Algorithm 1, which outlines the process
of detecting salient regions in an image. The algorithm iteratively searches for the most prominent
rectangles based on intensity thresholds and overlap constraints, ensuring that the selected regions
maximize their saliency scores while minimizing redundancy. This approach effectively identifies
the most important areas in the image.

Algorithm 2 determines whether the dominant layout direction is “row” or “column” by analyzing
the spatial distribution of the bounding boxes B. It first projects the boxes onto the x-axis and y-axis
to analyze horizontal and vertical alignment separately. For each axis, it groups overlapping boxes
using a specified IoD (Yu et al., 2020) threshold ϕ. If the layout forms a single group along one axis
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Algorithm 1 Salient Region Detection
Input: Image I , maximum rectangles N , search step s
Output: List of salient rectangles R

1: B ← I(I > τ) where τ is intensity threshold
2: Iwhite, Iblack ← ComputeIntegralImage(B)
3: V ← 0, Iv ← ComputeIntegralImage(V )
4: R← ∅
5: for i← 1 to N do
6: max score← 0, best rect← null
7: for r ∈ SearchSpace(s) do
8: if ∃a ∈ R : Overlap(a, r) then
9: continue

10: end if
11: w ← RectSum(Iwhite, r)− RectSum(Iv, r)
12: b← RectSum(Iblack, r)
13: score← ComputeScore(w, b, r)
14: if score > max score then
15: max score, best rect← score, r
16: end if
17: end for
18: R← R ∪ {best rect}, update V and Iv
19: end for
20: return R

Algorithm 2 Estimate Layout Direction
Input: Bounding boxes B, overlap threshold ϕ.
Output: (Direction, G)

1: Lx ← project bounding boxes B to x-axis;
2: Ly ← project bounding boxes B to y-axis;
3: Gx ← GroupByOverlap(Lx, ϕ);
4: Gy ← GroupByOverlap(Ly , ϕ);
5: if |Gx| = 1 AND |Gy| > 1 then
6: return (“column”, Gy)
7: else if |Gy| = 1 AND |Gx| > 1 then
8: return (“row”, Gx)
9: else

10: Vx ← ComputeGroupVariance(Gx)
11: Vy ← ComputeGroupVariance(Gy)
12: if Vx ≤ Vy then return (“row”, Gx)
13: else
14: return (“column”, Gy)
15: end if
16: end if
17: function GROUPBYOVERLAP(L, ϕ)
18: edges← ∅
19: for each pair (i, j) in L do
20: if IoD(L[i], L[j]) ≥ ϕ then
21: edges← edges ∪ {(i, j)}
22: end if
23: end for
24: groups← FindConnectedComponents(edges)
25: return groups
26: end function

but multiple groups along the other, it selects the direction with more structural variation (i.e., more
groups). If both axes have multiple groups, it compares the intra-group variance in each direction
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and chooses the one with smaller variance as the dominant direction. The algorithm returns both the
inferred direction (“row” or “column”) and the corresponding grouped structure.

A.3 HYPERPARAMETER SETTING

We set the feature clustering parameters α, β, and γ in the layout prototype rebalance sampler to 2,
1, and 10, respectively.

B INPUT-OUTPUT PROMPT EXAMPLE

Here, we present an example prompt for specifying a layout generation task. We illustrate a C −→ S
+ P example that provides an overview of all tasks.

C MORE QUANTITATIVE RESULTS

C.1 OUT-OF-DOMAIN GENERALIZATION

To verify the generalization of our method, we conduct experiments using PKU as the training set
and testing on CGL, and vice versa. As shown in Table 7, our method outperforms the current SOTA
PosterLlama on most metrics. This demonstrates that ReLayout adapts well to real-world scenarios
and demonstrates strong generalization performance.

C.2 RELAYOUT ON TEST SPLIT

In addition to evaluating the effectiveness of our method on the hard split, which focuses on more
challenging layout scenarios, we further conduct experiments on the test split of the PKU and CGL
datasets. This comprehensive evaluation aims to assess the generalization ability and robustness of
our approach across different task settings. From the results shown in Table 8, our method achieves
consistently strong performance across different dataset splits, demonstrating that the proposed lay-
out relation-CoT construction and layout prototype rebalance sampler strategy enables our model to
adapt well to varying data partitions.

C.3 LAYOUTPROMPTER BASED ON GPT4O

We follow prior work by first evaluating the performance of GPT-3.5-turbo using the same experi-
mental settings. In addition, we extend the evaluation to include GPT-4o on the PKU-test set after
making the necessary adjustments to ensure compatibility with our codebase. As shown in Table 9,
GPT-4o achieves better results compared to GPT-3.5-turbo, demonstrating its stronger reasoning
and layout generation capabilities. However, despite these improvements, our proposed method
still outperforms both GPT-3.5-turbo and GPT-4o, highlighting the effectiveness of our approach in
modeling layout relations more accurately.

C.4 SCALING LAW ANALYSIS

Based on the results in Table 10, a clear scaling trend emerges: the 8B model consistently and
substantially outperforms the 4B model across all metrics and both test splits. This indicates that
increasing model size yields significant performance improvements, particularly on the hard split of
PKU dataset, where the 8B model shows a marked advantage. The consistent gains across metrics
and splits suggest that scaling up model size is an effective strategy for improving both capability
and robustness.

C.5 COMPUTATIONAL COST AND RUNNING TIME

Table 11 reports the inference performance of different methods, evaluated on an NVIDIA L20
GPU using a single-sample test setting for fair comparison. Compared to PosterLlama, our method
achieves better performance while maintaining nearly the same inference time, indicating that the
improvements in layout quality do not come at the cost of efficiency. Although our method incurs
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Input
Task Definition
Given canvas image: <image>
Given elements Images: <image><image><image><image>
Please generate a layout based on the given information for the given canvas image. You need to
ensure that the generated layout (in html format) looks realistic, with elements well aligned and
avoiding unnecessary overlap.

Task Description
layout generation with given class.

Layout Domain
advertisement layout.

Input html
<div class="canvas" style="left:0px; top:0px;width:683px;height:999px">
<div class="logo" style="left:<X1>px;top:<Y1>px;width:<W>px;height:<H>px">
</div>
<div class="text" style="left:<X1>px;top:<Y1>px;width:<W>px;height:<H>px"
text="half"></div>
<div class="text" style="left:<X1>px;top:<Y1>px;width:<W>px;height:<H>px"
text="announce"></div>
<div class="banner" style="left:<X1>px;top:<Y1>px;width:<W>px;height:<H>px"
text="size"></div>

</div>

Output html

<div class="canvas" style="left:0px;top:0px;width:683px;height:999px">
<div class="relation_salient">
<div class="salient" style="left:200px;top:450px;width:301px;height:450px">
</div>

</div>
<div class="layout">
<div class="relation_region" style="flex-direction:row;align-items:stretch;

left:32px;top:37px;width:631px;height:409px">
<div class="relation_region" style="flex-direction:column;align-items:center;

left:32px;top:37px;width:433px;height:331px">
<div class="logo" style="margin-top:0px;left:225px;top:37px;width:240px;

height:104px"></div>
<div class="text" style="margin-top:69px;left:32px;top:210px;width:328px;

height:83px"></div>
<div class="banner" style="margin-top:17px;left:51px;top:310px;

width:293px;height:58px"></div>
</div>
<div class="text" style="margin-left:-92px;left:373px;top:181px;

width:290px;height:265px"></div>
</div>

</div>
</div>

Table 6: Prompt example

slightly higher FLOPs, this is primarily due to the generation of longer outputs, which reflects the
richer relational information being modeled. As for LayoutPrompter, we do not report its inference
statistics because it relies on external calls to GPT API.
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Train Test Method ∆Val↓ Ove↓ FD↓ Rea↓ Occ↓

PKU CGL-hard PosterLlama 0.0225 (± 0.0001) 0.0311 (± 0.0004) 6.5679 (± 0.1091) 0.1758 (± 0.0004) 0.0688 (± 0.0010)
ReLayout (Ours) 0.0167 (± 0.0001) 0.0100 (± 0.0004) 4.4413 (± 0.0136) 0.1715 (± 0.0001) 0.0631 (± 0.0002)

CGL PKU-hard PosterLlama 0.0019 (± 0.0007) 0.0205 (± 0.0035) 7.1093 (± 0.2796) 0.1726 (± 0.0010) 0.0694 (± 0.0016)
ReLayout (Ours) 0.0010 (± 0.0005) 0.0120 (± 0.0023) 5.9011 (± 0.1120) 0.1730 (± 0.0012) 0.0660 (± 0.0009)

Table 7: Cross-dataset evaluation on PKU and CGL datasets.

Method
Test Split

Graphic Content
∆Val↓ Ove↓ FD↓ Rea↓ Occ↓

PKU Annotated Dataset
Real Data 0.0000 (± 0.0000) 0.0035 (± 0.0000) - 0.1545 (± 0.0000) 0.0639 (± 0.0000)
LayoutPrompter (Lin et al., 2024) 0.0015 (± 0.0000) 0.0090 (± 0.0000) 8.0392 (± 0.0000) 0.1683 (± 0.0000) 0.1452 (± 0.0000)
RALF (Horita et al., 2024) 0.0000 (± 0.0000) 0.0915 (± 0.0023) 15.5497 (± 0.1499) 0.1617 (± 0.0005) 0.0866 (± 0.0024)
PosterLlama-T (Seol et al., 2024) 0.0002 (± 0.0003) 0.0211 (± 0.0018) 3.5318 (± 0.2160) 0.1612 (± 0.0002) 0.0863 (± 0.0019)
InternVL2.5-8B (Chen et al., 2024) 0.0054 (± 0.0009) 0.0175 (± 0.0004) 2.6175 (± 0.0905) 0.1588 (± 0.0003) 0.0885 (± 0.0016)
ReLayout (Ours) 0.0001 (± 0.0002) 0.0086 (± 0.0011) 1.7865 (± 0.1195) 0.1600 (± 0.0004) 0.0857 (± 0.0010)
CGL Annotated Dataset
Real Data 0.0000 (± 0.0000) 0.0060 (± 0.0000) - 0.1654 (± 0.0000) 0.0771 (± 0.0000)
LayoutPrompter (Lin et al., 2024) 0.0125 (± 0.0000) 0.0094 (± 0.0000) 6.7951 (± 0.0000) 0.1787 (± 0.0000) 0.1510 (± 0.0000)
RALF (Horita et al., 2024) 0.0147 (± 0.0001) 0.0283 (± 0.0007) 0.9277 (± 0.0312) 0.1649 (± 0.0002) 0.0744 (± 0.0001)
PosterLlama-T (Seol et al., 2024) 0.0012 (± 0.0003) 0.0102 (± 0.0010) 4.4151 (± 0.0129) 0.1674 (± 0.0001) 0.0931 (± 0.0004)
InternVL-2.5-8B (Chen et al., 2024) 0.0062 (± 0.0005) 0.0114 (± 0.0007) 2.8395 (± 0.1031) 0.1649 (± 0.0002) 0.0796 (± 0.0003)
ReLayout (Ours) 0.0004 (± 0.0002) 0.0088 (± 0.0003) 1.9311 (± 0.0120) 0.1648 (± 0.0001) 0.0787 (± 0.0001)

Table 8: Performance comparison of the C −→ S + P layout generation task on the PKU and CGL
datasets. The best result is highlighted in bold, the second-best result is underlined, and the row
corresponding to our method is marked in red.

∆Val↓ Ove↓ FD↓ Rea↓ Occ↓
3.5-turbo 0.0015 0.0090 8.0392 0.1683 0.1452
4o 0.0010 0.0066 7.6730 0.1648 0.1472
ReLayout 0.0001 0.0086 1.7865 0.1600 0.0857

Table 9: LayoutPrompter based on GPT4o.

D MORE QUALITATIVE RESULTS

D.1 SOME SMALL DISCOVERIES

V0

V3

Figure 8: Examples of place pro-
motional terms.

We also observe that ReLayout is capable of capturing
and understanding the underlying placement logic associ-
ated with certain specific types of advertising promotional
terms. As illustrated in the red box in Figure 8, instances of
Quantitative Advertising, such as “Over 3.49 mil-
lion units sold!”, or Sale Advertising, such as “GIFT”,
are sometimes positioned in ways that partially occlude salient
visual elements (e.g., product images or logos). While this
may seem suboptimal from a purely visual clarity perspective,
such placement actually conforms to common design conven-
tions in advertising, where emphasis on promotional content
often takes precedence to attract user attention.

D.2 VISUALIZATION OF ABLATION STUDIES

We conducted a visual analysis of the ablation studies. As
shown in Figure 9, V2 has a more aesthetically pleasing lay-
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Params ∆Val↓ Ove↓ FD↓ Rea↓ Occ↓
PKU Test Split
4B 0.0207 0.1732 84.4993 0.2092 0.1774
8B 0.0001 0.0086 1.7865 0.1600 0.0857
PKU Hard Split
4B 0.0204 0.1804 97.0555 0.2114 0.1602
8B 0.0004 0.0109 3.4615 0.1727 0.0637

Table 10: Scaling law analysis on PKU dataset.

Method Params(B) Time(s) FLOPs(T) Pbest

LayoutPrompter - 4.2 - 1.3%
PosterLlama 6.9 7.5 2.2 12.0%
InternVL 8.1 4.9 3.0 10.7%
ReLayout 8.1 7.5 4.0 66.3%

Table 11: Computational cost and running time analysis.

out compared to V0 and V1, in terms of margin, alignment,
and adherence to human visual preferences. Furthermore, as
shown in Figure 9, V2 exhibits a clearer understanding of ele-
ment sizes compared to V1, conveying information more effectively. Additionally, in the last column
of the figure, we can see that adding the Resample module in simple layout scenarios does not lead
to forgetting.

D.3 DIVERSE SEED GENERATION

To demonstrate the diversity of layout generation results, we adjust random seeds during the gener-
ation process as shown in Figure 10. It can be observed that our method consistently meets the basic
layout requirements, such as avoiding overlap and occlusion, across different random seeds. At the
same time, the layouts generated by each seed are distinct while aligning with human aesthetic pref-
erences. Notably, variations in random seeds may lead to the enlargement of promotional keywords,
emphasis on functional slogans, or adjustments in regional alignment, which further demonstrate
the effectiveness and diversity of our approach in layout generation.

D.4 DIVERSE CONDITIONAL GENERATION

Our method is capable of generating high-quality layouts under various conditions. Specifically, we
visualize the generate layouts shown in Figure 11 under the following conditions: (1) Unconditional:
Given only the canvas image, the model generates the entire layout; (2) C + S −→ P: Given the
category and position of input elements, the model predicts their sizes; (3) Completion: Provided
with a partial layout, the model generates a complete one; (4) Refinement: After applying Gaussian
perturbations to the layout, the model adjusts it to achieve the optimal arrangement. It can be
observed that ReLayout is capable of producing sufficiently high-quality layouts under various user-
defined constraints.

D.5 SPECIFIC RELATION VISUALIZATION

We performed a detailed parse of the relationships in the layouts generated by our method, as shown
in Figure 12. It can be seen that our method handles salient positions with high accuracy and
organizes the arrangement within regions clearly. The overall layout exhibits a strong sense of
hierarchy and logical structure. Additionally, the spacing and proportions between elements are
well-controlled, fully reflecting an understanding of human aesthetics. This advantage makes our
method particularly effective in complex layout generation tasks.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Canvas Image Element Image(s) V0 V2V1 V3

Figure 9: Examples of visualization for ablation studies.

E LLMS USAGE

We only utilize LLMs for text polishing purposes. Specifically, LLMs are employed solely to as-
sist with language refinement, including grammar checking, sentence structure optimization, and
improving the overall readability and fluency of the manuscript. It is important to emphasize that
all core research contributions, including the conceptual framework, methodology, experimental de-
sign, data analysis, interpretation of results, and conclusions, are developed entirely by the authors
without any involvement of LLMs.
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Canvas Image Element Image(s) Seed 0 Seed 2Seed 1

Figure 10: Examples of visualization across diverse seed.
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Canvas Image
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None

Unconditional C + S      P Completion Refinement

<text, x, y, 56, 34>

<logo, x, y, 21, 79>

<text, x, y, 99, 19>

<banner, x, y, 99, 19>

logo

text
Perturbed layout

Figure 11: Examples of visualization across diverse conditions.
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Canvas Image Element Image(s) Rendered Image Predicted Salient Predicted Region Region Property

Region 1:

Direction: Column

Align-items: Center

Region 1:

Direction: Column

Align-items: Center

Region 2:

Direction: Column

Align-items: Center

Region 1:

Direction: Column

Align-items: Left

Region 1:

Direction: Column

Align-items: Center

Region 1-1 (Parallel):

Direction: Row

Align-items: Center

Region 1:

Direction: Column

Align-items: Center

Region 2:

Direction: Column

Align-items: Center

Figure 12: Comprehensive visualization and detailed analysis of the generated output to illustrate
relational elements.
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